National Library of Energy BETA

Sample records for magnetic linear dichroism

  1. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  2. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  3. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  4. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  5. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  6. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Wednesday, 29 August 2007 00:00 Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic

  7. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the XMLD signal across the Ni L2,3 edges was determined by rotating the orientation of x-ray polarization E and external magnetic field H relative to the crystalline axes. ...

  8. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print...

  9. Magnetic Dichroism Spectromicroscopy at SPEAR3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ray Dichroism Absorption Microscopy and Spectroscopy at the SSRL XDSM Examples X-ray absorption spectroscopy (XAS) utilizes the energy dependent absorption of x-rays to obtain...

  10. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print Thursday, 17 December 2009 13:47 Schematic representation of linear dichroism observed in KL x-ray emission. Coupling between the spin-orbit interaction and the molecular field, oriented along the chemical bond, leads to different spin-orbit ratios as a function of the angle between the incoming

  11. Magnetic circular dichroism in x-ray absorption and core-level photoemission

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Gouder, T.H.; Colmenares, C.A.; Pappas, D.P.

    1993-03-17

    Here is reported observation of magnetic circular dichroism in both x-ray absorption and core-level photoemission of ultra thin magnetic films using circularly polarized x-rays. Iron films (1--4 ML) grown on a Cu(001) substrate at 150 K and magnetized perpendicular to the surface show dramatic changes in the L{sub 2,3} branching ratio for different x-ray polarizations. For linearly-polarized x-rays perpendicular to the magnetic axis of the sample the branching ratio was 0.75. For films {ge} 2 ML, this ratio varied from 0.64 to 0.85 for photon spin parallel and anti-parallel, respectively, to the magnetic axis. This effect was observed either by changing the x-ray helicity for a fixed magnetic axis, or by reversing the magnetic axis for a fixed x-ray helicity. Our observation can be analyzed within a simple one-electron picture, if the raw branching ratios are no so that the linear value becomes statistical Furthermore, warming the films to {approximately}300 K eliminated this effect, indicating a loss of magnetization in the film over a temperature range of {approximately}30 K. Finally, reversing the relative orientation of the photon spin and the magnetic axis from parallel to anti-parallel allowed measurement of the exchange splitting of the Fe 2p and 3p core levels which were found to be 0.3 eV and 0.2 eV. respectively. These results are consistent with earlier studies, but the use of off-plane circularly-polarized x-rays from a bending magnet monochromator offers {approximately}2 orders of magnitude greater intensity than typical spin-polarization measurements. Finally, we have performed preliminary x-ray absorption studies of UFe{sub 2}, demonstrating the feasibilty of MCD measurements in 5f as well as 3d materials.

  12. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  13. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  14. Atomic moments in Mn{sub 2}CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Heiman, D.; Sterbinsky, G. E.; Arena, D. A.

    2014-12-07

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn{sub 2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  15. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect (OSTI)

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frmter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grtzmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  16. Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation

    SciTech Connect (OSTI)

    Kanai, Shun; Tsujikawa, Masahito; Shirai, Masafumi; Miura, Yoshio; Matsukura, Fumihiro Ohno, Hideo

    2014-12-01

    We study the spin and orbital magnetic moments in Ta/Co{sub 0.4}Fe{sub 0.4}B{sub 0.2}/MgO by x-ray magnetic circular dichroism measurements as well as first-principles calculations, in order to clarify the origin of the perpendicular magnetic anisotropy. Both experimental and theoretical results show that orbital magnetic moment of Fe is more anisotropic than that of Co with respect to the magnetization direction. The anisotropy is larger for thinner CoFeB, indicating that Fe atoms at the interface with MgO contribute more than Co to the observed perpendicular magnetic anisotropy.

  17. Nuclear spin circular dichroism

    SciTech Connect (OSTI)

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  18. X-ray magnetic circular dichroism for Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Suemasu, Takashi; Zhu, Siyuan; Kimura, Akio; Takeda, Yukiharu; Saitoh, Yuji

    2014-05-07

    We evaluated orbital (m{sub orb}) and spin magnetic moments (m{sub spin}) of Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) epitaxial thin films grown by molecular beam epitaxy using x-ray magnetic circular dichroism, and discussed the dependence of these values on x. Site-averaged m{sub spin} value of Fe atoms was deduced to be 1.91??{sub B} per atom, and that of Co atoms to be 1.47??{sub B} per atom in Co{sub 3}FeN at 300?K. These values are close to 1.87??{sub B} per Fe atom in Fe{sub 4}N and 1.43??{sub B} per Co atom in Co{sub 4}N, respectively. This result implies that the Fe and Co atoms in the Co{sub 3}FeN films were located both at corner and face-centered sites in the anti-perovskite lattice. Spin magnetic moments per unit cell were decreased linearly with increasing x in Co{sub x}Fe{sub 4?x}N. This tendency is in good agreement with theory predicted by the first-principle calculation.

  19. X-ray magnetic circular dichroism at the U M{sub 4,5} absorption edges of UFe{sub 2}

    SciTech Connect (OSTI)

    Finazzi, M.; Sainctavit, P.; Dias, A.; Kappler, J.; Krill, G.; Sanchez, J.; Dalmas de Reotier, P.; Yaouanc, A.; Rogalev, A.; Goulon, J.

    1997-02-01

    We present an x-ray magnetic circular dichroism study performed at the U M{sub 4,5} edges on UFe{sub 2}, a ferromagnet with almost itinerant 5f electrons. The analysis of the branching ratio of the U M{sub 4,5} edges confirms the fact that the occupation number of the 5f states in UFe{sub 2} is lower than in other compounds where the f electrons are more localized. Magnetic circular dichroism effects are observed consistently with the presence of an orbital 5f magnetic moment which aligns parallel to the total magnetic moment. In agreement with a polarized neutron study, we find a nearly perfect cancellation of the U-5f spin and orbital magnetic moments, which results in a vanishing small total U-5f magnetic moment. Results are discussed in comparison with atomic multiplet calculations. {copyright} {ital 1997} {ital The American Physical Society}

  20. X-ray magnetic circular dichroism study of epitaxial magnetite ultrathin film on MgO(100)

    SciTech Connect (OSTI)

    Liu, W. Q.; Xu, Y. B. E-mail: rzhang@nju.edu.cn; Song, M. Y.; Lin, J. G.; Maltby, N. J.; Li, S. P.; Samant, M. G.; Parkin, S. S. P.; Bencok, P.; Steadman, Paul; Dobrynin, Alexey; Zhang, R. E-mail: rzhang@nju.edu.cn

    2015-05-07

    The spin and orbital magnetic moments of the Fe{sub 3}O{sub 4} epitaxial ultrathin film synthesized by plasma assisted simultaneous oxidization on MgO(100) have been studied with X-ray magnetic circular dichroism. The ultrathin film retains a rather large total magnetic moment, i.e., (2.73 ± 0.15) μ{sub B}/f.u., which is ∼70% of that for the bulk-like Fe{sub 3}O{sub 4}. A significant unquenched orbital moment up to 0.54 ± 0.05 μ{sub B}/f.u. was observed, which could come from the symmetry breaking at the Fe{sub 3}O{sub 4}/MgO interface. Such sizable orbital moment will add capacities to the Fe{sub 3}O{sub 4}-based spintronics devices in the magnetization reversal by the electric field.

  1. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values thatmore » have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  2. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-01

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M?,? edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [?L = 2.8(1)?B/Pu] and spin moments [?S = ?2.0(1)?B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of ?Lz? and ?Sz? are in excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. Finally, we demonstrate that a split M? as well as a narrow M? XMCD signal may serve as a signature of 5f electron localization in actinide compounds.

  3. Theoretical study of magnetic properties and x-ray magnetic circular dichroism of the ordered Fe{sub 0.5}Pd{sub 0.5} alloy

    SciTech Connect (OSTI)

    Galanakis, I. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Ostanin, S. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Alouani, M. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Dreysse, H. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Wills, J. M. [Center for Materials Science and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Center for Materials Science and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2000-01-01

    A detailed theoretical study of magnetic and structural properties of Fe{sub 0.5}Pd{sub 0.5} ordered face-centered tetragonal (fct) alloy, using both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA), is presented. The total energy surface as a function of the lattice parameters a and c shows a long valley where stable structures may exist. Our calculation using the GGA predicts a magnetic phase transition from perpendicular to parallel magnetization as a function of the lattice parameter, whereas LSDA favors always the [001] magnetization axis for all values of the lattice parameters. The spin and orbital magnetic moments and x-ray magnetic circular dichroism spectra are calculated for the easy [001] and the hard [100] magnetization axis and for three sets of experimental lattice parameters, and are compared to the available experimental results on these films. A supercell calculation for a 4 monolayer Fe{sub 0.5}Pd{sub 0.5} thin film produced similar results. While the spin magnetic moments are in fair agreement with experiment, the orbital magnetic moments are considerably underestimated. To improve the agreement with experiment we included an atomic orbital polarization term; however, the computed orbital moments scarcely changed. (c) 2000 The American Physical Society.

  4. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    SciTech Connect (OSTI)

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjrvarsson, Bjrgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magnetic orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.

  5. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  6. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M.; Sterbinsky, G.; Assaf, B.; Arena, D.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)

  7. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magneticmore » orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.« less

  8. Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Nakamura, T.; Yasui, A.; Kotani, Y.; Iwai, H.; Akiya, T.; Ohkubo, T.; Hono, K.; Hirosawa, S.; Gohda, Y.

    2014-11-17

    We have investigated the magnetism of the grain boundary (GB) phase in a Nd{sub 14.0}Fe{sub 79.7}Cu{sub 0.1}B{sub 6.2} sintered magnet using soft x-ray magnetic circular dichroism (XMCD) at the Fe L{sub 2,3}-edges. Soft XMCD spectra were measured from the fractured surface that was confirmed to be covered with a thin GB phase by Auger electron spectroscopy. The magnetic moment of Fe in the GB phase was estimated to be m{sub GB}=1.4??{sub B} at 30?C using the sum rule analysis for XMCD spectra, which is 60% of that of Fe in the Nd{sub 2}Fe{sub 14}B compound. The temperature dependence of m{sub GB} evaluated with reference to Fe in the Nd{sub 2}Fe{sub 14}B phase indicated that the Curie temperature of the GB phase is more than 50?C lower compared to that of Nd{sub 2}Fe{sub 14}B.

  9. VINETA II: A linear magnetic reconnection experiment

    SciTech Connect (OSTI)

    Bohlin, H. Von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.; Ernst-Moritz-Arndt University, Domstr. 11, 17489 Greifswald

    2014-02-15

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  10. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, Howard T. (Darien, IL)

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  11. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  12. Local electronic states of Fe{sub 4}N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Ito, Keita; Toko, Kaoru; Suemasu, Takashi; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Kimura, Akio

    2015-05-21

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L{sub 2,3} and N K-edges for Fe{sub 4}N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe{sub 4}N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L{sub 2,3}-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by ?* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by ?* and ?* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe{sub 4}N.

  13. Magnetic structures of FeTiO{sub 3}-Fe{sub 2}O{sub 3} solid solution thin films studied by soft X-ray magnetic circular dichroism and ab initio multiplet calculations

    SciTech Connect (OSTI)

    Hojo, H. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Fujita, K. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Matoba, T.; Tanaka, K.; Ikeno, H.; Mizoguchi, T.; Tanaka, I.; Nakamura, T.; Takeda, Y.; Okane, T.

    2014-03-17

    The solid solutions between ilmenite (FeTiO{sub 3}) and hematite (α-Fe{sub 2}O{sub 3}) have recently attracted considerable attention as a spintronic material due to their interesting magnetic and electrical properties. In this study, the electronic and magnetic structures of epitaxially grown 0.6FeTiO{sub 3}·0.4Fe{sub 2}O{sub 3} solid solution thin films were investigated by combining x-ray absorption near-edge structure (XANES), x-ray magnetic circular dichroism (XMCD) for two different crystallographic projections, and first-principles theoretical calculations. The Fe L-edge XANES and XMCD spectra reveal that Fe is in the mixed-valent Fe{sup 2+}–Fe{sup 3+} states while Fe{sup 2+} ions are mainly responsible for the magnetization. Moreover, the experimental Fe L-edge XANES and XMCD spectra change depending on the incident x-ray directions, and the theoretical spectra explain such spectral features. We also find a large orbital magnetic moment, which can originate the magnetic anisotropy of this system. On the other hand, although the valence state of Ti was interpreted to be 4+ from the Ti L-edge XANES, XMCD signals indicate that some electrons are present in the Ti-3d orbital, which are coupled antiparallel to the magnetic moment of Fe{sup 2+} ions.

  14. Itinerant ferromagnetism in the As 4p conduction band of Ba0.6K0.4Mn2As2 identified by x-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ueland, B. G.; Pandey, Abhishek; Lee, Y.; Sapkota, A.; Choi, Y.; Haskel, D.; Rosenberg, R. A.; Lang, J. C.; Harmon, B. N.; Johnston, D. C.; et al

    2015-05-27

    In this study, x-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba0.6K0.4Mn2As2 show that the ferromagnetism below TC ≈ 100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below TC, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that themore » previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.« less

  15. Circular dichroism in the electron microscope: Progress and applications (invited)

    SciTech Connect (OSTI)

    Schattschneider, P.; Loeffler, S.; Ennen, I.; Stoeger-Pollach, M.; Verbeeck, J.

    2010-05-15

    According to theory, x-ray magnetic circular dichroism in a synchrotron is equivalent to energy loss magnetic chiral dichroism (EMCD) in a transmission electron microscope (TEM). After a synopsis of the development of EMCD, the theoretical background is reviewed and recent results are presented, focusing on the study of magnetic nanoparticles for ferrofluids and Heusler alloys for spintronic devices. Simulated maps of the dichroic strength as a function of atom position in the crystal allow evaluating the influence of specimen thickness and sample tilt on the experimental EMCD signal. Finally, the possibility of direct observation of chiral electronic transitions with atomic resolution in a TEM is discussed.

  16. Measurement of the transmission magnetic circular dichroism of Ga{sub 1?x}Mn{sub x}As epilayers using a built-in p-i-n photodiode

    SciTech Connect (OSTI)

    He, Z. X.; Zheng, H. Z. Wang, H. L.; Zhao, J. H.

    2014-02-28

    By constructing a GaMnAs epilayer/semi-insulating In{sub 0.2}Ga{sub 0.8}As/(001) n{sup +}-GaAs substrate layer structure as a built-in p-i-n photodiode, we developed a scheme for on-chip measurements of transmission magnetic circular dichroism (T-MCD). Both the hysteresis loops in the magnetic field sweeps and the wavelength scans at saturated magnetic fields measured using the new T-MCD scheme, illustrated the same features as those previously measured on the freestanding GaMnAs thin films by conventional T-MCD. Because a large group of epitaxially grown magnetic film/semiconductor heterostructures, such as Fe, NiFe, CoFeAl, and MnGa films on semiconductor substrates, are becoming important new building blocks for semiconductor-based spin field-effect transistor, perpendicular magnetic tunnel junction (p-MTJ) and lateral MTJ devices, the new T-MCD scheme can be applied to tests of their magnetic properties by forming either p-i-n or Schottky photodiodes.

  17. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  18. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    SciTech Connect (OSTI)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-21

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  19. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect (OSTI)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  20. Design of magnetic mirrors for a linear theta pinch

    SciTech Connect (OSTI)

    Veglia, V. P.

    1981-01-01

    The problem of generating optimum magnetic mirror fields at the ends of a 50-cm long theta-pinch experiment to study particle flow and loss effects has been investigated. A combination of active and passive mirrors was developed to produce 2-3:1 fields for a 23-kG pinch. Biot-Savart and potential field prediction solutions for the magnetic field distribution were compared with experimental measurements in 2-5-cm long coils for the 50-cm long pinch.

  1. A linear helicon plasma device with controllable magnetic field gradient

    SciTech Connect (OSTI)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-06-15

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  2. Linear beam raster magnet driver based on H-bridge technique

    DOE Patents [OSTI]

    Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William

    2006-06-06

    An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.

  3. Simple Limits on Achieving A Quasi-Linear Magnetic Compression for an FEL Driver

    SciTech Connect (OSTI)

    Sun, Yipeng; /SLAC

    2012-02-16

    Free electron lasers (FEL) need a very bright electron beam in three dimensions and a high peak charge density. In order to compress an initially longer electron bunch generated from the photoinjector, magnetic bunch compression systems are widely employed. In this paper, first harmonic RF linearization and its associated requirements are reviewed. Meanwhile it is also briefly discussed what is the relation between a proper initial bunch length and main RF frequency, when a harmonic RF linearization is included. Then given a reasonable bunch compression ratio, a proper initial bunch length as a function of the main RF frequency and RF phase is estimated analytically by several approaches, assuming that no harmonic RF section is needed to linearize the energy modulation introduced during main RF acceleration, and at the same time still linearly compress the bunch length. Next the upper limit of the bunch compression ratio in a single stage is evaluated analytically. The analytical relations derived on choosing a proper initial bunch length as a function of main RF frequency are confirmed by numerical simulation. These simple limit provide rough estimations and may be beneficial for choosing bunch compression ratios in different stages of an FEL driver, especially in a first stage bunch compression where there is usually a harmonic RF linearization applied. It may also be useful in evaluating the possibility of low charge operation mode without any harmonic RF linearization, where a shorter initial bunch length can be achieved from the photoinjector.

  4. MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS

    SciTech Connect (OSTI)

    Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard

    2011-09-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.

  5. A linear radio frequency plasma reactor for potential and current mapping in a magnetized plasma

    SciTech Connect (OSTI)

    Faudot, E.; Devaux, S.; Moritz, J.; Heuraux, S.; Molina Cabrera, P.; Brochard, F.

    2015-06-15

    Langmuir probe measurements in front of high power ion cyclotron resonant frequency antennas are not possible or simply too noisy to be analyzed properly. A linear experiment is a radio frequency (RF) magnetized plasma discharge reactor designed to probe the rectified potential in front of such antennas but at low power level (1 kW) to next improve antenna design and mitigate sheath effects. The maximum magnetic field is 0.1 T, and the RF amplifier can work between 10 kHz and 250 MHz allowing ion cyclotron resonances for argon or helium. The first measurements with no magnetic field are presented here, especially 2D potential maps extracted from the RF compensated probe measurements yield ni ≈ 10{sup 15} m{sup −3} and Te ≈ 2 eV for RF power lower than 100 W. Series resonances in the chamber are highlighted and allow to deduce the plasma parameters from a simple equivalent impedance model of the plasma in helium gas. Next studies will be focused on magnetized plasmas and especially magnetized RF sheaths.

  6. Linear and nonlinear dust acoustic waves in an inhomogeneous magnetized dusty plasma with nonextensive electrons

    SciTech Connect (OSTI)

    El-Taibany, W. F. E-mail: eltaibany@hotmail.com; Selim, M. M.; Al-Abbasy, O. M.; El-Bedwehy, N. A.

    2014-07-15

    The propagation of both linear and nonlinear dust acoustic waves (DAWs) in an inhomogeneous magnetized collisional and warm dusty plasma (DP) consisting of Boltzmann ions, nonextensive electrons, and inertial dust particles is investigated. The number density gradients of all DP components besides the inhomogeneities of electrostatic potential and the initial dust fluid velocity are taken into account. The linear dispersion relation and a nonlinear modified Zakharov-Kusnetsov (MZK) equation governing the propagation of the three-dimensional DAWs are derived. The analytical solution of the MZK reveals the creation of both compressive and rarefactive DAW solitons in the proposed model. It is found that the inhomogeneity dimension parameter and the electron nonextensive parameter affect significantly the nonlinear DAW's amplitude, width, and Mach number. The relations of our findings with some astrophysical situations have been given.

  7. Spin-Induced Polarizations and Directional Dichroism of Multiferroic BiFeO3.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, S.; Kezsmarki, I.; Nagel, U.; Room, T.

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization andmoreis insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, 1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. Our work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.less

  8. ANALYSIS OF QUIET-SUN INTERNETWORK MAGNETIC FIELDS BASED ON LINEAR POLARIZATION SIGNALS

    SciTech Connect (OSTI)

    Orozco Suarez, D.; Bellot Rubio, L. R.

    2012-05-20

    We present results from the analysis of Fe I 630 nm measurements of the quiet Sun taken with the spectropolarimeter of the Hinode satellite. Two data sets with noise levels of 1.2 Multiplication-Sign 10{sup -3} and 3 Multiplication-Sign 10{sup -4} are employed. We determine the distribution of field strengths and inclinations by inverting the two observations with a Milne-Eddington model atmosphere. The inversions show a predominance of weak, highly inclined fields. By means of several tests we conclude that these properties cannot be attributed to photon noise effects. To obtain the most accurate results, we focus on the 27.4% of the pixels in the second data set that have linear polarization amplitudes larger than 4.5 times the noise level. The vector magnetic field derived for these pixels is very precise because both circular and linear polarization signals are used simultaneously. The inferred field strength, inclination, and filling factor distributions agree with previous results, supporting the idea that internetwork (IN) fields are weak and very inclined, at least in about one quarter of the area occupied by the IN. These properties differ from those of network fields. The average magnetic flux density and the mean field strength derived from the 27.4% of the field of view with clear linear polarization signals are 16.3 Mx cm{sup -2} and 220 G, respectively. The ratio between the average horizontal and vertical components of the field is approximately 3.1. The IN fields do not follow an isotropic distribution of orientations.

  9. Periodic permanent magnet development for linear collider X-band klystrons

    SciTech Connect (OSTI)

    Sprehn, D.; Caryotakis, G.; Jongewaard, E.; Phillips, R. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-07

    The Stanford Linear Accelerator Center (SLAC) klystron group is currently designing, fabricating and testing 11.424 GHz klystrons with peak output powers from 50 to 75 MW at 1 to 2 {mu}s rf pulsewidths as part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). In order to eliminate the projected operational-year energy bill for klystron solenoids, Periodic Permanent Magnet (PPM) focusing has been employed on our latest X-band klystron designs. A PPM beam tester has operated at the same repetition rate, voltage and average beam power required for a 75-MW NLC klystron. Prototype 50 and 75-MW PPM klystrons were built and tested during 1996 and 1997 which operate from 50 to 70 MW at efficiencies greater than 55%. Construction and testing of 75-MW research klystrons will continue while the design and reliability is perfected. This paper will discuss the design of these PPM klystrons and the results of testing to date along with future plans for the development of a low-cost Design for Manufacture (DFM) 75-MW klystron and invitation for industry participation.

  10. Periodic permanent magnet development for linear collider X-band klystrons

    SciTech Connect (OSTI)

    Sprehn, D.; Caryotakis, G.; Jongewaard, E.; Phillips, R. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-01

    The Stanford Linear Accelerator Center (SLAC) klystron group is currently designing, fabricating and testing 11.424 GHz klystrons with peak output powers from 50 to 75 MW at 1 to 2 {mu}s rf pulsewidths as part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). In order to eliminate the projected operational-year energy bill for klystron solenoids, Periodic Permanent Magnet (PPM) focusing has been employed on our latest X-band klystron designs. A PPM beam tester has operated at the same repetition rate, voltage and average beam power required for a 75-MW NLC klystron. Prototype 50 and 75-MW PPM klystrons were built and tested during 1996 and 1997 which operate from 50 to 70 MW at efficiencies greater than 55{percent}. Construction and testing of 75-MW research klystrons will continue while the design and reliability is perfected. This paper will discuss the design of these PPM klystrons and the results of testing to date along with future plans for the development of a low-cost Design for Manufacture (DFM) 75-MW klystron and invitation for industry participation. {copyright} {ital 1999 American Institute of Physics.}

  11. Itinerant ferromagnetism in the As 4p conduction band of Ba0.6K0.4Mn2As2 identified by x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Ueland, B. G.; Pandey, Abhishek; Lee, Y.; Sapkota, A.; Choi, Y.; Haskel, D.; Rosenberg, R. A.; Lang, J. C.; Harmon, B. N.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.

    2015-05-27

    In this study, x-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba0.6K0.4Mn2As2 show that the ferromagnetism below TC ? 100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below TC, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.

  12. Specific absorption rate calculations of magnetite, using a modified linear response model for applications in magnetic hyperthermia

    SciTech Connect (OSTI)

    Hernndez S, A. E-mail: meduardo2001@hotmail.com; Cano, M. E. E-mail: meduardo2001@hotmail.com; Torres-Arenas, J.

    2014-11-07

    Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.

  13. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; Kezsmarki, Istvan; Nagel, Urmas; Room, Toomas

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization andmore » is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less

  14. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    SciTech Connect (OSTI)

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  15. A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields

    SciTech Connect (OSTI)

    St Aubin, J. Keyvanloo, A.; Fallone, B. G.; Vassiliev, O.

    2015-02-15

    Purpose: Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of todays treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields. Methods: The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf-macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 10 cm{sup 2} field as well as a smaller 2 2 cm{sup 2} field. Results: Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithms high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization. Conclusions: The feasibility of including magnetic field effects in a deterministic solution to the first order linear Boltzmann transport equation is shown. The results show a high degree of accuracy when compared against Monte Carlo calculations in all magnetic field strengths and orientations tested.

  16. Linear mode conversion of Langmuir/z-mode waves to radiation in plasmas with various magnetic field strength

    SciTech Connect (OSTI)

    Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.

    2013-12-15

    Linear mode conversion of Langmuir/z waves to electromagnetic radiation near the plasma and upper hybrid frequency in the presence of density gradients is potentially relevant to type II and III solar radio bursts, ionospheric radar experiments, pulsars, and continuum radiation for planetary magnetospheres. Here, we study mode conversion in warm, magnetized plasmas using a numerical electron fluid simulation code when the density gradient has a wide range of angle, ?, to the ambient magnetic field, B{sub 0}, for a range of incident Langmuir/z wavevectors. Our results include: (1) Left-handed polarized ordinary (oL) and right-handed polarized extraordinary (xR) mode waves are produced in various ranges of ? for ?{sub 0} = (?L/c){sup 1/3}(?{sub ce}/?) < 1.5, where ?{sub ce} is the (angular) electron cyclotron frequency, ? is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light; (2) the xR mode is produced most strongly in the range, 40 < ? < 60, for intermediately magnetized plasmas with ?{sub 0} = 1.0 and 1.5, while it is produced over a wider range, 0 ? ? ? 90, for weakly magnetized plasmas with ?{sub 0} = 0.1 and 0.7; (3) the maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%99% and the corresponding energy conversion efficiencies are 5%14% (depending on the adiabatic index ? and ? = T{sub e}/m{sub e}c{sup 2}, where T{sub e} is the electron temperature and m{sub e} is the electron) for various ?{sub 0}; (4) the mode conversion window becomes wider as ?{sub 0} and ? increase. Hence, the results in this paper confirm that linear mode conversion under these conditions can explain the weak total circular polarization of interplanetary type II and III solar radio bursts because a strong xR mode can be generated via linear mode conversion near ? ? 45.

  17. Magnetic nano-particles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic nano-particles The student will be involved in assembling CoFe2O4 nano-particles onto Si wafers for further studies by X-ray magnetic circular dichroism (XMCD) that will...

  18. Electromagnetic momentum and the energymomentum tensor in a linear medium with magnetic and dielectric properties

    SciTech Connect (OSTI)

    Crenshaw, Michael E.

    2014-04-15

    In a continuum setting, the energymomentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energymomentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derive electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energymomentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the AbrahamMinkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energymomentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.

  19. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    SciTech Connect (OSTI)

    Kim, J.S.

    1984-01-01

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.

  20. Observation of fluctuation-driven particle flux reduction by low-frequency zonal flow in a linear magnetized plasma

    SciTech Connect (OSTI)

    Chen, R.; Xie, J. L. Yu, C. X.; Liu, A. D.; Lan, T.; Li, H.; Liu, W. D.; Zhang, S. B.; Kong, D. F.; Hu, G. H.

    2015-01-15

    Low-frequency zonal flow (ZF) has been observed in a linear magnetic plasma device, exhibiting significant intermittency. Using the conditional analysis method, a time-averaged fluctuation-induced particle flux was observed to consistently decrease as ZF increased in amplitude. A dominant fraction of the flux, which is driven by drift-wave harmonics, is reversely modulated by ZF in the time domain. Spectra of the flux, together with each of the related turbulence properties, are estimated subject to two conditions, i.e., when potential fluctuation series represents a strong ZF intermittency or a very weak ZF component. Comparison of frequency-domain results demonstrates that ZF reduces the cross-field particle transport primarily by suppressing the density fluctuation as well as decorrelating density and potential fluctuations.

  1. Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma

    SciTech Connect (OSTI)

    Shahmansouri, M. [Department of Physics, Faculty of Science, Arak University, Arak 38156- 8 8349 (Iran, Islamic Republic of)] [Department of Physics, Faculty of Science, Arak University, Arak 38156- 8 8349 (Iran, Islamic Republic of); Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)] [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2014-03-15

    Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.

  2. Perpendicular Magnetism Unparalleled Find in Single Crystal ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    order coexisting in a single sample. Article Title: Itinerant Ferromagnetism in the As 4p Conduction Band of Ba0.6K0.4Mn2As2 Identified by X-Ray Magnetic Circular Dichroism...

  3. Protein Characterisation by Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy

    SciTech Connect (OSTI)

    Wallace, B.

    2009-01-01

    Circular dichroism (CD) spectroscopy is a well-established technique for the study of proteins. Synchrotron radiation circular dichroism (SRCD) spectroscopy extends the utility of conventional CD spectroscopy (i.e. using laboratory-based instruments) because the high light flux from a synchrotron enables collection of data to lower wavelengths, detection of spectra with higher signal-to-noise levels and measurements in the presence of strongly absorbing non-chiral components such as salts, buffers, lipids and detergents. This review describes developments in instrumentation, methodologies and bioinformatics that have enabled new applications of the SRCD technique for the study of proteins. It includes examples of the use of SRCD spectroscopy for providing static and dynamic structural information on molecules, including determinations of secondary structures of intact proteins and domains, assessment of protein stability, detection of conformational changes associated with ligand and drug binding, monitoring of environmental effects, examination of the processes of protein folding and membrane insertion, comparisons of mutant and modified proteins, identification of intermolecular interactions and complex formation, determination of the dispositions of proteins in membranes, identification of natively disordered proteins and their binding partners and examination of the carbohydrate components of glycoproteins. It also discusses how SRCD can be used in conjunction with macromolecular crystallography and other biophysical techniques to provide a more complete picture of protein structures and functions, including how proteins interact with other macromolecules and ligands. This review also includes a discussion of potential new applications in structural and functional genomics using SRCD spectroscopy and future instrumentation and bioinformatics developments that will enable such studies. Finally, the appendix describes a number of computational/bioinformatics resources for secondary structure analyses that take advantage of the improved data quality available from SRCD. In summary, this review discusses how SRCD can be used for a wide range of structural and functional studies of proteins.

  4. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. I. New observations and linear analysis

    SciTech Connect (OSTI)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: raquel.nuno@asu.edu

    2014-04-01

    We have examined Ulysses magnetic field data using dynamic spectrogram techniques that compute wave amplitude, polarization, and direction of propagation over a broad range of frequencies and time. Events were identified that showed a strong polarization signature and an enhancement of power above the local proton gyrofrequency. We perform a statistical study of 502 wave events in an effort to determine when, where, and why they are observed. Most notably, we find that waves arising from newborn interstellar pickup ions are relatively rare and difficult to find. The quantities normally employed in theories of wave growth are neutral atom density and quantities related to their ionization and the subsequent dynamics such as wind speed, solar wind flux, and magnetic field orientation. We find the observations of waves to be largely uncorrelated to these quantities except for mean field direction where quasi-radial magnetic fields are favored and solar wind proton flux where wave observations appear to be favored by low flux conditions which runs contrary to theoretical expectations of wave generation. It would appear that an explanation based on source physics and instability growth rates alone is not adequate to account for the times when these waves are seen.

  5. Linear mode conversion of Langmuir/z-mode waves to radiation: Scalings of conversion efficiencies and propagation angles with temperature and magnetic field orientation

    SciTech Connect (OSTI)

    Schleyer, F.; Cairns, Iver H.; Kim, E.-H.

    2013-03-15

    Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence {theta} of the Langmuir/z-mode wave, temperature {beta}=T{sub e}/m{sub e}c{sup 2}, adiabatic index {gamma}, and orientation angle {phi} between the ambient density gradient {nabla}N{sub 0} and ambient magnetic field B{sub 0} in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of {theta}, {gamma}, and {beta} with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency {epsilon} is strongly dependent on {gamma}{beta}, {phi} and {theta}, with {epsilon}{proportional_to}({gamma}{beta}){sup 1/2} and {theta}{proportional_to}({gamma}{beta}){sup 1/2}. The power conversion efficiency {epsilon}{sub p}, on the other hand, is independent of {gamma}{beta} but does vary significantly with {theta} and {phi}. The efficiencies are shown to be maximum for approximately perpendicular density gradients ({phi} Almost-Equal-To 90 Degree-Sign ) and minimal for parallel orientation ({phi}=0 Degree-Sign ) and both the energy and power conversion efficiencies peak at the same {theta}.

  6. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators

    SciTech Connect (OSTI)

    Constantin, Dragos E.; Fahrig, Rebecca; Keall, Paul J.

    2011-07-15

    Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29{pi}-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72{pi} and 2.01{pi}-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34{pi} and 0.35{pi}-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.

  7. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect (OSTI)

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure. Scattering techniques are further classified as partially for fully coherent according to the extent of transverse coherence of the incident beam.

  8. MAGNETS

    DOE Patents [OSTI]

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  9. Summary report for nanoscale magnetics

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Jankowski, A.F.; Tamura, E.; Sterne, P.A.; Pappas, D.P.; Tong, S.Y.

    1993-09-23

    We have probed the electronic, geometric, and magnetic nanoscale structure of ultrathin magnetic films, both monolayers and multilayers (Fe/Cu(001), FePt, FeCoPt, UFe{sub 2}, U-S). Techniques used included the MCD (magnetic circular dichroism)-variants of of x-ray absorption, core-level photoemission, and photoelectron diffraction. Progress has been made on nanoscale structure-property relations, in part of coupling of world-class experimentation and theoretical modeling. Feasibility of investigations of 5f magnetism using bulk uranium samples also has been demonstrated.

  10. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-12-31

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  11. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-01-01

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  12. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy - An Enhanced Method for Examining Protein Conformations and Protein Interactions

    SciTech Connect (OSTI)

    B Wallace; R Janes

    2011-12-31

    CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins, the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein-protein complex formation involving either induced-fit or rigid-body mechanisms, and protein-lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.

  13. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  14. Investigation of magnetic spin glass property in La{sub 0.5}Bi{sub 0.5}MnO{sub 3} sample using non-linear AC susceptibility measurements

    SciTech Connect (OSTI)

    Kumar, Punith V. Manju, M. R. Dayal, Vijaylakshmi

    2014-04-24

    We present a comprehensive study on origin of Spin Glass (SG) property in polycrystalline La{sub 0.5}Bi{sub 0.5}MnO{sub 3} perovskite oxide using linear and higher order ac susceptibility (?) measurements. The third order harmonic susceptibility (?{sub 3}) vs. temperature (K) with varying magnetic fields from 0.95 to 9.45 Oe and the divergence in their ?{sub 3} (max) allows us to infer the SG behavior occurring in the sample possibly due to co-operative freezing of the spins.

  15. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  16. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  17. Shining New Light on Protein Structure and Function thru Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy

    SciTech Connect (OSTI)

    Wallace,B.

    2005-01-01

    Circular dichroism (CD) spectroscopy has been employed for more than 50 years for the study of the structure and dynamics of proteins. It is now a workhorse of structural biology, finding applications in the determination of protein secondary structures, monitoring and deciphering protein folding, examining macromolecular interactions, and defining and quantitating protein-ligand binding. For the most part, CD studies have used laboratory-based instruments to measure electronic transitions in the far (190-250 nm), near ultraviolet (UV) (250-300 nm) and visible (> 400 nm) wavelength ranges, which have enabled studies of polypeptide backbones, aromatic amino acids and colored chromophores, respectively. Additional transitions exist at lower wavelengths in the vacuum ultraviolet (VUV) region (<190 nm); however, these transitions tend to be inaccessible to conventional CD instruments, due to the low intensity of their Xenon arc lamp light sources at wavelengths below190 nm. In 1980, the first synchrotron-based CD instruments were constructed, which took advantage of the high photon flux available from synchrotron light sources at these wavelengths. However, the technique of synchrotron radiation circular dichroism (SRCD) did not really take off until enabling studies had been done to show that additional data were obtainable for proteins in the VUV region, that these data were readily accessible with modern beamlines, and most importantly, that new applications of these data existed in structural molecular biology.

  18. 99first_quarter.pgm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include the variant magnetic x-ray linear dichroism. The unique 5f valence electronic prop- erties of plutonium metal cannot be explained by the typical one- electron...

  19. Non Linear Conjugate Gradient

    Energy Science and Technology Software Center (OSTI)

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more »The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  20. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, William M. (Santa Fe, NM)

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  1. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  2. Magnetism of Co doped ZnO with Al codoping: carrier induced mechanisms versus extrinsic origins

    SciTech Connect (OSTI)

    Ney, A.; Ney, V.; Ye, S.; Ollefs, K.; Kammermeier, T.; Kaspar, Tiffany C.; Chambers, Scott A.; Wilhelm, F.; Rogalev, A.

    2010-07-23

    Dilute magnetic semiconductors (DMS) which exhibit ferromagnetism (FM) at and above room temperature are a highly desirable class of materials for future spin- tronics devices. Zn1?xCoxO (Co:ZnO) is a heavily studied DMS material in this context. Although controversially discussed in the literature, there is a growing con- sensus, that phase-pure Co:ZnO is paramagnetic (PM)[13]. Altering the preparation conditions can easily lead to phase separation and consequently superparam- agnetism (SPM) [3]. Nonetheless there are recent experimental data claiming that FM can be switched on inCo:ZnO by controlling the carrier concentration [4]. On the other hand, no FM was found in structurally excellent Al-codoped Co:ZnO [5]. However, in the latter work the magnetic characterization was restricted to room temperature measurements. In parallel, theory has also revealed that defect-free, insulating Co:ZnO is not ferromagnetic [6, 7] whereas the role of n-type carriers remains under debate, ranging from ferromagnetic coupling [8], or oscil- latory behavior with Co-Co distance [9] to antiferromagnetic coupling [10]. It is rather common to manipulate the n-type carrier concentration of ZnO by Al-doping to yield high conductivity [4, 11]. On the other hand, it had been shown that Al-codoping of Co:ZnO may promote the onset of phase separation [11]. It is extremely difficult to detect such secondary Co-containing phases even with the most careful x-ray diffraction (XRD) analysis [11, 12] or depth-profiling photoelectron spectroscopy (DP-XPS) [13]. Such careful materials characterization is lacking in Ref. [4]. An alternative to extensive XRD or DP-XPS to look for potential phase separation in Co:ZnO is the combination of x-ray absorption near edge spectra (XANES), x-ray linear dichroism (XLD), and x-ray magnetic circular dichroism (XMCD). This suite of atom-specific x-ray spectroscopies nicely complements integral superconducting quantum interference device (SQUID) magnetometry. For example, combined XLD simulations and experiments at the Co K-edge have been used to verify the phase purity of Co:ZnO [2] and characteristic spectroscopic signatures with appropriate quality thresholds for PM and SPM have been identified recently in the XANES and XMCD at the Co K-edge of Co:ZnO [3]. Along the same line, a careful combination of XANES and extended x-ray absorption fine structure (EXAFS) was employed to study Co:ZnO films similar to those in [4] which found evidence for Co(0) secondary phases [14].

  3. Electronic Non-Contacting Linear Position Measuring System

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2005-06-14

    A non-contacting linear position location system employs a special transmission line to encode and transmit magnetic signals to a receiver on the object whose position is to be measured. The invention is useful as a non-contact linear locator of moving objects, e.g., to determine the location of a magnetic-levitation train for the operation of the linear-synchronous motor drive system.

  4. Thermolysis of (1R,2R)-1,2-dideuteriocyclobutane. An application of vibrational circular dichroism to kinetic analysis

    SciTech Connect (OSTI)

    Chickos, J.S.; Annamalai, A.; Keiderling, T.A.

    1986-07-23

    The relative rates of geometric isomerization to racemization have been studied for the title compound by using a combination of infrared (IR) and vibrational circular dichroism (VCD) spectroscopies, respectively. The results are interpreted with a kinetic and mechanistic scheme which parallels that used by Berson, Pedersen, and Carpenter on a similar study of chiral cyclopropane-d/sub 2/ thermolysis. Relative rates of isomerization to stereomutation of 1.5 +/- 0.4 were obtained which can be interpreted to be consistent with a mechanism best described by random methylene rotation in tetramethylene-d/sub 2/. This is the first application of VCD to kinetic analysis, and the advantages of IR techniques over the more usually employed UV spectroscopies to this type of basic mechanistic problem are illustrated.

  5. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  6. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  7. Fault tolerant linear actuator

    DOE Patents [OSTI]

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  8. Linearly polarized fiber amplifier

    DOE Patents [OSTI]

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  9. Performances and first experimental results of BACH, the beamline for dichroism and scattering experiments at ELETTRA

    SciTech Connect (OSTI)

    Zangrando, M.; Zacchigna, M.; Bondino, F.; Finazzi, M.; Pardini, T.; Plate, M.; Rochow, R.; Cocco, D.; Parmigiani, F.

    2004-05-12

    BACH, the new soft x-ray beamline for polarization dependent experiments at the Italian synchrotron radiation facility ELETTRA, has been commissioned, characterized and opened to external users. Based on two APPLE II undulators, it covers an energy range between 35 eV and 1600 eV with the control of the light polarization. The monochromator works either in high resolution or high flux mode. Resolving powers of 16000 at 50 eV, 12000 at 90 eV, more than 12000 at 400 eV, 15000 at 534 eV and 6600 at 867 eV have been achieved with the three high resolution gratings. The resolving powers of the high flux grating, which covers the 290 - 1600 eV range, have been measured reaching 7000 at 400 eV and 2200 at 867 eV. The fluxes, in the high resolution mode, range between 4{center_dot}1011 photons/s at 125 eV and 2{center_dot}1010 photons/s at about 1100 eV. Using the high flux grating with the best resolution achievable 1.7{center_dot}1011 photons/s impinge on the sample at 900 eV. Two branches are installed after the monochromator allowing the set-up of two different experimental stations. One of them, besides several facilities for surface preparation and analysis, hosts a compact inelastic soft x-ray spectrometer (ComIXS) dedicated to x-ray emission experiments exploiting the small spot (10 {mu}m in the vertical direction) on the sample. The other branch hosts a liquid helium cryostat equipped with a superconducting coil to perform absorption and transmission experiments with temperatures down to 2 K and magnetic field up to {+-}7 T.

  10. Radio frequency quadrupole resonator for linear accelerator

    DOE Patents [OSTI]

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  11. Linear induction accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  12. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  13. Combustion powered linear actuator

    DOE Patents [OSTI]

    Fischer, Gary J. (Albuquerque, NM)

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  14. Linear inductive accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Gerasimov, A.I.; Pavlovskiy, A.I.

    1983-11-01

    A proposed accelerator, differing from existing ones in that it is loaded through a capacitor on a solenoid which is uniformly distributed throughout the accelerating system and connected to an independent electrical current source, is discussed. The design of the system makes it possible to improve the uniformity of the electrical field and increase the longitudinal focusing magnetic field. This is especially important for high-current accelerators.

  15. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect (OSTI)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ?18?K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ?3?K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  16. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    SciTech Connect (OSTI)

    V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard

    2012-06-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  17. Positrons for linear colliders

    SciTech Connect (OSTI)

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  18. History of Proton Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    Alvarez, L. W.

    1987-01-01

    Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

  19. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  20. Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave

    SciTech Connect (OSTI)

    Villalba-Chvez, S. Mller, C.

    2013-12-15

    Absorption and dispersion of probe photons in the field of a high-intensity circularly polarized laser wave are investigated. The optical theorem is applied for determining the absorption coefficients in terms of the imaginary part of the vacuum polarization tensor. Compact expressions for the vacuum refraction indices and the photon absorption coefficients are obtained in various asymptotic regimes of interest. The outcomes of this analysis reveal that, far from the region relatively close to the threshold of the two-photon reaction, the birefringence and dichroism of the vacuum are small and, in some cases, strongly suppressed. On the contrary, in a vicinity of the region in which the photo-production of a pair occurs, these optical properties are manifest with lasers of moderate intensities. We take advantage of such a property in the search of minicharged particles by considering high-precision polarimetric experiments. In addition, Raman-like electromagnetic waves resulting from the inelastic part of the vacuum polarization tensor are suggested as an alternative form for finding exclusion limits on these hypothetical charge carriers. The envisaged parameters of upcoming high-intensity laser facilities are used for establishing upper bounds on the minicharged particles. -- Highlights: Via dichroism and birefringence of the vacuum by a strong laser wave, minicharged particles can be probed. The discovery potential is the highest in a vicinity of the first pair production threshold. As alternative observable, Raman scattered waves are put forward.

  1. Linear induction pump

    DOE Patents [OSTI]

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  2. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments [OSTI]

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  3. Position sensor for linear synchronous motors employing halbach arrays

    DOE Patents [OSTI]

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  4. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get 2 of these magnets, they are often the size of a business card....

  5. Propulsion and stabilization system for magnetically levitated vehicles

    DOE Patents [OSTI]

    Coffey, Howard T. (Darien, IL)

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  6. Spin relaxation and linear-in-electric-field frequency shift in an

    Office of Scientific and Technical Information (OSTI)

    arbitrary, time-independent magnetic field (Technical Report) | SciTech Connect Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field Citation Details In-Document Search Title: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field A method is presented to calculate the spin relaxation times T{sub 1}, T{sub 2} due to a nonuniform magnetic field, and the

  7. Linear Fresnel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE funds solar research and development (R&D) in linear Fresnel systems as one of four CSP technologies aiming to meet the goals of the SunShot Initiative. Linear Fresnel systems, which are a type of linear concentrator, are active in Germany, Spain, Australia, India, and the United States. The SunShot Initiative funds R&D on linear Fresnel systems and related aspects within the industry, national laboratories and universities to meet the SunShot goals. An extensive set of core

  8. Engineering Gilbert damping by dilute Gd doping in soft magnetic Fe thin films

    SciTech Connect (OSTI)

    Zhang, W. Jiang, S.; Sun, L.; Wang, Y. K.; Zhai, Y.; Wong, P. K. J.; Wang, K.; Jong, M. P. de; Wiel, W. G. van der; Laan, G. van der

    2014-05-07

    By analyzing the ferromagnetic resonance linewidth, we show that the Gilbert damping constant in soft magnetic Fe thin films can be enhanced by ?6 times with Gd doping of up to 20%. At the same time, the magnetic easy axis remains in the film plane while the coercivity is strongly reduced after Gd inclusion. X-ray magnetic circular dichroism measurements reveal a strong increase in the orbital-to-spin moment ratio of Fe with increasing Gd concentration, in full agreement with the increase in the Gilbert damping obtained for these thin films. Combined with x-ray diffraction and vibrating sample magnetometry, the results demonstrate that the FeGd thin films with dilute Gd doping of up to 20% are promising candidates for spin-transfer-torque applications in soft magnetic devices, in which an enhanced damping is required.

  9. Shortcuts to adiabaticity from linear response theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  10. Faraday rotation assisted by linearly polarized light

    SciTech Connect (OSTI)

    Choi, Jai Min; Kim, Jang Myun; Cho, D.

    2007-11-15

    We demonstrate a type of chiral effect of an atomic medium. Polarization rotation of a probe beam is observed only when both a magnetic field and a linearly polarized coupling beam are present. We compare it with other chiral effects like optical activity, the Faraday effect, and the optically induced Faraday effect from the viewpoint of spatial inversion and time reversal transformations. As a theoretical model we consider a five-level configuration involving the cesium D2 transition. We use spin-polarized cold cesium atoms trapped in a magneto-optical trap to measure the polarization rotation versus probe detuning. The result shows reasonable agreement with a calculation from the master equation of the five-level configuration.

  11. Shortcuts to adiabaticity from linear response theory

    SciTech Connect (OSTI)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  12. Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis

    Office of Scientific and Technical Information (OSTI)

    Power Density (Technical Report) | SciTech Connect Technical Report: Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density Citation Details In-Document Search Title: Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome

  13. A superconducting focusing solenoid for the neutrino factory linear accelerator

    SciTech Connect (OSTI)

    M.A. Green; V. Lebedev; B.R. Strauss

    2002-03-01

    The proposed superconducting linear accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can have large stray fields. This paper describes the 201.25-MHz acceleration system for the neutrino factory. This paper also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity.

  14. Acoustic emission linear pulse holography

    DOE Patents [OSTI]

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  15. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator Producing brilliant x-ray beams at the APS begins with electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage...

  16. Spin relaxation and linear-in-electric-field frequency shift in an

    Office of Scientific and Technical Information (OSTI)

    arbitrary, time-independent magnetic field (Technical Report) | SciTech Connect Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field Citation Details In-Document Search Title: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  17. Belos Block Linear Solvers Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Belos is an extensible and interoperable framework for large-scale, iterative methods for solving systems of linear equations with multiple right-hand sides. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale linear systems. Belos is interoperable because both the matrix and vectors are considered to be opaque objects--only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Balos is accomplished viamore » the use of interfaces. One of the goals of Belos is to allow the user flexibility in specifying the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based linear solvers, like Block GMRES (Generalized Minimal RESidual) and Block CG (Conjugate-Gradient).« less

  18. Depth-dependent magnetism in epitaxial MnSb thin films: effects of surface passivation and cleaning

    SciTech Connect (OSTI)

    Aldous J. D.; Sanchez-Hanke C.; Burrows, C.W.; Maskery, I.; Brewer, M.S.; Hase, T.P.A.; Duffy, J.A.; Lees, M. Rs; Decoster, T.; Theis, W.; Quesada, A.; Schmid, A.K.; Bell, G.R.

    2012-03-15

    Depth-dependent magnetism in MnSb(0001) epitaxial films has been studied by combining experimental methods with different surface specificities: polarized neutron reflectivity, x-ray magnetic circular dichroism (XMCD), x-ray resonant magnetic scattering and spin-polarized low energy electron microscopy (SPLEEM). A native oxide {approx}4.5 nm thick covers air-exposed samples which increases the film's coercivity. HCl etching efficiently removes this oxide and in situ surface treatment of etched samples enables surface magnetic contrast to be observed in SPLEEM. A thin Sb capping layer prevents oxidation and preserves ferromagnetism throughout the MnSb film. The interpretation of Mn L{sub 3,2} edge XMCD data is discussed.

  19. Extreme hydrogen plasma densities achieved in a linear plasma generator

    SciTech Connect (OSTI)

    Rooij, G. J. van; Veremiyenko, V. P.; Goedheer, W. J.; de Groot, B.; Kleyn, A. W.; Smeets, P. H. M.; Versloot, T. W.; Whyte, D. G.; Engeln, R.; Schram, D. C.; Cardozo, N. J. Lopes

    2007-03-19

    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5x10{sup 20} m{sup -3} electron density, {approx}2 eV electron and ion temperatures, and 3.5 km/s axial plasma velocity. This gives a 2.6x10{sup 24} H{sup +} m{sup -2} s{sup -1} peak ion flux density, which is unprecedented in linear plasma generators. The high efficiency of the source is obtained by the combined action of the magnetic field and an optimized nozzle geometry. This is interpreted as a cross-field return current that leads to power dissipation in the beam just outside the source.

  20. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, David J. (Los Alamos, NM); Nordholt, Jane E. (Los Alamos, NM)

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  1. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  2. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  3. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A. (Livermore, CA); Stone, Roger R. (Walnut Creek, CA); Fabyan, Joseph (Livermore, CA)

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  4. Segmented rail linear induction motor

    DOE Patents [OSTI]

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  5. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  6. Precision linear ramp function generator

    DOE Patents [OSTI]

    Jatko, W. Bruce (Knoxville, TN); McNeilly, David R. (Maryville, TN); Thacker, Louis H. (Knoxville, TN)

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  7. Precision linear ramp function generator

    DOE Patents [OSTI]

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  8. Segmented rail linear induction motor

    DOE Patents [OSTI]

    Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  9. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  10. A linear MOSFET regulator for improving performance of the booster ramping power supplies at the APS.

    SciTech Connect (OSTI)

    Feng, G.; Deriy, B.; Wang, J.; Accelerator Systems Division

    2008-01-01

    The APS booster ring uses ramping power supplies to power the sextupole, quadrupole, and dipole magnets as the beam energy ramps up linearly to 7 GeV. Due to the circuit topology used, those supplies are unable to follow the linear ramp to the desired accuracy. The best regulation achieved is 0.25% while 0.1% is desired. In addition to the unsatisfying regulation, those supplies are sensitive to AC line perturbation and are not able to reject AC line noises of more than a few tens of hertz. To improve the performance, a linear MOSFET regulation system using paralleled MOSFET devices in series with the power supply is proposed. The system uses a realtime current feedback loop to force the MOSFETs to work in the linear operation mode. By using this linear MOSFET regulator, the voltage drop on MOSFETs, and hence the voltage imposed on magnets, can be regulated very quickly. As a result, the regulation of the magnet current can be improved significantly. So far the simulation results show that with the linear regulator, the current regulation can be improved to better than 0.1%. Because of the high bandwidth of the linear regulator, it can reduce the harmonic content in the output current as well as reject the AC line disturbance. This paper discusses the circuit topology, the regulation method, and the simulation results.

  11. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  12. Linear Thermite Charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Thermite Charge Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication Linear Thermite Charge Picture (40 KB) PDF Document Publication Linear Thermite Charge Patent (207 KB) Technology Marketing Summary The Linear Thermite Charge (LTC) is designed to rapidly cut through concrete and steel structural components by using extremely high temperature thermite reactions jetted through a linear nozzle. Description Broadly, the invention provides for

  13. Modified Magnetic Ground State in Nimn (2) O (4) Thin Films

    SciTech Connect (OSTI)

    Nelson-Cheeseman, B.B.; Chopdekar, R.V.; Iwata, J.M.; Toney, M.F.; Arenholz, E.; Suzuki, Y.; /SLAC

    2012-08-23

    The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K.

  14. Acoustic emission linear pulse holography

    DOE Patents [OSTI]

    Collins, H. Dale (Richland, WA); Busse, Lawrence J. (Richland, WA); Lemon, Douglas K. (West Richland, WA)

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  15. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  16. PC Basic Linear Algebra Subroutines

    Energy Science and Technology Software Center (OSTI)

    1992-03-09

    PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less

  17. Linear induction accelerator parameter options

    SciTech Connect (OSTI)

    Birx, D.L.; Caporaso, G.J.; Reginato, L.L.

    1986-04-21

    The principal undertaking of the Beam Research Program over the past decade has been the investigation of propagating intense self-focused beams. Recently, the major activity of the program has shifted toward the investigation of converting high quality electron beams directly to laser radiation. During the early years of the program, accelerator development was directed toward the generation of very high current (>10 kA), high energy beams (>50 MeV). In its new mission, the program has shifted the emphasis toward the production of lower current beams (>3 kA) with high brightness (>10/sup 6/ A/(rad-cm)/sup 2/) at very high average power levels. In efforts to produce these intense beams, the state of the art of linear induction accelerators (LIA) has been advanced to the point of satisfying not only the current requirements but also future national needs.

  18. Reticle stage based linear dosimeter

    DOE Patents [OSTI]

    Berger, Kurt W.

    2007-03-27

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  19. Reticle stage based linear dosimeter

    DOE Patents [OSTI]

    Berger, Kurt W.

    2005-06-14

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  20. Laminated grid and web magnetic cores

    DOE Patents [OSTI]

    Sefko, John; Pavlik, Norman M.

    1984-01-01

    A laminated magnetic core characterized by an electromagnetic core having core legs which comprise elongated apertures and edge notches disposed transversely to the longitudinal axis of the legs, such as high reluctance cores with linear magnetization characteristics for high voltage shunt reactors. In one embodiment the apertures include compact bodies of microlaminations for more flexibility and control in adjusting permeability and/or core reluctance.

  1. Superconducting magnet development in Japan

    SciTech Connect (OSTI)

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  2. High Performance Preconditioners and Linear Solvers

    Energy Science and Technology Software Center (OSTI)

    2006-07-27

    Hypre is a software library focused on the solution of large, sparse linear systems of equations on massively parallel computers.

  3. Magnetic properties of GdT2Zn20 (T = Fe, Co) investigated by x-ray diffraction and spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    J. R. L. Mardegan; Fabbris, G.; Francoual, S.; Veiga, L. S. I.; Strempfer, J.; Haskel, D.; Ribeiro, R. A.; Avila, M. A.; Giles, C.

    2016-01-26

    In this study, we investigate the magnetic and electronic properties of the GdT2Zn20 (T=Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo2Zn20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector →/τ = (12,12,12) below the Néel temperature (TN ~ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6. For the ferromagnetic GdFe2Zn20 compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD. Amore » strong XMCD signal of about 12.5% and 9.7% is observed below the Curie temperature (TC ~ 85K) at the Gd L2 and L3 edges, respectively. In addition, a small magnetic signal of about 0.06% of the jump is recorded at the Zn K edge, suggesting that the Zn 4p states are spin polarized by the Gd 5d extended orbitals.« less

  4. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  5. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhanced magnetic refrigeration at very low temperatures. Not Your Mother's Refrigerator Magnets Some day soon, magnets could do more than clutter up the front of your...

  6. Large linear magnetoresistance in a GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Aamir, Mohammed Ali, E-mail: aamir@physics.iisc.ernet.in; Goswami, Srijit, E-mail: aamir@physics.iisc.ernet.in; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Baenninger, Matthias; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tripathi, Vikram [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

  7. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect (OSTI)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  8. International Workshop on Linear Colliders 2010

    ScienceCinema (OSTI)

    None

    2011-10-06

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  9. International Workshop on Linear Colliders 2010

    ScienceCinema (OSTI)

    None

    2011-10-06

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland)This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop SecretariatIWLC2010 is hostedby CERN

  10. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  11. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    Linear Collider Technical Design Report - Volume 2: Physics Baer, Howard; Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather...

  12. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics You are accessing a ...

  13. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  14. A linear MOSFET regulation system to improve the performance of the booster-ramping power supplies at the APS.

    SciTech Connect (OSTI)

    Feng, G.; Deriy, B.; Wang, J.; Shang, H.; Xu, S.

    2008-01-01

    The APS booster ring uses ramping power supplies to power the sextupole, quadrupole, and dipole magnets as the beam energy ramps up linearly to 7 GeV. Due to the circuit topology used, those supplies are unable to follow the linear ramp to the desired accuracy. The best regulation achieved is 0.5% while 0.1 % is desired. In addition to the unsatisfying regulation, those supplies are sensitive to AC line perturbations and are not able to reject AC line noises higher than a few tens of Hertz. To improve the performance, a linear MOSFET regulation system using paralleled MOSFET devices in series with the power supply is proposed. The system uses a real-time current feedback loop to force the MOSFETs to work in the linear operation mode. By using this linear MOSFET regulator, the voltage drop on MOSFETs, and hence the voltage imposed on magnets, can be regulated very quickly. As a result, the regulation of the magnet current can be improved significantly. Experiments and simulation have been performed to verify the proposed method. Results show that, with the linear regulator, the current regulation can be improved to better than 0.1%. Because of the high bandwidth of the linear regulator, it can reduce the harmonic content in the output current as well as reject the AC line disturbance.

  15. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear...

  16. Magnetic positioner having a single moving part

    DOE Patents [OSTI]

    Trumper, David L. (Plaistow, NH); Kim, Won-Jong (Cambridge, MA)

    1999-01-01

    A magnetic positioner is provided which is capable of providing long travel in two dimension and short travel in the remaining four dimensions. The positioner has a movable stage and a stator oriented adjacent and substantially parallel to this stage. At least three sets of first magnetic elements, which for preferred embodiments are winding sets capable of generating forces in two directions, are on the portion of the stator adjacent to the stage at any given time, and at least two second magnetic elements, which are magnet arrays for the preferred embodiment, are on the stage adjacent to the stator. At least one of the second magnetic elements overlaps multiple first magnetic elements for all positions of the stage relative to the stator, with one magnet overlapping multiple windings for one preferred embodiment of the invention and two magnets on the stage overlapping multiple windings on the stator for a second embodiment. The windings form a linear motor providing forces in both a corresponding long travel dimension and in a dimension perpendicular to both long travel dimensions.

  17. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  18. Permanent magnet assembly

    DOE Patents [OSTI]

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  19. Optically isolated signal coupler with linear response

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01

    An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

  20. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    SciTech Connect (OSTI)

    Chen, La; Offenhusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 ?m superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particles position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  1. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    SciTech Connect (OSTI)

    Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-01-15

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.

  2. Try This: Household Magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get two of these magnets, they are often the size of a business card....

  3. PERVASIVE LINEAR POLARIZATION SIGNALS IN THE QUIET SUN

    SciTech Connect (OSTI)

    Bellot Rubio, L. R.; Orozco Suarez, D.

    2012-09-20

    This paper investigates the distribution of linear polarization signals in the quiet-Sun internetwork using ultra-deep spectropolarimetric data. We reduce the noise of the observations as much as is feasible by adding single-slit measurements of the Zeeman-sensitive Fe I 630 nm lines taken by the Hinode spectropolarimeter. The integrated Stokes spectra are employed to determine the fraction of the field of view covered by linear polarization signals. We find that up to 69% of the quiet solar surface at disk center shows Stokes Q or U profiles with amplitudes larger than 0.032% (4.5 times the noise level of 7 Multiplication-Sign 10{sup -5} reached by the longer integrations). The mere presence of linear polarization in most of the quiet Sun implies that the weak internetwork fields must be highly inclined, but we quantify this by inverting those pixels with Stokes Q or U signals well above the noise. This allows for a precise determination of the field inclination, field strength, and field azimuth because the information carried by all four Stokes spectra is used simultaneously. The inversion is performed for 53% of the observed field of view at a noise level of 1.3 Multiplication-Sign 10{sup -4} I{sub c}. The derived magnetic distributions are thus representative of more than half of the quiet-Sun internetwork. Our results confirm the conclusions drawn from previous analyses using mainly Stokes I and V: internetwork fields are very inclined, but except in azimuth they do not seem to be isotropically distributed.

  4. Dual-range linearized transimpedance amplifier system

    DOE Patents [OSTI]

    Wessendorf, Kurt O. (Albuquerque, NM)

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  5. Linear transformer driver for pulse generation

    DOE Patents [OSTI]

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  6. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; (Livermore, CA); Lucas, Matthew S.; (Pasadena, CA)

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  7. Linear and angular retroreflecting interferometric alignment target

    DOE Patents [OSTI]

    Maxey, L. Curtis

    2001-01-01

    The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

  8. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect (OSTI)

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  9. Linear Transformation Method for Multinuclide Decay Calculation

    SciTech Connect (OSTI)

    Ding Yuan

    2010-12-29

    A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.

  10. Magnetic Damping For Maglev

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  11. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOE Patents [OSTI]

    Bentley, Anthony E. (Tijeras, NM); Kelley, John Bruce (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  12. Closed loop control of the induction heating process using miniature magnetic sensors

    DOE Patents [OSTI]

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  13. Linear and non-linear forced response of a conical, ducted, laminar premixed flame

    SciTech Connect (OSTI)

    Karimi, Nader; Brear, Michael J.; Jin, Seong-Ho; Monty, Jason P. [Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Vic. (Australia)

    2009-11-15

    This paper presents an experimental study on the dynamics of a ducted, conical, laminar premixed flame subjected to acoustic excitation of varying amplitudes. The flame transfer function is measured over a range of forcing frequencies and equivalence ratios. In keeping with previous works, the measured flame transfer function is in good agreement with that predicted by linear kinematic theory at low amplitudes of acoustic velocity excitation. However, a systematic departure from linear behaviour is observed as the amplitude of the velocity forcing upstream of the flame increases. This non-linearity is mostly in the phase of the transfer function and manifests itself as a roughly constant phase at high forcing amplitude. Nonetheless, as predicted by non-linear kinematic arguments, the response always remains close to linear at low forcing frequencies, regardless of the forcing amplitude. The origin of this phase behaviour is then sought through optical data post-processing. (author)

  14. Finite Element Interface to Linear Solvers

    Energy Science and Technology Software Center (OSTI)

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themoreproblem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.less

  15. A microcomputer-controlled linear heater

    SciTech Connect (OSTI)

    Schuck, V.; Rahimi, S. )

    1991-10-01

    In this note the circuits and principles of operation of a relatively simple and inexpensive linear temperature ramp generator are described. The upper-temperature limit and the heating rate are controlled by an Apple II microcomputer. The temperature versus time is displayed on the screen and may be plotted by an {ital x}-{ital y} plotter.

  16. Notes on beam dynamics in linear accelerators

    SciTech Connect (OSTI)

    Gluckstern, R.L.

    1980-09-01

    A collection of notes, on various aspects of beam dynamics in linear accelerators, which were produced by the author during five years (1975 to 1980) of consultation for the LASL Accelerator Technology (AT) Division and Medium-Energy Physics (MP) Division is presented.

  17. Gyro-induced acceleration of magnetic reconnection

    SciTech Connect (OSTI)

    Comisso, L.; Grasso, D.; Istituto dei Sistemi Complessi - CNR, Via dei Taurini 19, 00185 Roma ; Waelbroeck, F. L.; Borgogno, D.

    2013-09-15

    The linear and nonlinear evolution of magnetic reconnection in collisionless high-temperature plasmas with a strong guide field is analyzed on the basis of a two-dimensional gyrofluid model. The linear growth rate of the reconnecting instability is compared to analytical calculations over the whole spectrum of linearly unstable wave numbers. In the strongly unstable regime (large Δ′), the nonlinear evolution of the reconnecting instability is found to undergo two distinctive acceleration phases separated by a stall phase in which the instantaneous growth rate decreases. The first acceleration phase is caused by the formation of strong electric fields close to the X-point due to ion gyration, while the second acceleration phase is driven by the development of an open Petschek-like configuration due to both ion and electron temperature effects. Furthermore, the maximum instantaneous growth rate is found to increase dramatically over its linear value for decreasing diffusion layers. This is a consequence of the fact that the peak instantaneous growth rate becomes weakly dependent on the microscopic plasma parameters if the diffusion region thickness is sufficiently smaller than the equilibrium magnetic field scale length. When this condition is satisfied, the peak reconnection rate asymptotes to a constant value.

  18. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  19. Producing Linear Alpha Olefins From Biomass - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Producing Linear Alpha Olefins From Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Linear alpha olefins (LAOs) are...

  20. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron...

  1. 2010 Annual Planning Summary for Stanford Linear Accelerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly...

  2. Cascaded emission of linearly polarized single photons from positioned...

    Office of Scientific and Technical Information (OSTI)

    Cascaded emission of linearly polarized single photons from positioned InPGaInP quantum dots Citation Details In-Document Search Title: Cascaded emission of linearly polarized ...

  3. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  4. Updates to the International Linear Collider Damping Rings Baseline...

    Office of Scientific and Technical Information (OSTI)

    Updates to the International Linear Collider Damping Rings Baseline Design Citation Details In-Document Search Title: Updates to the International Linear Collider Damping Rings...

  5. Toward portable programming of numerical linear algebra on manycore...

    Office of Scientific and Technical Information (OSTI)

    Toward portable programming of numerical linear algebra on manycore nodes. Citation Details In-Document Search Title: Toward portable programming of numerical linear algebra on ...

  6. Top quark anomalous couplings at the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider ...

  7. Ubiquity of linear resistivity at intermediate temperature in...

    Office of Scientific and Technical Information (OSTI)

    Ubiquity of linear resistivity at intermediate temperature in bad metals Prev Next Title: Ubiquity of linear resistivity at intermediate temperature in bad metals Authors: ...

  8. Ubiquity of linear resistivity at intermediate temperature in...

    Office of Scientific and Technical Information (OSTI)

    Ubiquity of linear resistivity at intermediate temperature in bad metals Citation Details In-Document Search Title: Ubiquity of linear resistivity at intermediate temperature in ...

  9. High Impact Technology HQ - Results - LED Troffer, Cove (linear...

    Energy Savers [EERE]

    HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory High Impact Technology HQ - Results - LED Troffer, Cove (linear) and Downlight ...

  10. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W. (Albuquerque, NM); Kiekel, Paul (Albuquerque, NM)

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  11. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  12. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  13. MULTI-SPACECRAFT OBSERVATIONS OF LINEAR MODES AND SIDEBAND WAVES IN ION-SCALE SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Perschke, Christopher; Motschmann, Uwe; Narita, Yasuhito; Glassmeier, Karl-Heinz

    2014-10-01

    In the scenario of weak turbulence, energy is believed to be cascaded from smaller to larger wave numbers and frequencies due to weak wave-wave interactions. Based on its perturbative treatment one may regard plasma turbulence as a superposition of linear modes (or normal modes) and sideband waves (or nonlinear modes). In this study, we use magnetic field and plasma measurements of nine solar wind events obtained by the Cluster spacecraft and make extensive use of a high-resolution wave vector analysis method, the Multi-point Signal Resonator technique, to find frequencies and wave vectors of discrete modes on ion kinetic scales in the plasma rest frame. The primarily unstructured wave observations in the frequency-wave number diagram are classified into three distinct linear modes (proton Bernstein modes, helium-alpha Bernstein modes, and kinetic Alfvn waves) and the sideband waves by comparing with the dispersion relations derived theoretically from linear Vlasov theory using observational values of the plasma parameter beta and the propagation angle from the mean magnetic field. About 60% of the observed discrete modes can be explained by the linear modes, primarily as the proton Bernstein and the kinetic Alfvn waves, within the frequency uncertainties, while the rest of the population (about 40%) cannot be classified as linear modes due to the large deviation from dispersion relations. We conclude that both the linear modes and sideband wave components are needed to construct the wave picture of solar wind turbulence on ion-kinetic scales.

  14. Magnetic Cusp Configuration of the SPL Plasma Generator

    SciTech Connect (OSTI)

    Kronberger, Matthias; Chaudet, Elodie; Favre, Gilles; Lettry, Jacques; Kuechler, Detlef; Moyret, Pierre; Paoluzzi, Mauro; Prever-Loiri, Laurent; Schmitzer, Claus; Scrivens, Richard; Steyaert, Didier

    2011-09-26

    The Superconducting Proton Linac (SPL) is a novel linear accelerator concept currently studied at CERN. As part of this study, a new Cs-free, RF-driven external antenna H{sup -} plasma generator has been developed to withstand an average thermal load of 6 kW. The magnetic configuration of the new plasma generator includes a dodecapole cusp field and a filter field separating the plasma heating and H{sup -} production regions. Ferrites surrounding the RF antenna serve in enhancing the coupling of the RF to the plasma. Due to the space requirements of the plasma chamber cooling circuit, the cusp magnets are pushed outwards compared to Linac4 and the cusp field strength in the plasma region is reduced by 40% when N-S magnetized magnets are used. The cusp field strength and plasma confinement can be improved by replacing the N-S magnets with offset Halbach elements of which each consists of three magnetic sub-elements with different magnetization direction. A design challenge is the dissipation of RF power induced by eddy currents in the cusp and filter magnets which may lead to overheating and demagnetization. In view of this, a copper magnet cage has been developed that shields the cusp magnets from the radiation of the RF antenna.

  15. Tamper resistant magnetic stripes

    DOE Patents [OSTI]

    Naylor, Richard Brian (Albuquerque, NM); Sharp, Donald J. (Albuquerque, NM)

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  16. Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques

    Broader source: Energy.gov [DOE]

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

  17. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging...

  18. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in...

  19. Enhanced dielectric-wall linear accelerator

    DOE Patents [OSTI]

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  20. Noise in phase-preserving linear amplifiers

    SciTech Connect (OSTI)

    Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.

    2014-12-04

    The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state ? for the ancillary mode; ? determines the properties of the added noise.

  1. Enhanced dielectric-wall linear accelerator

    DOE Patents [OSTI]

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  2. The Next Linear Collider: NLC2001

    SciTech Connect (OSTI)

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  3. High gradient accelerators for linear light sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  4. Inpainting with sparse linear combinations of exemplars

    SciTech Connect (OSTI)

    Wohlberg, Brendt

    2008-01-01

    We introduce a new exemplar-based inpainting algorithm based on representing the region to be inpainted as a sparse linear combination of blocks extracted from similar parts of the image being inpainted. This method is conceptually simple, being computed by functional minimization, and avoids the complexity of correctly ordering the filling in of missing regions of other exemplar-based methods. Initial performance comparisons on small inpainting regions indicate that this method provides similar or better performance than other recent methods.

  5. Communications circuit including a linear quadratic estimator

    DOE Patents [OSTI]

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  6. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema (OSTI)

    None

    2011-10-06

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN?s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  7. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Steyert, William A. (Los Alamos, NM)

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  8. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  9. Magnetic field restructuring associated with two successive solar eruptions

    SciTech Connect (OSTI)

    Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong

    2014-08-20

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  10. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  11. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  12. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  13. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOE Patents [OSTI]

    Hilal, Sadek K. (Englewood Cliffs, NJ); Sampson, William B. (Bellport, NY); Leonard, Edward F. (Leonia, NJ)

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  14. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  15. Microfabricated linear Paul-Straubel ion trap

    DOE Patents [OSTI]

    Mangan, Michael A. (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Tigges, Chris P. (Albuquerque, NM); Linker, Kevin L. (Albuquerque, NM)

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  16. Micromechanism linear actuator with capillary force sealing

    DOE Patents [OSTI]

    Sniegowski, Jeffry J. (Albuquerque, NM)

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  17. Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.

    2015-11-06

    We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (~10μs) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (~1014cm–3) and deceleration (~109 m/s2). The observed mode wavelength (≳1 cm) nearly doubles within a linear growth time. Furthermore, theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects.

  18. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    SciTech Connect (OSTI)

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  19. Electronic and magnetic properties of iron doped zirconia: Theory and experiment

    SciTech Connect (OSTI)

    Debernardi, A. Sangalli, D.; Lamperti, A.; Cianci, E.; Lupo, P.; Casoli, F.; Albertini, F.; Nasi, L.

    2014-05-07

    We systematically investigated, both theoretically and experimentally, Zr{sub 1?x}Fe{sub x}O{sub 2?y} ranging from diluted (x???0.05) up to large (x???0.25) Fe concentration. By atomic layer deposition, we grew thin films of high-? zirconia in cubic phase with Fe uniformly distributed in the film, as proven by time of flight secondary ion mass spectrometry and transmission electron microscopy measurements. Iron is in Fe{sup 3+} oxidation state suggesting the formation of oxygen vacancies with y concentration close to x/2. By ab-initio simulations, we studied the phase diagram relating the stability of monoclinic vs. tetragonal phase as a function of Fe doping and film thickness: the critical thickness at which the pure zirconia is stabilized in the tetragonal phase is estimated ranging from 2 to 6?nm according to film morphology. Preliminary results by X-ray magnetic circular dichroism and alternating gradient force magnetometry are discussed in comparison to ab initio data enlightening the role of oxygen vacancies in the magnetic properties of the system.

  20. Terahertz-driven linear electron acceleration

    SciTech Connect (OSTI)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  1. Linear dimensions and volumes of human lungs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  2. Terahertz-driven linear electron acceleration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  3. Solar receiver heliostat reflector having a linear drive and position information system

    DOE Patents [OSTI]

    Horton, Richard H. (Schenectady, NY)

    1980-01-01

    A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

  4. Estimation of Heavy Ion Densities From Linearly Polarized EMIC Waves At Earth

    SciTech Connect (OSTI)

    Kim, Eun-Hwa; Johnson, Jay R.; Lee, Dong-Hun

    2014-02-24

    Linearly polarized EMIC waves are expected to concentrate at the location where their wave frequency satisfies the ion-ion hybrid (IIH) resonance condition as the result of a mode conversion process. In this letter, we evaluate absorption coefficients at the IIH resonance in the Earth geosynchronous orbit for variable concentrations of helium and azimuthal and field-aligned wave numbers in dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentration, it only occurs for a limited range of azimuthal and field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Our results suggest that, at L = 6.6, linearly polarized EMIC waves can be generated via mode conversion from the compressional waves near the crossover frequency. Consequently, the heavy ion concentration ratio can be estimated from observations of externally generated EMIC waves that have polarization.

  5. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Narayanan, A.; Watson, M. D.; Blake, S. F.; Bruyant, N.; Drigo, L.; Chen, Y. L.; Prabhakaran, D.; Yan, B.; Felser, C.; Kong, T.; et al

    2015-03-19

    Cd3As2 is a candidate three-dimensional Dirac semimetal which has exceedingly high mobility and nonsaturating linear magnetoresistance that may be relevant for future practical applications. We report magnetotransport and tunnel diode oscillation measurements on Cd3As2, in magnetic fields up to 65 T and temperatures between 1.5 and 300 K. We find that the nonsaturating linear magnetoresistance persists up to 65 T and it is likely caused by disorder effects, as it scales with the high mobility rather than directly linked to Fermi surface changes even when approaching the quantum limit. As a result of the observed quantum oscillations, we determine themore » bulk three-dimensional Fermi surface having signatures of Dirac behavior with a nontrivial Berry phase shift, very light effective quasiparticle masses, and clear deviations from the band-structure predictions. In very high fields we also detect signatures of large Zeeman spin splitting (g~16).« less

  6. Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source

    Energy Science and Technology Software Center (OSTI)

    2006-11-16

    Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.« less

  7. Investigation into electron cloud effects in the International Linear Collider positron damping ring

    SciTech Connect (OSTI)

    Crittenden, J.A.; Conway, J.; Dugan, G.F.; Palmer, M.A.; Rubin, D.L.; Shanks, J.; Sonnad, K.G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M.A.; Guiducci, S.; Pivi, M.T.F.; Wang, L.; Crittenden, J.A.; Conway, J.; Dugan, G.F.; Palmer, M.A.; Rubin, D.L.; Shanks, J.; Sonnad, K.G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M.A.; Guiducci, S.; Pivi, M.T.F.; Wang, L.

    2014-02-28

    We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs have recently been developed for the 5 GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effects of diffuse and specular photon scattering on the interior surfaces of the vacuum chamber. The results provide input to the cloud buildup simulations for the various magnetic field regions of the ring. The modeled cloud densities thus obtained are used in the instability threshold calculations. We conclude that the mitigation techniques employed in this model will suffice to allow operation of the damping ring at the design operational specifications

  8. Electron-ion hybrid instability experiment upgrades to the Auburn Linear Experiment for Instability Studies

    SciTech Connect (OSTI)

    DuBois, A. M.; Arnold, I.; Thomas, E. Jr.; Tejero, E.; Amatucci, W. E.

    2013-04-15

    The Auburn Linear EXperiment for Instability Studies (ALEXIS) is a laboratory plasma physics experiment used to study spatially inhomogeneous flows in a magnetized cylindrical plasma column that are driven by crossed electric (E) and magnetic (B) fields. ALEXIS was recently upgraded to include a small, secondary plasma source for a new dual source, interpenetrating plasma experiment. Using two plasma sources allows for highly localized electric fields to be made at the boundary of the two plasmas, inducing strong E Multiplication-Sign B velocity shear in the plasma, which can give rise to a regime of instabilities that have not previously been studied in ALEXIS. The dual plasma configuration makes it possible to have independent control over the velocity shear and the density gradient. This paper discusses the recent addition of the secondary plasma source to ALEXIS, as well as the plasma diagnostics used to measure electric fields and electron densities.

  9. Rayleigh-Taylor instabilities with sheared magnetic fields

    SciTech Connect (OSTI)

    Ruderman, M. S. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Terradas, J.; Ballester, J. L. [Departament de Fsica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-04-20

    Magnetic Rayleigh-Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes of an interface and a slab model under the presence of gravity are analytically calculated assuming that the orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate, corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As an application of the results found in this paper we have indirectly determined the shear angle in solar prominence threads using their lifetimes and the estimation of the Alfvn speed of the structure.

  10. Linear study of Rayleigh-Taylor instability in a diffusive quantum plasma

    SciTech Connect (OSTI)

    Momeni, Mahdi

    2013-08-15

    The linear Rayleigh-Taylor (RT) instability in an incompressible quantum plasma is investigated on the basis of quantum magnetohydrodynamic model. It is shown that the occurrence of RT instability depends on density-temperature inhomogeneity (characteristic lengths) on one hand, and the system layer size on the other. It is also observed that the combined effects of external magnetic field, diffusivity, and quantum pressure significantly modify the dispersion properties of system in both the parallel and perpendicular directions. For any case, the imaginary and real parts of dispersion relation are presented and the possibility and conditions for the instability growth rate are discussed.

  11. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  12. Linear nozzle with tailored gas plumes

    DOE Patents [OSTI]

    Kozarek, Robert L. (Apollo, PA); Straub, William D. (Pittsburgh, PA); Fischer, Joern E. (Bremen, DE); Leon, David D. (Murrysville, PA)

    2003-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  13. Radio frequency focused interdigital linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  14. Passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  15. 2d PDE Linear Symmetric Matrix Solver

    Energy Science and Technology Software Center (OSTI)

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  16. International linear collider reference design report

    SciTech Connect (OSTI)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  17. CALiPER Application Summary Report 19. LED Linear Pendants

    SciTech Connect (OSTI)

    none,

    2012-10-01

    Report 19 reviews the independently tested performance of nine LED linear pendants and also evaluates a collection of 11 linear pendant products available in both an LED and fluorescent version.

  18. Pulse magnetic welder

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  19. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  20. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  1. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  2. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  4. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  5. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  6. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, Donna J. (Idaho Falls, ID); Richardson, John G. (Idaho Falls, ID); Albano, Richard K. (Idaho Falls, ID); Morrison, Jr., John L. (Idaho Falls, ID)

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  7. Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "LED Replacements for Linear Fluorescent Lamps" webcast, held June 20, 2011.

  8. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversely, introducing a magnetic field to certain materials will cause the material to heat up. This happens because, as the spins in such (paramagnetic) materials align with...

  9. Magnetically leviated superconducting bearing

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  10. Wiggler plane focusing in a linear free electron laser

    DOE Patents [OSTI]

    Scharlemann, Ernst T. (Livermore, CA)

    1988-01-01

    Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.

  11. Molten metal feed system controlled with a traveling magnetic field

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  12. ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE

    SciTech Connect (OSTI)

    Martinez Gonzalez, M. J.

    2012-08-20

    The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

  13. MAGNETIC HELICITY IN THE DISSIPATION RANGE OF STRONG IMBALANCED TURBULENCE

    SciTech Connect (OSTI)

    Markovskii, S. A.; Vasquez, Bernard J. E-mail: bernie.vasquez@unh.edu

    2013-05-01

    Hybrid numerical simulations of freely decaying two-dimensional turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The net magnetic helicity of the initial fluctuations at large scales is zero. The turbulence is set to be imbalanced in the sense that the net cross-helicity is not zero. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations. The peak position depends on the plasma beta and correlates with a sharp decline of the cross-helicity spectrum.

  14. Governance of the International Linear Collider Project

    SciTech Connect (OSTI)

    Foster, B.; Barish, B.; Delahaye, J.P.; Dosselli, U.; Elsen, E.; Harrison, M.; Mnich, J.; Paterson, J.M.; Richard, F.; Stapnes, S.; Suzuki, A.; Wormser, G.; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly apportioned at both a national and global level, is essential if the project is to be realised. Finally, models for running costs and decommissioning at the conclusion of the ILC project are proposed. This document represents an interim report of the bodies and individuals studying these questions inside the structure set up and supervised by the International Committee for Future Accelerators (ICFA). It represents a request for comment to the international community in all relevant disciplines, scientific, technical and most importantly, political. Many areas require further study and some, in particular the site selection process, have not yet progressed sufficiently to be addressed in detail in this document. Discussion raised by this document will be vital in framing the final proposals due to be published in 2012 in the Technical Design Report being prepared by the Global Design Effort of the ILC.

  15. LED Linear Lamps and Troffer Lighting | Department of Energy

    Energy Savers [EERE]

    Linear Lamps and Troffer Lighting LED Linear Lamps and Troffer Lighting View the video about CALiPER Series 21 on LED Linear Lamps and Troffer Lighting. The CALiPER program performed a series of investigations on linear LED lamps. Each report in the series covers the performance of up to 31 linear LED lamps, which were purchased in late 2012 or 2013. The first report focuses on bare lamp performance of LED T8 replacement lamps and subsequent reports examine performance in various troffers, as

  16. Magnetic helicity signature produced by cross-field 2D turbulence

    SciTech Connect (OSTI)

    Markovskii, S. A.; Vasquez, Bernard J.

    2013-06-13

    Hybrid numerical simulations of freely decaying 2D turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The normalized magnetic helicity of the initial large-scale fluctuations is zero, while the normalized cross-helicity is not. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations.

  17. Self-compression of intense short laser pulses in relativistic magnetized plasma

    SciTech Connect (OSTI)

    Olumi, M.; Maraghechi, B.

    2014-11-15

    The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrdinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.

  18. Passive magnetic bearing configurations

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  19. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, Aaron S. (Broomall, PA)

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  20. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  1. Precision envelope detector and linear rectifier circuitry

    DOE Patents [OSTI]

    Davis, Thomas J. (Richland, WA)

    1980-01-01

    Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

  2. Linear air-fuel sensor development

    SciTech Connect (OSTI)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  3. Novel magnets and superconductors studied by high precision magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel magnets and superconductors studied by high precision magnetic susceptometer under pressure An Inductor-capacitor circuit (LC circuit) is a simple, text-book level electric...

  4. Strain-assisted current-induced magnetization reversal in magnetic...

    Office of Scientific and Technical Information (OSTI)

    Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity Citation Details In-Document Search ...

  5. Magnet pole tips

    DOE Patents [OSTI]

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  6. Magnet pole tips

    DOE Patents [OSTI]

    Thorn, Craig E. (Wading River, NY); Chasman, Chellis (Setauket, NY); Baltz, Anthony J. (Coram, NY)

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  7. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect (OSTI)

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along the Cu-pyz-Cu directions. The structure of the two compounds is similar, but in the case of the Cu-compound the Cu-Cu pathways are linear, whereas in the Ni-compound they are kinked. The pulsed-field data combined with information from temperature-dependent susceptibility, muon-spin rotation, electron-spin resonance and ligand-field calculations suggest that, far from being magnetically Q2D, the Ni-compound is fairly one-dimensional with the dominant exchange (J{sub 1D} = 3.1 K and J{sub {perpendicular}}/J{sub 1D} = 0.63) directed along the Ni-FHF-Ni direction. Ni(NCS){sub 2}(pyzdo){sub 2} was also investigated. Previous ultra-high field measurements using the 100 T magnet have shown that this compound has a saturation field close to 80 T. The purpose of the present studies is to map out the phase diagram of this material at mid-range fields. The data are shown in the inset to the figure. This continuing project probes the ability of organic ligands to mediate magnetic exchange, the link between structure, dimensionality and bulk magnetic properties, as well as the role of spin number in quantum magnets. Ultimately the investigations aim to determine to what extent it is possible to produce self-assembly molecular materials with tailor-made magnetic characteristics.

  8. High power linear pulsed beam annealer

    DOE Patents [OSTI]

    Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  9. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect (OSTI)

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear acceleratormagnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  10. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the

  11. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism,...

  12. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies....

  13. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  14. Speed Limit of Magnetic Recording

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the original magnetization direction can be distinguished as changes in the grey scale contrast. In our images the original magnetization direction corresponds to light...

  15. PLUTONIUM OUGHT TO PRODUCE MAGNETISM.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... valence states. 1663 October 2015 5 electrical conductivity changes drastically in the presence of a magnetic field, allowing for new spintronic and magnetic- sensing devices. ...

  16. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exist even at room temperature. This makes carbon's magnetism an interesting natural effect with potential real-world applications if samples are thin enough. Magnetic hysteresis...

  17. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important...

  18. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. ... materials would further improve the competitiveness of magnetic refrigeration technology. ...

  19. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying...

  20. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  1. 2d PDE Linear Asymmetric Matrix Solver

    Energy Science and Technology Software Center (OSTI)

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  2. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67?MeV/atom

    SciTech Connect (OSTI)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67?MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280?emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240?emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  3. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  4. Moment free toroidal magnet

    DOE Patents [OSTI]

    Bonanos, Peter (East Brunswick, NJ)

    1983-01-01

    A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

  5. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  6. Ion species control in high flux deuterium plasma beams produced by a linear plasma generator

    SciTech Connect (OSTI)

    Luo, G.-N.; Shu, W.M.; Nakamura, H.; O'Hira, S.; Nishi, M.

    2004-11-01

    The ion species ratios in low energy high flux deuterium plasma beams formed in a linear plasma generator were measured by a quadrupole mass spectrometer. And the species control in the plasma generator was evaluated by changing the operational parameters like neutral pressure, arc current, and axial magnetic confinement to the plasma column. The measurements reveal that the lower pressures prefer to form more D{sup +} ions, and the medium magnetic confinement at the higher pressures results in production of more D{sub 2}{sup +}, while the stronger confinement and/or larger arc current are helpful to D{sub 2}{sup +} conversion into D{sub 3}{sup +}. Therefore, the ion species can be controlled by adjusting the operational parameters of the plasma generator. With suitable adjustment, we can achieve plasma beams highly enriched with a single species of D{sup +}, D{sub 2}{sup +}, or D{sub 3}{sup +}, to a ratio over 80%. It has been found that the axial magnetic configuration played a significant role in the formation of D{sub 3}{sup +} within the experimental pressure range.

  7. Permanent magnet energy conversion machine with magnet mounting arrangement

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Adams, Donald J. (Knoxville, TN)

    1999-01-01

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  8. Contribution of individual interfaces in the MgO/Co/Pd trilayer to perpendicular magnetic anisotropy upon annealing

    SciTech Connect (OSTI)

    Kim, Minseok; Kim, Sanghoon; Ko, Jungho; Hong, Jongill

    2015-03-09

    The contribution of each interface of the MgO/Co/Pd trilayer to the perpendicular magnetic anisotropy (PMA) was studied by changing chemical and crystalline structures through annealing. We found that volumetric anisotropy in the MgO/Co/Pd trilayer was significantly increased due to enhanced magnetoelastic anisotropy caused by stress built up most likely at the MgO/Co interface during annealing. When the trilayer was annealed at 400 °C, the alloy formation at the Co/Pd interface additionally increased the volumetric anisotropy. Our x-ray magnetic circular dichroism study supported that those structural modifications led to an increase in the orbital moment through spin-orbit coupling (SOC) along the film normal two times larger than that of the as-deposited trilayer, thereby enhancing PMA greatly. Our experimental results prove that the Co/Pd interface, rather than the MgO/Co interface, plays an essential role in inducing strong PMA in the trilayer. The precise investigation of annealing effect on both volumetric and interfacial anisotropies can provide a methodological solution to improve the SOC of the trilayer that can serve as the core unit of spintronic devices.

  9. International Linear Collider-A Technical Progress Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: International Linear Collider-A Technical Progress Report Citation Details In-Document Search Title: International Linear Collider-A Technical Progress Report The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of

  10. Achieving large linear elasticity and high strength in bulk nanocompsite

    Office of Scientific and Technical Information (OSTI)

    via synergistic effect (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect Title: Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be

  11. A Fast Monte Carlo Simulation for the International Linear Collider

    Office of Scientific and Technical Information (OSTI)

    Detector (Technical Report) | SciTech Connect A Fast Monte Carlo Simulation for the International Linear Collider Detector Citation Details In-Document Search Title: A Fast Monte Carlo Simulation for the International Linear Collider Detector The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included

  12. The Linear Engine Pathway of Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Linear Engine Pathway of Transformation The Linear Engine Pathway of Transformation This poster highlights the major milestones in the history of the linear engine in terms of technological advances, novel designs, and economic/social impact. PDF icon p-06_covington.pdf More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Modeling the

  13. LED Replacements for Linear Fluorescent Lamps Webcast | Department of

    Energy Savers [EERE]

    Energy Replacements for Linear Fluorescent Lamps Webcast LED Replacements for Linear Fluorescent Lamps Webcast In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting Facts-listed products as well as products evaluated in the latest CALiPER reports. Eric Richman, also of PNNL, reported on a recently completed GATEWAY demonstration project, in which LED and

  14. High Impact Technology HQ - Results - LED Troffer, Cove (linear) and

    Energy Savers [EERE]

    Downlight Retrofit Kits: Princeton Icahn Laboratory | Department of Energy HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory High Impact Technology HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory PDF icon LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory More Documents & Publications DOE Booth Presentations From Grainger Show 2015 Downloads Exterior LED

  15. DOE - Office of Legacy Management -- Stanford Linear Accelerator Center -

    Office of Legacy Management (LM)

    005 Stanford Linear Accelerator Center - 005 FUSRAP Considered Sites Site: Stanford Linear Accelerator Center (005) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to

  16. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-C: Soft X-ray Magnetic Spectroscopy This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly...

  17. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, R.E.

    1993-03-09

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  18. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, Ross E. (Los Alamos, NM)

    1993-01-01

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  19. Modular tokamak magnetic system

    DOE Patents [OSTI]

    Yang, Tien-Fang (Wayland, MA)

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  20. Linear electric field time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); Feldman, William C. (Los Alamos, NM)

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  1. The Klynac: An Integrated Klystron and Linear Accelerator

    SciTech Connect (OSTI)

    Potter, J. M., Schwellenbach, D., Meidinger, A.

    2012-08-07

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

  2. Linear Concentrator System Basics for Concentrating Solar Power...

    Office of Environmental Management (EM)

    Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and ... In the future, troughs may be integrated with existing or new ...

  3. Simultaneous linear optics and coupling correction for storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data Citation Details In-Document Search Title:...

  4. Discrimination of new physics models with the International Linear...

    Office of Scientific and Technical Information (OSTI)

    Discrimination of new physics models with the International Linear Collider Citation Details In-Document Search Title: Discrimination of new physics models with the International ...

  5. Knot Undulator to Generate Linearly Polarized Photons with Low...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Service, Springfield, VA at www.ntis.gov. Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third...

  6. Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices...

  7. Neutrino mass, dark energy, and the linear growth factor (Journal...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Neutrino mass, dark energy, and the linear ... OSTI Identifier: 21249781 Resource Type: Journal Article Resource Relation: Journal Name: ...

  8. Optimizing minimum free-energy crossing points in solution: Linear...

    Office of Scientific and Technical Information (OSTI)

    Optimizing minimum free-energy crossing points in solution: Linear-response free energyspin-flip density functional theory approach Citation Details In-Document Search Title:...

  9. Physics Case for the International Linear Collider (Technical...

    Office of Scientific and Technical Information (OSTI)

    Collider We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected...

  10. Magnetic fluorescent lamp

    DOE Patents [OSTI]

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  11. Magnetic coupling device

    DOE Patents [OSTI]

    Nance, Thomas A. (Aiken, SC)

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  12. Electronic and magnetic properties of Mo doped graphene; full potential approach

    SciTech Connect (OSTI)

    Thakur, Jyoti Kashyap, Manish K.; Singh, Mukhtiyar; Saini, Hardev S.

    2015-05-15

    The electronic and magnetic properties of Pristine and Mo doped Graphene have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method based on Density Functional Theory (DFT). The exchange and correlation (XC) effects were taken into account by generalized gradient approximation (GGA). The calculated results show that Mo doping creates magnetism in Graphene by shifting the energy levels at E{sub F} and opens up a channel for Graphene to be used in real nanoscale device applications. The unpaired d-electrons of Mo atom are responsible for induced magnetism in Graphene. Magnetic ordering created in Graphene in this way makes it suitable for recording media, magnetic sensors, magnetic inks and spintronic devices.

  13. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    SciTech Connect (OSTI)

    Lara, A.; Aliev, F. G.; Dobrovolskiy, O. V.; Prieto, J. L.; Huth, M.

    2014-11-03

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.

  14. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    SciTech Connect (OSTI)

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.

  15. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less

  16. Magnetic design calculation and FRC formation modeling for the field reversed experiment liner

    SciTech Connect (OSTI)

    Dorf, L. A.; Intrator, T. P.; Renneke, R.; Hsu, S. C.; Wurden, G. A.; Awe, T.; Siemon, R.; Semenov, V. E.

    2008-10-01

    Integrated magnetic modeling and design are important to meet the requirements for (1) formation, (2) translation, and (3) compression of a field reversed configuration (FRC) for magnetized target fusion. Off-the-shelf solutions do not exist for many generic design issues. A predictive capability for time-dependent magnetic diffusion in realistically complicated geometry is essential in designing the experiment. An eddy-current code was developed and used to compute the mutual inductances between driven magnetic coils and passive magnetic shields (flux excluder plates) to calculate the self-consistent axisymmetric magnetic fields during the first two stages. The plasma in the formation stage was modeled as an immobile solid cylinder with selectable constant resistivity and magnetic flux that was free to readjust itself. It was concluded that (1) use of experimentally obtained anomalously large plasma resistivity in magnetic diffusion simulations is sufficient to predict magnetic reconnection and FRC formation, (2) comparison of predicted and experimentally observed timescales for FRC Ohmic decay shows good agreement, and (3) for the typical range of resistivities, the magnetic null radius decay rate scales linearly with resistivity. The last result can be used to predict the rate of change in magnetic flux outside of the separatrix (equal to the back-emf loop voltage), and thus estimate a minimum {theta}-coil loop voltage required to form an FRC.

  17. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  18. Resource-Efficient Generataion of Linear Cluster States by Linear Optics with postselection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uskov, Dmitry B; Alsing, Paul; Fanto, Michael; Kaplan, Lev; Kim, R; Szep, Atilla; Smith IV, Amos M

    2015-01-01

    We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detectionmore » of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2^n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4^m-1.« less

  19. Resource-Efficient Generataion of Linear Cluster States by Linear Optics with postselection

    SciTech Connect (OSTI)

    Uskov, Dmitry B; Alsing, Paul; Fanto, Michael; Kaplan, Lev; Kim, R; Szep, Atilla; Smith IV, Amos M

    2015-01-01

    We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2^n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4^m-1.

  20. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  1. Freely oriented portable superconducting magnet

    DOE Patents [OSTI]

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  2. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    SciTech Connect (OSTI)

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-09-15

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jimnez-Gmez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvn eigenmodes, which could be a serious issue for future fusion reactors.

  3. Telescoping magnetic ball bar test gage

    DOE Patents [OSTI]

    Bryan, James B.

    1984-01-01

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out. Two gage balls (10, 12) are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit (14) and a rigid member (16, 18, 20, 22, 24). One gage ball (10) is secured by a magnetic socket knuckle assembly (34) which fixes its center with respect to the machine being tested. The other gage ball (12) is secured by another magnetic socket knuckle assembly (38) which is engaged or held by the machine in such manner that the center of that ball (12) is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball (10). As the moving ball (12) executes its trajectory, changes in the radial distance between the centers of the two balls (10, 12) caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly (50, 52, 54, 56, 58, 60) actuated by the parallel reed flexure unit (14). Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball (10) locations, thereby determining the accuracy of the machine.

  4. Telescoping magnetic ball bar test gage

    DOE Patents [OSTI]

    Bryan, J.B.

    1984-03-13

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out is disclosed. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine. 3 figs.

  5. Telescoping magnetic ball bar test gage

    DOE Patents [OSTI]

    Bryan, J.B.

    1982-03-15

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.

  6. SYNOPTIC MAPPING OF CHROMOSPHERIC MAGNETIC FLUX

    SciTech Connect (OSTI)

    Jin, C. L.; Harvey, J. W.; Pietarila, A. E-mail: jharvey@nso.edu

    2013-03-10

    We used daily full-disk Ca II 854.2 nm magnetograms from the Synoptic Optical Long Term Investigations of the Sun (SOLIS) facility to study the chromospheric magnetic field from 2006 April through 2009 November. We determined and corrected previously unidentified zero offsets in the SOLIS magnetograms. By tracking the disk passages of stable unipolar regions, the measured net flux densities were found to systematically decrease from the disk center to the limb by a factor of about two. This decrease was modeled using a thin flux tube model with a difference in signal formation height between the center and limb sides. Comparison of photospheric and chromospheric observations shows that their differences are largely due to horizontal spreading of magnetic flux with increasing height. The north polar magnetic field decreased nearly linearly with time during our study period while the south polar field was nearly constant. We used the annual change in the viewing angle of the polar regions to estimate the radial and meridional components of the polar fields and found that the south polar fields were tilted away from the pole. Synoptic maps of the chromospheric radial flux density distribution were used as boundary conditions for extrapolation of the field from the chromosphere into the corona. A comparison of modeled and observed coronal hole boundaries and coronal streamer positions showed better agreement when using the chromospheric rather than the photospheric synoptic maps.

  7. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films

    SciTech Connect (OSTI)

    Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.; Coldea, A. I.; Hesjedal, T.; Baker, A. A.; Harrison, S. E.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Laan, G. van der

    2014-12-15

    We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ?7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 ?{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 ?{sub B}/Mn from surface-sensitive XMCD. At ?2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  8. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  9. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  10. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  11. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  12. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  13. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  15. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  16. Deconfinement to quark matter in neutron stars - The influence of strong magnetic fields

    SciTech Connect (OSTI)

    Dexheimer, V.; Negreiros, R.; Schramm, S.; Hempel, M.

    2013-03-25

    We use an extended version of the hadronic SU(3) non-linear realization of the sigma model that also includes quarks to study hybrid stars. Within this approach, the degrees of freedom change naturally as the temperature/density increases. Different prescriptions of charge neutrality, local and global, are tested and the influence of strong magnetic fields and the anomalous magnetic moment on the particle population is discussed.

  17. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  18. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, Donald J. (Los Alamos, NM); Schamaun, Roger G. (Los Alamos, NM); Clark, Donald C. (Los Alamos, NM); Potter, R. Christopher (Los Alamos, NM); Frank, Joseph A. (Los Alamos, NM)

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  19. Variable-energy drift-tube linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM); Potter, James M. (Los Alamos, NM); Stovall, James E. (Los Alamos, NM)

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  20. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Patents [OSTI]

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  1. Comparison of open-source linear programming solvers.

    SciTech Connect (OSTI)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin D.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph

    2013-10-01

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.

  2. Nonlinear vs. linear biasing in Trp-cage folding simulations

    SciTech Connect (OSTI)

    Spiwok, Vojt?ch Oborsk, Pavel; Krlov, Blanka; Pazrikov, Jana

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200?ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  3. Wiggler plane focusing in a linear free electron laser

    DOE Patents [OSTI]

    Scharlemann, E.T.

    1985-11-21

    This disclosure describes a free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.

  4. Wiggler plane focusing in a linear free electron laser

    DOE Patents [OSTI]

    Scharlemann, E.T.

    1988-02-23

    Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped. 5 figs.

  5. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, Maynard

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  6. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, J.A.; Steyert, W.A.

    1981-01-27

    An apparatus and method for refrigeration are disclosed which provides efficient refrigeration over temperature ranges in excess of 20/sup 0/C and which requires no maintenance and is, therefore, usable on an unmanned satellite. The apparatus comprises a superconducting magnet which may be solenoidal. A piston comprising a substance such as a rare earth substance which is maintained near its Curie temperature reciprocates through the bore of the solenoidal magnet. A magnetic drive rod is connected to the piston and appropriate heat sinks are connected thereto. The piston is driven by a suitable mechanical drive such as an electric motor and cam. In practicing the invention, the body of the piston is magnetized and demagnetized as it moves through the magnetic field of the solenoid to approximate any of the following cycles or a condition thereof as well as, potentially, other cycles: Brayton, Carnot, Ericsson, and Stirling. Advantages of the present invention include: that refrigeration can be accomplished over at least a 20/sup 0/C scale at superconducting temperatures as well as at more conventional temperatures; very high efficiency, high reliability, and small size. (LCL)

  7. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  8. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  9. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood (Marlboro, MA); Schwall, Robert E. (Northborough, MA)

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  10. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood (Marlboro, MA); Schwall, Robert E. (Northborough, MA)

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  11. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  12. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, James (Shoreham, NY); Reich, Morris (Kew Garden Hills, NY); Danby, Gordon (Wading River, NY)

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  13. Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011 E102003020BDS Presentation Outline  Purpose of Presentation  Linear versus Non-Linear Seismic SSI  Non-Linear seismic Soil Structure Interaction (NLSSI) Studies  The NLSSI Introduction  Non-Linearity in Seismic SSI Analysis  Commercial Software Elements  Commercial Software Non-Linear Constitutive Models  Non-Linear

  14. Interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions

    SciTech Connect (OSTI)

    Wang, Shouguo; Ward, R. C. C.; Zhang, Xiaoguang; Kohn, A.; Ma, Q. L.; Zhang, J.; Liu, H. F.; Han, Prof. X. F.

    2012-01-01

    Following predictions by first-principles theory of huge tunnel magnetoresistance (TMR) effect in epitaxial Fe/MgO/Fe magnetic tunnel junctions (MTJs), measured magnetoresistance (MR) ratio about 200% at room temperature (RT) have been reported in MgO-based epitaxial MTJs. Recently, MR ratio of about 600% has been reported at RT in MgO-based amorphous MTJs with core structure of CoFeB/MgO/CoFeB grown by magnetron sputtering with amorphous CoFeB layers. The sputtered CoFeB/MgO/CoFeB MTJs shows a great potential application in spintronic devices. Although epitaxial structure will probably not be used in devices, it remains an excellent model system to compare theoretical calculations with experimental results and to enhance our understanding of the spin dependent tunneling. Both theoretical calculations and experimental results clearly indicate that the interfacial structure plays a crucial role on coherent tunneling across single crystalMgO barrier, especially in epitaxial MgO-based MTJs grown by molecular beam epitaxy (MBE). Surface X-ray diffraction, Auger electron spectroscopy, X-ray absorption spectra, and X-ray magnetic circular dichroism have been used for interface characterization. However, no consistent viewpoint has been reached, and this is still an open issue. In this article, recent studies on the interface characterization in MgO-based epitaxial MTJs will be introduced, with a focus on research by X-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and spin dependent tunneling spectroscopy.

  15. Non-linear stochastic growth rates and redshift space distortions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmore » ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less

  16. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    SciTech Connect (OSTI)

    Mier, J. A. Anabitarte, E.; Sentes, J. M.; Snchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van

    2014-05-15

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  17. ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS

    SciTech Connect (OSTI)

    Chen Xu,Charles Reece,Michael Kelley

    2012-07-01

    The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.

  18. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    SciTech Connect (OSTI)

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu; Satoh, Takuya; Stupakiewicz, Andrzej; Maziewski, Andrzej

    2014-07-28

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180 by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed for excitation fluences higher than 100 mJ/cm{sup 2}.

  19. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately...

  20. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  1. Magnet Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    Magnet Motor Corp Jump to: navigation, search Name: Magnet Motor Corp. Place: Starnberg, Germany Zip: 82319 Sector: Vehicles Product: Magnet motor Corp has been developing and...

  2. Asynchronous parallel generating set search for linearly-constrained optimization.

    SciTech Connect (OSTI)

    Lewis, Robert Michael; Griffin, Joshua D.; Kolda, Tamara Gibson

    2006-08-01

    Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the APPSPACK software framework and we present results from an extensive numerical study using CUTEr test problems. We discuss the results, both positive and negative, and conclude that GSS is a reliable method for solving small-to-medium sized linearly-constrained optimization problems without derivatives.

  3. Fourth order resonance of a high intensity linear accelerator* (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Fourth order resonance of a high intensity linear accelerator* Citation Details In-Document Search Title: Fourth order resonance of a high intensity linear accelerator* For a high intensity beam, the 4\nu=1 resonance of a linear accelerator is manifested through the octupolar term of space charge potential when the depressed phase advance \sigma is close to and below 90 but no resonance effect is observed when \sigma just above 90 . To verify that this is a

  4. Thermodynamics of a lattice gas with linear attractive potential (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Thermodynamics of a lattice gas with linear attractive potential Citation Details In-Document Search Title: Thermodynamics of a lattice gas with linear attractive potential We study the equilibrium thermodynamics of a one-dimensional lattice gas with interaction V(|i-j|)=-1/(μn) (ξ-1/n |i-j|) given by the superposition of a universal attractive interaction with strength -1/(μn) ξ<0, and a linear attractive potential 1/(μn{sup 2}) |i-j|. The interaction is

  5. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider We present a study of the experimental determination of the forward-backward asymmetry in the process e{sup +}e{sup -} {yields} t{bar t} and in the subsequent t {yields} Wb decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top

  6. Asymmetric evolution of magnetic reconnection in collisionless accretion disk

    SciTech Connect (OSTI)

    Shirakawa, Keisuke Hoshino, Masahiro

    2014-05-15

    An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J{sub 0}×Ω{sub 0}, where J{sub 0} is the initial current density in the neutral sheet and Ω{sub 0} is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum.

  7. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted

  8. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forming Magnetic Filtering Material - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Magnetic Filtration Process, Magnetic Filtering Material, and Method of Forming Magnetic Filtering Material Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process

  9. Wave breaking phenomenon of lower-hybrid oscillations induced by a background inhomogeneous magnetic field

    SciTech Connect (OSTI)

    Maity, Chandan; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Sengupta, Sudip [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-10-15

    In a fluid description, we study space-time evolution of lower hybrid modes in a cold quasi-neutral homogeneous plasma in presence of a background inhomogeneous magnetic field. Within a linear analysis, a dispersion relation with inhomogeneous magnetic field shows 'phase mixing' of such oscillations. A manifestation of 'phase mixing' is shown in 'mode coupling.' By using Lagrangian variables, an exact solution is presented in parametric form of this nonlinear time dependent problem. It is demonstrated that initially excited lower hybrid modes always break via phase mixing phenomenon in presence of an inhomogeneous magnetic field. Breaking of such oscillations is revealed by the appearance of spikes in the plasma density profile.

  10. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  11. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  12. Magnetic resonance apparatus

    DOE Patents [OSTI]

    Jackson, Jasper A. (Los Alamos, NM); Cooper, Richard K. (Los Alamos, NM)

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  13. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  14. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  15. Magnet Cooldown and Warmup Model

    Energy Science and Technology Software Center (OSTI)

    1995-07-11

    This program evaluates cooldown/warmup performance of an SSC magnet or magnet strings, But can be applied to any other iron coldmass which is cooled or warmed by helium.

  16. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  17. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  18. Spin relaxation and linear-in-electric-field frequency shift...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an ... It is found that the rectangular cell geometry admits of a general result for Tsub 1, ...

  19. Linear Scaling Electronic Structure Methods with Periodic Boundary Conditions

    SciTech Connect (OSTI)

    Gustavo E. Scuseria

    2008-02-08

    The methodological development and computational implementation of linear scaling quantum chemistry methods for the accurate calculation of electronic structure and properties of periodic systems (solids, surfaces, and polymers) and their application to chemical problems of DOE relevance.

  20. Linear Scaling of the Exciton Binding Energy versus the Band...

    Office of Scientific and Technical Information (OSTI)

    Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials This content will become publicly available on August 6, 2016 Prev Next Title:...

  1. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known ... in an analysis of this stability that are associated with the potential-well distortion. ...

  2. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, M.

    1987-04-06

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

  3. Free piston variable-stroke linear-alternator generator

    DOE Patents [OSTI]

    Haaland, C.M.

    1998-12-15

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  4. Ordinary Isotropic Peridynamic Models; Position Aware Linear Solid (PALS).

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Ordinary Isotropic Peridynamic Models; Position Aware Linear Solid (PALS). Citation Details In-Document Search Title: Ordinary Isotropic Peridynamic Models; Position Aware Linear Solid (PALS). Abstract not provided. Authors: Mitchell, John Anthony Publication Date: 2015-02-01 OSTI Identifier: 1239086 Report Number(s): SAND2015-1012PE 566979 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at

  5. International Linear Collider Technical Design Report - Volume 2: Physics

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect International Linear Collider Technical Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics Authors: Baer, Howard ; Barklow, Tim ; Fujii, Keisuke ; Gao, Yuanning ; Hoang, Andre ; Kanemura, Shinya ; List, Jenny ; Logan, Heather E. ; Nomerotski, Andrei ; Perelstein, Maxim ; Peskin, Michael E. ; Poschl, Roman ; Reuter, Jurgen ; Riemann, Sabine ; Savoy-Navarro,

  6. Linear theory of microwave instability in electron storage rings (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Linear theory of microwave instability in electron storage rings Citation Details In-Document Search Title: Linear theory of microwave instability in electron storage rings Authors: Cai, Yunhai Publication Date: 2011-06-14 OSTI Identifier: 1099585 Type: Published Article Journal Name: Physical Review Special Topics - Accelerators and Beams Additional Journal Information: Journal Volume: 14; Journal Issue: 6; Journal ID: ISSN 1098-4402 Publisher: American Physical

  7. Ubiquity of linear resistivity at intermediate temperature in bad metals

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Ubiquity of linear resistivity at intermediate temperature in bad metals Title: Ubiquity of linear resistivity at intermediate temperature in bad metals Authors: Boyd, G. R. ; Zlatić, V. ; Freericks, J. K. Publication Date: 2015-02-20 OSTI Identifier: 1181226 Grant/Contract Number: SC0007091; FG02-08ER46542 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 91; Journal Issue: 7; Journal ID: ISSN

  8. Discrimination of new physics models with the International Linear Collider

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Discrimination of new physics models with the International Linear Collider Citation Details In-Document Search Title: Discrimination of new physics models with the International Linear Collider Authors: Asano, Masaki ; Saito, Tomoyuki ; Suehara, Taikan ; Fujii, Keisuke ; Hundi, R. S. ; Itoh, Hideo ; Matsumoto, Shigeki ; Okada, Nobuchika ; Takubo, Yosuke ; Yamamoto, Hitoshi Publication Date: 2011-12-02 OSTI Identifier: 1098342 Type: Publisher's Accepted

  9. A posteriori error analysis of parameterized linear systems using spectral

    Office of Scientific and Technical Information (OSTI)

    methods. (Journal Article) | SciTech Connect Journal Article: A posteriori error analysis of parameterized linear systems using spectral methods. Citation Details In-Document Search Title: A posteriori error analysis of parameterized linear systems using spectral methods. Abstract not provided. Authors: Constantine, Paul ; Butler, Troy Publication Date: 2011-07-01 OSTI Identifier: 1106467 Report Number(s): SAND2011-4711J 463817 DOE Contract Number: AC04-94AL85000 Resource Type: Journal

  10. Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons

    SciTech Connect (OSTI)

    Boer, Daniel; /Groningen, KVI; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Mulders, Piet J.; /Brussels U., IIHE; Pisano, Cristian; /Cagliari U. /INFN, Cagliari

    2011-02-07

    We show that the unmeasured distribution of linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production both in electron-hadron and hadron-hadron collisions. We present expressions for the simplest cos 2{phi} asymmetries and estimate their maximal value in the particular case of electron-hadron collisions. Measurements of the linearly polarized gluon distribution in the proton should be feasible in future EIC or LHeC experiments.

  11. International Linear Collider Technical Design Report - Volume 2: Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect International Linear Collider Technical Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics Authors: Baer, Howard ; Barklow, Tim ; Fujii, Keisuke ; Gao, Yuanning ; Hoang, Andre ; Kanemura, Shinya ; List, Jenny ; Logan, Heather E. ; Nomerotski, Andrei ; Perelstein, Maxim ; Peskin, Michael E. ; Poschl, Roman ; Reuter, Jurgen ; Riemann, Sabine ; Savoy-Navarro,

  12. JLab Supports International Linear Collider Cavity Development Work |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Supports International Linear Collider Cavity Development Work NEWPORT NEWS, Va. Feb. 12, 2008 - It's not often that major-league baseball and nuclear physics get to share the limelight, but that's what's happening at the Department of Energy's Jefferson Lab. The baseball connection involves a nine-cell niobium cavity developed by KEK accelerator scientists in Japan as one of several designs being tested for development for the proposed International Linear Collider. JLab is

  13. Free piston variable-stroke linear-alternator generator

    DOE Patents [OSTI]

    Haaland, Carsten M. (Dadeville, AL)

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  14. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Top Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  15. Top quark anomalous couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider Authors: Devetak, Erik ; Nomerotski, Andrei ; Peskin, Michael Publication Date: 2011-08-17 OSTI Identifier: 1100572 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 84; Journal Issue: 3; Journal ID: ISSN 1550-7998

  16. Toward portable programming of numerical linear algebra on manycore nodes.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Toward portable programming of numerical linear algebra on manycore nodes. Citation Details In-Document Search Title: Toward portable programming of numerical linear algebra on manycore nodes. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-05-01 OSTI Identifier: 1109301 Report Number(s): SAND2011-3556C 471555 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Toward petaflop numerical

  17. Linear Concentrator System Basics for Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic

  18. 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (SLAC) | Department of Energy Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24 months, and the planned cost and schedule for each NEPA review identified. PDF icon 2010 Annual Planning Summary for

  19. Tuning the DARHT Axis-II linear induction accelerator focusing

    SciTech Connect (OSTI)

    Ekdahl, Carl A.

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.

  20. Evolution of twisted magnetic fields

    SciTech Connect (OSTI)

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  1. Carbon Joins the Magnetic Club

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic

  2. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  3. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  4. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    SciTech Connect (OSTI)

    Ballard, Joshua T.; Biallas, George H.; Brown, G.; Butler, David E.; Carstens, Thomas J.; Chudakov, Eugene A.; Creel, Jonathan D.; Egiyan, Hovanes; Martin, F.; Qiang, Yi; Smith, Elton S.; Stevens, Mark A.; Spiegel, Scot L.; Whitlatch, Timothy E.; Wolin, Elliott J.; Ghoshal, Probir K.

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  5. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  6. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  7. Low field magnetic resonance imaging

    DOE Patents [OSTI]

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  8. SU-E-J-233: A Facility for Radiobiological Experiments in a Large Magnetic Field

    SciTech Connect (OSTI)

    Carlone, M; Heaton, R; Keller, H; Wouters, B; Jaffray, D

    2014-06-01

    Purpose: There is considerable interest in developing medical linear accelerators with integrated image guidance by MRI. Less work has been done on the fundamental biology of cell survival in the presence of a strong magnetic field. The purpose of this work is to describe an experimental system capable of measuring cell survival response in the types of MRI-linac systems currently under development. Methods: We have integrated a cobalt irradiator with a solenoid magnet. The solenoid magnet has inner diameter of 10 cm. To enable measurement of the biological effects as a function of depth, we are utilizing the sliced gel technique, in which cells are embedded and fixed within a gelatin matrix. Irradiated cells at defined positions (sub mm resolution) can subsequently be recovered and assessed for cell survival or other biological effects. Results: The magnetic field profile in the solenoid has a peak magnetic field 36 cm below the top edge of the magnet bore and can be placed at and SAD of 100 cm. At a solenoid current of 35 A, the peak magnetic field is 0.25 T. The dose rate of the cobalt irradiator is 16 cGy/min at 100 cm SAD. EBT3 film was used to demonstrate the system functionality. It was irradiated at 1 cm depth at 100 cm SSD with a 44 field to 1.5 Gy in a 0.25 T magnetic field. The dose profile was similar between this film and the control exposure without magnetic field. Conclusion: Integrating a cobalt irradiator with a high field magnet is demonstrated. The magnetic field at the cobalt defining head was minimal and did not interfere with the functioning of this unit. Cell survival experiments can be reproduced exactly in the presence or absence of a magnetic field since a resistive magnet is used.

  9. Magnetic and structural properties of Zn doped MnV{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Shahi, Prashant; Shukla, K. K.; Singh, Rahul; Chatterjee, Sandip; Das, A.; Ghosh, A. K.; Nigam, A. K.

    2014-04-24

    The magnetization, Neutron diffraction and X-ray diffraction of Zn doped MnV{sub 2}O{sub 4} as a function of temperature have been measured. It has been observed, with increase of Zn the non-linear orientation of Mn spins with the V spins will decrease which effectively decrease the structural transition temperature more rapidly than Curie Temperature.

  10. Magnetic Particle Detection (MPD) for In-Vitro Dosimetry

    SciTech Connect (OSTI)

    Minard, Kevin R.; Littke, Matthew H.; Wang, Wei; Xiong, Yijia; Teeguarden, Justin G.; Thrall, Brian D.

    2013-05-15

    In-vitro tests intended for evaluating the potential health effects of magnetic nanoparticles generally require an accurate measure of cell dose to promote the consistent use and interpretation of biological response. Here, a simple low-cost inductive sensor is developed for quickly determining the total mass of magnetic nanoparticles that is bound to the plasma membrane and internalized by cultured cells. Sensor operation exploits an oscillating magnetic field (f0 = 250 kHz) together with the nonlinear response of particle magnetization to generate a harmonic signal (f3 = 750 kHz) that varies linearly with particulate mass (R2 > 0.999) and is sufficiently sensitive for detecting ~ 100 ng of carboxyl-coated iron-oxide nanoparticles in under a second. When exploited for measuring receptor-mediated nanoparticle uptake in RAW 264.7 macrophages, results show that achieved dosimetry performance is comparable with relatively expensive analytical techniques that are much more time-consuming and labor-intensive to perform. Described sensing is therefore potentially better suited for low-cost in-vitro assays that require fast and quantitative magnetic particle detection.

  11. Electrostatic waves in carbon nanotubes with an axial magnetic field

    SciTech Connect (OSTI)

    Abdikian, Alireza; Bagheri, Mehran

    2013-10-15

    Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

  12. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic refrigeration is being investigated as an alternative to conventional gas ... materials may thus have improved properties for magnetic refrigeration. ...

  13. Iterative reconstruction of magnetic induction using Lorentz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography Title Iterative reconstruction of magnetic induction using Lorentz transmission...

  14. The role of magnetic fields in starburst galaxies as revealed by OH megamasers

    SciTech Connect (OSTI)

    McBride, James; Quataert, Eliot; Heiles, Carl; Bauermeister, Amber E-mail: eliot@astro.berkeley.edu

    2014-01-10

    We present estimates of magnetic field strengths in the interstellar media of starburst galaxies derived from measurements of Zeeman splitting associated with OH megamasers. The results for eight galaxies with Zeeman detections suggest that the magnetic energy density in the interstellar medium of starburst galaxies is comparable to their hydrostatic gas pressure, as in the Milky Way. We discuss the significant uncertainties in this conclusion, and possible measurements that could reduce these uncertainties. We also compare the Zeeman splitting derived magnetic field estimates to magnetic field strengths estimated using synchrotron fluxes and assuming that the magnetic field and cosmic rays have comparable energy densities, known as the 'minimum energy' argument. We find that the minimum energy argument systematically underestimates magnetic fields in starburst galaxies, and that the conditions that would be required to produce agreement between the minimum energy estimate and the Zeeman derived estimate of interstellar medium magnetic fields are implausible. The conclusion that magnetic fields in starburst galaxies exceed the minimum energy magnetic fields is consistent with starburst galaxies adhering to the linearity of the far-infrared-radio correlation.

  15. Method of making permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  16. Method of making permanent magnets

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Dennis, Kevin W. (Ames, IA); Lograsso, Barbara K. (Ames, IA); Anderson, Iver E. (Ames, IA)

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  17. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the

  18. Inductrack magnet configuration

    DOE Patents [OSTI]

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  19. Inductrack magnet configuration

    DOE Patents [OSTI]

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  20. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  1. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  2. Magnetic hydrogel with high coercivity

    SciTech Connect (OSTI)

    Szeri, H.; Alvero?lu, E.; Kurtan, U.; ?enel, M.; Baykal, A.

    2013-08-01

    Highlights: Polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles have been prepared. Magnetization measurements reveal that hydrogels have hard magnetic properties with high coercivity. Magnetic nanoparticles makes the gel more homogeneous and do not diffuse out of the gel during water intake. These gels are useful in applications as wastewater treatment once gels are magnetized before its usage. - Abstract: This study investigates the synthesis and characterization of polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles. Structural, electrical, and magnetic characterization of the gels have been performed with X-ray powder diffractometry, scanning electron microscopy, DC conductivity, magnetization and fluorescence spectroscopy techniques. The preparation and characterization of polyacrylamide (PAAm) hydrogels that contain 5 and 10 mg BaFe{sub 12}O{sub 19} (16 and 21 nm diameter) nanoparticles are described herein. It is seen from the fluorescence spectra that, nanoparticles surrounded to pyranine molecules so that some of pyranine molecules could not bound to the polymer strands. Electrical measurements show that presence of nanoparticles make the gel more homogeneous. Magnetization measurements reveal that hydrogels have hard magnetic properties with quite high coercivity of 4.2 kOe, which does not change with swelling. This feature makes these gels useful in applications as wastewater treatment if they are magnetized before use.

  3. Magnetic resonance apparatus

    DOE Patents [OSTI]

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  4. Kondo-type transport through a quantum dot under magnetic fields

    SciTech Connect (OSTI)

    Dong, Bing; Lei, X. L.

    2001-06-15

    In this paper, we investigate the Kondo correlation effects on linear and nonlinear transport in a quantum dot connected to reservoirs under finite magnetic fields, using the slave-boson mean field approach suggested by Kotliar and Ruckenstein [Phys. Rev. Lett. >57, 1362 (1986)]. A brief comparison between the present formulation and other slave-boson formulation is presented to justify this approach. The numerical results show that the linear conductance near electron-hole symmetry is suppressed by the application of the magnetic fields, but an anomalous enhancement is predicted in the nonsymmetry regime. The effect of external magnetic fields on the nonlinear differential conductances is discussed for the Kondo system. A significant reduction of the peak splitting is observed due to the strong Kondo correlation, which agrees well with experimental data.

  5. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect (OSTI)

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  6. Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects

    SciTech Connect (OSTI)

    Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.

    2015-11-06

    We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (~10μs) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (~1014cm–3) and deceleration (~109 m/s2). The observed mode wavelength (≳1 cm) nearly doubles within a linear growth time. Furthermore, theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects.

  7. Higher-degree linear approximations of nonlinear systems

    SciTech Connect (OSTI)

    Karahan, S.

    1989-01-01

    In this dissertation, the author develops a new method for obtaining higher degree linear approximations of nonlinear control systems. The standard approach in the analysis and synthesis of nonlinear systems is a first order approximation by a linear model. This is usually performed by obtaining a series expansion of the system at some nominal operating point and retaining only the first degree terms in the series. The accuracy of this approximation depends on how far the system moves away from the normal point, and on the relative magnitudes of the higher degree terms in the series expansion. The approximation is achieved by finding an appropriate nonlinear coordinate transformation-feedback pair to perform the higher degree linearization. With the proposed method, one can improve the accuracy of the approximation up to arbitrarily higher degrees, provided certain solvability conditions are satisfied. The Hunt-Su linearizability theorem makes these conditions precise. This approach is similar to Poincare's Normal Form Theorem in formulation, but different in its solution method. After some mathematical background the author derives a set of equations (called the Homological Equations). A solution to this system of linear equations is equivalent to the solution to the problem of approximate linearization. However, it is generally not possible to solve the system of equations exactly. He outlines a method for systematically finding approximate solutions to these equations using singular value decomposition, while minimizing an error with respect to some defined norm.

  8. Modeling patterns in data using linear and related models

    SciTech Connect (OSTI)

    Engelhardt, M.E.

    1996-06-01

    This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models.

  9. ALSNews Vol. 279

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 ALSNews Vol. 279 Print Wednesday, 29 August 2007 00:00 Contents Unique auxin regulating mechanism discovered Unexpected angular dependence of x-ray magnetic linear dichroism Storage ring rf klystron upgrade ALS hosts high school interns Users' Meeting: Registration and call for abstracts Coherence 2007 Workshop draws record attendance Submit your ALS publications, invited talks, and awards by Wednesday, September 12 News Links Getting a better handle on antidepressant action Cheerful news for

  10. ALSNews Vol. 279

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Print Contents Unique auxin regulating mechanism discovered Unexpected angular dependence of x-ray magnetic linear dichroism Storage ring rf klystron upgrade ALS hosts high school interns Users' Meeting: Registration and call for abstracts Coherence 2007 Workshop draws record attendance Submit your ALS publications, invited talks, and awards by Wednesday, September 12 News Links Getting a better handle on antidepressant action Cheerful news for antidepressant research Researchers rely on

  11. New non-linear photovoltaic effect in uniform bipolar semiconductor

    SciTech Connect (OSTI)

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.

  12. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    SciTech Connect (OSTI)

    Musson, John C.; Seaton, Chad; Spata, Mike F.; Yan, Jianxun

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an ?activation layer,? is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  13. Confirming the Lanchestrian linear-logarithmic model of attrition

    SciTech Connect (OSTI)

    Hartley, D.S. III.

    1990-12-01

    This paper is the fourth in a series of reports on the breakthrough research in historical validation of attrition in conflict. Significant defense policy decisions, including weapons acquisition and arms reduction, are based in part on models of conflict. Most of these models are driven by their attrition algorithms, usually forms of the Lanchester square and linear laws. None of these algorithms have been validated. The results of this paper confirm the results of earlier papers, using a large database of historical results. The homogeneous linear-logarithmic Lanchestrian attrition model is validated to the extent possible with current initial and final force size data and is consistent with the Iwo Jima data. A particular differential linear-logarithmic model is described that fits the data very well. A version of Helmbold's victory predicting parameter is also confirmed, with an associated probability function. 37 refs., 73 figs., 68 tabs.

  14. Determination of rotatable and frozen CoO spins and their relationship to exchange bias in CoO/Fe/Ag(001)

    SciTech Connect (OSTI)

    Wu, J.; Park, J.; Kim, W.; Arenholz, E.; Liberati, M.; Scholl, A.; Wu, Y.; Hwang, C.; Qiu, Z.

    2010-02-10

    The exchange bias of epitaxially grown CoO/Fe/Ag(001) was investigated using X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD) techniques. A direct XMLD measurement on the CoO layer during the Fe magnetization reversal shows that the CoO compensated spins are rotatable at thinner thickness and frozen, i.e. fixed in direction to the lattice, at larger thickness. By a quantitative determination of the rotatable and frozen CoO spins as a function of the CoO film thickness, we find the remarkable result that the exchange bias is well established before frozen spins are detectable in the CoO film, contrary to the common assumption that the majority of antiferromagnetic spins need to be frozen to generate the exchange bias. We further show that the rotatable/frozen CoO spins are uniformly distributed in the CoO film.

  15. A direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001)

    SciTech Connect (OSTI)

    Wu, J.; Park, J. S.; Kim, W.; Arenholz, E.; Liberati, M.; Scholl, A.; Wu, Y. Z.; Hwang, C.; Qiu, Z. Q.

    2010-03-10

    The exchange bias of epitaxially grown CoO/Fe/Ag(001) was investigated using x-ray magnetic circular dichroism and x-ray magnetic linear dichroism (XMLD) techniques. A direct XMLD measurement on the CoO layer during the Fe magnetization reversal shows that the CoO compensated spins are rotatable at thinner thickness and frozen at larger thickness. By a quantitative determination of the rotatable and frozen CoO spins as a function of the CoO film thickness, we find the remarkable result that the exchange bias is well established before frozen spins are detectable in the CoO film. We further show that the rotatable and frozen CoO spins are uniformly distributed in the CoO film.

  16. Klystron switching power supplies for the Internation Linear Collider

    SciTech Connect (OSTI)

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  17. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect (OSTI)

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  18. Cascaded emission of linearly polarized single photons from positioned

    Office of Scientific and Technical Information (OSTI)

    InP/GaInP quantum dots (Journal Article) | SciTech Connect Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots Citation Details In-Document Search Title: Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots We report on the optical characterization of site-controlled InP/GaInP quantum dots (QDs). Spatially resolved low temperature cathodoluminescence proves the long-range ordering of the buried emitters,

  19. Search for Linear Polarization of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Lubin, P. M.; Smoot, G. F.

    1978-10-01

    We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination

  20. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  1. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  2. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  3. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  4. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  5. Non-linear mode interaction between spin torque driven and damped modes in spin torque nano-oscillators

    SciTech Connect (OSTI)

    Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U.; Delaët, B.

    2015-05-11

    The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.

  6. Linear stability of spherically symmetric and wormhole solutions supported by the sine-Gordon ghost scalar field

    SciTech Connect (OSTI)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas; Myrzakulov, Ratbay

    2010-08-15

    In this paper we investigate wormhole and spherically symmetric solutions in four-dimensional gravity plus a matter source consisting of a ghost scalar field with a sine-Gordon potential. For the wormhole solutions we also include the possibility of electric and/or magnetic charges. For both types of solutions we perform a linear stability analysis and show that the wormhole solutions are stable and that when one turns on the electric and/or magnetic field the solution remains stable. The linear stability analysis of the spherically symmetric solutions indicates that they can be stable or unstable depending on one of the parameters of the system. This result for the spherically symmetric solution is nontrivial since a previous investigation of four-dimensional gravity plus a ghost scalar field with a {lambda}{phi}{sup 4} interaction found only unstable spherically symmetric solutions. Both the wormhole and spherically symmetric solutions presented here asymptotically go to anti-de Sitter space-time.

  7. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    DOE Patents [OSTI]

    Oder, Robin R. (Export, PA); Jamison, Russell E. (Burrell, PA)

    2011-11-08

    An apparatus and method for continuous separation of magnetic particles from non-magnetic fluids including particular rods, magnetic fields and flow arrangements.

  8. Apparatus for electrode current control in linear MHD generators

    DOE Patents [OSTI]

    Demirjian, Ara M. (Arlington, MA); Solbes, Albert (Rancho Palos Verdes, CA)

    1984-01-01

    Apparatus for controlling a plurality of opposing, electrode, direct-currents at pre-set locations across a channel that comprises a converter for converting each electrode current into first and second periodic control signals which are 180.degree. out of phase with respect to each other and which have equal magnitudes corresponding to the magnitude of the associated electrode current; and couplers for magnetically coupling individual ones of the first control signals and for magnetically coupling individual ones of the second signals such that the corresponding electrode currents are equalized or rendered proportional by balancing the same in the same or constant ratios in accordance with the locations of the electrode currents.

  9. Continuous magnetic separator and process

    DOE Patents [OSTI]

    Oder, Robin R. (Export, PA); Jamison, Russell E. (Lower Burrell, PA)

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  10. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  11. Investigation of magnetic properties of Fe{sub 3}O{sub 4} nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    SciTech Connect (OSTI)

    Nemala, H.; Thakur, J. S.; Lawes, G.; Naik, R.; Naik, V. M.; Vaishnava, P. P.

    2014-07-21

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe{sub 3}O{sub 4} nanoparticles, subjected to external magnetic fields of various frequencies (188375 kHz) and amplitudes (140235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8??3.1?nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6??1.2?nm, and a reduced saturation magnetization (?65?emu/g) compared to the bulk value of Fe{sub 3}O{sub 4} (?95?emu/g). This is due to the presence of a finite surface layer (?1?nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe{sub 3}O{sub 4} core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28??2?kJ/m{sup 3}) of Fe{sub 3}O{sub 4} nanoparticles.

  12. Scalable Library for the Parallel Solution of Sparse Linear Systems

    Energy Science and Technology Software Center (OSTI)

    1993-07-14

    BlockSolve is a scalable parallel software library for the solution of large sparse, symmetric systems of linear equations. It runs on a variety of parallel architectures and can easily be ported to others. BlockSovle is primarily intended for the solution of sparse linear systems that arise from physical problems having multiple degrees of freedom at each node point. For example, when the finite element method is used to solve practical problems in structural engineering, eachmore » node will typically have anywhere from 3-6 degrees of freedom associated with it. BlockSolve is written to take advantage of problems of this nature; however, it is still reasonably efficient for problems that have only one degree of freedom associated with each node, such as the three-dimensional Poisson problem. It does not require that the matrices have any particular structure other than being sparse and symmetric. BlockSolve is intended to be used within real application codes. It is designed to work best in the context of our experience which indicated that most application codes solve the same linear systems with several different right-hand sides and/or linear systems with the same structure, but different matrix values multiple times.« less

  13. Tunneling control using classical non-linear oscillator

    SciTech Connect (OSTI)

    Kar, Susmita; Bhattacharyya, S. P.

    2014-04-24

    A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.

  14. SIMULTANEOUS LINEAR AND CIRCULAR OPTICAL POLARIMETRY OF ASTEROID (4) VESTA

    SciTech Connect (OSTI)

    Wiktorowicz, Sloane J.; Nofi, Larissa A.

    2015-02-10

    From a single 3.8 hr observation of the asteroid (4) Vesta at 13.7 phase angle with the POlarimeter at Lick for Inclination Studies of Hot jupiters 2 (POLISH2) at the Lick Observatory Shane 3 m telescope, we confirm rotational modulation of linear polarization in the B and V bands. We measure the peak-to-peak modulation in the degree of linear polarization to be ?P = (294 35) 10{sup ?6} (ppm) and time-averaged ?P/P = 0.0575 0.0069. After rotating the plane of linear polarization to the scattering plane, asteroidal rotational modulation is detected with 12? confidence and observed solely in Stokes Q/I. POLISH2 simultaneously measures Stokes I, Q, U (linear polarization), and V (circular polarization), but we detect no significant circular polarization with a 1? upper limit of 78 ppm in the B band. Circular polarization is expected to arise from multiple scattering of sunlight by rough surfaces, and it has previously been detected in nearly all other classes of solar system bodies except for asteroids. Subsequent observations may be compared with surface albedo maps from the Dawn Mission, which may allow the identification of compositional variation across the asteroidal surface. These results demonstrate the high accuracy achieved by POLISH2 at the Lick 3 m telescope, which is designed to directly detect scattered light from spatially unresolvable exoplanets.

  15. Translation and integration of numerical atomic orbitals in linear molecules

    SciTech Connect (OSTI)

    Heinsmki, Sami

    2014-02-14

    We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.

  16. Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Devices - Energy Innovation Portal Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed fabrication methods for

  17. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  18. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  19. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensors, and data processing. Fortunately, additional research has proven that etching carbon with sulfuric acid can also make the carbon magnetic, opening the door for...

  20. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  1. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  2. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  3. Measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  4. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  5. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  7. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  8. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Dan (Brentwood, CA); Cook, Edward G. (Livermore, CA)

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  9. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect (OSTI)

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  10. Non-enzymatic glucose detection using magnetic nanoemulsions

    SciTech Connect (OSTI)

    Mahendran, V.; Philip, John

    2014-09-22

    We probe the optical properties and intermolecular interactions in magnetically responsive nanoemulsions in the presence of glucose. The equilibrium interdroplet distance between the emulsion droplets in an one-dimensional array increases by several nanometers in the presence of glucose because of intermolecular hydrogen bonding with sodium dodecyl sulphate molecules at the oil-water interface that gives rise to stretched lamellae-like structure. The observed large red shift in the diffracted Bragg peak (?50100?nm) and the linear response in the glucose concentration range of 0.2525?mM offer a simple, fast, and cost effective non-enzymatic approach for glucose detection.

  11. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, David C. (Ames, IA)

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  12. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  13. Energy level alignment of self-assembled linear chains of benzenediami...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Energy level alignment of self-assembled linear chains of ... on March 24, 2017 Prev Next Title: Energy level alignment of self-assembled linear ...

  14. B{gt}1 T low mass magnetic field sweep assembly

    SciTech Connect (OSTI)

    Cadieu, F.J.; Caldwell, C.; Griffin, J.; von Molnar, S.

    1997-04-01

    When making linear or nonlinear conductivity measurements it is often desirable to apply a high magnetic field locally to a sample. If the whole magnet assembly is integral to the sample probe, then, particularly when making low temperature measurements, a low total mass is desired. We have designed, modeled, and tested a variable magnetic field sweep unit suitable for use over a wide temperature range from cryogenic to {approx}200{degree}C which provides a sweepable uniform magnetic field over an air gap of 2 mm and spatial extent of 4 mm{times}4 mm. The unit consists of a magnet yoke structure with a mass of 18 g and a spur gear driven rotatable magnet to vary the gap field in a nearly sinusoidal manner as a function of the magnet rotation angle. In the present design, a 20 g SmCo magnet has been used which allows for low temperature operation to {approx}10 K, when attached to a cryogenic refrigerator cold finger. The shape of the magnetic yoke structure has been modeled and optimized using three-dimensional magnetic field software. The gap field uniformity can thus be modeled and tested experimentally. In a present working model the field for a 2 mm gap at room temperature B({theta})=1.05{center_dot}cos({theta})(T) where {theta} is the magnet rotation angle. The field sweep amplitude at 19 K only increased by 3{percent} over the 295 K value. With 0.25-mm-thick permunder pole tips, the field amplitude in a similar unit was increased to 1.20 T over a gap of 1.5 mm. {copyright} {ital 1997 American Institute of Physics.}

  15. Magnetic structure of light nuclei from lattice QCD

    SciTech Connect (OSTI)

    Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.

    2015-12-09

    Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\\le4$, along with the cross-section for the $M1$ transition $np\\rightarrow d\\gamma$, at the flavor SU(3)-symmetric point where the pion mass is $m_\\pi\\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $\\beta_p=5.22(+0.66/-0.45)(0.23) \\times 10^{-4}$ fm$^3$ and $\\beta_n=1.253(+0.056/-0.067)(0.055) \\times 10^{-4}$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $\\beta_{nn}=1.872(+0.121/-0.113)(0.082) \\times 10^{-4}$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $j_z=\\pm 1$ deuteron states, and is found to be $\\beta_{d,\\pm 1}=4.4(+1.6/-1.5)(0.2) \\times 10^{-4}$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $\\beta_{^{3}\\rm He}=5.4(+2.2/-2.1)(0.2) \\times 10^{-4}$ fm$^3$, $\\beta_{^{3}\\rm H}=2.6(1.7)(0.1) \\times 10^{-4}$ fm$^3$, $\\beta_{^{4}\\rm He}=3.4(+2.0/-1.9)(0.2) \\times 10^{-4}$ fm$^3$. Mixing between the $j_z=0$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, ${\\bar L}_1$, of the pionless effective theory for $NN$ systems (equivalent to the meson-exchange current contribution in nuclear potential models), that dictates the cross-section for the $np\\to d\\gamma$ process near threshold. Thus, combined with previous determinations of NN scattering parameters, this enables an ab initio determination of the threshold cross-section at these unphysical masses.

  16. Magnetic structure of light nuclei from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.

    2015-12-09

    Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei withmore » $$A\\le4$$, along with the cross-section for the $M1$ transition $$np\\rightarrow d\\gamma$$, at the flavor SU(3)-symmetric point where the pion mass is $$m_\\pi\\sim 806$$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $$\\beta_p=5.22(+0.66/-0.45)(0.23) \\times 10^{-4}$$ fm$^3$ and $$\\beta_n=1.253(+0.056/-0.067)(0.055) \\times 10^{-4}$$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $$\\beta_{nn}=1.872(+0.121/-0.113)(0.082) \\times 10^{-4}$$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $$j_z=\\pm 1$$ deuteron states, and is found to be $$\\beta_{d,\\pm 1}=4.4(+1.6/-1.5)(0.2) \\times 10^{-4}$$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $$\\beta_{^{3}\\rm He}=5.4(+2.2/-2.1)(0.2) \\times 10^{-4}$$ fm$^3$, $$\\beta_{^{3}\\rm H}=2.6(1.7)(0.1) \\times 10^{-4}$$ fm$^3$, $$\\beta_{^{4}\\rm He}=3.4(+2.0/-1.9)(0.2) \\times 10^{-4}$$ fm$^3$. Mixing between the $j_z=0$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, $${\\bar L}_1$$, of the pionless effective theory for $NN$ systems (equivalent to the meson-exchange current contribution in nuclear potential models), that dictates the cross-section for the $$np\\to d\\gamma$$ process near threshold. Thus, combined with previous determinations of NN scattering parameters, this enables an ab initio determination of the threshold cross-section at these unphysical masses.« less

  17. SOLAR MAGNETIC TRACKING. IV. THE DEATH OF MAGNETIC FEATURES

    SciTech Connect (OSTI)

    Lamb, D. A.; Howard, T. A.; DeForest, C. E.; Parnell, C. E.; Welsch, B. T.

    2013-09-10

    The removal of magnetic flux from the quiet-Sun photosphere is important for maintaining the statistical steady state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected into the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux, either by cancellation (submerging or rising loops, or reconnection in the photosphere) or by dispersal of flux. We used the SWAMIS feature tracking code to understand how nearly 2 Multiplication-Sign 10{sup 4} magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of the quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously detected flux so that it is too small and too weak to be detected, rather than completely eliminating it. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 hr, is three times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.

  18. SiD Linear Collider Detector R&D, DOE Final Report

    SciTech Connect (OSTI)

    Brau, James E.; Demarteau, Marcel

    2015-05-15

    The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Silicon detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and are described in this report.

  19. Magnetic polarizability of the nucleon

    SciTech Connect (OSTI)

    Ragusa, S.

    1996-01-01

    We derive an expression for the magnetic polarizability of the nucleon, as related to sums of products of its electromagnetic transition moments involving the electric and magnetic dipoles and mean-square radii, as well as the electric quadrupole moment. Two sum rules emerge from the calculation. {copyright} {ital 1995 The American Physical Society.}

  20. Magnetic-field-dosimetry system

    DOE Patents [OSTI]

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  1. Exploration of Artificial Frustrated Magnets

    SciTech Connect (OSTI)

    Samarth, Nitin; Schiffer, Peter

    2015-02-17

    This program encompasses experimental and theoretical studies of arrays of nanometer-scale magnets known as “artificial frustrated magnets”. These magnets are small and closely spaced, so that their behavior as a collective group is complex and reveals insights into how such collections of interacting objects behave as a group. In particular, the placement of the magnets is such that the interactions between them are “frustrated”, in that they compete with each other. These systems are analogs to a class of magnetic materials in which the lattice geometry frustrates interactions between individual atomic moments, and in which a wide range of novel physical phenomena have been recently observed. The advantage to studying the arrays is that they are both designable and resolvable: i.e., the experiments can control all aspects of the array geometry, and can also observe how individual elements of the arrays behave. This research program demonstrated a number of phenomena including the role of multiple collective interactions, the feasibility of using systems with their magnetism aligned perpendicular to the plane of the array, the importance of disorder in the arrays, and the possibility of using high temperatures to adjust the magnet orientations. All of these phenomena, and others explored in this program, add to the body of knowledge around collective magnetic behavior and magnetism in general. Aside from building scientific knowledge in an important technological area, with relevance to computing and memory, the program also gave critical support to the education of students working on the experiments.

  2. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  3. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  4. Scalar mesons in three-flavor linear sigma models

    SciTech Connect (OSTI)

    Deirdre Black; Amir H. Fariborz; Sherif Moussa; Salah Nasri; Joseph Schrechter

    2001-09-01

    The three flavor linear sigma model is studied in order to understand the role of possible light scalar mesons in the pi-pi, pi-K and pi-eta elastic scattering channels. The K-matrix prescription is used to unitarize tree-level amplitudes and, with a sufficiently general model, we obtain reasonable ts to the experimental data. The effect of unitarization is very important and leads to the emergence of a nonet of light scalars, with masses below 1 GeV. We compare with a scattering treatment using a more general non-linear sigma model approach and also comment upon how our results t in with the scalar meson puzzle. The latter involves a preliminary investigation of possible mixing between scalar nonets.

  5. FPGA-based Klystron linearization implementations in scope of ILC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Omet, M.; Michizono, S.; Matsumoto, T.; Miura, T.; Qiu, F.; Chase, B.; Varghese, P.; Schlarb, H.; Branlard, J.; Cichalewski, W.

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  6. Linear corotation torques in non-barotropic disks

    SciTech Connect (OSTI)

    Tsang, David

    2014-02-20

    A fully analytic expression for the linear corotation torque to first order in eccentricity for planets in non-barotropic protoplanetary disks is derived, taking into account the effect of disk entropy gradients. This torque formula is applicable to both the co-orbital, corotation torques and the non-co-orbital, corotation torques—for planets in orbits with non-zero eccentricity—in disks where the thermal diffusivity and viscosity are sufficient to maintain the linearity of these interactions. While the co-orbital, corotation torque is important for migration of planets in Type I migration, the non-co-orbital, corotation torque plays an important role in the eccentricity evolution of giant planets that have opened gaps in the disk. The presence of an entropy gradient in the disk can significantly modify the corotation torque in both these cases.

  7. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect (OSTI)

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  8. Power Saving Optimization for Linear Collider Interaction Region Parameters

    SciTech Connect (OSTI)

    Seryi, Andrei; /SLAC

    2009-10-30

    Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

  9. FPGA-based Klystron linearization implementations in scope of ILC

    SciTech Connect (OSTI)

    Omet, M.; Michizono, S.; Varghese, P.; Schlarb, H.; Branlard, J.; Cichalewski, W.

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successful implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.

  10. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA).

    SciTech Connect (OSTI)

    Leick, Michael T.; Moses, Ronald W.

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.

  11. When linear stability does not exclude nonlinear instability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.

    2015-05-29

    We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less

  12. Planning under uncertainty solving large-scale stochastic linear programs

    SciTech Connect (OSTI)

    Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  13. Permanent magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, Klaus (Berkeley, CA)

    1985-01-01

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  14. Permanent-magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, K.

    1982-09-20

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  15. SAR processing with non-linear FM chirp waveforms.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2006-12-01

    Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.

  16. Linear plasmoid instability of thin current sheets with shear flow

    SciTech Connect (OSTI)

    Ni Lei; Germaschewski, Kai; Huang Yimin; Sullivan, Brian P.; Yang Hongang; Bhattacharjee, Amitava

    2010-05-15

    This paper presents linear analytical and numerical studies of plasmoid instabilities in the presence of shear flow in high-Lundquist-number plasmas. Analysis demonstrates that the stability problem becomes essentially two dimensional as the stabilizing effects of shear flow become more prominent. Scaling results are presented for the two-dimensional instabilities. An approximate criterion is given for the critical aspect ratio of thin current sheets at which the plasmoid instability is triggered.

  17. New timing system for the Stanford Linear Collider

    SciTech Connect (OSTI)

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Ross, M.; Pierce, W.; Wilmunder, A.

    1984-11-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail.

  18. LINEAR SCANNING METHOD BASED ON THE SAFT COARRAY

    SciTech Connect (OSTI)

    Martin, C. J.; Martinez-Graullera, O.; Romero, D.; Ullate, L. G.; Higuti, R. T.

    2010-02-22

    This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples.

  19. Linear induction accelerator and pulse forming networks therefor

    DOE Patents [OSTI]

    Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  20. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect (OSTI)

    Mahajan, Salil; Evans, Katherine J.; Hack, James J.; Truesdale, John

    2013-04-19

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $ W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $ W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $W^{-1}m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $ PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.