Powered by Deep Web Technologies
Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Discovery Research in Magnetic Fusion Energy  

E-Print Network (OSTI)

magnetic tori? � Fundamental study � Confinement science, heating, sustainment, heat flux to boundariesDiscovery Research in Magnetic Fusion Energy or "How we learn about magnetic containment the shape of the magnetic field � What can we learn by changing magnetic topology? Examples... � Stellarator

Mauel, Michael E.

2

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

in Heavy Ion Fusion Science, Magnetic Fusion Energy, andin Heavy Ion Fusion Science, Magnetic Fusion Energy, and

Kwan, J.W.

2008-01-01T23:59:59.000Z

3

The Path to Magnetic Fusion Energy  

E-Print Network (OSTI)

1 The Path to Magnetic Fusion Energy: Crossing the Next Frontier Rob Goldston, Jon Menard with contributions from J. Brooks, R. Doerner, D. Gates, J. Harris, G.-Y. Fu, N. Gorelenkov, R. Kaita, S. Kaye, M. Kotschenreuther, G. Kramer, H. Kugel, R. Maingi, R. Majeski, C. Neumeyer, R. Nygren, M. Ono, D. Ruzic, S. Sabbagh

Princeton Plasma Physics Laboratory

4

Scientists discuss progress toward magnetic fusion energy at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in...

5

The Path to Magnetic Fusion Energy  

SciTech Connect

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL) [PPPL

2011-05-04T23:59:59.000Z

6

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets  

SciTech Connect

Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

Woolley, R.D.

1998-08-19T23:59:59.000Z

7

MMMMaaaaggggnnnneeeettttiiiicccc FFFFuuuussssiiiioooonnnn EEEEnnnneeeerrrrggggyyyy MAGNETIC FUSION ENERGY  

E-Print Network (OSTI)

· ENVIRONMENTAL ADVANTAGES - NO CARBON EMISSIONS - LOW RADIOACTIVITY · CAN'T BLOW UP, CAN'T MELT DOWN - , WIND, ETC. - MINIMAL LAND USE · Not subject to daily, seasonal or regional weather variation. - NO NEED FFFFuuuussssiiiioooonnnn EEEEnnnneeeerrrrggggyyyy Schematic of MFE Power Plant Raw Fuel WasteFuel p First Wall Magnet

8

Current state of magnetic-fusion energy research  

SciTech Connect

With the improved understanding of plasma physics, progress is being made on several approaches to magnetic confinement for controlled thermonuclear fusion.

Johnson, J.L.; Weimer, K.E.

1983-02-01T23:59:59.000Z

9

THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER  

E-Print Network (OSTI)

and component scale phenomena. FNST testing in fusion facilities prior to DEMO can be classified into three conducting magnets. 1. Introduction: Fusion has great potential to be a sustainable energy source. There are five pillar

Abdou, Mohamed

10

Beryllium pressure vessels for creep tests in magnetic fusion energy  

SciTech Connect

Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

Neef, W.S.

1990-07-20T23:59:59.000Z

11

Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets  

E-Print Network (OSTI)

for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum maintenance cost To put the capital cost issue into perspective, consider the following comparison, which incorporate niobium, a rare and expensive material compared to copper or aluminum. In addition to the direct

12

White Paper on Magnetic Fusion Energy Priorities by Paul M. Bellan, Professor of Applied Physics, Caltech  

E-Print Network (OSTI)

White Paper on Magnetic Fusion Energy Priorities by Paul M. Bellan, Professor of Applied Physics, Caltech It is important to make ITER work (surpass fusion breakeven) and it is equally important for ITER there will be problems with plasmawall interactions or materials. There are many possible types of problems or there may

13

Fusion energy  

SciTech Connect

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-02T23:59:59.000Z

14

Fusion energy  

ScienceCinema (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-23T23:59:59.000Z

15

Magnetic Fusion Energy Research: A Summary of Accomplishments  

DOE R&D Accomplishments (OSTI)

Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

1986-12-00T23:59:59.000Z

16

A Plan for the Deveiopment of Magnetic Fusion Energy  

E-Print Network (OSTI)

and to enable the US to benefitfromits commercialization. Executive Summary Fusionenergy should be a long, controlof plasma-wall interactions, tritium processing, developmentof low basisforfusion commercialization. 4. Constructa fusion power demonstrationfacility (DEMO)in the US,which would

17

Impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect

Sisolak et al. defined two methods for the approximation of pulsed irradiation: the steady-state (SS) and the equivalent steady-state (ESS) methods. Both methods have been shown to greatly simplify the process of calculating radionuclide inventories. However, they are not accurate when applied to magnetic fusion energy (MFF) and inertial fusion energy (IFE) experimental facilities. In the work reported here, an attempt has been made to evaluate the accuracy of the SS and ESS methods as they might be applied to typical MFE and IFE power plants. 18 refs., 6 figs.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

18

Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout  

Science Journals Connector (OSTI)

Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material in a declared facility and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper, we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

A. Glaser; R.J. Goldston

2012-01-01T23:59:59.000Z

19

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

19 8 Magnetic Fusion Energy Science (MFES) Case 2017 8 Magnetic Fusion Energy Science (MFES) Case and NERSC Senior Science Advisor Magnetic Fusion

Gerber, Richard

2014-01-01T23:59:59.000Z

20

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

General Plasma Science Magnetic Fusion Energy Magneticfor Fusion Energy Sciences Magnetic Fusion Plasma from the crosscutting science of magnetic reconnection and

Gerber, Richard

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Magnetically catalyzed fusion  

Science Journals Connector (OSTI)

We calculate the reaction cross sections for the fusion of hydrogen and deuterium in strong magnetic fields as are believed to exist in the atmospheres of neutron stars. We find that in the presence of a strong magnetic field (B?1012 G), the reaction rates are many orders of magnitude higher than in the unmagnetized case. The fusion of both protons and deuterons is important over a neutron stars lifetime for ultrastrong magnetic fields (B?1016 G). The enhancement may have dramatic effects on thermonuclear runaways and bursts on the surfaces of neutron stars. 1996 The American Physical Society.

Jeremy S. Heyl and Lars Hernquist

1996-11-01T23:59:59.000Z

22

Fusion Energy  

Science Journals Connector (OSTI)

Nuclear fusion was discovered in 1932, which is earlier ... than 400 fission power plants are operated to provide base load of electricity worldwide now. In contrast, nuclear fusion was used for a hydrogen bomb i...

Prof. Hiroshi Yamada

2012-01-01T23:59:59.000Z

23

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

Dart, Eli

2014-01-01T23:59:59.000Z

25

Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program  

SciTech Connect

This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

Siemon, R.E. (comp.)

1981-03-01T23:59:59.000Z

26

LiWall Fusion - The New Concept of Magnetic Fusion  

SciTech Connect

Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

L.E. Zakharov

2011-01-12T23:59:59.000Z

27

PROGRESS TOWARD UNDERSTANDING MAGNETIZED TARGET FUSION (MTF).  

SciTech Connect

Magnetized target fusion (MTF) takes advantage of (1) the reduction of the electron thermal conductivity in a plasma due to magnetization and (2) the efficient heating through bulk compression. MTF proposes to create a warm plasma with an embedded magnetic field and to compress it using an imploded liner or shell. The minimum energy required for fusion in an optimized target is directly proportional to the mass of the ignited fusion fuel. Simple theoretical arguments and parameter studies have demonstrated that MTF has the potential for significantly reducing the power and intensity of a target driver needed to achieve fusion. In order to acquire a comprehensive understanding of MTF and its potential applications it is prudent to develop more complete and reliable computational techniques. This paper briefly reviews the progress toward that goal.

Kirkpatrick, R. C. (Ronald C.); Lindemuth, I. R. (Irvin R.); Barnes, D. C. (Daniel C.); Faehl, R. J. (Rickey J.); Sheehey, P. T. (Peter T.); Knapp, C. E. (Charles E.)

2001-01-01T23:59:59.000Z

28

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

29

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

30

Fusion Energy Sciences Jobs  

Office of Science (SC) Website

Title: Administrative Support Specialist 15 DE SC HQ 013
Office: Fusion Energy Sciences
URL:

31

LA-UR-98-2413 Magnetized Target Fusion  

E-Print Network (OSTI)

to the Office of Fusion Energy Sciences May 19, 1998 PoP Program Leaders and Editors: K. F. Schoenberg and R. E, Massey University, New Zealand; R. D. Milroy, U. Washington; L. Green, Westinghouse Science APPENDIX A: Why Magnetized Target Fusion Offers A Low-Cost Development Path for Fusion Energy

32

Ion Rings for Magnetic Fusion  

SciTech Connect

This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

Greenly, John, B.

2005-07-31T23:59:59.000Z

33

The Physics of Magnetic Fusion Rectors  

Science Journals Connector (OSTI)

23 April 1981 research-article The Physics of Magnetic Fusion Rectors K. V. Roberts Once ignition has been achieved the...phases. Efficient methods are required for extracting the thermonuclear energy which is deposited as heat within the plasma, for...

1981-01-01T23:59:59.000Z

34

Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009  

SciTech Connect

Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

None

2009-06-08T23:59:59.000Z

35

Fusion Energy Sciences Program Mission  

E-Print Network (OSTI)

Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion power has the long-range potential to serve as an abundant and clean source of energy and recommends

36

Identification of future engineering-development needs of alternative concepts for magnetic-fusion energy  

SciTech Connect

A qualitative identification of future engineering needs of alternative fusion concepts (AFCs) is presented. These needs are assessed relative to the similar needs of the tokamak in order to emphasize differences in required technology with respect to the well documented mainline approach. Although nearly thirty AFCs can be identified as being associated with some level of reactor projection, redirection, refocusing, and general similarities can be used to generate a reduced AFC list that includes only the bumpy tori, stellarators, reversed-field pinches, and compact toroids. Furthermore, each AFC has the potential of operating as a conventional (low power density, superconducting magnets) or a compact, high-power-density (HPD) system. Hence, in order to make tractable an otherwise difficult task, the future engineering needs for the AFCs are addressed here for conventional versus compact approaches, with the latter being treated as a generic class and the former being composed of bumpy tori, stellarators, reversed-field pinches, and compact toroids.

Krakowski, R.A.

1982-01-01T23:59:59.000Z

37

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents (OSTI)

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, John M. (Del Mar, CA); Peuron, Unto A. (Solana Beach, CA)

1982-01-01T23:59:59.000Z

38

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents (OSTI)

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, J.M.; Peuron, A.U.

1980-07-01T23:59:59.000Z

39

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

the Office of Science started as the Magnetic Fusion EnergyRequirements and Science Process All U.S. magnetic fusionMagnetic Fusion Energy Program 11 MIT Plasma Science &

Dart, Eli

2008-01-01T23:59:59.000Z

40

ITER Fusion Energy  

ScienceCinema (OSTI)

ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

Dr. Norbert Holtkamp

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Magnetic confinement of fusion plasmas  

Science Journals Connector (OSTI)

Starting with the Lorentz force law the basic physics involved in magnetic confinement in thermonuclear reactors is reviewed. Among the topics covered are magnetic bottles tokamaks tandem mirrors and energy balance considerations.(AIP)

George Patrick Lasche

1981-01-01T23:59:59.000Z

42

The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect

Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [California Univ., Berkeley, CA (United States)

1996-06-26T23:59:59.000Z

43

An important challenge in magnetic fusion research is to obtain...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ways to reduce your tokamak heating bill: Gaining control of edge transport barriers on Alcator C-Mod A crucial challenge in magnetic fusion is to obtain high energy confinement in...

44

Magnetic Confinement Fusion Science Status and Challenges  

E-Print Network (OSTI)

Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005 #12;Two approaches to fusion Inertial confinement extremely dense, short-lived Magnetic ·Control plasma disruptions ·Develop new magnetic configurations ·Control the plasma-wall interaction

45

Transmission Line MTF: Magnetized Target Fusion  

E-Print Network (OSTI)

Transmission Line MTF: Magnetized Target Fusion Initial target: preheated & magnetized Subsequent for the FRC. Abstract Block Diagram theta coil transmission line Bias cap. bank maincapacitor inductor PI cap compression to fusion conditions Magnetic field of at least 5 T in a closed-field line topology Density ~ 1017

46

Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields  

SciTech Connect

An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

Thio, Francis Y.C.

2008-01-01T23:59:59.000Z

47

Development of tritium technology for the United States magnetic fusion energy program  

SciTech Connect

Tritium technology development for the DOE fusion program is taking place principally at three laboratories, Mound Facility, Argonne National Laboratory and the Los Alamos Scientific Laboratory. This paper will review the major aspects of each of the three programs and look at aspects of the tritium technology being developed at other laboratories within the United States. Facilities and experiments to be discussed include the Tritium Effluent Control Laboratory and the Tritium Storage and Delivery System for the Tokamak Fusion Test Reactor at Mound Facility; the Lithium Processing Test Loop and the solid breeder blanket studies at Argonne; and the Tritium Systems Test Assembly at Los Alamos.

Anderson, J.L.; Wilkes, W.R.

1980-01-01T23:59:59.000Z

48

Fusion-A Potential Power Source  

Science Journals Connector (OSTI)

Fusion-A Potential Power Source ... Nuclear energy, fusion reactions, magnetic confinement, and tokamaks. ...

Torkil H. Jensen

1994-01-01T23:59:59.000Z

49

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Division, and the Office of Fusion Energy Sciences. This isEnergy Sciences, DOE Office of Science Energy SciencesDepartment of Energy, Office of Science, Office of Advanced

Dart, Eli

2014-01-01T23:59:59.000Z

50

Compendium of computer codes for the researcher in magnetic fusion energy  

SciTech Connect

This is a compendium of computer codes, which are available to the fusion researcher. It is intended to be a document that permits a quick evaluation of the tools available to the experimenter who wants to both analyze his data, and compare the results of his analysis with the predictions of available theories. This document will be updated frequently to maintain its usefulness. I would appreciate receiving further information about codes not included here from anyone who has used them. The information required includes a brief description of the code (including any special features), a bibliography of the documentation available for the code and/or the underlying physics, a list of people to contact for help in running the code, instructions on how to access the code, and a description of the output from the code. Wherever possible, the code contacts should include people from each of the fusion facilities so that the novice can talk to someone ''down the hall'' when he first tries to use a code. I would also appreciate any comments about possible additions and improvements in the index. I encourage any additional criticism of this document. 137 refs.

Porter, G.D. (ed.)

1989-03-10T23:59:59.000Z

51

Magnetized Target Fusion Collaboration. Final report  

SciTech Connect

Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

John Slough

2012-04-18T23:59:59.000Z

52

Fast track to fusion energy  

Science Journals Connector (OSTI)

... Nuclear fusion powers our Sun, the stars and ... powers our Sun, the stars and thermonuclear weapons, so what's stopping it being used as an energy source? The answer ...

Michael H. Key

2001-08-23T23:59:59.000Z

53

An important challenge in magnetic fusion research is to obtain high energy confinement in a stationary plasma that will be co  

NLE Websites -- All DOE Office Websites (Extended Search)

Ways to reduce your tokamak heating bill: Gaining control of edge transport Ways to reduce your tokamak heating bill: Gaining control of edge transport barriers on Alcator C-Mod A crucial challenge in magnetic fusion is to obtain high energy confinement in a stationary plasma that is compatible with the engineering requirements of a fusion reactor. The triggering of edge transport barriers at the boundary of confined plasma is a common approach to obtaining high energy confinement, in a regime known as H-mode, which extrapolates to high performance in ITER and other burning plasma devices. However, barriers to energy transport can sometimes be self-defeating, since they also provide a strong barrier to particle transport. This can lead to enhanced confinement of impurities in the plasma core, excessive radiated power and deterioration of performance for a given

54

Driven Reconnection in Magnetic Fusion Experiments  

E-Print Network (OSTI)

.g. Reversed Field Pinches, Stellerators, etc.). #12;toroidal field coil toroidal magnetic field lines Figure 1.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can

Fitzpatrick, Richard

55

Magnetic Field Lines in Fusion Plasmas  

Science Journals Connector (OSTI)

Study of mappings as a part of Hamiltonian dynamics of magnetic field lines in plasmas were initiated by the research...1.... Actually, a fusion research in early sixties gave a huge impact on the development of ...

Sadrilla S. Abdullaev

2006-01-01T23:59:59.000Z

56

Magnet operating experience review for fusion applications  

SciTech Connect

This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

Cadwallader, L.C.

1991-11-01T23:59:59.000Z

57

Realization of Fusion Energy: An alternative fusion roadmap  

E-Print Network (OSTI)

Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

58

Path toward fusion energy  

SciTech Connect

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

59

Fusion Energy Research Presentation to  

E-Print Network (OSTI)

, other ICCs 14-MeV neutron source Base fusion power technologies Base Plasma Support technologies Decision point DEMO Volumetric neutron source Theory & Simulation ICC ETR DEMO #12;Advanced Computing, Bioremediation Fusion Energy CombustionMaterials #12;#12;Microwave Imaging Reflectometry Laboratory tests

60

Alternative approaches: concept improvements in magnetic fusion research  

Science Journals Connector (OSTI)

...providing a driver for inertial fusion. Keywords: stellarator...tricity generation using magnetic fusion. These are (a) pressing...e.g. the International Thermonuclear Experimen- tal Reactor (ITER...generation and/or for other fusion applications like testing prototype...

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inertial fusion energy studies in the UK  

E-Print Network (OSTI)

#12;The types of research - Fusion ·Absorption and partition of laser energy ­ effects of laserInertial fusion energy studies in the UK Dr Kate Lancaster #12;Inertial Confinement Fusion #12 burns because the alpha particles produced deposit more energy and make more fusion reactions happen

62

Compatibility of Physics and Engineering in Magnetic Fusion White Paper on Magnetic Fusion Priorities  

E-Print Network (OSTI)

the magnetic field lines within the plasma. In a fusion plasma, the last two of these are largely self magnetic fields, (2) the plasma pressure profile, and (3) the profile of the net current flowing along- determined, so the freedom of physics design is primarily in the externally produced magnetic field

63

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » October 2012 A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion Plasmas Recent experiments have confirmed the great potential of a novel plasma-material interface concept. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo

64

Damage production and accumulation in SiC structures in inertial and magnetic fusion systems  

E-Print Network (OSTI)

Damage production and accumulation in SiC structures in inertial and magnetic fusion systems M wall in an IFE system is $10% lower than in an MFE system, while gas production and burnup rates magnetic (MFE) and inertial (IFE) confinement fusion systems. Variations in the geometry, neutron energy

Ghoniem, Nasr M.

65

Amplifying Magnetic Fields in High Energy Density Plasmas | U...  

Office of Science (SC) Website

Amplifying Magnetic Fields in High Energy Density Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities...

66

Liquid Vortex Shielding for Fusion Energy Applications  

SciTech Connect

Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

2005-05-15T23:59:59.000Z

67

Superconducting magnets for toroidal fusion reactors  

SciTech Connect

Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb/sub 3/Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing.

Haubenreich, P.N.

1980-01-01T23:59:59.000Z

68

Fusion Electricity A roadmap to the realisation of fusion energy  

E-Print Network (OSTI)

Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

69

Laser Fusion Energy The High Average Power  

E-Print Network (OSTI)

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

70

Investigation into Fusion Feasibility of a Magnetized Target Fusion Reactor: A Preliminary Numerical Framework  

Science Journals Connector (OSTI)

The efforts to engineer devices to produces conditions suitable for nuclear fusion on earth have made significant leaps and ... improved technology and engineering methods. Magnetized target fusion, or magneto-in...

Michael Lindstrom; Sandra Barsky; Brian Wetton

2014-09-01T23:59:59.000Z

71

How low-energy fusion can occur  

E-Print Network (OSTI)

Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. The wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-11-03T23:59:59.000Z

72

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century  

E-Print Network (OSTI)

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos FerreiraInstituto SuperiorSuperior TTéécnicocnico,, LisboaLisboa, Portugal, Portugal 20th International Atomic Energy Agency, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy

73

EPRI Fusion Energy Assessment July 19, 2011  

E-Print Network (OSTI)

Building Blocks Come in Two Types Major Integration Facilities · Nuclear (e.g., ITER, Demo, Fusion NuclearEPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck Department of Engineering Physics University of Wisconsin-Madison #12;US MFE PROGRAM CAN MOVE TO A FUSION

74

Journal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report  

E-Print Network (OSTI)

.2. A Brief History of Heavy Ion Fusion The heavy ion fusion approach to inertial fusion energy (IFEJournal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report on Inertial Fusion Energy 1 Ronald Davidson,2 Barrett Ripin, Mohamed Abdou, David E. Baldwin

Abdou, Mohamed

75

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Network Research) C.S. Chang, PPPL (Fusion Simulations) EliGreenwald, MIT PSFC (Alcator C-Mod) Paul Henderson, PPPL (PPPL Networking) Steve Jardin, PPPL (Fusion Simulations)

Dart, Eli

2014-01-01T23:59:59.000Z

76

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

the worlds first reactor-scale fusion device in Cadarache,vital to fusion research, as the newest reactors are those

Dart, Eli

2014-01-01T23:59:59.000Z

77

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

mp288 Magnetic Fusion Energy Materials High Energy Densitymaterials science, experimental validation enabled by targeted validation platforms, and high energymaterials needed to support a burning plasma environment; Pursue scientific opportunities and grand challenges in high energy

Gerber, Richard

2012-01-01T23:59:59.000Z

78

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER  

E-Print Network (OSTI)

Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergyJJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges without green house gashouse gas #12;JJ, IAP Cambridge January 20103 3 D + T + He ++ n U235 n n Neutrons

79

Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

. Benefits Total world energy consumption has increased by more than 50% during the past 25 years, and given,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public LawScience/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile

80

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

1 and J. W. Kwan 2 Princeton Plasma Physics Laboratory, P.California 94720 and Princeton Plasma Physics Laboratory P.Department of Energy by Princeton Plasma Physics Laboratory

Kwan, J.W.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

plasmas for thermonuclear fusion. Because of the Thermonuclear Research (CTR) and the National Magnetic Fusion

Gerber, Richard

2014-01-01T23:59:59.000Z

82

Low radioactive and hybrid fusion A path to clean energy  

Science Journals Connector (OSTI)

Abstract Aneutronic/low radioactive fuel is the way to clean and cheap energy of the future. An alternative scheme using compact toroids field-reversed configuration or spheromak may be applied for the reactor based on any magnetic confinement system. Even more, any fusion concept, including hybrid magneto-inertial fusion might use advantages of D3He fuel. Advanced fuel, including helium-3 based fusion plasma and alternative systems are reviewed. Different schemes of reactors, near-term technology and non-electric applications are discussed.

Sergei V. Ryzhkov

2015-01-01T23:59:59.000Z

83

The physics of magnetic fusion reactors  

Science Journals Connector (OSTI)

During the past two decades there have been substantial advances in magnetic fusion research. On the experimental front, progress has been led by the mainline tokamaks, which have achieved reactor-level values of temperature and plasma pressure. Comparable progress, when allowance is made for their smaller programs, has been made in complementary configurations such as the stellarator, reversed-field pinch and field-reversed configuration. In this paper, the status of understanding of the physics of toroidal plasmas is reviewed. It is shown how the physics performance, constrained by technological and economic realities, determines the form of reference toroidal reactors. A comparative study of example reactors is not made, because the level of confidence in projections of their performance varies widely, reflecting the vastly different levels of support which each has received. Success with the tokamak has led to the initiation of the International Thermonuclear Experimental Reactor project. It is designed to produce 1500 MW of fusion power from a deuterium-tritium plasma for pulses of 1000 s or longer and to demonstrate the integration of the plasma and nuclear technologies needed for a demonstration reactor.

John Sheffield

1994-07-01T23:59:59.000Z

84

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion Plasmas Recent experiments have confirmed the great potential of a novel plasma-material interface concept. By U.S Department of Energy Office of Science October 31, 2012 Tweet Widget Facebook Like Google Plus One National Spherical Torus Experiment (Photo by Elle Starkman, Office of Communications, PPPL) National Spherical Torus Experiment The Science Heat escaping from the core of a twelve-million degree nuclear fusion plasma device was successfully contained by a snowflake-shaped magnetic field to mitigate its impact on device walls. The Impact One of the grand challenges of the magnetic fusion research is to "tame the plasma-material interface"-to develop an interface between the hot

85

Ch. 37, Inertial Fusion Energy Technology  

SciTech Connect

Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

Moses, E

2010-06-09T23:59:59.000Z

86

Fusion for Energy: A new European organization for the development of fusion energy  

Science Journals Connector (OSTI)

The European Joint Undertaking for ITER and the Development of Fusion Energy or (Fusion for Energy of F4E for short) is a new organisation that has been established with the main objective of providing Europe's contribution to the ITER International Organisation (IO) as its Domestic Agency. Fusion for Energy is also the Implementing Agency for the Broader Approach projects being carried out with Japan and, in the longer term, will prepare a programme for the construction of demonstration fusion reactors (DEMO). The threefold mission of Fusion for Energy is consistent with the fast track strategy for the realisation of fusion energy. This paper aims to provide an overview of the current status of Fusion for Energy and highlight some of the opportunities available for research organisations and industry to participate.

Didier Gambier

2009-01-01T23:59:59.000Z

87

Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement  

SciTech Connect

Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C. [and others

1996-12-31T23:59:59.000Z

88

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

SciTech Connect

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

89

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network (OSTI)

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R?LE DE L'?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

Najmabadi, Farrokh

90

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network (OSTI)

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R? LE DE L'?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

91

Fusion energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

energy energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Two PPPL-led teams win increased supercomputing time to study conditions

92

Views on inertial fusion energy development  

Science Journals Connector (OSTI)

A memorial lecture reviews the inertial fusion developments. The issues of the world energy consumption the atmospheric concentration of carbon dioxide and the necessity of an advanced nuclear fission technology are considered. A real world wide collaboration is very important for the inertial confinement fusion program. (AIP)

S. Nakai

1994-01-01T23:59:59.000Z

93

Fusion Energy Division annual progress report, period ending December 31, 1989  

SciTech Connect

The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1991-07-01T23:59:59.000Z

94

A Fusion Development Facility on the Critical Path to Fusion Energy  

SciTech Connect

A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

Chan, V. S. [General Atomics, San Diego; Stambaugh, R [General Atomics, San Diego

2011-01-01T23:59:59.000Z

95

A fusion development facility on the critical path to fusion energy  

SciTech Connect

A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

Chan, Dr. Vincent [General Atomics; Canik, John [ORNL; Peng, Yueng Kay Martin [ORNL

2011-01-01T23:59:59.000Z

96

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

program to achieve ignition, to provide laser facility timeIgnition Facility National Institute for Fusion Science National LaserIgnition Facility (NIF). In support of the OMEGA Laser

Dart, Eli

2014-01-01T23:59:59.000Z

97

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel  

E-Print Network (OSTI)

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

Abdou, Mohamed

98

Alternative pathways to fusion energy (focus on Department of Energy  

E-Print Network (OSTI)

Alternative pathways to fusion energy (focus on Department of Energy Innovative Confinement for a restructured fusion energy science program [5] 1996 | FESAC: Opportunities in Alternative Confinement Concepts, suggests program for Innovative Concepts [1] 1995 | OTA TPX and the Alternates [2] 1995 | PCAST (given flat

99

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

Lasche, G.P.

1987-02-20T23:59:59.000Z

100

An Acoustically Driven Magnetized Target Fusion Reactor  

Science Journals Connector (OSTI)

We propose a new compression system that offers many advantages. A near spherical vessel ?2m in diameter is filled with liquid lead-lithium alloy (PbLi). This liquid is under consideration for fusion reactor bla...

Michel Laberge

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fusion Energy Division annual progress report period ending December 31, 1986  

SciTech Connect

This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1987-10-01T23:59:59.000Z

102

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates  

E-Print Network (OSTI)

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates Stephanie in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T x-ray scattering is that the bending modulus KC is greatly reduced upon addition of the HIV fusion

Nagle, John F.

103

Road Map for a Modular Magnetic Fusion Program Dale M. Meade  

E-Print Network (OSTI)

1 Road Map for a Modular Magnetic Fusion Program Dale M. Meade Princeton Plasma Physics Laboratory Princeton University During the past several decades magnetic fusion has made outstanding progress in understanding the science of fusion plasmas, the achievement of actual fusion plasmas and the development of key

104

A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences  

E-Print Network (OSTI)

, while creating manageable waste and little risk to public safety and health. Making fusion energy a part control a burning plasma that shares the characteris- tic intensity and power of the sun? · How can we use capable of producing a self-sustain- ing fusion reaction, called a "burning plasma." It is the next

105

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy  

E-Print Network (OSTI)

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy and plasma science goals · Office of Science role regarding fusion energy: establish university engagement and leadership. Fusion materials science will be an increasing

106

Fusion Energy Division progress report, January 1, 1992--December 31, 1994  

SciTech Connect

The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

1995-09-01T23:59:59.000Z

107

Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy  

E-Print Network (OSTI)

fusion energy Ronald L. Miller Fusion Energy Research Program, Uni6ersity of California, San Diego, La Jolla, CA 92093-0417, USA Abstract Future economic competitiveness, coupled to and constrained market-penetration context and also influence the near-term funding climate for fusion R&D. With concept

California at San Diego, University of

108

Chapter 6 - The fusion - hydrogen energy system  

Science Journals Connector (OSTI)

Publisher Summary This chapter shows that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. It addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. The nations that implement the FusionHydrogen energy system will experience a powerful surge of growth as companies, new and old, compete to product the supporting equipment. The Fusionhydrogen energy system will provide the means for dramatically reducing all forms of soil, water, and air pollution resulting from the extraction and use of fossil fuels. Hydrogen fuel use will stop the addition of carbon dioxide to the atmosphere and the attendant warming of the earth. It will stop atmospheric pollution by materials responsible for acid rain. It will also provide a reliable energy source with an inconsequential potential for generation of new types of pollution. The hydrogen energy carrier can be easily transported throughout the world without damage to the environment. It provides a safe and highly reliable energy distribution system for use by all the sectors of the economy.

Laurence O. Williams

2002-01-01T23:59:59.000Z

109

Muon-Catalyzed Nuclear Fusion for Energy Production  

Science Journals Connector (OSTI)

The physics of muon-catalyzed fusion is summarized and discussed in the perspective of energy production.

S. Eliezer

1987-01-01T23:59:59.000Z

110

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

111

Low-energy fusion caused by an interference  

E-Print Network (OSTI)

Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-07-05T23:59:59.000Z

112

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network (OSTI)

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

113

COMMENTARIES ON CRITICISMS OF MAGNETIC FUSION  

E-Print Network (OSTI)

-level-radioactive waste for disposal by shallow land burial, or even for recycling. Projected costs of electricity from in magnetic confinement plasma physics research--the investigation of `burning' plasmas in which the vast by substantial technology R&D, has been developed for a tokamak experiment which would explore burning plasma

114

Implications of NSTX Lithium Results for Magnetic Fusion Research  

SciTech Connect

Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

2010-01-14T23:59:59.000Z

115

Study of internal magnetic field via polarimetry in fusion plasmas  

E-Print Network (OSTI)

Motivation Controlled thermonuclear fusion is a promising2007]. Controlled thermonuclear fusion is based on the

Zhang, Jie

2013-01-01T23:59:59.000Z

116

Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual  

E-Print Network (OSTI)

@sandia.gov) LTD Cavity Recyclable Transmission Line Hohlraum #12;2 Outline · Refurbished Z · Pulsed power fusion 82 kV #12;7 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z Ray Lemke Strip-line geometry: S ~ Strip Width + AK "equivalent" AK gap d(t) from 1-D simulatio

117

Failure modes and effects analysis of fusion magnet systems  

SciTech Connect

A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.

Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J

1988-12-01T23:59:59.000Z

118

Progress with developing a target for magnetized target fusion  

SciTech Connect

Magnetized Target Fusion (MTF) is an approach to fusion where a preheated and magnetized plasma is adiabatically compressed to fusion conditions. Successful MTF requires a suitable initial target plasma with an embedded magnetic field of at least 5 T in a closed-field-line topology, a density of roughly 10{sup 18} cm{sup {minus}3}, a temperature of at least 50 eV, and must be free of impurities which would raise radiation losses. Target plasma generation experiments are underway at Los Alamos National Laboratory using the Colt facility; a 0.25 MJ, 2--3 {micro}s rise-time capacitor bank. The goal of these experiments is to demonstrate plasma conditions meeting the minimum requirements for a MTF initial target plasma. In the first experiments, a Z-pinch is produced in a 2 cm radius by 2 cm high conducting wall using a static gas-fill of hydrogen or deuterium gas in the range of 0.5 to 2 torr. Thus far, the diagnostics include an array of 12 B-dot probes, framing camera, gated OMA visible spectrometer, time-resolved monochrometer, filtered silicon photodiodes, neutron yield, and plasma-density interferometer. These diagnostics show that a plasma is produced in the containment region that lasts roughly 10 to 20 {micro}s with a maximum plasma density exceeding 10{sup 18} cm{sup {minus}3}. The experimental design and data are presented.

Wysocki, F.J.; Chrien, R.E.; Idzorek, G.; Oona, H.; Whiteson, D.O.; Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

1997-09-01T23:59:59.000Z

119

A Magnetic Diagnostic Code for 3D Fusion Equilibria  

SciTech Connect

A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The codes is validated against a vacuum shot on the Large Helical Device where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the Large Helical Device (LHD).

Samuel Aaron Lazerson

2012-07-27T23:59:59.000Z

120

A Magnetic Diagnostic Code for 3D Fusion Equilibria  

SciTech Connect

A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD.

Samuel A. Lazerson, S. Sakakibara and Y. Suzuki

2013-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lithium As Plasma Facing Component for Magnetic Fusion Research  

SciTech Connect

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

122

U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Signs U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.21.06 U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction Print Text Size: A A A Subscribe FeedbackShare Page Large-Scale, Clean Fusion Energy Project to Begin Construction November 21, 2006 PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the

123

Laser Inertial Fusion Energy Control Systems  

SciTech Connect

A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

2011-03-18T23:59:59.000Z

124

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...in IFE attractive. inertial fusion energy|laser fusion|ignition (lasers)|thermonuclear gain|National Ignition Facility...inertial fusion energy; laser fusion; ignition (lasers); thermonuclear gain; National Ignition Facility...

1999-01-01T23:59:59.000Z

125

Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program  

E-Print Network (OSTI)

, Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

Abdou, Mohamed

126

Status of Research on Fusion Energy and Plasma Turbulence  

E-Print Network (OSTI)

1020 6 X 1030 R (m) ~ 108 1 10-4 E (sec) > 1013 2 10-10 Three Types of Fusion PowerThree TypesStatus of Research on Fusion Energy and Plasma Turbulence Candy, Waltz (General Atomics) Greg://www.cmpd.umd.edu & Plasma Microturbulence Project http://fusion.gat.com/theory/pmp (General Atomics, U. Maryland, LLNL, PPPL

Hammett, Greg

127

Applications of high-speed dust injection to magnetic fusion  

SciTech Connect

It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

2012-08-08T23:59:59.000Z

128

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Confinement Fusion Magnetic Confinement Fusion FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Fusion by Magnetic Confinement The image above is an artistic rendering of a tokamak, a donut-shaped magnetic vacuum chamber in which wispy vapors of fusion fuel are

129

Fusion Energy Greg Hammett & Russell Kulsred Princeton University  

NLE Websites -- All DOE Office Websites (Extended Search)

Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

130

International Atomic Energy Agency holds conference on fusion...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Google Plus One Share on Facebook Hutch Neilson, third from...

131

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Journals Connector (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

132

Study of internal magnetic field via polarimetry in fusion plasmas  

E-Print Network (OSTI)

to exploit in a fusion reactor on earth is the fusion of thethis process in a fusion reactor for power generationSince the cost of the fusion reactor increases with the

Zhang, Jie

2013-01-01T23:59:59.000Z

133

Congress and the Fusion Energy Sciences Program: A Historical Analysis  

Science Journals Connector (OSTI)

This report reviews and analyzes the 42-year history of congressional deliberations over funding of the magnetic fusion research and development (R&D) program. That analysis provides the basis for an assessment a...

Richard E. Rowberg

1999-03-01T23:59:59.000Z

134

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

Example of NIF fusion target hohlraum with multiple beamsimilar to those used on NIF. . . . . Overview of LFFHNES Nuclear Energy System NIF National Ignition Facility ODS

Kramer, Kevin James

2010-01-01T23:59:59.000Z

135

Magnetic-mirror principle as applied to fusion research  

SciTech Connect

A tutorial account is given of the key physics issues in the confinement of high temperature plasma in magnetic mirror systems. The role of adiabatic invariants and particle drifts and their relationship to equilibrium and stability are discussed, in the context of the various forms of mirror field geometry. Collisional effects and the development and the control of ambipolar potentials are reviewed. The topic of microinstabilities is discussed together with the means for their control. The properties and advantages for fusion power purposes of various special embodiments of the mirror idea, including tandem mirrors, are discussed.

Post, R.F.

1983-08-11T23:59:59.000Z

136

Bifurcation theory for the L-H transition in magnetically confined fusion plasmas  

SciTech Connect

The mathematical field of bifurcation theory is extended to be applicable to 1-dimensionally resolved systems of nonlinear partial differential equations, aimed at the determination of a certain specific bifurcation. This extension is needed to be able to properly analyze the bifurcations of the radial transport in magnetically confined fusion plasmas. This is of special interest when describing the transition from the low-energy-confinement state to the high-energy-confinement state of the radial transport in fusion plasmas (i.e., the L-H transition), because the nonlinear dynamical behavior during the transition corresponds to the dynamical behavior of a system containing such a specific bifurcation. This bifurcation determines how the three types (sharp, smooth, and oscillating) of observed L-H transitions are organized as function of all the parameters contained in the model.

Weymiens, W.; Blank, H. J. de; Hogeweij, G. M. D.; Valenca, J. C. de [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein (Netherlands)

2012-07-15T23:59:59.000Z

137

Magnetic Charge Lattices, Moduli Spaces and Fusion Rules  

E-Print Network (OSTI)

We analyze the set of magnetic charges carried by smooth BPS monopoles in Yang-Mills-Higgs theory with arbitrary gauge group G spontaneously broken to a subgroup H. The charges are restricted by a generalized Dirac quantization condition and by an inequality due to Murray. Geometrically, the set of allowed charges is a solid cone in the coroot lattice of G, which we call the Murray cone. We argue that magnetic charge sectors correspond to points in the Murray cone divided by the Weyl group of H; hence magnetic charge sectors are labelled by dominant integral weights of the dual group H*. We define generators of the Murray cone modulo Weyl group, and interpret the monopoles in the associated magnetic charge sectors as basic; monopoles in sectors with decomposable charges are interpreted as composite configurations. This interpretation is supported by the dimensionality of the moduli spaces associated to the magnetic charges and by classical fusion properties for smooth monopoles in particular cases. Throughout the paper we compare our findings with corresponding results for singular monopoles recently obtained by Kapustin and Witten.

L. Kampmeijer; J. K. Slingerland; B. J. Schroers; F. A. Bais

2008-03-24T23:59:59.000Z

138

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

139

PLASMA-PHYSICS-21 Heavy ion driven reactor-size double shell inertial fusion targets*  

E-Print Network (OSTI)

Inertial Confinement Fusion (ICF) is considered as an alternative to Magnetic Confinement Fusion to achieve controlled thermonuclear fusion. The main goal is to exploit the energy released from thermonuclear fusion reactions

M. C. Serna Moreno; N. A. Tahir; J. J. Lpez Cela; A. R. Piriz; D. H. H. Hoffmann

140

Fusion Energy: Visions of the Future  

E-Print Network (OSTI)

worldwide · X-ray/neutron applications · US teams at KSU, NSTec 2009: LPP Focus Fusion-1 lab begins

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fusion Energy Division annual progress report period ending December 31, 1983  

SciTech Connect

The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

Not Available

1984-09-01T23:59:59.000Z

142

Fusion Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Fusion Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fusion Energy Bookmark and Share Since 1995, Argonne has had primary responsibility for the development of new design rules regarding various components in a fusion reactor, particularly those subject to irradiation embrittlement. During 1998, Argonne issued the final draft of the structural design criteria for in-vessel components in the International Thermonuclear Reactor (ITER).

143

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH  

E-Print Network (OSTI)

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH RESTORE FUNDING FOR THE DOMESTIC FUSION PROGRAM AND MAINTAIN OUR COMMITMENT TO ITER the goals of the U.S. fusion program. To realize the promise of participation in ITER, cultivate future

144

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion  

Science Journals Connector (OSTI)

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.?A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10T axial magnetic field is heated by Z beamlet, a 2.5kJ, 1TW laser, and magnetically imploded by a 19MA, 100ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70??km/s, the fuel reaches a stagnation temperature of approximately 3keV, with Te?Ti, and produces up to 21012 thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120???m over a 6mm height and lasting approximately 2ns. Greater than 1010 secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2??mg/cm2.

M.?R. Gomez et al.

2014-10-06T23:59:59.000Z

145

Vintage DOE: What is Fusion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vintage DOE: What is Fusion Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs As our team works to build our new website and new content features over the coming months, we're also reviewing the Department's video archives. In the below piece, a narrator ask people on the street "what is fusion?" and then, around the 2-minute mark, kicks off a nice introduction to fusion science. It's worth a watch if you could use a brush up on the basic science, or if you'd just enjoy a reminder of what Americans were wearing a couple decades ago. With much research and development, scientists at the Department of Energy have done a great deal to advance our knowledge of fusion since the time

146

LIFE: The Case for Early Commercialization of Fusion Energy  

SciTech Connect

This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

Anklam, T; Simon, A J; Powers, S; Meier, W R

2010-11-30T23:59:59.000Z

147

TORE SUPRA : Physics, Technology and ...Strategy - Andre GROSMAN - Deputy Head of Magnetic Fusion Research Institute (CEA/DSM/IRFM)  

E-Print Network (OSTI)

TORE SUPRA : Physics, Technology and ...Strategy - Andre GROSMAN - Deputy Head of Magnetic Fusion Research Institute (CEA/DSM/IRFM)

CERN. Geneva

2011-01-01T23:59:59.000Z

148

World population and energy demand growth: the potential role of fusion energy in an efficient world  

Science Journals Connector (OSTI)

...growth: the potential role of fusion energy in an efficient world...fossil-replacement value in 2050. Fusion energy can, then, have a role...2) the deployment of all types of energy source to meet the...nuclear power, both fission and fusion, can play a very important...

1999-01-01T23:59:59.000Z

149

The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas  

SciTech Connect

Rayleigh-Taylor (RT) instabilities at interfaces of disparate mass densities have long been known to generate magnetic fields during inertial confinement fusion implosions. An externally applied magnetic field can also be efficiently amplified by RT instabilities. The focus here is on magnetic field generation and amplification at the gas-ice interface which is RT unstable during the deceleration phase of the implosion. RT instabilities lead to undesirable mix of hot and cold plasmas which enhances thermal energy loss and tends to produce a more massive warm-spot instead of a hot-spot. Two mechanisms are shown here to mitigate the thermal energy loss from the hot-spot. The first mechanism is the reduction of electron thermal conductivity with interface-aligned magnetic fields. This can occur through self-generated magnetic fields via the Biermann battery effect as well as through externally applied magnetic fields that undergo an exponential growth via the stretch-and-fold magnetohydrodynamic dynamo. Self-generated magnetic fields during RT evolution can result in a factor of 2?10 decrease in the electron thermal conductivity at the gas-ice interface, while externally applied magnetic fields that are compressed to 61000 T at the onset of deceleration (corresponding to pre-implosion external fields of 0.0610 T) could result in a factor of 2500 reduction in electron thermal conductivity at the gas-ice interface. The second mechanism to mitigate thermal energy loss from the hot-spot is to decrease the interface mixing area between the hot and cold plasmas. This is achieved through large external magnetic fields of 1000 T at the onset of deceleration which damp short-wavelength RT modes and long-wavelength Kelvin-Helmholtz modes thus significantly slowing the RT growth and reducing mix.

Srinivasan, Bhuvana; Tang, Xian-Zhu [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-05-15T23:59:59.000Z

150

Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat  

E-Print Network (OSTI)

Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have is well advanced through the International Thermonuclear Experimental Reactor (ITER) programme, which has

151

Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas  

SciTech Connect

Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

B.C. Stratton, M. Bitter, K.W. Hill, D.L. Hillis, and J.T. Hogan

2007-07-18T23:59:59.000Z

152

Component framework for coupled integrated fusion plasma simulation  

Science Journals Connector (OSTI)

Successful simulation of the complex physics that affect magnetically confined fusion plasma remains an important target milestone towards the development of viable fusion energy. Major advances in the underlying physics formulations, mathematical modeling, ... Keywords: components, coupled simulation, framework, fusion

Wael R. Elwasif; David E. Bernholdt; Lee A. Berry; Donald B. Batchelor

2007-10-01T23:59:59.000Z

153

Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures  

E-Print Network (OSTI)

Fusion energy · Fusion powers the Sun, and all stars, in which light nuclei fuse together at high in excess of 100 million degrees, much higher than in the Sun. The hot hydrogen gas (known as a `plasma

154

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

155

HOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items  

E-Print Network (OSTI)

the domestic fusion energy sciences program. Given the tremendous potential of fusion energy to provide a longHOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items of a Continuing Resolution this year. ____________________________ "FUSION ENERGY SCIENCES The Committee

156

Laser fusion experiment yields record energy at NIF | National Nuclear  

National Nuclear Security Administration (NNSA)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

157

Critical Science Issues for Direct Drive Inertial Fusion Energy  

Science Journals Connector (OSTI)

There are several topics that require resolution prior to the construction of an Inertial Fusion Energy [IFE] laboratory Engineering Test Facility [ETF ... driver; a practical target injection system that provides

Jill P. Dahlburg; John H. Gardner; Andrew J. Schmitt

1998-09-01T23:59:59.000Z

158

Laser fusion experiment yields record energy at NIF | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

159

US ITER - Why Fusion?  

NLE Websites -- All DOE Office Websites (Extended Search)

US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility...

160

Evidence for a new path to the self-sustainment of thermonuclear fusion in magnetically confined plasmas  

Science Journals Connector (OSTI)

In this work we provide the first explanation for observations made in 1997 on the Joint European Torus of unexpected ion heating with fusion-born alpha particles occurring over time scales much shorter than those theoretically foreseen. We demonstrate that non-thermal alpha particles above a critical concentration stabilize ion-drift-wave turbulence, therefore significantly reducing one of the main energy loss channels for thermal ions. As such ion heating occurs over times scales much shorter than those classically predicted, this mechanism opens new prospects on additional paths for the self-sustainment of thermonuclear fusion reactions in magnetically confined plasmas.

D. Testa; M. Albergante

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

162

Atomic Collision Processes in Magnetic Confinement Controlled Thermonuclear Fusion Research  

Science Journals Connector (OSTI)

This NATO Advanced Study Institute is concerned with atomic and molecular processes in controlled thermonuclear fusion research. Most of our attention will be ... and planned tokamaks, since this approach to fusion

M. R. C. McDowell

1980-01-01T23:59:59.000Z

163

Fusion Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

FES User Facilities FES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences program supports the operation of the following national scientific user facilities: DIII-D Tokamak Facility: External link DIII-D, located at General Atomics in San Diego, California, is the largest magnetic fusion facility in the U.S. and is operated as a DOE national user facility. DIII-D has been a major contributor to the world fusion program

164

Accelerator Fusion Research Division 1991 summary of activities  

SciTech Connect

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

165

Accelerator & Fusion Research Division 1991 summary of activities  

SciTech Connect

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

166

Accelerator and fusion research division. 1992 Summary of activities  

SciTech Connect

This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

Not Available

1992-12-01T23:59:59.000Z

167

Plasma-materials interactions and impurity control in magnetically confined thermonuclear fusion machines  

Science Journals Connector (OSTI)

Progress achieved in plasma heating and magnetic confinement during the past decade has brought to the fore a number of problems which have to be solved if controlled thermonuclear fusion is to become an economic...

Dieter M. Gruen; Stanislav Vep?ek; Randy B. Wright

1980-01-01T23:59:59.000Z

168

Mechanical Strength, Swelling and Weight Loss of Inorganic Fusion Magnet Insulation Systems Following Reactor Irradiation  

Science Journals Connector (OSTI)

Superconducting fusion magnets require a high electrical and mechanical ... were irradiated at ambient temperature in the TRIGA reactor (Vienna, Austria) up to neutron fluences...21, 1022 and 5x1022 m?2...(E>0.1 ...

K. Humer; P. Rosenkranz; H. W. Weber

2000-01-01T23:59:59.000Z

169

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

damage in fusion reactors is tritium retention. a reliable fusion energy reactor, small-?scale reactor components and ultimately the development of high-? performance, radiation resistant materials for advanced nuclear fission and fusion

Gerber, Richard

2014-01-01T23:59:59.000Z

170

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving Fusion Conditions Achieving Fusion Conditions CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Achieving Fusion Conditions EXPERIMENTAL RESULTS IN FUSION RESEARCH Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, and energy confinement

171

Nuclear processes in magnetic fusion reactors with polarized fuel  

E-Print Network (OSTI)

We consider the processes $d +d \\to n +{^3He}$, $d +{^3He} \\to p +{^4He}$, $d +{^3H} \\to n +{^4He}$, ${^3He} +{^3He}\\to p+p +{^4He}$, ${^3H} +{^3He}\\to d +{^4He}$, with particular attention for applications in fusion reactors. After a model independent parametrization of the spin structure of the matrix elements for these processes at thermal colliding energies, in terms of partial amplitudes, we study polarization phenomena in the framework of a formalism of helicity amplitudes. The strong angular dependence of the final nuclei and of the polarization observables on the polarizations of the fuel components can be helpful in the design of the reactor shielding, blanket arrangement etc..We analyze also the angular dependence of the neutron polarization for the processes $\\vec d +\\vec d \\to n +{^3He}$ and $\\vec d +\\vec {^3H} \\to n +{^4He}$.

Michail P. Rekalo; Egle Tomasi-Gustafsson

2000-10-16T23:59:59.000Z

172

Fusion dynamics of symmetric systems near barrier energies  

E-Print Network (OSTI)

The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

Zhao-Qing Feng; Gen-Ming Jin

2009-09-06T23:59:59.000Z

173

U.S. Signs International Fusion Energy Agreement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs International Fusion Energy Agreement Signs International Fusion Energy Agreement U.S. Signs International Fusion Energy Agreement November 21, 2006 - 9:25am Addthis Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the Republic of Korea and the Russian Federation to sign an agreement to build the international fusion energy project known as ITER. "The energy that powers the stars is moving closer to becoming a new source of energy for the Earth through the technology represented by ITER," U.S. Secretary of Energy Samuel W. Bodman said. "The ITER Members represent over

174

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020 (12pp) doi:10.1088/0029-5515/49/9/095020  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020, which assumes the anisotropic energetic particle distribution function accelerated by ICRH as input

Zonca, Fulvio

175

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13511356 PII: S0029-5515(02)54166-1  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion input of converging driver beams. Requirements and key issues related to target injection and tracking

Najmabadi, Farrokh

176

Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for  

E-Print Network (OSTI)

plant design · Delivery soon enough to make a difference to global energy imperatives. · Design basedTimely Delivery of Laser Inertial Fusion Energy Presentation prepared for Town Hall meeting must directly address the end-user requirement for commercial power 3 Plant Primary Criteria (partial

177

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

178

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 412418 doi:10.1088/0029-5515/46/4/002  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion to reach high values of Q (the ratio between fusion power and input power) can be carried out in existing

Zonca, Fulvio

179

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) S254S265 PII: S0029-5515(04)88685-X  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion is a target that has been compressed and heated to fusion conditions by the energy input of the driver been compressed and heated to fusion conditions by the energy input of the driver beams. A target

Tillack, Mark

180

Fusion scientists gear up to learn how to harness plasma energy | Princeton  

NLE Websites -- All DOE Office Websites (Extended Search)

Living on the edge Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 30, 2011 Tweet Widget Facebook Like Google Plus One Researchers working on an advanced experimental fusion machine are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National Spherical Torus Experiment (NSTX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have mapped out a list of experiments to start in July and run for eight months. The experimental machine is designed to deepen understanding of how plasmas can be mined for energy. A major topic of investigation by scientists for the coming round of

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Kilotesla Magnetic Assisted Fast Laser Ignited Boron-11 Hydrogen Fusion with Nonlinear Force Driven Ultrahigh Accelerated Plasma Blocks  

Science Journals Connector (OSTI)

Nuclear fusion with confinement by available kilotesla magnetic fields ... combination of this approach with the established ultrahigh laser acceleration of plasma blocks driven by nonlinear (ponderomotive) forc...

P. Lalousis; S. Moustaizis; H. Hora; G. H. Miley

2014-09-01T23:59:59.000Z

182

Status of the US program in magneto-inertial fusion  

Science Journals Connector (OSTI)

A status report of the current U.S. program in magneto-inertial fusion (MIF) conducted by the Office of Fusion Energy Sciences (OFES) of the U.S. Department of Energy is given. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. The program is part of the OFES program in high energy density laboratory plasmas (HED-LP).

Y C F Thio

2008-01-01T23:59:59.000Z

183

Magnetic mirror fusion-fission early history and applicability to other systems  

SciTech Connect

In the mid 1970s to mid 1980s the mirror program was stuck with a concept, the Standard Mirror that was Q {approx} 1 where Q=P{sub fusion}/P{sub injection}. Heroic efforts were put into hybridizing thinking added energy and fuel sales would make a commercial product. At the same time the tokamak was thought to allow ignition and ultrahigh Q values of 20 or even higher. There was an effort to use neutral beams to drive the tokamak just like the mirror machines were driven in which case the Q value plunged to a few, however this was thought to be achievable decades earlier than the high Q versions. Meanwhile current drive and other features of the tokamak have seen the projected Q values come down to the range of 10. Meanwhile the mirror program got Q enhancement into high gear and various tandem mirrors projected Q values up towards 10 and with advanced features over 10 with axi-symmetric magnets (See R. F. Post papers), however the experimental program is all but non-existent. Meanwhile, the gas dynamic trap mirror system which is present day state-of-the-art can with low risk produce Q of {approx}0.1 useful for a low risk, low cost neutron source for materials development useful for the development of materials for all fusion concepts (see Simonen white paper: 'A Physics-Based Strategy to Develop a Mirror Fusion-Fission Hybrid' and D.D. Ryutov, 'Axisymmetric MHD-stable mirror as a neutron source and a driver for a fusion-fission hybrid'). Many early hybrid designs with multi-disciplinary teams were carried out in great detail for the mirror system with its axi-symmetric blanket modules. It is recognized that most of these designs are adaptable to tokamak or inertial fusion geometry. When Q is low (1 to 2) economics gives a large economic penalty for high recirculating power. These early studies covered the three design types: Power production, fuel production and waste burning. All three had their place but power production fell away because every study showed fusion machines that were extensively studied by multidisciplinary teams came up with power costs much higher than for existing fission plants except in very large sizes (3 GWe). There was lots of work on waste burning - Ted Parrish - comes to mind. However, fuel production along with power production became nearly everyone's goals. First, fast-fission blankets were favored but later to enhance safety, fission-suppressed blankets came into vogue. Both fuel producing and waste burning hybrid studies were terminated with the advent of accidents, high interest rates, rising 'green like' movement and cheap natural gas for power production. For waste burning and fast-fission fuel producing designs, the blanket energy multiplication was about 10 and economics was OK relative to recirculating power for Q over 2. For fission-suppressed fuel producers, where the blanket multiplication is under 2, the Q needed was over 5. In the mirror program we came at this problem by trying to find a product for mirror fusion technology. We hoped we had a product and studied and promoted it. There was no market pull and when the mirror program collapsed in the US, so did both hybrid programs for mirrors and tokamaks and IFE by the mid 1980s. Today, the problem of what to do with wastes that were supposed to be accepted by the government appears to be a high value market pull. It remains to be shown if fusion neutrons can be generated at low enough cost so that economics will not be a showstopper. For burning only the minor actinides, the economics will be the most favorable. Burning the Pu as well will lower the number of fission reactors supported by each burner fusion machine and hurt economics of the system. The fuel-producing role of fusion to fuel fission reactors remains an important possible use of fusion especially in the early stages of fusion development. It is not clear that burning fission wastes in a fusion machine is more appropriate than burning these wastes in specially designed fission machines. Fusion can produce U-233 along with over 2.4%U-232 making the material large

Moir, R

2009-08-24T23:59:59.000Z

184

DOE-STD-6002-96; DOE Standard Safety of Magnetic Fusion Facilities: Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6002-96 6002-96 May 1996 DOE STANDARD SAFETY OF MAGNETIC FUSION FACILITIES: REQUIREMENTS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE96009495 DOE-STD-6002-96 iii TABLE OF CONTENTS Page FOREWORD....................................................................................................................... v

185

Fusion: A necessary component of US energy policy  

SciTech Connect

US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs.

Correll, D.L. Jr.

1989-01-11T23:59:59.000Z

186

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

187

EXCITING OPPORTUNITIES TO ADVANCE FUSION ENERGY  

E-Print Network (OSTI)

Concepts Spheromak Reversed- Field Pinch Spherical Torus Tokamak Stellarator Self- Organized External Stellarator RFP FRC Spheromak Other Magnetic T E C H N O L O G I E S EC: D. Barnes #12;MFEWG Snowmass 99

188

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

Fusion Energy Sciences: Target 2017 4 Meeting Background and Structure In support of its mission to provide

Gerber, Richard

2014-01-01T23:59:59.000Z

189

Solar Energy without Neutrinos: Fusion Catalysis by Quarks  

Science Journals Connector (OSTI)

... some features of fusion catalysis by quarks and the consequences relating to release of stellar energy. In particular, the recent non-observation8 of ... . In particular, the recent non-observation8 of solar neutrinos which rules out9-12 the carbon cycle as the main mechanism for ...

L. MARSHALL LIBBY; F. J. THOMAS

1969-06-28T23:59:59.000Z

190

Fusion Energy An Industry-Led Initiative  

E-Print Network (OSTI)

- Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

191

Fiscal Year 1985 Department of Energy Authorization: magnetic fusion energy. Volume V. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, Second Session, February 23, 29, 1984  

SciTech Connect

Volume V of the hearing record covers two days of testimony on the fusion energy program, with a focus on the Tokamak fusion core experiment (TFCX) and the need for the US to retain leadership in the field. DOE Research Director Trivelpiece reviewed the program on the first day. Progress reports from research laboratories and associated industries supported the request for additional funding for the TFCX. The threat of funding cuts due to the federal deficit was a major point of concern, while the potential for industrial participation was seen as a positive development. Two appendices with additional statements and responses to questions follow the testimony of 13 witnesses.

Not Available

1984-01-01T23:59:59.000Z

192

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

provide more guidance and support. Large Scale Computing and Storage Requirements for Fusion Energy provide much-needed additional resources there remains a need to employ codes Large Scale Computing and Storage Requirements for Fusion Energy provide large gains with little application porting effort. Large Scale Computing and Storage Requirements for Fusion Energy

Gerber, Richard

2012-01-01T23:59:59.000Z

193

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program  

E-Print Network (OSTI)

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program Stephen O. Dean for an expanded effort on the development of inertial fusion as an energy source is dis- cussed. It is argued that there should be a two-pronged, complementary approach to fusion energy development over the next two to three

194

Journal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion  

E-Print Network (OSTI)

Office of Fusion Energy (OFE). One might take as a reasonable assumption that first generation fusionJournal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion Technology Research energy program. Based on the new program plan, the parameters are a broad scientific and technology

Abdou, Mohamed

195

The Fusion Energy Program: The Role of TPX and Alternate Concepts  

E-Print Network (OSTI)

The Fusion Energy Program: The Role of TPX and Alternate Concepts February 1995 OTA-BP-ETI-141 GPO, The Fusion Energy Program: The Role of TPX and Alternate Concepts, OTA-BP-ETI-141 (Washington, DC: U of alternate concept research as conducted in the U.S. fusion energy program. While the focus of the study

196

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

197

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

198

FED-R: a fusion engineering device utilizing resistive magnets  

SciTech Connect

The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

Jassby, D.L.; Kalsi, S.S. (eds.)

1983-04-01T23:59:59.000Z

199

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

200

THE NATIONAL FUSION COLLABORATORY PROJECT: APPLYING GRID TECHNOLOGY FOR MAGNETIC FUSION RESEARCH  

E-Print Network (OSTI)

of advanced software tools that reduce technical barriers to collaboration and sharing on a national scale. Our vision is to make resources -- data, computers along with analysis, simulation and visualization-institutional collaboration on fusion experiments, and improving comparisons between experiments and theory. The project

Thompson, Mary R.

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Magnetized Target Fusion (MTF) (a.k.a. Magneto-Inertial Fusion)  

E-Print Network (OSTI)

.g., Atlas $50M). The low cost and size of experimental facilities should significantly reduce fusion TEMPERATURE (eV) IONDENSITY(/cm)3 1016 1014 1018 1020 1022 1024 1026 103 104 105 Facility Cost($) = 1 TEMPERATURE (eV) 104 105 Facility Cost($) B=5 MG Operation at an intermediate density leads to reduced

202

Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth  

E-Print Network (OSTI)

Driver Laser h=5-10% Heavy ion Accelerator h=15-40% Z-pinch h~15% Ignition by stagnation of convergent good progress toward achieving fusion ignition and high gain for energy applications We are making good progress toward achievingWe are making good progress toward achieving fusion ignition and high gain

203

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

204

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Sun Our Sun FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Sun Runs on Fusion Energy How the sun looks through x-ray eyes! Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of Earth

205

COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY  

SciTech Connect

A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE.

GOODIN,D.T; NOBILE,A; SCHROEN,D.G; MAXWELL,J.L; RICKMAN,W.S

2004-03-01T23:59:59.000Z

206

Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion  

SciTech Connect

A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

2012-08-16T23:59:59.000Z

207

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Answers to Frequently Asked Questions about Fusion Research An updated, searchable Fusion FAQ is being prepared. In the meantime, the incomplete public-domain Fusion FAQ from 1994-1995 is still available

208

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 Nuclear Fusion Institute, RRC 'Kurchatov Institute', Moscow, Russia Received 8 June 2009, accepted, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues

209

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy  

E-Print Network (OSTI)

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy Applications: from the "Very Cold, CA January 25, 2008 #12;January 25, 2008/ARR 2 Unique Set of Conditions Associated with Fusion · Realization of fusion energy imposes considerable challenges in the areas of engineering, physics and material

Raffray, A. René

210

Multi-University Research to Advance Discovery Fusion Energy Science using a  

E-Print Network (OSTI)

Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

211

Peak Oil and Fusion Energy Development  

Science Journals Connector (OSTI)

If industrial civilization does not figure out how to survive and thrive without cheap fossil energy, then technological civilization will be a short blip in the history of our species. A child born in 1990, if s...

Chang Shuk Kim

2008-01-01T23:59:59.000Z

212

The roadmap to magnetic confinement fusion Cutaway of the ITER tokamak. ( ITER)  

E-Print Network (OSTI)

The roadmap to magnetic confinement fusion Cutaway of the ITER tokamak. (© ITER) There are two ways "tokamak" configuration invented by Tamm and Sakharov in 1950 and declassified in 1957 [1] . Over 198 tokamaks have been built [2] . Four large tokamak projects were built in the 1980s. Two of these

Hampshire, Damian

213

Prospects of High Temperature Superconductors for fusion magnets and power applications  

Science Journals Connector (OSTI)

Abstract During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb3Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed.

Walter H. Fietz; Christian Barth; Sandra Drotziger; Wilfried Goldacker; Reinhard Heller; Sonja I. Schlachter; Klaus-Peter Weiss

2013-01-01T23:59:59.000Z

214

Alternative conceptual design of a magnet support structure for plasma fusion devices of stellarator type  

Science Journals Connector (OSTI)

Engineering design of magnet coil support structures for plasma fusion devices of the stellarator type are at present an important task in stellarator hardware R&D activities. In particular this is one of the basic core components in developing the stellarator's line in view of a robust and reliable fusion reactor. Based on long time experience in design and structural analyses of stellarator magnet systems and their support structure, the authors are proposing in this paper an alternative conceptual design for the magnet support structure. This paper describes the basic assumptions that a conceptual design of a magnet support structure has to fulfil. In this context, essential experiences gathered during manufacturing and assembly of the magnet support structure for a current stellarator fusion device engineered at Max Planck Institute for Plasma Physics are taken into account. The concept provides flexibility in matters of readjustment and positional optimization of the magnet coils during the assembly phase and potentially during the operation. The flexibility during the assembly phase allows a simplification of technical requirements and performance criteria which may result in a reduction of costs and improved reliability of a stellarator based power device.

Nikola Jaksic; Boris Mendelevitch; Jrg Tretter

2011-01-01T23:59:59.000Z

215

Free energies in magnetic fields  

Science Journals Connector (OSTI)

The partition function is calculated exactly at low temperatures and dimensionality one in the presence of a magnetic field for ferromagnetic systems of n-component unit vectors with nearest-neighbor interactions. For n=2 the free energy is proportional to the lowest eigenvalue of Mathieu's equation. Asymptotic solutions for n=3 are also given.

Jorge V. Jos

1976-09-01T23:59:59.000Z

216

Energy of magnetic moment of superconducting current in magnetic field  

E-Print Network (OSTI)

The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment.

V. L. Gurtovoi; A. V. Nikulov

2014-12-22T23:59:59.000Z

217

Finding Fusion  

Science Journals Connector (OSTI)

Finding Fusion ... Study of these reactions will advance understanding of the workings of stars and giant planets, fusion energy, and nuclear weapon stockpiles. ...

JYLLIAN KEMSLEY

2012-09-10T23:59:59.000Z

218

Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics  

SciTech Connect

The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

Stelmack, Larry

2003-11-17T23:59:59.000Z

219

Designing Radiation Resistance in Materials for Fusion Energy  

SciTech Connect

Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

2014-01-01T23:59:59.000Z

220

Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programs » FES Home Programs » FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Fusion Energy Sciences Plasma science forms the basis for research that is needed to establish our ability to harness the power of the stars in order to generate fusion energy on earth. The research required for fusion energy's success is intimately tied to rich scientific questions about some of nature's most extreme environments, inside and outside of stars, and has practical

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet...

222

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 Introduction to Panel Discussions  

E-Print Network (OSTI)

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 -- Introduction to Panel Discussions Whither Fusion Research? Robert L. Hirsch' . An unnamed former fusion program director retired and felt he needed some friend appeared before the major monk for his annual two words, which were, " Room cold." The monk nodded

223

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13821392 PII: S0029-5515(02)55646-5  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion of alpha parameters, along with the qMHD profiles and MHD equilibria are being used as inputs to codes

Budny, Robert

224

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 075024 (10pp) doi:10.1088/0029-5515/49/7/075024  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 075024 from classical NB deposition as input give rise to strong EPM activity, resulting in relaxed EP radial

Zonca, Fulvio

225

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 10911100 PII: S0029-5515(03)67571-X  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion at low values of B. The RMF drive sustains particles as well as flux, and resistive input powers can

Washington at Seattle, University of

226

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 (3pp) doi:10.1088/0029-5515/53/4/042001  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 this analysis. Plasma shot probe etc data input to WBC includes exposure times, and per canonical shot Te, Ne

Harilal, S. S.

227

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) L1L4 PII: S0029-5515(04)72941-5  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion­2 MHz) (the uncertainty is due to the error bar of the kinetic input profiles). This result has been

Vlad, Gregorio

228

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) 15881597 doi:10.1088/0029-5515/47/11/022  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) 1588 of the LH power input. These results are directly relevant to the investigation of trapped alpha particle

Zonca, Fulvio

229

Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion  

E-Print Network (OSTI)

100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

Heiz, Ulrich

230

Dynamics of chaotic magnetic lines and noble ITB's in the Tokamap J. H. Misguich and Fusion BFR Working Group (*)  

E-Print Network (OSTI)

Dynamics of chaotic magnetic lines and noble ITB's in the Tokamap J. H. Misguich and Fusion BFR and study the dynamics of magnetic lines in a situation of " incomplete chaos". Several previous studies have used Hamiltonian mapping to represent magnetic lines. Here we use the Hamiltonian twist map

231

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

232

An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices  

E-Print Network (OSTI)

Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

Hartwig, Zachary Seth

2014-01-01T23:59:59.000Z

233

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Glossary of Plasma Physics and Fusion Energy Research Browse | Search | Submit an Entry Introduction, Sources and Contributors This Glossary seeks to provide plain-language definitions of over 3600

234

Paths to Magne,c Fusion Energy (nature ignores budget austerity)  

E-Print Network (OSTI)

Base Research Program Plasma confinement Materials science/engineering 2020 to fusion energy present DIII-D NSTX CMOD Plasma confinement research program #12

235

Prospects for inertial fusion as an energy source  

SciTech Connect

Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

Hogan, W.J.

1989-06-26T23:59:59.000Z

236

Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices  

E-Print Network (OSTI)

Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

Barnard, Harold Salvadore

2014-01-01T23:59:59.000Z

237

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) 685693 doi:10.1088/0029-5515/45/7/018  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 1 Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche di Frascati, C.P. 65-00044 Frascati, Rome, Italy 2 Institute of Plasma Physics and Laser Microfusion, PO Box 49, PL-00-908, Warsaw, Poland Received

Vlad, Gregorio

238

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006  

E-Print Network (OSTI)

, it is expected that the laser fusion ignition will be demonstrated in the next few years. If this does indeed to solve the energy problem. The laser implosion for the fusion ignition and burn was opened up and simulations, it is now expected that laser fusion ignition will be demonstrated by the NIF (National Ignition

239

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 012002 (7pp) doi:10.1088/0029-5515/54/1/012002  

E-Print Network (OSTI)

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 012002 (7pp) doi:10 loads and particle bombardment is a key issue for the nuclear fusion community. Currently high current.1088/0029-5515/54/1/012002 LETTER Experimental simulation of materials degradation of plasma-facing components using lasers N. Farid

Harilal, S. S.

240

Role of nuclear fusion in future energy systems and the environment under future uncertainties  

Science Journals Connector (OSTI)

Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 20502060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO2 concentration constraint.

Koji Tokimatsu; Junichi Fujino; Satoshi Konishi; Yuichi Ogawa; Kenji Yamaji

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Exploring Fusion at Extreme Sub-Barrier Energies with Weakly Bound Nuclei  

SciTech Connect

Results of measurement of residues formed in fusion of {sup 6}Li with {sup 198}Pt in the energy range of 0.68fusion excitation function and the derived average angular momenta do not indicate a change of slope at deep sub-barrier energies, contrary to recent observations. The present results for a system with weakly bound projectile confront the current understanding of the fusion hindrance at these low energies, underlying the role of internal reorganization on the dynamical path towards fusion.

Shrivastava, A. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); GANIL, CEA/DSM-CNRS/IN2P3, Boulevard Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Navin, A.; Lemasson, A.; Rejmund, M. [GANIL, CEA/DSM-CNRS/IN2P3, Boulevard Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Ramachandran, K.; Chatterjee, A.; Kailas, S.; Mahata, K.; Rout, P. C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nanal, V.; Pillay, R. G. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Hagino, K. [Department of Physics, Tohuku University, Sendai 980-8578 (Japan); Ichikawa, T. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Parkar, V. V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India)

2009-12-04T23:59:59.000Z

242

Laser fusion experiment yields record energy at Lawrence Livermore's  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 08/26/2013 | NR-13-08-04 High Resolution Image All NIF experiments are controlled and orchestrated by the integrated computer control system in the facility's control room. It consists of 950 front-end processors attached to about 60,000 control points, including mirrors, lenses, motors, sensors, cameras, amplifiers, capacitors and diagnostic instruments. Laser fusion experiment yields record energy at Lawrence Livermore's National Ignition Facility Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image The preamplifiers of the National Ignition Facility are the first step in increasing the energy of laser beams as they make their way toward the target chamber. LIVERMORE, Calif. -- In the early morning hours of Aug.13, Lawrence

243

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Home> Student and Teacher Resources > For Introductory Students Home> Student and Teacher Resources > For Introductory Students FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Guide to Fusion Education Resources for Introductory Physics Students This is a compilation of online and offline education resources for

244

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Webby Honoree graphic graphic Key Resource Snap editors choice new scientist DrMatrix Webby Awards Honoree, April 10, 2007 The Alchemist - WebPick, January 29, 1999 Links2Go - Fusion, November 9, 1998 October 19, 1998 - October 19, 1999 Site of the Day, September 24, 1998. Hot spot. Student Science Resource, April 16, 1997

245

Fusion Policy Advisory Committee (FPAC)  

SciTech Connect

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

246

Development of imaging bolometers for magnetic fusion reactors (invited)  

SciTech Connect

Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.

Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawashima, Hisato; Konoshima, Shigeru [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Kostryukov, Artem Yu.; Miroshnikov, Igor V. [St. Petersburg State Technical University, St. Petersburg 195251 (Russian Federation); Seo, Dongcheol [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Omori, T. [Graduate University for Advanced Studies, Toki 509-5292 (Japan)

2008-10-15T23:59:59.000Z

247

1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle  

E-Print Network (OSTI)

1 1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle transport in D-T plasmas) is a central issue in fusion reactor de- velopment. Important effects dependent on fp transport-7 are concerned with fp wall bombardment and focus on two types of charged, high-energy fp losses from

Hively, Lee M.

248

Fundamental hydrogen interactions with beryllium : a magnetic fusion perspective.  

SciTech Connect

Increasingly, basic models such as density functional theory and molecular dynamics are being used to simulate different aspects of hydrogen recycling from plasma facing materials. These models provide valuable insight into hydrogen diffusion, trapping, and recombination from surfaces, but their validation relies on knowledge of the detailed behavior of hydrogen at an atomic scale. Despite being the first wall material for ITER, basic single crystal beryllium surfaces have been studied only sparsely from an experimental standpoint. In prior cases researchers used electron spectroscopy to examine surface reconstruction or adsorption kinetics during exposure to a hydrogen atmosphere. While valuable, these approaches lack the ability to directly detect the positioning of hydrogen on the surface. Ion beam techniques, such as low energy ion scattering (LEIS) and direct recoil spectroscopy (DRS), are two of the only experimental approaches capable of providing this information. In this study, we applied both LEIS and DRS to examine how hydrogen binds to the Be(0001) surface. Our measurements were performed using an angle-resolved ion energy spectrometer (ARIES) to probe the surface with low energy ions (500 eV - 3 keV He{sup +} and Ne{sup +}). We were able to obtain a 'scattering maps' of the crystal surface, providing insight on how low energy ions are focused along open surface channels. Once we completed a characterization of the clean surface, we dosed the sample with atomic hydrogen using a heated tungsten capillary. A distinct signal associated with adsorbed hydrogen emerged that was consistent with hydrogen residing between atom rows. To aid in the interpretation of the experimental results, we developed a computational model to simulate ion scattering at grazing incidence. For this purpose, we incorporated a simplified surface model into the Kalypso molecular dynamics code. This approach allowed us to understand how the incident ions interacted with the surface hydrogen, providing confirmation of the preferred binding site.

Wampler, William R. (Sandia National Laboratories, Albuquerque, NM); Felter, Thomas E.; Whaley, Josh A.; Kolasinski, Robert D.; Bartelt, Norman Charles

2012-03-01T23:59:59.000Z

249

fusion  

National Nuclear Security Administration (NNSA)

7%2A en ICF Facilities http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicffacilities

250

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 of nuclear energy in the form of nuclear fission were established with the nuclear powered submarine Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: dmeade@pppl.gov Received 6 August

251

Ground Magnetics | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (15) Areas (12) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

252

On the efficacy of imploding plasma liners for magnetized fusion target compression  

SciTech Connect

A new theoretical model is formulated to study the idea of merging a spherical array of converging plasma jets to form a 'plasma liner' that further converges to compress a magnetized plasma target to fusion conditions [Y. C. F. Thio et al., 'Magnetized target fusion in a spheroidal geometry with standoff drivers', Current Trends in International Fusion Research II, edited by E. Panarella (National Research Council Canada, Ottawa, Canada, 1999)]. For a spherically imploding plasma liner shell with high initial Mach number (M=liner speed/sound speed) the rise in liner density with decreasing radius r goes as {rho}{approx}1/r{sup 2}, for any constant adiabatic index {gamma}=d ln p/d ln {rho}. Accordingly, spherical convergence amplifies the ram pressure of the liner on target by the factor A{approx}C{sup 2}, indicating strong coupling to its radial convergence C=r{sub m}/R, where r{sub m}(R)=jet merging radius (compressed target radius), and A=compressed target pressure/initial liner ram pressure. Deuterium-tritium (DT) plasma liners with initial velocity {approx}100 km/s and {gamma}=5/3, need to be hypersonic M{approx}60 and thus cold in order to realize values of A{approx}10{sup 4} necessary for target ignition. For optically thick DT liners, T<2 eV, n>10{sup 19}-10{sup 20} cm{sup -3}, blackbody radiative cooling is appreciable and may counteract compressional heating during the later stages of the implosion. The fluid then behaves as if the adiabatic index were depressed below 5/3, which in turn means that the same amplification A=1.6x10{sup 4} can be accomplished with a reduced initial Mach number M{approx_equal}12.7({gamma}-0.3){sup 4.86}, valid in the range (10fusion {alpha}-particle heating of the collapsed liner indicates that 'spark' ignition of the DT liner fuel does not appear to be possible for magnetized fusion targets with typical threshold values of areal density {rho}R<0.02 g cm{sup -2}.

Parks, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5688 (United States)

2008-06-15T23:59:59.000Z

253

Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

254

Ignition on the National Ignition Facility: A Path Towards Inertial Fusion Energy  

E-Print Network (OSTI)

to Arial 18 pt bold Name here Title or division here Date 00, 2008 LLNL-PRES-407907 #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 2 Two major possibilities for fusion energy #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 3 The NIF is nearing completion and will be conducting

255

Requested Information Provided by the Three Major United States Toroidal Magnetic Fusion Facilities: Report of the 2005 FESAC Facilities Panel, Vol. 2  

Science Journals Connector (OSTI)

This is Volume 2 of a report of a panel established by the U.S. Department of Energy Fusion Energy Sciences Advisory Committee (FESAC) charged to review the three major U.S. fusion facilities. The Panel requested...

Jill Dahlburg; Steven L. Allen; Riccardo Betti

2005-12-01T23:59:59.000Z

256

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 of these papers can be found in issue 3 2010 of Nuclear Fusion http://iopscience.iop.org/0029-5515/50/3/039901. b) in the energy range 0.5�1 MeV. The total power input will be in the 30�40 MW range under different plasma

Vlad, Gregorio

257

IEFIT - An Interactive Approach to High Temperature Fusion Plasma Magnetic Equilibrium Fitting  

SciTech Connect

An interactive IDL based wrapper, IEFIT, has been created for the magnetic equilibrium reconstruction code EFIT written in FORTRAN. It allows high temperature fusion physicists to rapidly optimize a plasma equilibrium reconstruction by eliminating the unnecessarily repeated initialization in the conventional approach along with the immediate display of the fitting results of each input variation. It uses a new IDL based graphics package, GaPlotObj, developed in cooperation with Fanning Software Consulting, that provides a unified interface with great flexibility in presenting and analyzing scientific data. The overall interactivity reduces the process to minutes from the usual hours.

Peng, Q.; Schachter, J.; Schissel, D.P.; Lao, L.L.

1999-06-01T23:59:59.000Z

258

Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion  

SciTech Connect

The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 34 is found over a wide range of fast electron divergence half-angles.

Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

2013-06-15T23:59:59.000Z

259

Aqua Magnetics Inc | Open Energy Information  

Open Energy Info (EERE)

Magnetics Inc Magnetics Inc Jump to: navigation, search Name Aqua-Magnetics Inc Place Satellite Beach, Florida Zip 32937 Sector Ocean Product Manufactures patented system that converts ocean wave energy into electric power. References Aqua-Magnetics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Electric Buoy Mobil Stabilized Energy Conversion Platform Platform generators This article is a stub. You can help OpenEI by expanding it. Aqua-Magnetics Inc is a company located in Satellite Beach, Florida . References ↑ "Aqua-Magnetics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Aqua_Magnetics_Inc&oldid=678881"

260

Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies  

E-Print Network (OSTI)

Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

2011-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Energy Electron Confinement in a Magnetic Cusp Configuration  

E-Print Network (OSTI)

We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when beta (plasma pressure/magnetic field pressure) is order of unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high beta a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. The current experiment validates this theoretical conjecture for the first time and represents critical progress toward the Polywell fusion concept which combines a high beta cusp configuration with an electrostatic fusion for a compact, economical, power-producing nuclear fusion reactor.

Park, Jaeyoung; Sieck, Paul E; Offermann, Dustin T; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

2014-01-01T23:59:59.000Z

262

The Fusion Advanced Studies Torus (FAST): a proposal for an ITER satellite facility in support of the development of fusion energy  

E-Print Network (OSTI)

and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

Zonca, Fulvio

263

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 982988 PII: S0029-5515(03)66862-6  

E-Print Network (OSTI)

. For the out-shifted, shaped plasma, ripple loss of high energy ions during neutral beam injection (NBIINSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion is analysed. PACS numbers: 52.55.Fa, 52.55.Wq, 52.25.Fi 1. Introduction The construction of HL-2A [1

Budny, Robert

264

Energy confinement and magnetic field generation in the SSPX spheromaka)  

Science Journals Connector (OSTI)

The Sustained Spheromak Physics Experiment (SSPX) [Hooper et al. Nuclear Fusion39 863 (1999)] explores the physics of efficient magnetic field buildup and energy confinement both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current ( B ? I ) from 0.65 T ? MA previously to 0.9 T ? MA . We have achieved the highest electron temperatures ( T e ) recorded for a spheromak with T e > 500 eV toroidalmagnetic field ? 1 T and toroidal current ( ? 1 MA ) [Wood et al. Improved magnetic field generation efficiency and higher temperaturespheromakplasmas Phys. Rev. Lett. (submitted)]. Extending the sustainment phase to > 8 ms extends the period of low magnetic fluctuations ( input power and dominantly collisional majority ion heating. The evolution of electron temperature shows a distinct and robust feature of spheromak formation: A hollow-to-peaked T e ( r ) associated with q ? 1 ? 2 .

B. Hudson; R. D. Wood; H. S. McLean; E. B. Hooper; D. N. Hill; J. Jayakumar; J. Moller; D. Montez; C. A. Romero-Talams; T. A. Casper; J. A. Johnson III; L. L. LoDestro; E. Mezonlin; L. D. Pearlstein

2008-01-01T23:59:59.000Z

265

23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC  

SciTech Connect

An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

Richard J. Hawryluk

2011-01-05T23:59:59.000Z

266

Magnetic energy storage and conversion in the solar atmosphere  

Science Journals Connector (OSTI)

A review of the theoretical problems associated with preflare magnetic energy storage and conversion is presented. The review consists of three parts; preflare magnetic energy storage, magnetic energy conversion ...

D. S. Spicer

1982-01-01T23:59:59.000Z

267

Fusion Ignition Research Experiment Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

Fusion Ignition Research Experiment Dale Meade Princeton Plasma Physics Laboratory Abstract Understanding the properties of high gain (alpha­dominated) fusion plasmas in an advanced toroidal configuration­dominated plasmas in advanced toroidal systems. Technical Challenges for Major Next Steps in Magnetic Fusion Energy

268

The little bang theoryEnergy from inertial fusion  

Science Journals Connector (OSTI)

Calculations show that it may be possible to ignite small thermonuclear explosions with an ion accelerator or laser. The process involves the implosion of small targets to achieve extreme temperatures and densities. The implosion can be described as a sequence of shock waves followed by adiabatic compression. The strength and timing of the shock waves are important in achieving proper conditions for thermonuclear burn. Other important issues include the uniformity of the converging shock waves and the influence of these shock waves on fluid instabilities. These issues are not fully understood and constitute an important area of research in inertial fusion. In order to produce commercial energy it will be necessary to develop combustion chambers target fabrication factories and efficient drivers (accelerators or lasers). These will be briefly discussed. In particular acoustical phenomena will play an important role in combustion chamber design. [Research performed under the auspices of the U.S. Energy Research and Development Administration under Contract No. W?7405?Eng?48.

Roger O. Bangerter

1980-01-01T23:59:59.000Z

269

Fusion Cross-Section Measurements with Deuterons of Low Energy  

Science Journals Connector (OSTI)

5 December 1961 research-article Fusion Cross-Section Measurements with Deuterons...theory and to calculations of the rate of thermonuclear reactions. Until now reliable values...cross-sections. The method of measuring the fusion cross-sections made use of an intense...

1961-01-01T23:59:59.000Z

270

Pathways to Inertial Fusion Energy Laser Direct Drive  

E-Print Network (OSTI)

(NRL) Smoothing by Spectral Dispersion ­ SSD (LLE) DT ice preheated ablator (lower density) DT ice "Gain" = Fusion power OUT / laser power IN 143/572 = 25% Recirculating power (Nuclear reactions (electricity) Target "Gain" = Fusion power OUT / laser power IN 143/880 = 16% Recirculating power (Nuclear

271

High-field, high-current-density, stable superconducting magnets for fusion machines  

SciTech Connect

Designs for large fusion machines require high-performance superconducting magnets to reduce cost or increase machine performance. By employing force-flow cooling, cable-in-conduit conductor configuration, and NbTi superconductor, it is now possible to design superconducting magnets that operate a high fields (8-12 T) with high current densities (5-15 kA/cm/sup 2/ over the winding pack) in a stable manner. High current density leads to smaller, lighter, and thus less expensive coils. The force-flow cooling provides confined helium, full conductor insulation, and a rigid winding pack for better load distribution. The cable-in-conduit conductor configuration ensures a high stability margin for the magnet. The NbTi superconductor has reached a good engineering material standard. Its strain-insensitive critical parameters are particularly suitable for complex coil windings of a stellarator machine. The optimization procedure for such a conductor design, developed over the past decade, is summarized here. If desired a magnet built on the principles outlines in this paper can be extended to a field higher than the design value without degrading its stability by simply lowering the operating temperature below 4.2 K. 11 refs., 3 figs.

Lue, J.W.; Dresner, L.; Lubell, M.S.

1989-01-01T23:59:59.000Z

272

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

273

Nuclear Fusion as an Energy Option for the 21st Century  

Science Journals Connector (OSTI)

For more than 50 years, controlled nuclear fusion has been promised as a safe, clean...Bethe 1939). Yet, after several decades of work by researchers in several countries, producing more energy than is invested i...

Julio E Herrera-Velzquez

2007-01-01T23:59:59.000Z

274

January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research  

E-Print Network (OSTI)

14, 2014 MIT PSFC IAP Seminar Series 9 Units to measure energy and power "Joule" or "J" is a unit of Energy "Watt" or "W" is a unit of power Power is energy used per second 1 Watt = Your 60 Watt light bulbJanuary 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research Prospects

275

Fusion cross sections for the Be9+Sn124 reaction at energies near the Coulomb barrier  

Science Journals Connector (OSTI)

The complete and incomplete fusion cross sections for Be9+Sn124 reaction have been deduced using the online ?-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by ~28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a Sn124 target shows that, for Be9 nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

V. V. Parkar, R. Palit, Sushil K. Sharma, B. S. Naidu, S. Santra, P. K. Joshi, P. K. Rath, K. Mahata, K. Ramachandran, T. Trivedi, and A. Raghav

2010-11-03T23:59:59.000Z

276

Permanent magnet thermal energy system  

SciTech Connect

An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

Gerard, F.

1985-04-16T23:59:59.000Z

277

Muon catalysis for energy production by nuclear fusion  

Science Journals Connector (OSTI)

... mesic molecular ion (dt?-)+. It takes a short time tf for an exothermic nuclear fusion reaction d + t 4 He-hn to occur. When the probability is tdt, ...

Yu. V. Petrov

1980-06-12T23:59:59.000Z

278

The National Ignition Facility and Laser Fusion Energy  

Science Journals Connector (OSTI)

This talk provides an update of the NIC on the National Ignition Facility at the Lawrence Livermore National Laboratory and the roadmap to demonstrate laser fusion as a viable source...

Moses, E I

279

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 1723 doi:10.1088/0029-5515/46/1/002  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion of the flux at points on the plasma boundary, which are used as input to a shape control algorithm known physics, since realistic solutions to the plasma force balance can be used as inputs to feedback loops

Princeton Plasma Physics Laboratory

280

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10.1088/0029-5515/54/2/023004  

E-Print Network (OSTI)

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10 Tatyana Sizyuk and Ahmed Hassanein Center for Materials under Extreme Environment, School of Nuclear for publication 17 December 2013 Published 21 January 2014 Abstract The plasma shielding effect is a well

Harilal, S. S.

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 125009 (8pp) doi:10.1088/0029-5515/49/12/125009  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 125009 of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic surface [29]. GTC simulations of a small amplitude GAM recover the analytic linear dispersion relation

Lin, Zhihong

282

Characteristics of the Arrangement of the Cooling Water Piping System for ITER and Fusion Reactor Power Station  

Science Journals Connector (OSTI)

The ITER has been designed to demonstrate the scientific and technical feasibility of nuclear fusion energy conversion using the tokamak magnetic machine. ... experience will guide the realization of a future fusion

K. P. Chang; Ingo Kuehn; W. Curd

2008-01-01T23:59:59.000Z

283

Advanced fusion concepts: project summaries  

SciTech Connect

This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

None

1980-12-01T23:59:59.000Z

284

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say  

E-Print Network (OSTI)

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say A crystal with a strange property is at the heart of a clever method for inducing nuclear fusion in a tabletop-sized device-rays for medical therapies. Although the field of room-temperature fusion is littered with scandals and dubious

285

Multimodal options for materials research to advance the basis for fusion energy in the ITER era  

Science Journals Connector (OSTI)

Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

S.J. Zinkle; A. Mslang; T. Muroga; H. Tanigawa

2013-01-01T23:59:59.000Z

286

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network (OSTI)

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.

Kai Wen; Fumihiko Sakata; Zhu-Xia Li; Xi-Zhen Wu; Ying-Xun Zhang; Shan-Gui Zhou

2014-07-22T23:59:59.000Z

287

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

SciTech Connect

The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Wang Ning; Scheid, Werner [Institute for Theoretical Physics at Justus-Liebig-University, D-35392 Giessen (Germany); Wu Xizhen; Liu Min [China Institute of Atomic Energy, Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, Beijing 102413 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Nuclear Theory Center of National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

2006-10-15T23:59:59.000Z

288

Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier  

E-Print Network (OSTI)

The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

2007-02-16T23:59:59.000Z

289

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...of activation products with long half-lives means that some fusion reactor structural...grow for a time in some regions while remaining steady or falling in others. For example...an-nual use of coal, oil, natural gas, hydropower, nuclear fission,, geothermal...

John P. Holdren

1978-04-14T23:59:59.000Z

290

NIF achieves record laser energy in pursuit of fusion ignition | National  

NLE Websites -- All DOE Office Websites (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

291

LDRD final report on confinement of cluster fusion plasmas with magnetic fields.  

SciTech Connect

Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single

Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

2011-11-01T23:59:59.000Z

292

Studying singlet fission and triplet fusion by magneto-electroluminescence method in singlettriplet energy-resonant organic light-emitting diodes  

Science Journals Connector (OSTI)

Abstract Organic light emitting diodes (OLEDs) utilizing a singlettriplet energy-resonant (ES?2ET) layer (rubrene) were fabricated to investigate the singlet fission and triplet fusion by the magneto-electroluminescence (MEL) of device from R.T. to 20K. A large positive MEL (23.5%) was obtained at R.T. due to magnetic-field-suppressed singlet fission. With decreasing temperatures, the \\{MELs\\} changed their signs both at low-field and high-field components because of a gradual decrease in singlet fission simultaneously followed by an increasing triplet fusion, leading to a negative MEL around ?7.5% at 20K. Moreover, transient electroluminescence and \\{MELs\\} from the control devices were used to further confirm the exciton fission and fusion processes in rubrene-based OLEDs. Our findings of MEL may provide a useful pathway to study the microscopic dynamics of excited states in organic optoelectronic devices.

J.W. Bai; P. Chen; Y.L. Lei; Y. Zhang; Q.M. Zhang; Z.H. Xiong; F. Li

2014-01-01T23:59:59.000Z

293

Scientific Issues and Gaps for High-Performance Steady-State Burning-Plasmas Fusion Innovation Research and Energy  

E-Print Network (OSTI)

Innovation Research and Energy Princeton, NJ 08540 Introduction Fusion energy is a potential energy source for an electricity producing power plant. Recently, the FESAC Priorities, Gaps and Opportunities Panel identified, and extracting plasma exhaust power) Theme C ­ Harnessing the Power of Fusion (extracting neutron power, breeding

294

Fusion Power  

Science Journals Connector (OSTI)

...present cost of coal, on a per-unit-of-energy basis. Nuclear fusion is nuclear combustion, the process that heats the sun and...enough for the release of fusion energy to exceed the heat input; and third, convert the energy released to useful form...

R. F. Post

1971-01-01T23:59:59.000Z

295

SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

2006-08-31T23:59:59.000Z

296

Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa...  

E-Print Network (OSTI)

, Albuquerque, New Mexico, 87185-1196, USA 2 University of Nevada, Reno, Nevada 89557, USA 3 Lawrence Livermore for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion more energy and the backlight must be bright enough to overwhelm the plasma self-emission

297

Fusion of light proton-rich exotic nuclei at near-barrier energies  

E-Print Network (OSTI)

We study theoretically fusion of the light proton-rich exotic nuclei $^{17}$F and $^8$B at near-barrier energies in order to investigate the possible role of breakup processes on their fusion cross sections. To this end, coupled channel calculations are performed considering the couplings to the breakup channels of these projectiles. In case of $^{17}$F, the coupling arising out of the inelastic excitation from the ground state to the bound excited state and its couplings to the continuum have also been taken into consideration. It is found that the inelastic excitation/breakup of $^{17}$F affect the fusion cross sections very nominally even for a heavy target like Pb. On the other hand, calculations for fusion of the one-proton halo nucleus $^8$B on a Pb target show a significant suppression of the complete fusion cross section above the Coulomb barrier. This is due to the larger breakup probability of $^8$B as compared to that of $^{17}$F. However, even for $^8$B, there is little change in the complete fusion cross sections as compared to the no-coupling case at sub-barrier energies.

P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

2002-02-08T23:59:59.000Z

298

Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion  

SciTech Connect

The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap #24;50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and #12;ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.

Lynn, Alan

2013-11-01T23:59:59.000Z

299

Can the future world energy system be free of nuclear fusion?  

Science Journals Connector (OSTI)

The available information on the dynamics of world population growth as well as global statistical data on today's energy production, consumption and distribution are presented. Natural restrictions on the modern world's fossil combustion energy system are discussed along with possible climatic and biospherical impacts for its part. Alternative energy sources capable of replacing the existing energy system are considered and prospects for controllable nuclear fusion are discussed.

Sergei V Putvinskii

1998-01-01T23:59:59.000Z

300

The Nuclear Fusion Award  

Science Journals Connector (OSTI)

The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 63544 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 45161 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L258 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 51220 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 27784 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 8298 Berk H.L. et al 2006 Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S88897 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 7817 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 5417 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 13341 Watanabe T.-H. et al 2006 Velocityspace structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 2432 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 161824 Lipschultz B. et al 2007 Plasmasurface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 111220 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 66776 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 158897 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 53551 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 85663 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 22832 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 9618 Urano H. et al 2007 H-mode pedestal structure in the v

M. Kikuchi

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fusion Energy Sciences Advisory Committee (FESAC) Homepage | U.S. DOE  

Office of Science (SC) Website

FESAC Home FESAC Home Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors FES Home Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences Advisory Committee (FESAC) has been Chartered .pdf file (140KB) pursuant to Section 14(a)(2)(A) of the Federal Advisory Committee Act Public Law 92-463, and Section 101-6.1015, title 41 Code of Federal Regulations. The committee provides independent advice to the Director of the Office of Science on complex scientific and technological issues that arise in the planning, implementation, and management of the fusion energy sciences program. The current charter is in effect until August 2015. Committee Members .pdf file (28KB) are drawn from universities, national

302

Fusion pumped laser  

DOE Patents (OSTI)

The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

Pappas, D.S.

1987-07-31T23:59:59.000Z

303

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network (OSTI)

of routing tree establishment, transmission energy planninglarge gap of energy between the single-hop tree and theThe routing tree ?nding and the transmission energy planning

Huang, Yi

2010-01-01T23:59:59.000Z

304

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

305

Journal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel on a Burning Plasma Program  

E-Print Network (OSTI)

- ence, although it is not designed to be the sole burning plasma facility in the world.Fusion energy methods of energy production, are strong reasons to pursue fusion energy now. vened for this purposeJournal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel

Najmabadi, Farrokh

306

Progress on the FRX-L FRC plasma injector at LANL for magnetized target fusion  

SciTech Connect

The FRX-L Field Reversed Configuration plasma is now operational at Los Alamos National Laboratory. The goal of the project is to demonstrate the production of suitable FRC target plasmas for later MTF (Magnetized Target Fusion) implosion experiments which will first be carried out at the Air Force Research Laboratory in Albuquerque, New Mexico, in a few years' time. Expected plasma parameters in the 4 cm diameter, 30 cm long FRC are ne{approx}1017 cm-3, T{approx}100-300 eV, at 4-5 Tesla fields, with a lifetime of {approx}20 microseconds. The system includes a 0.5 T bias field, 70 kV 250 kHz ringing pre-ionization, and a 1.5 MA, 200 kJ main-theta coil bank. Maxwell rail gap plasma switches are used to start the PI bank, the main theta coil bank, and to crowbar the main bank. Initial results using the first diagnostic set of excluded flux loops, B-dot probes, visible light diodes, a fiber-optically coupled gated intensified visible spectrometer, and a 3.3 micron quadrature interferometer are presented. Future diagnostics include end-on bolometry, Thomson scattering, and a multi-chord fanned HeNe side-on interferometer. Multi-turn cusp and guide coils will be added later this year, to enable translation experiments into a cylindrical metal liner.

Assmus, P. N. (Phillip N.); Feinup, W. J.; Intrator, Thomas; Langner, M. C. (Matthew C.); Maqueda, R. J. (Ricardo J.); Scott, K. J.; Siemon, R. E. (Richard E.); Tejero, E. M. (Erik M.); Taccetti, J. M. (Jose Martin); Tuszewski, M. G. (Michael G.); Wang, Z. (Zhehui); Wurden, G. A. (Glen A.)

2001-01-01T23:59:59.000Z

307

Operating experience of the IFSMTF (International Fusion Superconducting Magnet Test Facility) vapor-cooled lead system  

SciTech Connect

The International Fusion Superconducting Magnet Test Facility (IFSMTF) uses six pairs of vapor-cooled leads (VCLs) to introduce electric power to six test coils. Each VCL is housed in a dewar outside the 11-m vacuum vessel and is connected to the coal via a superconducting bus duct;the various VCLs are rated at 12 to 20 kA. Heat loss through the leads constitutes the single largest source of heat load to the cryogenic system. Concerns about voltage breakdown if a coil quenches have led to precautionary measures such as installation of a N/sub 2/-purged box near the top of the lead and shingles to collect water that condenses on the power buses. A few joints between power buses and VCLs were found to be inadequate during preliminary single-coil tests. This series of tests also pointed to the need for automatic control of helium flow through the leads. This was achieved by using the resistance measurements of the leads to control flow valves automatically. By the time full-array tests were started, a working scheme had developed that required little attention to the leads and that had little impact on the refrigerator between zero and full current to the coils. The operating loss of the VCLs at full current is averaging at about 7.4 gs of warm flow and 360 W of cold-gas return load. These results are compared with predictions that were based on earlier tests. 4 refs., 6 figs

Lue, J.W.; Fehling, D.T.; Fietz, W.A.; Lubell, M.S.; Luton, J.N.; Schwenterly, S.W.; Shen, S.S.; Stamps, R.E.; Thompson, D.H.; Wilson, C.T.

1987-01-01T23:59:59.000Z

308

Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility  

SciTech Connect

The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb/sub 3/Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm/sup 3/ of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm/sup 3/ of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes.

Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

1987-09-01T23:59:59.000Z

309

Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility  

SciTech Connect

The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb/sub 3/Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition. The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1J/cm/sup 3/ of strands. In another nonresistive location, the stability margin was between 1.7 and 1.9 J/cm/sup 3/ of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes.

Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

1988-03-01T23:59:59.000Z

310

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

311

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

2.1.1 Energy Production . . . . . . . . . 2.1.2 Spentof Figures Current World Energy Production Broken Down byCurrent US Energy Production Broken Down by

Kramer, Kevin James

2010-01-01T23:59:59.000Z

312

Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier  

E-Print Network (OSTI)

Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

2008-05-07T23:59:59.000Z

313

DOE/SC-0060 U. S. Department of Energy  

E-Print Network (OSTI)

environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy

314

Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface  

SciTech Connect

GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than todays best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durationsgenerally less than a few minutes. ABBs system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

None

2010-10-01T23:59:59.000Z

315

Specially Conditioned EM Fields to Reduce Nuclear Fusion Input Energy Needs  

Science Journals Connector (OSTI)

Ordinary electromagnetic (EM) fields possess relatively simple \\{U1gauge\\} symmetry, and their angular momentum is analogous to that of spin1 particles whose likecharges attract and unlike charges repel. This manifests in coulomb repulsion between free electrons or ions and coulomb attraction between free electrons and ions. By contrast, angular momentum of SU(2) fields that describe the shortrange Weak Nuclear Force in atomic nuclei is analogous to that of spin2 particles whose likecharges attract. So, free ions that enter such small SU(2) field regions attract each other until their separation becomes so small that their fusion occurs. In this respect, Barrett has derived EM fields with the same SU(2) gauge symmetry and spin2 angular momentum as SU(2) matter fields in atomic nuclei. It is conceivable, therefore, that SU(2) EM fields might cause fuel ions inside nuclear fusion reactors to attract (rather than repel) each other. This paper, therefore, explores the possibility of SU(2) EM fields reducing the electrical compression energies these SU(2) EM fields must exert on fuel ions before fusion of the ions by the SU(2) matter fields of the weak nuclear force then occurs. A specific conditioning of U(1) EM field energy into SU(2) EM field energy was selected; a given type of fusion was assumed; and preliminary, parametric estimates of input electrical energy reductions were made.

H. David Froning Jr.; Terence W. Barrett; George H. Miley

2012-01-01T23:59:59.000Z

316

Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic Plan for Commercialization  

E-Print Network (OSTI)

1 Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic in the Technical Assessment Committee (TAC) and 4) EPRI being the Program Manager for the project. Establish Plan for Commercialization March 2011 Phase I. Status Assessment and Identification of Challenges

317

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network (OSTI)

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

318

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network (OSTI)

energy cost of consensus estimation with that of progressive estimation under the same sensor constellation and

Huang, Yi

2010-01-01T23:59:59.000Z

319

Complete Fusion of Weakly Bound Cluster-Type Nuclei at Near Barrier Energies  

E-Print Network (OSTI)

We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.

M. S. Hussein; P. R. S. Gomes; J. Lubian; R. Linares; L. F. Canto

2013-03-19T23:59:59.000Z

320

Complete Fusion of Weakly Bound Cluster-Type Nuclei at Near Barrier Energies  

E-Print Network (OSTI)

We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.

Hussein, M S; Lubian, J; Linares, R; Canto, L F

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

322

Studies of fast electron transport in the problems of inertial fusion energy  

E-Print Network (OSTI)

In the existing natural fusion reactors, stars, the gravityto the construction of the fusion reactor. In the magneticwould be for real fusion reactor conditions. The analysis of

Frolov, Boris K.

2006-01-01T23:59:59.000Z

323

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

of Figures Current World Energy Production Broken Down byUnited States and world energy production could be suppliedFigure 1.1: Current World Energy Production Broken Down by

Kramer, Kevin James

2010-01-01T23:59:59.000Z

324

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network (OSTI)

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD), the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is ...

Wen, Kai; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui

2014-01-01T23:59:59.000Z

325

Design, fabrication and measurement of a novel cooling arm for fusion energy source  

E-Print Network (OSTI)

The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

2012-07-05T23:59:59.000Z

326

Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility  

Science Journals Connector (OSTI)

......fusion test facilities. INTRODUCTION For the realisation of a nuclear fusion reactor, high-temperature, high-density plasma must...range Up to 1 GHz Impedance 50 omega10 % Maximum allowable input power 200 W Uniformity of electric field distribution 4 dB......

Masahiro Tanaka; Tatsuhiko Uda; Jianqing Wang; Osamu Fujiwara

2012-02-01T23:59:59.000Z

327

ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy  

SciTech Connect

LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. (Lawrence Berkeley Lab., CA (United States)); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. (Lawrence Liver

1992-07-01T23:59:59.000Z

328

ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy  

SciTech Connect

LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ``drive`` inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. [Lawrence Berkeley Lab., CA (United States); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. [Lawrence Livermore National Lab., CA (United States)

1992-07-01T23:59:59.000Z

329

Simulation of Fusion Plasmas  

ScienceCinema (OSTI)

The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

Chris Holland

2010-01-08T23:59:59.000Z

330

Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion  

SciTech Connect

Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

Nuckolls, J.H.

1994-06-01T23:59:59.000Z

331

TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

Dunne, A M

2010-11-30T23:59:59.000Z

332

MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA  

SciTech Connect

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s{sup -1}. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface-suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

Wolfson, Richard; Drake, Christina; Kennedy, Max, E-mail: wolfson@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

2012-05-01T23:59:59.000Z

333

Maximizing Magnetic Energy Storage in the Solar Corona  

Science Journals Connector (OSTI)

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s1. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surfacesuggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to "hold down" the nonpotential flux as its magnetic energy increases.

Richard Wolfson; Christina Drake; Max Kennedy

2012-01-01T23:59:59.000Z

334

Journal of Fusion Energy, Vol. /1, No.2, 1992 Pilot Plant: An Affordable Step Toward Fusion Power  

E-Print Network (OSTI)

that fusion be an option for this market, since the other major alternatives (coal, fission, and solar) could, but unique, uni- versity-national laboratory-electric utility-industry part- nership. It is also a U the first opportunity for utilities and industry to playa lead role in defining and designing a fusion

335

Film Boiling in Magnetic Field in Liquid Metals with Particular Reference to Fusion Reactor Project  

Science Journals Connector (OSTI)

Efficient heat removal at high temperatures is a key issue for blankets in nuclear fusion applications, for example, the EVOLVE (EVaporation...1], Wong etal. [2]). It utilizes the extremely high heat of vaporiza...

F. J. Arias

2010-04-01T23:59:59.000Z

336

Magnetic energy conversion, magnetospheric substorms and solar flares  

Science Journals Connector (OSTI)

... The magnetospheric substorm has been thought to be the manifestation of a sudden conversion of the magnetic ... of the magnetic energy stored in the magnetotail before substorm onset. It has been believed that solar flares ...

S.-I. Akasofu

1980-03-20T23:59:59.000Z

337

ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets  

E-Print Network (OSTI)

The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q_p~13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ~23 T peak field on coil with newly available REBCO superconductor technology. External cu...

Sorbom, B N; Palmer, T R; Mangiarotti, F J; Sierchio, J M; Bonoli, P; Kasten, C; Sutherland, D A; Barnard, H S; Haakonsen, C B; Goh, J; Sung, C; Whyte, D G

2014-01-01T23:59:59.000Z

338

National Research Council AssessmentNational Research Council Assessment --Prospects for Inertial Fusion EnergyProspects for Inertial Fusion Energy  

E-Print Network (OSTI)

engineering Laser systems Beam systems Safety & environment Construction of large-scale energy systems Beam direct drive. Understand underlying high Wall materials and design. Implementation Environment and safety.Understand underlying high energy density (HED) physical processes. Environment and safety. Cost competitiveness. Public

339

Three-dimensional linear peeling-ballooning theory in magnetic fusion devices  

SciTech Connect

Ideal magnetohydrodynamics theory is extended to fully 3D magnetic configurations to investigate the linear stability of intermediate to high n peeling-ballooning modes, with n the toroidal mode number. These are thought to be important for the behavior of edge localized modes and for the limit of the size of the pedestal that governs the high confinement H-mode. The end point of the derivation is a set of coupled second order ordinary differential equations with appropriate boundary conditions that minimize the perturbed energy and that can be solved to find the growth rate of the perturbations. This theory allows of the evaluation of 3D effects on edge plasma stability in tokamaks such as those associated with the toroidal ripple due to the finite number of toroidal field coils, the application of external 3D fields for elm control, local modification of the magnetic field in the vicinity of ferromagnetic components such as the test blanket modules in ITER, etc.

Weyens, T., E-mail: tweyens@fis.uc3m.es; Snchez, R.; Garca, L. [Departamento de Fsica, Universidad Carlos III de Madrid, Madrid 28911 (Spain)] [Departamento de Fsica, Universidad Carlos III de Madrid, Madrid 28911 (Spain); Loarte, A.; Huijsmans, G. [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul Lez Durance (France)] [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul Lez Durance (France)

2014-04-15T23:59:59.000Z

340

Thermonuclear fusion in dense stars: Electron screening, conductive cooling, and magnetic field effects  

E-Print Network (OSTI)

We study the plasma correlation effects on nonresonant thermonuclear reactions of carbon and oxygen in the interiors of white dwarfs and liquid envelopes of neutron stars. We examine the effects of electron screening on thermodynamic enhancement of thermonuclear reactions in dense plasmas beyond the linear mixing rule. Using these improved enhancement factors, we calculate carbon and oxygen ignition curves in white dwarfs and neutron stars. The energy balance and ignition conditions in neutron star envelopes are evaluated, taking their detailed thermal structure into account. The result is compared to the simplified "one-zone model," which is routinely used in the literature. We also consider the effect of strong magnetic fields on the ignition curves in the ocean of magnetars.

Potekhin, A Y

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...pel-let equal to the laser energy incident on the...handle tens of thousands of laser pulses of dev-astating...instru-mentation and control technology, ener-gy...neces-sary (20). In the laser approach, convert-ing...solar-thermal-electric conver-sion, wind, hydropower, and combus-tion...

John P. Holdren

1978-04-14T23:59:59.000Z

342

STOCHASTIC ACCELERATION BY A SINGLE WAVE IN A MAGNETIZED PLASMA  

E-Print Network (OSTI)

An approach to thermonuclear fusion, initiated in the earlyapproaches to thermonuclear fusion by means of magnetic

Smith, G.R.

2010-01-01T23:59:59.000Z

343

Fusion Plasma Theory project summaries  

SciTech Connect

This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

Not Available

1993-10-01T23:59:59.000Z

344

Validation of the magnetic energy vs. helicity scaling in solar magnetic structures  

E-Print Network (OSTI)

We assess the validity of the free magnetic energy - relative magnetic helicity diagram for solar magnetic structures. We used two different methods of calculating the free magnetic energy and the relative magnetic helicity budgets: a classical, volume-calculation nonlinear force-free (NLFF) method applied to finite coronal magnetic structures and a surface-calculation NLFF derivation that relies on a single photospheric or chromospheric vector magnetogram. Both methods were applied to two different data sets, namely synthetic active-region cases obtained by three-dimensional magneto-hydrodynamic (MHD) simulations and observed active-region cases, which include both eruptive and noneruptive magnetic structures. The derived energy--helicity diagram shows a consistent monotonic scaling between relative helicity and free energy with a scaling index 0.84$\\pm$0.05 for both data sets and calculation methods. It also confirms the segregation between noneruptive and eruptive active regions and the existence of thresh...

Tziotziou, K; Georgoulis, M K; Archontis, V

2014-01-01T23:59:59.000Z

345

Ignition on the National Ignition Facility: a path towards inertial fusion energy  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8?MJ, 500?TW of light at the third-harmonic, ultraviolet light of 351?nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0?MJ of light at the fundamental wavelength of 1053?nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuteriumtritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications.The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization.Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 162634, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science.This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusionfission energy (LIFE) as a path to achieve carbon-free sustainable energy.

Edward I. Moses

2009-01-01T23:59:59.000Z

346

Ground Magnetics (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics (Nannini, 1986) Ground Magnetics (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Detection and quantitative assessment of such intrusive events can be facilitated by magnetic surveys (ground or aerial magnetic field measurements). These surveys are based on the magnetic susceptibility contrast between magmatic rocks at depth and the sedimentary formations above. References Raffaello Nannini (1986) Some Aspects Of Exploration In Non-Volcanic Areas Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_(Nannini,_1986)&oldid=388291

347

A Method for the High Energy Density SMESSuperconducting Magnetic Energy Storage  

Science Journals Connector (OSTI)

The energy density of superconducting magnetic energy storage (SMES), 107 [J/m3] for the average magnetic field 5T is rather small compared with that of batteries which are estimated as 108 [J/m3...]. This paper ...

Y. Mitani; Y. Murakami

1990-01-01T23:59:59.000Z

348

The National Ignition Facility and the Promise of Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

Moses, E I

2010-12-13T23:59:59.000Z

349

Dynamic Instruction Fusion  

E-Print Network (OSTI)

and energy efficient register file (Transient Register File) tightly coupled to the Fusion ALU in order to provide

Lee, Ian

2012-01-01T23:59:59.000Z

350

Cryogenic structural materials for superconducting magnets  

SciTech Connect

This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

Dalder, E.N.C.; Morris, J.W. Jr.

1985-02-22T23:59:59.000Z

351

The Future of Nuclear Energy: Facts and Fiction Chapter IV: Energy from Breeder Reactors and from Fusion?  

E-Print Network (OSTI)

The accumulated knowledge and the prospects for commercial energy production from fission breeder and fusion reactors are analyzed in this report. The publicly available data from past experimental breeder reactors indicate that a large number of unsolved technological problems exist and that the amount of "created" fissile material, either from the U238 --> Pu239 or from the Th232 --> U233 cycle, is still far below the breeder requirements and optimistic theoretical expectations. Thus huge efforts, including many basic research questions with an uncertain outcome, are needed before a large commercial breeder prototype can be designed. Even if such efforts are undertaken by the technologically most advanced countries, it will take several decades before such a prototype can be constructed. We conclude therefore, that ideas about near-future commercial fission breeder reactors are nothing but wishful thinking. We further conclude that, no matter how far into the future we may look, nuclear fusion as an energy ...

Dittmar, Michael

2009-01-01T23:59:59.000Z

352

Cluster-impact fusion  

Science Journals Connector (OSTI)

We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

P. M. Echenique; J. R. Manson; R. H. Ritchie

1990-03-19T23:59:59.000Z

353

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

Gerber, Richard

2014-05-02T23:59:59.000Z

354

Fusion Engineering and Design 7579 (2005) 2932 First integrated test of the superconducting magnet systems  

E-Print Network (OSTI)

Fusion Engineering and Design 75­79 (2005) 29­32 First integrated test of the superconducting of Applied Physics and Applied Mathematics Room 210 S.W., Mudd Building, New York, NY 10027, USA Available at the center of a 5 m diameter, 3 m tall vacuum chamber. The Floating coil (F-coil) is designed for a maximum

355

Nonlinear Vibration Energy Harvesting with High-Permeability Magnetic Materials  

Science Journals Connector (OSTI)

In this chapter, we introduce the recent demonstrations of high energy density nonlinear vibration energy harvesting with high-permeability magnetic materials, which show great promise for compact and wideband vi...

Xing Xing; Nian X. Sun

2013-01-01T23:59:59.000Z

356

Magnetic horizons of ultra-high energy cosmic rays  

E-Print Network (OSTI)

The propagation of ultra-high energy cosmic rays in extragalactic magnetic fields can be diffusive, depending on the strength and properties of the fields. In some cases the propagation time of the particles can be comparable to the age of the universe, causing a suppression in the flux measured on Earth. In this work we use magnetic field distributions from cosmological simulations to assess the existence of a magnetic horizon at energies around 10$^{18}$ eV.

Batista, Rafael Alves

2014-01-01T23:59:59.000Z

357

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network (OSTI)

scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report: "Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory", by H of 1 defines scientific breakeven. (This is therefore a Livermore definition!) The recent National

358

Definition: Ground Magnetics | Open Energy Information  

Open Energy Info (EERE)

Magnetics Magnetics Jump to: navigation, search Dictionary.png Ground Magnetics The surface magnetic method is the study of the distribution of magnetic minerals in the upper 20-30km of the earth's crust, recorded at an observation point on the earth's surface.[1][2] View on Wikipedia Wikipedia Definition A magnetometer, (pronounced mag-ne-TOM-e-ter), is a measuring instrument used to measure the strength and/or direction of the magnetic field, produced either in the laboratory or existing in nature. Some countries such as the USA, Canada and Australia classify the more sensitive magnetometers as military technology, and control their distribution. The International System of Units unit of measure for the strength of a magnetic field is the Tesla. This is a very large unit of magnetic field.

359

Definition: Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search Dictionary.png Magnetic Techniques The magnetic method is the study of the distribution of magnetic minerals in the upper 20-30km of the earth's crust. The magnetic method may also be used to estimate the thickness of the crust or to constrain temperatures in the crust using the Curie isotherm (the temperatures at which minerals lose their strong magnetic properties), whichever is shallower.[1] References ↑ http://www.ipgp.fr/~diament/Imageries%20Gravi-Mag/Nabighian_etal_Mag.pdf http://www.cflhd.gov/resources/agm/geoApplications/SurfaceMethods/911MagneticMethods.cfm http://onlinelibrary.wiley.com/doi/10.1029/JB087iB06p04846/abstract Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from

360

Measurements of electromagnetic properties of LCT (Large Coil Task) coils in IFSMTF (International Fusion Superconducting Magnet Test Facility)  

SciTech Connect

Participants in the international Large Coil Task (LCT) have designed, built, and tested six different toroidal field coils. Each coil has a 2.5- by 3.5-m, D-shaped bore and a current between 10 and 18 kA and is designed to demonstrate stable operation at 8 T, with a superimposed averaged pulsed field of 0.14 T in 1.0 s and simulated nuclear heating. Testing of the full six-coil toroidal array began early in 1986 and was successfully completed on September 3, 1987, in the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL). This paper summarizes electromagnetic properties of LCT coils measured in different modes of energization and fast dump. Effects of mutual coupling and induced eddy currents are analyzed and discussed. Measurements of the ac loss caused by the superimposed pulsed fields are summarized. Finally, the interpretation of the test results and their relevance to practical fusion are presented. 11 refs., 10 figs., 4 tab.

Shen, S.S.; Baylor, L.R.; Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Wilson, C.T.; Wintenberg, R.E.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

TWO IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION F u s i o n Physics of a Fundamental Energy Source C o n f i n e m e n t Q u a l i t y , n τ ( m - 3 s ) 1970-75 1990s 1975-80 1980s Ion Temperature (K) 10 21 10 20 10 19 10 18 10 17 10 6 10 7 10 8 10 9 Inertial Magnetic Expected reactor regime Expected reactor regime Useful Nuclear Masses (The electron's mass is 0.000549 u.) Label Species Mass (u*) n ( 1 n) neutron 1.008665 p ( 1 H) proton 1.007276 D ( 2 H) deuteron 2.013553 T ( 3 H) triton 3.015500 3 He helium-3 3.014932 α ( 4 He) helium-4 4.001505 * 1 u = 1.66054 x 10 -27 kg = 931.466 MeV/c 2 Nuclear Mass (u) B i n d i n g E n e r g y P e r N u c l e o n ( M e V ) 1 200 150 100 50 10 0 5 62 Ni Fusion Reactions Release Energy Fission Reactions Release Energy EXPERIMENTAL RESULTS IN FUSION RESEARCH Fusion requires high tempera- ture plasmas confined long enough at high density

362

E-Print Network 3.0 - advanced fusion material Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics and Fusion 5 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

363

E-Print Network 3.0 - advanced deuterium fusion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics and Fusion 2 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

364

Core transport studies in fusion devices  

E-Print Network (OSTI)

The turbulence in magnetically confined fusion plasmas has important and non-trivial effects on the quality of the energy confinement. These effects are hard to make a quantitative assessment of analytically. The problem investigated in this article is the transport of energy and particles, in particular impurities, in a Tokamak plasma. Impurities from the walls of the plasma vessel cause energy losses if they reach the plasma core. It is therefore important to understand the transport mechanisms to prevent impurity accumulation and minimize losses. This is an area of research where turbulence plays a major role and is intimately associated with the performance of future fusion reactors, such as ITER.

Strand, Pr; Nordman, Hans

2010-01-01T23:59:59.000Z

365

Ion beam fusion  

Science Journals Connector (OSTI)

...that converts the fusion and blanket energy into...target gain G is the thermonuclear energy produced by the...Most concep- tual fusion power plants have a...and the International Thermonuclear Experimental Reactor...situation, the inertial fusion com- munity in the...

1999-01-01T23:59:59.000Z

366

Assessment of Tumor Energy and Oxygenation Status by Bioluminescence, Nuclear Magnetic Resonance Spectroscopy, and Cryospectrophotometry  

Science Journals Connector (OSTI)

...Assessment of Tumor Energy and Oxygenation Status...Bioluminescence, Nuclear Magnetic Resonance...Assessment of tumor energy and oxygenation status...bioluminescence, nuclear magnetic resonance...Assessment of Tumor Energy and Oxyg nationStatus by Bioluminescence, Nuclear Magnetic Resonance...

W. Mueller-Klieser; C. Schaefer; S. Walenta; E. K. Rofstad; B. M. Fenton; and R. M. Sutherland

1990-03-15T23:59:59.000Z

367

Elise - the next step in development of induction heavy ion drivers for inertial fusion energy  

SciTech Connect

LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or {open_quotes}drive{close_quotes} inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act.

Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S. [and others

1994-11-01T23:59:59.000Z

368

Long-range correlation studies at the SPS energies in MC model with string fusion  

E-Print Network (OSTI)

Studies of the ultrarelativistic collisions of hadrons and nuclei at different centrality and energy enable to explore the QCD phase diagram in a wide range of temperature and baryon density. Long-range correlation studies are considered as a tool, sensitive to the observation of phase transition and the critical point. In the present work, a Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions is applied to heavy and light ion collisions at the cms energy range from a few up to several hundred GeV per nucleon. The model describes the nuclear collisions at the partonic level through interaction of color dipoles and takes into account the effects of string fusion, which can be considered as an alternative to relativistic hydrodynamics way of describing the collective phenomena in heavy-ion collisions. The implementing of both the string fusion and the finite rapidity length of strings allowed to consider the particle production at non-zero baryochemical potential. We calculated the long-range correlation functions and correlation coefficients between multiplicities and transverse momentum at several energies for different colliding systems and obtained predictions for the experiment.

Vladimir Kovalenko; Vladimir Vechernin

2015-02-05T23:59:59.000Z

369

Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt  

Science Journals Connector (OSTI)

European activities on inertial fusion energy are coordinated by keep in touch activities of the European Fusion Programme coordinated by the European Commission. There is no general inertial fusion program in Europe. Instead, a number of activities relevant to inertial fusion are carried out by university groups and research centers. The Helmholtz-Research Center GSI-Darmstadt (Gesellschaft fr Schwerionenforschung) operates accelerator facilities which provide the highest intensity for heavy ion beams and therefore key issues of ion beam driven fusion can be addressed. In addition to the accelerator facilities, one high-energy laser system is available (nhelix: nanosecond high-energy laser for ion experiments) and another one is under construction (PHELIX: petawatt high-energy laser for ion experiments). The heavy ion synchrotron facility, SIS18 (Schwer-Ionen-Synchrotron 18) recently delivered an intense uranium beam that deposits about 1kJ/g specific energy in solid matter. Using this beam, experiments have been performed where solid Pb- and Ta-targets have been heated to the level of 1eV. Experiments to study interaction mechanism of heavy ion beams with matter have been continued and are reported here.

D.H.H. Hoffmann; A. Blazevic; S. Korostiy; P. Ni; S.A. Pikuz; B. Rethfeld; O. Rosmej; M. Roth; N.A. Tahir; S. Udrea; D. Varentsov; K. Weyrich; B.Yu. Sharkov; Y. Maron

2007-01-01T23:59:59.000Z

370

2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science and Technology, Vol.64, No.2, August 2013,  

E-Print Network (OSTI)

© 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 Pulsed DEMO design of energy storage issues, and fatigue life improvements in Nb3Sn CICC superconductors. I. BACKGROUND In 2011

371

Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State  

E-Print Network (OSTI)

To understand the physics of solar flares, including the local reorganisation of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We investigate the values of the free magnetic energy estimated from either the excess energy in extrapolated fields or the magnetic virial theorem. For four different active regions, we have reconstructed the nonlinear force-free field and the linear force-free field corresponding to the minimum-energy state. The free magnetic energies are then computed. From the energy budget and the observed magnetic activity in the active region, we conclude that the free energy above the minimum-energy state gives a better estimate and more insights into the flare process than the free energy above the potential field state.

S. Regnier; E. R. Priest

2008-05-12T23:59:59.000Z

372

Fusionfission hybrids for nuclear waste transmutation: A synergistic step between Gen-IV fission and fusion reactors  

Science Journals Connector (OSTI)

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusionfission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280kg of actinide wastes per year and produces 3000MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusionfission hybrids and Generation-IV reactors.

T.A. Mehlhorn; B.B. Cipiti; C.L. Olson; G.E. Rochau

2008-01-01T23:59:59.000Z

373

Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.  

SciTech Connect

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

2007-09-01T23:59:59.000Z

374

Fusion News: 2002  

Science Journals Connector (OSTI)

This paper summarizes key news events in the development of fusion energy. Highlights include status of ITER negotiations, FESAC studies, NIF construction and fusion-related legislation. Also included are summ...

Stephen O. Dean

2003-03-01T23:59:59.000Z

375

Chapter 7 - Fusion  

Science Journals Connector (OSTI)

Abstract This chapter briefly introduces the topic of fusing light nuclei such as deuterium (D) and tritium (T) together to release binding energy. Characteristics of a plasma in which thermonuclear fusion is carried out are described. Fusion reaction cross sections are graphed for the most promising reactions including D-D and D-T. The ignition temperature for fusion is shown as the cross over point between energy produced by fusion and radiation losses due to mechanisms such as bremsstrahlung.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

376

Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor  

DOE Patents (OSTI)

A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

Woolley, Robert D. (Belle Mead, NJ)

1999-01-01T23:59:59.000Z

377

Long-range correlation studies at the SPS energies in MC model with string fusion  

E-Print Network (OSTI)

Studies of the ultrarelativistic collisions of hadrons and nuclei at different centrality and energy enable to explore the QCD phase diagram in a wide range of temperature and baryon density. Long-range correlation studies are considered as a tool, sensitive to the observation of phase transition and the critical point. In the present work, a Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions is applied to heavy and light ion collisions at the cms energy range from a few up to several hundred GeV per nucleon. The model describes the nuclear collisions at the partonic level through interaction of color dipoles and takes into account the effects of string fusion, which can be considered as an alternative to relativistic hydrodynamics way of describing the collective phenomena in heavy-ion collisions. The implementing of both the string fusion and the finite rapidity length of strings allowed to consider the particle production at non-zero baryochemical potential. We calculated th...

Kovalenko, Vladimir

2015-01-01T23:59:59.000Z

378

Jiangxi Jinli Permanent Magnet Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jinli Permanent Magnet Technology Co Ltd Jinli Permanent Magnet Technology Co Ltd Jump to: navigation, search Name Jiangxi Jinli Permanent Magnet Technology Co Ltd Place Ganzhou, Jiangxi Province, China Sector Wind energy Product A China-based mining company for rare earth metals used in wind power generators. References Jiangxi Jinli Permanent Magnet Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jiangxi Jinli Permanent Magnet Technology Co Ltd is a company located in Ganzhou, Jiangxi Province, China . References ↑ "Jiangxi Jinli Permanent Magnet Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Jiangxi_Jinli_Permanent_Magnet_Technology_Co_Ltd&oldid=347439

379

Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration  

SciTech Connect

Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382-428 (India)

2014-01-29T23:59:59.000Z

380

A TUTORIAL ON IGNITION AND GAIN FOR SMALL FUSION TARGETS  

SciTech Connect

Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriate to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.

Kirkpatrick, R. C. [Los Alamos National Laboratory, Los Alamos, NM 087545 (United States)

2009-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

THE U.S. ADVANCED TOKAMAK FUSION SCIENCE PROGRAM A White Paper  

E-Print Network (OSTI)

Version 14 5/20/99 THE U.S. ADVANCED TOKAMAK FUSION SCIENCE PROGRAM A White Paper Executive Overview Tokamak research shows that magnetic fusion energy deserves serious consideration as a viable and pursue greater understanding of the new advanced-tokamak (AT) regimes to increase the economic

382

To be presented at the Eighth Topical Meeting on Technology of Fusion Energy, Salt Lake City, UT,October 9-13, 1988.  

E-Print Network (OSTI)

To be presented at the Eighth Topical Meeting on Technology of Fusion Energy, Salt Lake City, UT fc rt,^ O U. S. Government purposes. *Work supported by the Department of Energy, Office of Fusion few microns (2 2 microns) to avoid sticking problems on the cold surfaces of the heat exchanger

Harilal, S. S.

383

G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 -21 October 2006 -Chengdu, China -paper TH/P6-4 1 Particle Simulation Analysis of  

E-Print Network (OSTI)

G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 - 21 October 2006 - Chengdu, China - paper TH Agency, Naka, Ibaraki 311-0193, Japan #12;G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 - 21 an interpretation of the observed phenomenology based on nonlinear particle simulations. #12;G. Vlad et al. 21st

Vlad, Gregorio

384

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Rainer W. Kuehne

2006-04-14T23:59:59.000Z

385

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Kuehne, R W

2006-01-01T23:59:59.000Z

386

Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system  

SciTech Connect

A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

2009-10-22T23:59:59.000Z

387

Presented by Information Fusion  

E-Print Network (OSTI)

Presented by Information Fusion: Science and Engineering of Combining Information from Multiple's Office of Science #12;2 Managed by UT-Battelle for the U.S. Department of Energy Rao_InfoFusion_SC10 Information Fusion at ORNL � ORNL Instrumental in formulating and fostering this multi-disciplinary area

388

The Cost of Superconducting Magnets as a Function of Stored Energy and Design Magnetic Induction Times the Field Volume  

SciTech Connect

By various theorems one can relate the capital cost of superconducting magnets to the magnetic energy stored within that magnet. This is particularly true for magnet where the cost is dominated by the structure needed to carry the magnetic forces. One can also relate the cost of the magnet to the product of the magnetic induction and the field volume. The relationship used to estimate the cost the magnet is a function of the type of magnet it is. This paper updates the cost functions given in two papers that were published in the early 1990 s. The costs (escalated to 2007 dollars) of large numbers of LTS magnets are plotted against stored energy and magnetic field time field volume. Escalated costs for magnets built since the early 1990 s are added to the plots.

Green, Mike; Green, M.A.; Strauss, B.P.

2007-08-27T23:59:59.000Z

389

Neutron imaging with bubble chambers for inertial confinement fusion.  

E-Print Network (OSTI)

??One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated (more)

Ghilea, Marian Constantin (1973 - ); Meyerhofer, David D.

2011-01-01T23:59:59.000Z

390

Tritium production potential of beam research and magnetic fusion program technologies  

SciTech Connect

Regular replenishment of tritium in the nuclear weapons stockpile is essential to maintain our nuclear deterrent. Nuclear reactor facilities presently used for the production of tritium are aging, and their operation is being curtailed awaiting the repairs and upgrades needed to meet modern standards of safety and environment. To provide improved capability in the future, DOE plans to construct a new production reactor. Alternatives to nuclear reactor methods for the production of tritium, mainly electrically-driven accelerator or fusion systems, have been proposed many times in the past. Given the critical national security implications of maintaining adequate tritium production facilities, it is clearly worthwhile for political decision-makers to have a clear and accurate picture of the technical options that could be made available at various points in the future. The goal of this white paper is to summarize available technical information on a set of non-nuclear-reactor options for tritium production with a minimum of advocacy for any one system of implicit assumptions about politically desirable attributes. Indeed, these various options differ considerably in aspects such as the maturity of the technology, the development cost and timescales required, and the capital and operating costs of a typical ''optimized'' facility.

Lee, J.D. (comp.)

1989-03-01T23:59:59.000Z

391

Dynamics of Fusion in Plasmas  

Science Journals Connector (OSTI)

......gaining energy from nuclear fusion reactions using different...energy is by means of nuclear fusion reactions. Such reactions...from time to time some nuclear fusion occurs and energy is...more energy output than input, the and/or must......

A. Bonasera

2004-02-01T23:59:59.000Z

392

Annular Vortex Generation for Inertial Fusion Energy Beam-Line Protection  

SciTech Connect

The use of swirling annular vortex flow inside beam entrance tubes can protect beam-line structural materials in chambers for heavy-ion inertial fusion energy (IFE) applications. An annular wall jet, or vortex tube, is generated by injecting liquid tangent to the inner surface of a tube wall with both axially and azimuthally directed velocity components. A layer of liquid then lines the beam tube wall, which may improve the effectiveness of neutron shielding, and condenses and removes vaporized coolant that may enter the beam tubes. Vortex tubes have been constructed and tested with a thickness of three-tenths the pipe radius. Analysis of the flow is given, along with experimental examples of vortex tube fluid mechanics and an estimate of the layer thickness, based on simple mass conservation considerations.

Pemberton, Steven J.; Abbott, Ryan P.; Peterson, Per F. [University of California (United States)

2003-05-15T23:59:59.000Z

393

Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova  

E-Print Network (OSTI)

the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING Università degli Studi di Padova in agreement

Cesare, Bernardo

394

Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices  

SciTech Connect

A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point.

Campbell, M.M.

1980-01-01T23:59:59.000Z

395

Ground Magnetics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics At Alum Area (DOE GTP) Ground Magnetics At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Alum_Area_(DOE_GTP)&oldid=402978" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

396

COLLABORATIVE: FUSION SIMULATION PROGRAM  

SciTech Connect

New York University, Courant Institute of Mathematical Sciences, participated in the ???¢????????Fusion Simulation Program (FSP) Planning Activities???¢??????? [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP???¢????????s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

Chang, Choong Seock

2012-06-05T23:59:59.000Z

397

Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine  

SciTech Connect

Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

2008-10-24T23:59:59.000Z

398

World population and energy demand growth: the potential role of fusion energy in an efficient world  

Science Journals Connector (OSTI)

...substantial amounts of nuclear and solar energy to meet their long-term needs...substantial amounts of nuclear and solar energy to meet their long-term needs...use must be made of nuclear and solar energies. Both sources have the advantage...

1999-01-01T23:59:59.000Z

399

Diode-pumped solid-state laser driver experiments for inertial fusion energy applications  

SciTech Connect

Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

1995-07-11T23:59:59.000Z

400

Handling and archiving of magnetic fusion data at DIII-D  

SciTech Connect

Recent modifications to the computer network at DIII-D enhance the collection and distribution of newly acquired and archived experimental data. Linked clients and servers route new data from diagnostic computers to centralized mass storage and distribute data on demand to local and remote workstations and computers. Capacity for data handling exceeds the upper limit of DIII-D Tokamak data production of about 4 GBytes per day. Network users have fast access to new data stored on line. An interactive program handles requests for restoration of data archived off line. Disk management procedures retain selected data on line in preference to other data. Redundancy of all components on the archiving path from the network to magnetic media has prevented loss of data. Older data are rearchived as dictated by limited media life.

VanderLaan, J.F.; Miller, S.; McHarg, B.B. Jr.; Henline, P.A.

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fusion reactor systems  

Science Journals Connector (OSTI)

In this review we consider deuterium-tritium (D-T) fusion reactors based on four different plasma-confinement and heating approaches: the tokamak, the theta-pinch, the magnetic-mirror, and the laser-pellet system. We begin with a discussion of the dynamics of reacting plasmas and basic considerations of reactor power balance. The essential plasma physical aspects of each system are summarized, and the main characteristics of the corresponding conceptual power plants are described. In tokamak reactors the plasma densities are about 1020 m-3, and the ? values (ratio of plasma pressure to confining magnetic pressure) are approximately 5%. Plasma burning times are of the order of 100-1000 sec. Large superconducting dc magnets furnish the toroidal magnetic field, and 2-m thick blankets and shields prevent heat deposition in the superconductor. Radially diffusing plasma is diverted away from the first wall by means of null singularities in the poloidal (or transverse) component of the confining magnetic field. The toroidal theta-pinch reactor has a much smaller minor diameter and a much larger major diameter, and operates on a 10-sec cycle with 0.1-sec burning pulses. It utilizes shock heating from high-voltage sources and adabatic-compression heating powered by low-voltage, pulsed cryogenic magnetic or inertial energy stores, outside the reactor core. The plasma has a density of about 1022 m-3 and ? values of nearly unity. In the power balance of the reactor, direct-conversion energy obtained by expansion of the burning high-? plasma against the containing magnetic field is an important factor. No divertor is necessary since neutral-gas flow cools and replaces the "spent" plasma between pulses. The open-ended mirror reactor uses both thermal conversion of neutron energy and direct conversion of end-loss plasma energy to dc electrical power. A fraction of this direct-convertor power is then fed back to the ioninjection system to sustain the reaction and maintain the plasma. The average ion energy is 600 keV, plasma diameter 6 m, and the plasma beta 85%. The power levels of the three magnetic-confinement devices are in the 500-2000 MWe range, with the exception of the mirror reactor, for which the output is approximately 200 MWe. In Laser-Pellet reactors, frozen D-T pellets are ignited in a cavity which absorbs the electromagnetic, charged particle, and neutron energy from the fusion reaction. The confinement is "inertial," since the fusion reaction occurs during the disassembly of the heated pellet. A pellet-cavity unit would produce about 200 MWt in pulses with a repetition rate of the order of 10 sec-1. Such units could be clustered to give power plants with outputs in the range of 1000 MWe.

F. L. Ribe

1975-01-01T23:59:59.000Z

402

Paths to fusion energy The next 30 years, the next 10 years  

E-Print Network (OSTI)

Facility ITER Demonstra9on Power Plant Base Research Program Plasma confinement Plasma confinement research program #12;Issues for a fusion roadmap · Trade

403

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S727S734 doi:10.1088/0029-5515/47/10/S20  

E-Print Network (OSTI)

in the recent years of fusion plasma physics research. The resonant excitations of SAW modes in toroidal plasmas

Zonca, Fulvio

404

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

MIT (Fusion Alcator C-Mod) Paul Henderson, PPPL (Fusion PPPLNetworking, PPPL) Daniel Hitchcock, DOE/SC/ASCR (ASCR

Dart, Eli

2008-01-01T23:59:59.000Z

405

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

406

Atomic Physics and Thermonuclear Fusion Research  

Science Journals Connector (OSTI)

Presently thermonuclear fusion research is faced with a number of atomic and molecular physics problems depending on the type of high-temperature plasma investigated. The present article discusses some particular atomic physics aspects in connection with magnetically confined plasmas (Tokamaks, Stellarators): (1) rate equations for density, momentum and energy with application to plasmas; (2) initial phase of Tokamak plasmas; (3) influence of impurity radiation on operating conditions of fusion plasmas in general and on Tokamak plasmas in particular; (4) influence of atomic elementary reactions on thermodynamic plasma properties; (5) level structures of highly ionized atoms; (6) spectroscopic diagnostic problems.

H W Drawin

1981-01-01T23:59:59.000Z

407

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

408

Laser Fusion: The Uncertain Road to Ignition  

Science Journals Connector (OSTI)

In early 2014, the U.S. National Ignition Facility announced that it had achieved a fusion reaction that produced net positive energy. Fusion scientists have applauded that...

Rose, Melinda

2014-01-01T23:59:59.000Z

409

Global Energetics of Solar Flares: I. Magnetic Energies  

E-Print Network (OSTI)

We present the first part of a project on the global energetics of solar flares and coronal mass ejections (CMEs) that includes about 400 M- and X-class flares observed with AIA and HMI onboard SDO. We calculate the potential energy, free energy, and the flare-dissipated magnetic energy. We calculate these magnetic parameters using two different NLFFF codes: The COR-NLFFF code uses the line-of-sight magnetic field component $B_z$ from HMI to define the potential field, and the 2D coordinates of automatically detected coronal loops in 6 coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric 3D vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of $ \\approx 3$. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The ma...

Aschwanden, Markus J; Jing, Ju

2014-01-01T23:59:59.000Z

410

Scenarios for multi?unit inertial fusion energy plants producing hydrogen fuel  

Science Journals Connector (OSTI)

It is presented an extended summary for a paper describing: a) the motivation of the inertial fusion in general and particularly for the production of the hydrogen fuel powering low?emission vehicles b) the general requirements for fusion electric plants c) a comparative economic analysis concerning the design of drivers and target chambers. (AIP)

B. Grant Logan

1994-01-01T23:59:59.000Z

411

Electron energy distributions in a magnetized inductively coupled plasma  

SciTech Connect

Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics.

Song, Sang-Heon, E-mail: ssongs@umich.edu, E-mail: Sang-Heon.Song@us.tel.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2104 (United States); Yang, Yang, E-mail: yang-yang@amat.com [Applied Materials Inc., 974 E. Arques Avenue, M/S 81312, Sunnyvale, California 94085 (United States); Chabert, Pascal, E-mail: pascal.chabert@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC, Paris XI, 91128 Palaiseau (France); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

2014-09-15T23:59:59.000Z

412

E-Print Network 3.0 - accelerator fusion research Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Physics and Fusion 48 Inertial fusion energy studies in the UK Summary: 12;The types of research - Fusion Absorption and partition of laser energy - effects of...

413

Flywheel energy storage using superconducting magnetic bearings  

SciTech Connect

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

414

ROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL THERMONUCLEAR EXPERIMENTAL REACTOR  

E-Print Network (OSTI)

Rle de lnergie de fusion dans la production nergtique du 21 e sicle et stratgie de dveloppement avec le racteur thermonuclaire international ITER

Kikuchi Mitsuru

415

Low-energy magnetic radiation: deviations from GOE  

E-Print Network (OSTI)

A pronounced spike at low energy in the strength function for magnetic radiation (LEMAR) is found by means of Shell Model calculations, which explains the experimentally observed enhancement of the dipole strength. LEMAR originates from statistical low-energy M1-transitions between many excited complex states. Re-coupling of the proton and neutron high-j orbitals generates the strong magnetic radiation. LEMAR is closely related to Magnetic Rotation. LEMAR is predicted for nuclides participating in the r-process of element synthesis and is expected to change the reaction rates. An exponential decrease of the strength function and a power law for the size distribution of the $B(M1)$ values are found, which strongly deviate from the ones of the GOE of random matrices, which is commonly used to represent complex compound states.

S. Frauendorf; R. Schwengner; K. Wimmer

2014-07-07T23:59:59.000Z

416

LOW ENERGY ELECTRON TRANSPORT BY RECONNECTED MAGNETIC FIELDS AROUND MARS  

E-Print Network (OSTI)

presents a significant ionospheric obstacle to the solar wind. Moreover, the presence of strong crustalLOW ENERGY ELECTRON TRANSPORT BY RECONNECTED MAGNETIC FIELDS AROUND MARS A DISSERTATION SUBMITTED;Abstract The solar wind interaction with Mars has been studied extensively through satellite observations

417

Low-Energy Fusion-Fission Dynamics of Heavy Nuclear Systems  

SciTech Connect

A new approach is proposed for a unified description of strongly coupled deep-inelastic (DI) scattering, fusion, fission, and quasi-fission (QF) processes of heavy ion collisions. A unified driving-potential and a unified set of dynamic Langevin-type equations of motion are used in this approach. This makes it possible to perform a full (continuous) time analysis of the evolution of heavy nuclear systems, starting from the approaching stage, moving up to the formation of the compound nucleus or emerging into two final fragments. The calculated mass, charge, energy and angular distributions of the reaction products agree well with the corresponding experimental data for heavy and superheavy nuclear systems. Collisions of very heavy nuclei (such as 238U+248Cm) are investigated as an alternative way for production of superheavy elements. Large charge and mass transfer was found in these reactions due to the inverse (anti-symmetrizing) quasi-fission process leading to formation of surviving superheavy long-lived neutron-rich nuclei.

Zagrebaev, Valery [Flerov Laboratory of Nuclear Reaction, JINR, Dubna, 141980, Moscow region (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.W. Goethe-Universitaet, Frankfurt (Germany)

2006-08-14T23:59:59.000Z

418

Breakthrough: Neutron Science for the Fusion Mission  

SciTech Connect

How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

McGreevy, Robert

2012-04-24T23:59:59.000Z

419

The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection  

SciTech Connect

By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

Lu, San; Lu, Quanming; Huang, Can; Wang, Shui [CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China)] [CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China)

2013-06-15T23:59:59.000Z

420

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network (OSTI)

Tritium can be bred in a fusion reactor by capturing fusionchamber. Whereas magnetic-fusion reactors typically combineProjected MFE reactors have a toroidal fusion-power core

Sharp, W. M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cold fusion lab dies, but fusion research goes on  

Science Journals Connector (OSTI)

Cold fusion lab dies, but fusion research goes on ... that deuterium nuclei can fuse at or near room temperature inside a metal lattice to produce useful energy, is an idea that refuses to die, despite its rejection by mainstream scientists. ...

1991-07-01T23:59:59.000Z

422

Stochastic semi-classical description of fusion at near-barrier energies  

SciTech Connect

Fusion reactions of heavy ions are investigated by employing a simple stochastic semi-classical model, which includes coupling between the relative motion and low frequency collective surface modes of colliding ions similarly to the quantal coupled-channels description. The quantal effect enters into the calculation through the initial zero-point fluctuations of the surface vibrations. A good agreement with results of coupled-channels calculations as well as experimental data is obtained for fusion cross sections of Ni isotopes. The internal excitations in nonfusing events as well as the fusion time are investigated.

Ayik, Sakir [Physics Department, Tennessee Technological University, Cookville, Tennessee 38505 (United States); Yilmaz, Bulent [Physics Department, Ankara University, TR-06100 Ankara (Turkey); Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France); Lacroix, Denis [Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

2010-03-15T23:59:59.000Z

423

Critical Heat Flux -CHF in Liquid Metal in Presence of a Magnetic Field with Particular Reference to Fusion Reactor Project  

Science Journals Connector (OSTI)

Knowledge of the critical heat flux q??crit is a cornerstone of reactor design fission, but as will demonstrate also in fusion reactors. This quantity cannot be deduced directly,...

F. J. Arias

2010-04-01T23:59:59.000Z

424

Fire-protection research for energy technology: FY 80 year-end report. [For fusion energy experiments and other energy research  

SciTech Connect

This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

1981-05-26T23:59:59.000Z

425

The correlation of solar flare production with magnetic energy in active regions  

Science Journals Connector (OSTI)

An investigation of 531 active regions was made to determine the correlation between energy released by flares and the available energy in magnetic fields of the regions. Regions with magnetic flux greater tha...

E. B. Mayfield; John K. Lawrence

1985-04-01T23:59:59.000Z

426

PPPL to launch major upgrade of key fusion energy test facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

the next stage of its mission to chart an attractive course for the development of nuclear fusion as a clean, safe and abundant fuel for generating electricity. The project will...

427

Fusion Energy Sciences Priorities Over the Next 1020 years C. E. Kessel, PPPL  

E-Print Network (OSTI)

of ITER, and the subsequent pursuit of a demonstration power plant (DEMO). The US fusion program has, simply because we have virtually no experimental database on which to design, construct and operate

428

Studies of fast electron transport in the problems of inertial fusion energy  

E-Print Network (OSTI)

1-3] is Fast Ignition, in which the set of lasers is used tothe original laser fusion design, called Fast Ignition, lookignition pulse to the compressed target core. If a powerful laser

Frolov, Boris K.

2006-01-01T23:59:59.000Z

429

Radiative energy exhaust by sputtered and seeded impurities in fusion reactor  

Science Journals Connector (OSTI)

The combine effect of the seeded and sputtered impurities on the power load to the divertor plate and operation of fusion reactor is investigated in the paper. Since the ... temperature). The steady states of ITE...

R. Stankiewicz

2006-10-01T23:59:59.000Z

430

Fusion-energy reaction 3H(d,?)n at low energies  

Science Journals Connector (OSTI)

We have extended our past measurements of the H2(t,?)n reaction near the low-energy (3/2)+ resonance by measuring eight more data points over the lab deuteron energy range 80116 keV. This was accomplished by bombarding a tritium gas target with deuterons, in contrast to the previous measurements in which a deuterium gas target was bombarded with tritons. The present data are accurate to 1.6%. The results of including the present data in a simple two-channel, two-level, R-matrix analysis and also in a large three-channel, multilevel, R-matrix analysis are presented. The resonance is characterized by giving the S-matrix poles from the R-matrix analyses. Of interest is the discovery that both analyses give two resonance poles on different (unphysical) Riemann sheets, one of them being a so-called shadow pole. This is the first experimental observation of a shadow pole in nuclear and particle physics. Maxwellian reactivities up to a plasma temperature of 20 keV are presented.

Ronald E. Brown; Nelson Jarmie; G. M. Hale

1987-06-01T23:59:59.000Z

431

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 8, 2013 August 8, 2013 Audit Report: OAS-M-13-06 Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts July 22, 2013 EIS-0431: DOE Notice of Availability of Draft Environmental Impact Statement Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, Kern County, CA July 19, 2013 This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory.

432

Fusion Reactor Plasmas with Polarized Nuclei  

Science Journals Connector (OSTI)

Nuclear fusion rates can be enhanced or suppressed by polarization of the reacting nuclei. In a magnetic fusion reactor, the depolarization time is estimated to be longer than the reaction time.

R. M. Kulsrud; H. P. Furth; E. J. Valeo; M. Goldhaber

1982-10-25T23:59:59.000Z

433

Reviving Cold Fusion  

Science Journals Connector (OSTI)

Reviving Cold Fusion ... In March 1989, electrochemists B. Stanley Pons and Martin Fleischmann announced at a press conference at the University of Utah that they had tamed the power of nuclear fusion in a benchtop electrolysis experiment. ... The discovery of cold fusion, as it came to be called, held the promise of endless amounts of pollution-free energy being generated from the natural deuterium in water. ...

STEPHEN K. RITTER

2012-05-14T23:59:59.000Z

434

Effects of nuclear forces in muon-catalyzed fusion: Nonadiabatic treatment of energy shifts and fusion rates for S states of td?  

Science Journals Connector (OSTI)

The positions and widths of the J=0 energy levels of the td? molecular ion have been computed including the effects of strong nuclear interaction on the td? wave function. The applied formalism incorporates the strong force into the nonadiabatic treatment of td? by means of a nuclear surface boundary condition derived from the latest R-matrix parametrization of nuclear scattering data. Accurate basis-set expansions of the td? wave functions have been used, including basis functions containing inverse powers of the t-d distance. Relative to the results of adiabatic calculations employing the same nuclear input, the computed energy shifts and widths are reduced by 4% and 8% for the ground and excited states, respectively. Our results are qualitatively consistent with the results of recent nonadiabatic optical potential calculations. The fusion rates derived from our calculations, 1.251012 and 1.051012 s-1 for the ground and excited states, respectively, are about 15% larger than those given by the standard formula that factorizes the nuclear and molecular effects.

K. Szalewicz; B. Jeziorski; A. Scrinzi; X. Zhao; R. Moszynski; W. Kolos; P. Froelich; H. J. Monkhorst; A. Velenik

1990-10-01T23:59:59.000Z

435

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields  

SciTech Connect

We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20100 T (potentially attainable using present experimental methods) that compress to greater than 4 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2013-07-15T23:59:59.000Z

436

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

to build a demonstration fusion reactor following successfulthe worlds first reactor scale fusion device located infull-scale reactor modeling for the U.S. fusion program and

Dart, Eli

2008-01-01T23:59:59.000Z

437

Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy  

SciTech Connect

Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator`s lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement.

Grote, D.P.

1994-11-01T23:59:59.000Z

438

Stimulated scattering in laser driven fusion and high energy density physics experiments  

SciTech Connect

In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?

Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-09-15T23:59:59.000Z

439

Splenogonadal Fusion  

Science Journals Connector (OSTI)

Splenogonadal fusion is a very rare congenital malformation. It is characterized by fusion of the spleen and gonad. The first case of splenogonadal fusion was described by Bostroem in 1883. There are two types: c...

Ahmed H. Al-Salem

2014-01-01T23:59:59.000Z

440

Type Fusion  

Science Journals Connector (OSTI)

Fusion is an indispensable tool in the arsenal ... Less well-known, but equally valuable is type fusion, which states conditions for fusing an application ... algebra. We provide a novel proof of type fusion base...

Ralf Hinze

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NIF-0205-10331 Clean Energy  

E-Print Network (OSTI)

Ignition Facility NIF is based on 1960's -- 1990's laser technology NIF-0205-10177-r1 -L1 01EIM/cld P8475P result in a low rep rate, low efficiency laser fusion driver #12;The National Ignition Facility IFE laser Ignition Facility P8435NIF-0105-10154-r2 31EIM/sb Magnetic Fusion Energy Inertial Fusion Energy Biggest

442

Magnetic energy production by turbulence in binary neutron star mergers  

E-Print Network (OSTI)

The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would aid greatly in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level (~10^16) G fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger time scale. Since turbulent magnetic energy dissipates through reconnection events which accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10^-4 of the ~ 10^53 erg of orbital kinetic available gets processed through reconnection, and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10^-7 erg/cm^2, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detecta...

Zrake, Jonathan

2013-01-01T23:59:59.000Z

443

Parametic Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion  

E-Print Network (OSTI)

Physics of Magnetic Fusion Reactors, Rev. of Modern Physicsheavy ion beam driven fusion reactor study, Technical Reporta toroidally shaped fusion reactor (tokamak) such as shown

Prost, Lionel Robert

2007-01-01T23:59:59.000Z

444

Score Fusion and Decision Fusion  

Science Journals Connector (OSTI)

Score fusion is a paradigm, which calculates similarity scores ... then combines the two scores according to a fusion formula, e.g., the overall score ... mean of the two modality scores. Decision fusion is a par...

2009-01-01T23:59:59.000Z

445

Focus on Fusion...  

Science Journals Connector (OSTI)

Focus on Fusion... ... As 1957 ended, the British press set off a thermonuclear uproar, blasted the U. S. Atomic Energy Commission for assertedly withholding information on British breakthroughs in controlled thermonuclear reactions. ... However, last year did see a breakthrough of sorts as thermonuclear information managed to clear the secrecy hurdle at last; by fall, fusion research was completely declassified. ...

1959-01-05T23:59:59.000Z

446

Fusion of Polarized Deuterons  

Science Journals Connector (OSTI)

The nuclear physics aspects of the d-d reactions initiated by low-energy polarized deuterons are discussed. It is shown that the use of polarized deuterons does not suppress the fusion of deuterons with deuterons and hence does not suppress neutron production. Therefore a recently proposed "neutron-free" d-He3 fusion reactor is unlikely to work.

H. M. Hofmann and D. Fick

1984-06-04T23:59:59.000Z

447

High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy Uses  

SciTech Connect

The report summarizes research undertaken by a multidisciplinary team aimed at the development of the next generation high-energy permanent magnets. The principal approach was relied on bottom-up fabrication of anisotropic nanocomposite magnets. Our efforts resulted in further development of the theoretical concept and fabrication principles for the nanocomposites and in synthesis of a range of rare-earth-based hard magnetic nanoparticles. Even though we did not make a breakthrough in the assembly of these hard magnetic particles with separately prepared Fe(Co) nanoparticles and did not obtain a compact nanocomposite magnet, our performed research will help to direct the future efforts, in particular, towards nano-assembly via coating, when the two phases which made the nanocomposite are first organized in core-shell-structured particles. Two other approaches were to synthesize (discover) new materials for the traditional singe-material magnets and the nanocomposite magnets. Integrated theoretical and experimental efforts lead to a significant advance in nanocluster synthesis technique and yielded novel rare-earth-free nanostructured and nanocomposite materials. Examination of fifteen R-Fe-X alloy systems (R = rare earth), which have not been explored earlier due to various synthesis difficulties reveal several new ferromagnetic compounds. The research has made major progress in bottom-up manufacturing of rare-earth-containing nanocomposite magnets with superior energy density and open new directions in development of higher-energy-density magnets that do not contain rare earths. The advance in the scientific knowledge and technology made in the course of the project has been reported in 50 peer-reviewed journal articles and numerous presentations at scientific meetings.

Hadjipanayis, George C. [University of Delaware] [University of Delaware; McCallum, William R. [Ames Laboratory] [Ames Laboratory; Sellmyer, David J. [University of Nebraska, Lincoln] [University of Nebraska, Lincoln; Harris, Vincent [Northeastern University] [Northeastern University; Carpenter, Everett E. [Virginia Commonwealth University] [Virginia Commonwealth University; Liu, Jinfang [Electron Energy Corporation] [Electron Energy Corporation

2013-12-17T23:59:59.000Z

448

The path to fusion power  

Science Journals Connector (OSTI)

...proportional to P 2. The energy confinement time...determines the energy gain of the fusion...needed to keep the electric current in the plasma...in France, once planning permission-which...The much higher energy fusion neutrons...essentially the same distributions of energies as those...

2007-01-01T23:59:59.000Z

449

Knot energy in unstretching ergodic magnetic flux tubes  

E-Print Network (OSTI)

Recently Titov et al [ApJ \\textbf{693},(2009) and ApJ (2007)] have made use of a covariant model to investigate magnetic reconnection of astrophysical plasmas. Earlier R Ricca [Phys Rev A (1991)] has used another covariant formalism, to investigated vortex filaments and solitons. This formalism, called Ricci rotation coefficients (RRC), is applied here, to the Chui and Moffatt [PRSA (1995)] knotted magnetic flux tube (MFT) Riemann metric in the case of vanishing stretch. It is shown that, the vanishing of some components of the (RRC) leads to unstretching knotted tubes. Computing of magnetic knot energy in terms of the RCC, shows that, uniform, unstretching and constant cross-section tubes leads to a marginal dynamo action over magnetic surfaces. Recent investigation on the role of stretching in plasma dynamo action showed that in diffusive media [Phys Plasma \\textbf{14} (2008)], unstretching unknotted tubes would not support fast dynamo action. This result was generalized here to much more general knotted MF...

de Andrade, Garcia

2009-01-01T23:59:59.000Z

450

A New Twist on the Magnetic Equilibrium of a Toroidal Plasma...  

Office of Science (SC) Website

of Wisconsin-Madison jssarff@wisc.edu Funding DOE Office of Science, Office of Fusion Energy Sciences Publications W.F. Bergerson et al. "Bifurcation to 3D helical magnetic...

451

Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications  

SciTech Connect

The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive candidate for certain fusion energy structural applications. Conversely, CuNiBe may not be preferred at intermediate temperatures of 250-500 C due to the poor ductility and fracture toughness of CuNiBe alloys at temperatures >250 C. The potential deformation mechanisms responsible for the transition from transgranular to intergranular fracture are discussed. The possible implications for other precipitation hardened alloys such as nickel based superalloys are briefly discussed.

Zinkle, Steven J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

452

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

453

Physicist John Schmidt, designer of cutting-edge fusion facilities, dies at  

NLE Websites -- All DOE Office Websites (Extended Search)

Physicist John Schmidt, designer of cutting-edge fusion facilities, dies at Physicist John Schmidt, designer of cutting-edge fusion facilities, dies at 72 By John Greenwald February 15, 2013 Tweet Widget Facebook Like Google Plus One John Schmidt, 1940-2013 (Photo by Elle Starkman) John Schmidt, 1940-2013 Physicist John Schmidt, whose profound and wide-ranging contributions to the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) made him a highly respected leader in the worldwide quest for fusion energy, died on February 13 following a brain hemorrhage. He was 72. Schmidt won wide acclaim for heading the design of cutting-edge facilities for magnetic fusion research during a 36-year career at PPPL, from which he retired in 2005. As interim director in 1996 he led the Laboratory's successful transition from large, fusion power-producing experiments such

454

World's largest laser misses nuclear fusion deadline  

Science Journals Connector (OSTI)

The 192-beam laser in California was an ambitious attempt to pip a magnetic fusion technique to the post but that now looks unlikely

2012-01-01T23:59:59.000Z

455

Fusion excitation function revisited  

E-Print Network (OSTI)

We report on a comprehensive systematics of fusion-evaporation and/or fusion-fission cross sections for a very large variety of systems over an energy range 4-155 A.MeV. Scaled by the reaction cross sections, fusion cross sections do not show a universal behavior valid for all systems although a high degree of correlation is present when data are ordered by the system mass asymmetry.For the rather light and close to mass-symmetric systems the main characteristics of the complete and incomplete fusion excitation functions can be precisely determined. Despite an evident lack of data above 15A.MeV for all heavy systems the available data suggests that geometrical effects could explain the persistence of incomplete fusion at incident energies as high as 155A.MeV.

Ph. Eudes; Z. Basrak; F. Sbille; V. de la Mota; G. Royer; M. Zori?

2012-09-07T23:59:59.000Z

456

Differential rotation and the structure and energy content of coronal magnetic fields  

Science Journals Connector (OSTI)

It is argued that differential rotation of the photospheric magnetic fields will induce currents in the corona. The work done against surface magnetic stresses will increase the energy content of the coronal magn...

M. A. Raadu

1972-02-01T23:59:59.000Z

457

Characterization of Crude Oil Products Using Data Fusion of Process Raman, Infrared, and Nuclear Magnetic Resonance (NMR) Spectra  

Science Journals Connector (OSTI)

Process Raman, infrared (IR), and nuclear magnetic resonance (NMR) analyses are currently being performed in industrial settings for the monitoring of large scale reactions. These...

Dearing, Thomas I; Thompson, Wesley J; Rechsteiner, Carl E; Marquardt, Brian J

2011-01-01T23:59:59.000Z

458

Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies  

E-Print Network (OSTI)

Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous $\\chi^{2}$ analyses are performed for elastic scattering, DR, and fusion cross section data for the $^{9}$Be+$^{208}$Pb system at near-Coulomb-barrier energies. Similar $\\chi^{2}$ analyses are also performed by only taking into account the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections particularly when the DR cross section data are not complete. Discussions are also given on the results obtained from similar analyses made earlier for the $^{9}$Be+$^{209}$Bi system.

W. Y. So; S. W. Hong; B. T. Kim; T. Udagawa

2005-09-27T23:59:59.000Z

459

Harnessing Nuclear Fusion  

Science Journals Connector (OSTI)

... as a source of energy, only the future will show. Meanwhile the control of nuclear fusion will be welcomed both as a great advance in science and as a factor of ...

1958-01-25T23:59:59.000Z

460

Free Energy of Electron in Metals with Magnetic and Electric Polarizations  

Science Journals Connector (OSTI)

......1969 research-article Articles Free Energy of Electron in Metals with Magnetic...Physics, Nagoya University, Nagoya Free energy of electrons in metals having definite...perturbation calculation, the free energy is expanded as a power series of......

Ichiro Takahashi; Masao Shimizu

1969-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Chapter 17 - Nuclear Fusion  

Science Journals Connector (OSTI)

Publisher Summary Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source, as well as adequate fuel to power civilization for times long compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. This chapter introduces the physics, advantages, difficulties, progress, economics and prospects for fusion energy power plants. Nuclear fusion is the process, in which light nuclei can release large amounts of energy if they combine, or fuse, into heavier nuclei. The principal nuclear reactions which have been considered for reactor concepts involve reactions of isotopes of the two lightest elements: hydrogen and helium. The fuel costs for fusion reactors will be negligible in comparison with the value of the electricity produced. It is difficult to precisely assess the cost of fusion-generated electricity until there is experience with an operating power plant, since the cost will be dependent upon the reliability and the frequency and expense of maintenance, both of which are likely to improve with the hindsight of experience. A fusion reactor does not directly emit CO2 or other greenhouse gases, or any combustion products that contribute to acid rain, and the indirect emissions due to factors like fuel gathering and transport, plant construction and maintenance, and activated parts storage would be small. Thus, fusion power would not have appreciable adverse effects upon global warming, atmospheric quality or acidification of the oceans, lakes and streams.

Larry R. Grisham

2008-01-01T23:59:59.000Z

462

Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.  

SciTech Connect

Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.

Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

2007-01-01T23:59:59.000Z

463

2002 Summer Fusion Study 1 July 19, 2002 2002 Fusion Summer Study  

E-Print Network (OSTI)

2002 Summer Fusion Study 1 July 19, 2002 2002 Fusion Summer Study Snowmass Village, CO. July 19, 2002 For Immediate Release Fusion energy shows great promise to contribute to securing the energy leading scientists from the U.S. and international fusion community concluded a two-week forum assessing

464

Cluster-impact fusion  

Science Journals Connector (OSTI)

Deuteron-deuteron fusion, detected via the 3-MeV protons produced, is shown to occur when singly charged clusters of 25 to 1300 D2O molecules, accelerated to 200 to 325 keV, impinge on TiD targets. The energy and cluster-size dependence of the fusion rate are discussed. The fusion events are shown to originate from the cluster-ion impacts rather than from D+ or D2O+ ions in the beam. The observed rates may be correlated with the compressions and high energy densities created in collision spikes by cluster-ion impacts.

R. J. Beuhler; G. Friedlander; L. Friedman

1989-09-18T23:59:59.000Z

465

Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors  

DOE Patents (OSTI)

A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

Woolley, Robert D. (Hillsborough, NJ)

2002-01-01T23:59:59.000Z

466

2002 Fusion Summer Study Executive Summary  

E-Print Network (OSTI)

2002 Fusion Summer Study Executive Summary 31 July 2002 #12;page 2 of 15 2002 Fusion Summer Study Executive Summary The 2002 Fusion Summer Study was conducted from July 8-19, 2002, in Snowmass, CO, and carried out a critical assessment of major next-steps in the fusion energy sciences program in both

467

Advanced Probes for Boundary Plasma Diagnostics in Fusion Devices  

Science Journals Connector (OSTI)

Diagnostics / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

Guido Van Oost

468

Advanced Probes for Boundary Plasma Diagnosis in Fusion Devices  

Science Journals Connector (OSTI)

Diagnostics / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

Guido Van Oost

469

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network (OSTI)

provide some operational redundancy. The essential problem for inertial fusion is depositing enough energy

Sharp, W. M.

2011-01-01T23:59:59.000Z

470

Scaling the energy conversion rate from magnetic field reconnection to different bodies  

E-Print Network (OSTI)

Scaling the energy conversion rate from magnetic field reconnection to different bodies F. S. Mozer reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar in these bodies, it is important to understand energy conversion as a function of magnetic field strength

California at Berkeley, University of

471

Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials  

E-Print Network (OSTI)

materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high, and energy-related materials Martin L. Green, Ichiro Takeuchi, and Jason R. Hattrick-Simpers Citation: J) methodologies to electronic, magnetic, optical, and energy-related materials Martin L. Green,1 Ichiro Takeuchi,2

Rubloff, Gary W.

472

Laser Inertial Fusion-based Energy (LIFE) - Developing Manufacturing Technology for low cost and high volume fusion fuel is critical to our future energy needs  

Science Journals Connector (OSTI)

At the heart of the LIFE power plant is a fuel capsule containing a tiny amount of solid deuterium-tritium (DT) which is compressed to high density by lasers, and then a short-pulse laser beam delivers energy to ...

K. Carlisle; R. R. Miles

2010-01-01T23:59:59.000Z

473

Spherical torus fusion reactor  

DOE Patents (OSTI)

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

474

Fusion Inhibitors  

Science Journals Connector (OSTI)

(T-20, Fuzeon) was introduced as the first fusion inhibitor at the beginning of 2003. It works by blocking the cells' viral uptake. Disadvantages of fusion inhibitors are their production difficulties, high...

2008-01-01T23:59:59.000Z

475

Semi-classical Characters and Optical Model Description of Heavy Ion Scattering, Direct Reactions, and Fusion at Near-barrier Energies  

E-Print Network (OSTI)

An approach is proposed to calculate the direct reaction (DR) and fusion probabilities for heavy ion collisions at near-Coulomb-barrier energies as functions of the distance of closest approach D within the framework of the optical model that introduces two types of imaginary potentials, DR and fusion. The probabilities are calculated by using partial DR and fusion cross sections, together with the classical relations associated with the Coulomb trajectory. Such an approach makes it possible to analyze the data for angular distributions of the inclusive DR cross section, facilitating the determination of the radius parameters of the imaginary DR potential in a less ambiguous manner. Simultaneous $\\chi^{2}$-analyses are performed of relevant data for the $^{16}$O+$^{208}$Pb system near the Coulomb-barrier energy.

B. T. Kim; W. Y. So; S. W. Hong; T. Udagawa

2001-11-02T23:59:59.000Z

476

State-of-the-art 3-D radiation transport methods for fusion energy systems  

Science Journals Connector (OSTI)

Recent advances in radiation transport simulation tools enable an increased fidelity and accuracy in modeling complex geometries in fusion systems. Future neutronics calculations will increasingly be based directly on these 3-D CAD-based geometries, allowing enhanced model complexity and improved quality assurance. Improvements have been made in both stochastic and deterministic radiation transport methodologies and their new capabilities will be compared briefly. A code comparison benchmark exercise has been specified based on a 40 sector of the ITER machine and the analysis results show good agreement. Additional analyses will be discussed, with particular attention to how these new capabilities provide new insights for engineering design of ITER components.

P.P.H. Wilson; R. Feder; U. Fischer; M. Loughlin; L. Petrizzi; Y. Wu; M. Youssef

2008-01-01T23:59:59.000Z

477

Stability of shocks relating to the shock ignition inertial fusion energy scheme  

SciTech Connect

Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

Davie, C. J., E-mail: c.davie10@imperial.ac.uk; Bush, I. A.; Evans, R. G. [Imperial College London, London SW7 2AZ (United Kingdom)

2014-08-15T23:59:59.000Z

478

Science-Driven Network Requirements for ESnet  

E-Print Network (OSTI)

Magnetic Fusion Energy Science.Magnetic Fusion Energy Science..data sets Magnetic Fusion Energy Science Executive Summary

2006-01-01T23:59:59.000Z

479

Possibility of using active secondary charge-exchange particle diagnostics for measuring the magnetic field direction in the plasma of a magnetic fusion reactor  

Science Journals Connector (OSTI)

An active particle diagnostic method based on the secondary charge exchange of hydrogen atoms of a probing (diagnostic) beam is proposed for local measurements of the magnetic field direction in the plasma of a t...

A. A. Medvedev; V. S. Strelkov

2006-05-01T23:59:59.000Z

480

DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...  

Office of Scientific and Technical Information (OSTI)

and scientific research data related to advanced systems for fusion energy and nuclear power, primary scientific challenges addressed through the Incite Program. Fusion...

Note: This page contains sample records for the topic "magnetic fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.