National Library of Energy BETA

Sample records for magnetic fusion energy

  1. Distribution Category: Magnetic Fusion Energy

    E-Print Network [OSTI]

    Harilal, S. S.

    Distribution Category: Magnetic Fusion Energy (UC-20) ANL/FPP/TM-175 ANL/FPP/TM--175 DE83 015751 THERMAL HYDRAULIC AND STRESS ANALYSIS 15 7.0 LIFETIME ANALYSIS 19 8 . 0 StttMARY AND RECOMMENDATIONS-1 Vaporization thickness as a function of energy density for a 1 us disruption 8 4-2 Melt layer thickness

  2. Distribution Category: Magnetic Fusion Energy

    E-Print Network [OSTI]

    Abdou, Mohamed

    Distribution Category: Magnetic Fusion Energy (UC-20) D383 005P43 ANL/FPP/TM-165 ARGONNE NATIONAL of Nuclear Data for Science and Technology, September 6-10, 1982, Antwerp, Belgium. #12;TABLE OF CONTENTS References 49 iii #12;LIST OF FIGURES FIGURE NO. TITLE PAGE 1 17Li-83Pb liquid alloy breeder first wall

  3. Research Needs Workshop for Magnetic Fusion Energy

    E-Print Network [OSTI]

    ReNeW Research Needs Workshop for Magnetic Fusion Energy June 7-13, 2009 Richard Hazeltine, ReNeW for Magnetic Fusion Energy Sciences Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland ­ June 8-12, 2009 OFFICE OF FUSION ENERGY SCIENCES Wednesday, November 25, 2009 #12;Acknowledgements ReNeW

  4. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01

    Fusion Science, Magnetic Fusion Energy, and Related Fieldsof Science, Office of Fusion Energy Sciences, of the U.S.Fusion Science, Magnetic Fusion Energy, and Related Fields

  5. Distribution Categories: Magnetic Fusion Energy (UC-20)

    E-Print Network [OSTI]

    Harilal, S. S.

    Distribution Categories: Magnetic Fusion Energy (UC-20) MFE--Plasma Systems (UC-20a) MFE for Chapter 3 3-38 4. THERMAL HYDRAULIC AND THERMAL STORAGE SYSTEM ANALYSIS 4-1 4.1 Introduction 4-1 4 CYCLE EFFECTS 6-1 6.1 Burn Cycle and Energy Transfer System 6-1 6.2 Conventional Cycle 6-2 6

  6. Scientists discuss progress toward magnetic fusion energy at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in...

  7. Discovery Research in Magnetic Fusion Energy

    E-Print Network [OSTI]

    Mauel, Michael E.

    Plasma Physics Research at Columbia University · CNT Stellarator · HBT-EP Tokamak · CTX/LDX Dipole #12;Columbia University Collaborator Dr. Otto Octavius Stabilize Fusion in NYC... (2004) #12;Magnetized Plasma Physics Research at Columbia University · CNT Stellarator · HBT-EP Tokamak · CTX/LDX Dipole #12;Magnetized

  8. MMMMaaaaggggnnnneeeettttiiiicccc FFFFuuuussssiiiioooonnnn EEEEnnnneeeerrrrggggyyyy MAGNETIC FUSION ENERGY

    E-Print Network [OSTI]

    MINUTES OF FUEL IN PLASMA · LOW RISK OF NUCLEAR MATERIALS PROLIFERATION · CONCENTRATED RELATIVE TO SOLAR FFFFuuuussssiiiioooonnnn EEEEnnnneeeerrrrggggyyyy Schematic of MFE Power Plant Raw Fuel WasteFuel p First Wall Magnet

  9. Innovations and New Ideas in Magnetic Fusion Energy

    E-Print Network [OSTI]

    Mauel, Michael E.

    Fusion in NYC... (2004) #12;Magnetized Plasma Physics Research at Columbia University · CNT Stellarator · HBT-EP Tokamak · CTX/LDX Dipoles #12;Magnetized Plasma Physics Research at Columbia University · CNT

  10. Magnetic Confinement Fusion at the Crossroads

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Matterhorn initiated at Princeton 1950s Classified US Project Sherwood on controlled thermonuclear fusionMagnetic Confinement Fusion at the Crossroads Michael Bell Princeton Plasma Physics Laboratory #12;MGB / UT / 070307 2 The Beginnings of Fusion Energy Research 1928 Concept of fusion reactions

  11. Issues and Paths to Magnetic Confinement Fusion Energy

    E-Print Network [OSTI]

    Roadmap in a nutshell MST = Mid-scale tokamak IC = Interna-onal Collabora Roadmap in a nutshell MST = Mid-scale tokamak IC = Interna-onal Collabora (CN) FNS (US) Europe's new fusion roadmap: · Eight strategic missions

  12. Magnetically Catalyzed Fusion

    E-Print Network [OSTI]

    Jeremy S. Heyl; Lars Hernquist

    1996-08-25

    We calculate the reaction cross-sections for the fusion of hydrogen and deuterium in strong magnetic fields as are believed to exist in the atmospheres of neutron stars. We find that in the presence of a strong magnetic field ($B \\gsim 10^{12}$G), the reaction rates are many orders of magnitude higher than in the unmagnetized case. The fusion of both protons and deuterons are important over a neutron star's lifetime for ultrastrong magnetic fields ($B \\sim 10^{16}$G). The enhancement may have dramatic effects on thermonuclear runaways and bursts on the surfaces of neutron stars.

  13. Taming turbulence in magnetized plasmas: from fusion energy to

    E-Print Network [OSTI]

    is not perfect, our magnetic bottle can leak heat at a significant rate · In TFTR, it took ~40MW of heating power magnetic bottle can leak heat at a significant rate · In TFTR, it took ~40MW of heating power to maintain) B - Magnetic Confinement (tokamak) Current #12;Heating a magnetically confined plasma · Initial

  14. Superconducting Magnets Research for a Viable US Fusion Program

    E-Print Network [OSTI]

    Gaithersburg Marriott Washingtonian Center #12;Magnet Technology Enables Magnetic Confinement Fusion · MagnetsSuperconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini, Leslie are an essential component for magnetic fusion energy. · Advances in magnet technology are needed to fulfill

  15. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  16. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  17. Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets

    E-Print Network [OSTI]

    conductor material operating at "room temperature" (300°K) can reduce the capital cost per unit fusion power two reasons for this situation: ·very high capital cost per watt of output power ·very high maintenance cost To put the capital cost issue into perspective, consider the following comparison, which

  18. Introduction to Magnetic Thermonuclear Fusion and

    E-Print Network [OSTI]

    Shihadeh, Alan

    Introduction to Magnetic Thermonuclear Fusion and Related Research Projects Ghassan Antar Fusion 2. Research on Turbulence (Theory and Experiment) 3. Research on Disruptions 4. Research on Plasma Facing Components #12;Ghassan Y. ANTAR 3 Fusion Occurs when Two Nuclei Unite to Form One The Energy

  19. Magnetic fusion reactor economics

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  20. NON-PROLIFERATION CHALLENGES IN CONNECTION WITH MAGNETIC FUSION POWER

    E-Print Network [OSTI]

    OF MAGNETIC FUSION · The nuclear weapons proliferation risks associated with magnetic fusion power plantsNON-PROLIFERATION CHALLENGES IN CONNECTION WITH MAGNETIC FUSION POWER RICHARD KAMENDJE FPA Annual increasingly focused on the production of fusion energy on an industrial, power plant scale · Many countries

  1. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  2. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    1.1.3.2 Fusion Energy . . . . . . . . . 1.1.3.3 Fission-aspects of magnetic fusion energy, September 1989. 1.1.3.2 [based on laser inertial fusion energy (LIFE). Fusion Science

  3. Magnetized target fusion and fusion propulsion.

    SciTech Connect (OSTI)

    Kirkpatrick, R. C. (Ronald C.)

    2001-01-01

    Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

  4. Tritium Gas Processing for Magnetic Fusion

    Office of Environmental Management (EM)

    Gas Processing for Magnetic Fusion SRNL-STI-2014-00168 Bernice Rogers Clean Energy - Savannah River National Laboratory April 24, 2014 The views and opinions expressed herein do...

  5. ANNUAL REPORT FOR ACCELERATOR & FUSION RESEARCH DIVISION. FISCAL YEAR 1979 OCTOBER 1978 - SEPTEMBER 1979

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Rings Theory MAGNETIC FUSION ENERGY Neutral Beam SystemsDevelopment, Magnetic Fusion Energy, and Heavy Ion Fusion.M. McElhiney. MAGNETIC FUSION ENERGY The Magnetic Fusion

  6. Field-reversed Configuration Plasma for Magnetized Target Fusion Manuscript received September 8, 2005. Revised January 16, 2006. This work was supported by the Department of Energy--

    E-Print Network [OSTI]

    . INTRODUCTION Approaches to plasma fusion research are usually categorized as either Magnetic confinement Fusion

  7. Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )

    E-Print Network [OSTI]

    LA-UR-11-01898 #12;Magneto-inertial fusion: A hybrid approach to fusion....ICF with a twistMagneto-Inertial Fusion (Magnetized Target Fusion)( g g ) or "why should we bother with another ICF boost performance (LLE, Omega) ·Magnetized Target Fusion (MTF) demonstration, FRCHX at AFRL

  8. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation...

  9. THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER

    E-Print Network [OSTI]

    Abdou, Mohamed

    for Energy Science and Technology Advanced Research (CESTAR), University of California-Los Angeles, 420 to enable a transition to fusion energy demonstration (DEMO). Fusion Nuclear Science and Technology (FNST and Performance Verification Stage III: Component Engineering Development and Reliability Growth Requirements

  10. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect (OSTI)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  11. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect (OSTI)

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  12. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    fusion plasma confinement are known: gravita- tional, magnetic andConfinement Fusion IFE Inertial Fusion Energy IPCC Intergovernmental Panel on Climate Change MCNP Monte Carlo N-Particle Transport Code MFE Magnetic

  13. Fusion Energy Sciences Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

  14. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    1.1.3.2 Fusion Energy . . . . . . . . . 1.1.3.3 Fission-Laser Inertial Fusion-based Energy 2.1 Potentialaspects of magnetic fusion energy, September 1989. 1.1.3.2 [

  15. Safety of magnetic fusion facilities: Guidance

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  16. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  17. Fusion Energy Program Presentation to

    E-Print Network [OSTI]

    Physics GPPJPrograrn Direction TotalMFE Inertial Fusion Energy Less ProductivitySavings TotalFusion Energy

  18. Generic magnetic fusion reactor cost assessment

    SciTech Connect (OSTI)

    Sheffield, J.

    1984-01-01

    A generic D-T burning magnetic fusion reactor model shows that within the constraints set by generic limitations it is possible for magnetic fusion to be a competitive source of electricity in the 21st century.

  19. Transmission Line MTF: Magnetized Target Fusion

    E-Print Network [OSTI]

    Transmission Line MTF: Magnetized Target Fusion Initial target: preheated & magnetized Subsequent for the FRC. Abstract Block Diagram theta coil transmission line Bias cap. bank maincapacitor inductor PI cap

  20. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, John M. (Del Mar, CA); Peuron, Unto A. (Solana Beach, CA)

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  1. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  2. Magnetic Confinement Fusion Science Status and Challenges

    E-Print Network [OSTI]

    Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005 #12;Two approaches to fusion Inertial confinement extremely dense, short-lived Magnetic by centrifugal force of particles moving along curved magnetic field plasma magnetic field Centrifugal force #12

  3. Magnetized Target Fusion (MTF): Principles, Status, and International Collaboration

    SciTech Connect (OSTI)

    Kirkpatrick, R.C.

    1998-11-16

    Magnetized target fusion (MTF) is an approach to thermonuclear fusion that is intermediate between the two extremes of inertial and magnetic confinement. Target plasma preparation is followed by compression to fusion conditions. The use of a magnetic field to reduce electron thermal conduction and potentially enhance DT alpha energy deposition allows the compression rate to be drastically reduced relative to that for inertial confinement fusion. This leads to compact systems with target driver power and intensity requirements that are orders of magnitude lower than for ICF. A liner on plasma experiment has been proposed to provide a firm proof of principle for MTF.

  4. Professor Richard D. Hazeltine, Chair Fusion Energy Sciences Advisory Committee

    E-Print Network [OSTI]

    Professor Richard D. Hazeltine, Chair Fusion Energy Sciences Advisory Committee Institute, and include both magnetic fusion energy (MFE) and inertial fusion energy (IFE), as both MFE and IFE provide major opportunities for moving forward with fusion energy. The report would be most helpful if it could

  5. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  6. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

  7. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  8. Introduction to nuclear fusion Modelling Finite volume scheme Formal asymptotics Summary Magnetized Target Fusion: Insights from

    E-Print Network [OSTI]

    Fournier, John J.F.

    Introduction to nuclear fusion Modelling Finite volume scheme Formal asymptotics Summary Magnetized, Committee Member November 28, 2014 Michael Lindstrom Magnetized Target Fusion #12;Introduction to nuclear Target Fusion #12;Introduction to nuclear fusion Modelling Finite volume scheme Formal asymptotics

  9. An important challenge in magnetic fusion research is to obtain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control of edge transport barriers on Alcator C-Mod A crucial challenge in magnetic fusion is to obtain high energy confinement in a stationary plasma that is compatible with...

  10. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  11. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01

    Lithium- Injection Fusion-Energy (HYLIFE)Reactor," UCRL-Aspects of Magnetic Fusion Energy," Lawrence Livermorefor the Inertial Fusion Energy Experiments," proceedings of

  12. Framework for a Road Map to Magnetic Fusion Energy Status Report

    E-Print Network [OSTI]

    January 14, 2014 #12;Why Work on a Fusion Roadmap Now? · To demonstrate that there are realistic technical

  13. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect (OSTI)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  14. Fusion Energy Sciences Program Mission

    E-Print Network [OSTI]

    Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion power has the long-range potential to serve as an abundant and clean source of energy and recommends

  15. Report of the Technical' Panel on Magnetic Fusion

    E-Print Network [OSTI]

    DOE/S-O035 Report of the Technical' Panel on Magnetic Fusion of the Energy Research Advisory Board November 1986 A Report of the Energy Research Advisory Board to the United States Department of Energy Washington, DC 20585 #12;#12;Febnmry 12, 1987 Energy Research Advisory Board to the United States Department

  16. Magnetized Target Fusion Collaboration. Final report

    SciTech Connect (OSTI)

    John Slough

    2012-04-18

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

  17. LBNL perspective on inertial fusion energy

    E-Print Network [OSTI]

    Bangerter, Roger O.

    1995-01-01

    LBNL Perspective on Inertial Fusion Energy Roger Bangerter1990) and the last Fusion Energy Advisory Committee (1993)year 2005, the Inertial Fusion Energy Program must grow to

  18. FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil

    E-Print Network [OSTI]

    PLANS FOR FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil Columbia University American-steps in the fusion energy sciences program, and will provide crucial community input to the long range planning to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated

  19. Fusion Energy Sciences Advisory Committee Meeting January 31, 2013

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting January 31, 2013 Agenda Time Topic Speaker 9 Energy Sciences 10:15 Break 10:45 Briefing from the Subcommittee on Magnetic Fusion Energy Program of Technology 9:05 FES Perspectives Dr. Ed Synakowski, Associate Director of the Office of Science, for Fusion

  20. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  1. COMMENTARIES ON CRITICISMS OF MAGNETIC FUSION

    E-Print Network [OSTI]

    issue of Science. p14 VII. Commentary on "Complexity and Availability for Fusion Power Plants", J of Technology Review. p5 1V. Commentary on "Insurmountable Engineering Problems Seen as Ruling Out `Fusion Power is probably greater than the energy content of fossil or uranium fuels, and the fusion fuel is virtually

  2. Contemporary Instrumentation and Application of Charge Exchange Neutral Particle Diagnostics in Magnetic Fusion Experiments

    SciTech Connect (OSTI)

    Medley, S. S.; Donné, A. J.H.; Kaita, R.; Kislyakov, A. I.; Petrov, M. P.; Roquemore, A. L.

    2007-07-21

    An overview of the developments post-circa 1980's of the instrumentation and application of charge exchange neutral particle diagnostics on Magnetic Fusion Energy experiments is presented.

  3. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01

    ion drivers for inertial confinement fusion, was achieved.ion driver beams for inertial confinement fusion, they weredriver beams for inertial confinement fusion were successful

  4. White Paper on Magnetic Fusion Program Strategies

    E-Print Network [OSTI]

    is uncertain. There are predictions of future energy shortages and of severe environmental impacts from present our vision for the future of fusion energy research. In this white paper, following a summary Institute of Technology Michael J. Saltmarsh Director, Fusion Energy Division Oak Ridge National Laboratory

  5. Magnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan

    E-Print Network [OSTI]

    Magnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan G. A. Wurden Fusion to the 35-yr Fusion Long-Range Electric Plan · Imagine a fusion concept where: · The plasma beta ranges from to the 35-yr Fusion Long-Range Electric Plan · MTF offers a uniquely different pathway to achieving

  6. Driven reconnection in magnetic fusion experiments

    SciTech Connect (OSTI)

    Fitzpatrick, R.

    1995-11-01

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.).

  7. Update and Outlook for theUpdate and Outlook for the Fusion Energy SciencesFusion Energy SciencesFusion Energy SciencesFusion Energy Sciences

    E-Print Network [OSTI]

    Update and Outlook for theUpdate and Outlook for the Fusion Energy SciencesFusion Energy SciencesFusion Energy SciencesFusion Energy Sciences E J SynakowskiE.J. Synakowski Associate Director, Office of Science F i E S iFusion Energy Sciences For the University Fusion Associates Town Hall Meeting APS DPP P id

  8. Activities of the University Fusion Association! D.P. Brennan

    E-Print Network [OSTI]

    Program"! !- D. Meade (Fusion Innovation Research and Energy): "Framework for a Roadmap to Magnetic Fusion

  9. 50 Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    , .... · Controlled Thermonuclear Fusion had great potential ­ Uncontrolled Thermonuclear fusion demonstrated in 19521 50 Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ SOFE 2009 June 1, 2009 San Diego, CA 92101 #12;2 #12;2 #12;3 Fusion Prior to Geneva 1958 · A period of rapid

  10. 50 Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    of experiments were tried and ended up far from fusion conditions ­ Magnetic Fusion research in the U radioactive waste - tritium breeding (TBR > 1) to complete the fuel cycle · Fusion Power Densities ( ~ 5 MWm-3 diffusion." · Model C was built to reduce complications of impurities (divertor) and wall neutrals ( a = 5

  11. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclear Physics (NP) NP Home AboutFusion Energy

  12. "50" Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when"50" Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Fi P th SFusion Fire Powers the Sun "W d t if k f i k ""We need to see if we can make fusion work

  13. Computational and experimental investigation of magnetized target fusion

    SciTech Connect (OSTI)

    Sheehey, P.T.; Guzik, J.A.; Kirkpatrick, R.C.; Lindemuth, I.R.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J. [Los Alamos National Lab., NM (United States)

    1996-12-31

    In Magnetized Target Fusion (MTF), a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions. Because the magnetic field suppresses losses by electron thermal conduction in the fuel during the target implosion heating process, the compression may be over a much longer time scale than in traditional inertial confinement fusion (ICF). Bigger targets and much lower initial target densities than in ICF can be used, reducing radiative energy losses. Therefore, `liner-on-plasma` compressions, driven by relatively inexpensive electrical pulsed power, may be practical. Potential MTF target plasmas must meet minimum temperature, density, and magnetic field starting conditions, and must remain relatively free of high-Z radiation-cooling-enhancing contaminants. At Los Alamos National Laboratory, computational and experimental research is being pursued into MTF target plasmas, such as deuterium-fiber-initiated Z-pinches, and the Russian-originated `MAGO` plasma. In addition, liner-on-plasma compressions of such target plasmas to fusion conditions are being computationally modeled, and experimental investigation of such heavy liner implosions has begun. The status of the research will be presented. 9 refs., 4 figs.

  14. THE NATIONAL FUSION COLLABORATORY PROJECT: APPLYING GRID TECHNOLOGY FOR MAGNETIC FUSION RESEARCH

    E-Print Network [OSTI]

    Thompson, Mary R.

    THE NATIONAL FUSION COLLABORATORY PROJECT: APPLYING GRID TECHNOLOGY FOR MAGNETIC FUSION RESEARCH D Diego, California 92186-5608 email: schissel@fusion.gat.com, Phone: (858) 455-3387, Fax: (858) 455- 4156, Berkeley, California 04720 The overall goal of the DOE SciDAC funded U.S. National Fusion Collaboratory

  15. Culham Centre for Fusion Energy Fusion -A clean future

    E-Print Network [OSTI]

    Culham Centre for Fusion Energy Fusion - A clean future FUSION REACTION Research at Culham Centre that drives the sun ­ could play a big part in our sustainable energy future. Around the globe, scientists are divided over whether to include nuclear fission in their energy portfolios; and renewable sources

  16. Realization of Fusion Energy: An alternative fusion roadmap

    E-Print Network [OSTI]

    Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

  17. Fusion Electricity A roadmap to the realisation of fusion energy

    E-Print Network [OSTI]

    Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed to fusion energy. With this objective EFDA has elaborated the present roadmap. ITER is the key facility in the roadmap: ITER construction is fostering industrial innovation on a number of enabling technologies. Its

  18. Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review. S. Department of Energy Fusion Energy Advisory Committee (FEAC) review of its Inertial Fusion Energy of California at San Diego. KEY WORDS: Fusion; fusion science; fusion energy; inertial fusion energy. I. SUMMARY

  19. Glossary of fusion energy

    SciTech Connect (OSTI)

    Whitson, M.O.

    1982-01-01

    This glossary gives brief descriptions of approximately 400 terms used by the fusion community. Schematic diagrams and photographs of the major US experiments are also included. (MOW)

  20. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-10-19

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion.

  1. AND FUSION TECHNOLOGY; MFTF DEVICES; DESIGN; DEUTERIUM; MAGNET...

    Office of Scientific and Technical Information (OSTI)

    MFTF-. cap alpha. + T progress report Nelson, W.D. (ed.) 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MFTF DEVICES; DESIGN; DEUTERIUM; MAGNET COILS; MAINTENANCE; REACTOR FUELING;...

  2. Road to Inertial Fusion Energy Fusion Power Associates Meeting

    E-Print Network [OSTI]

    . Crack is clear through 5 mm thick deck plate #12;Coal-fired and KrF laser fusion power power plants have-electron-beams-nrl-to-clean-up- nox-emissions-from-coal-power-plant NRL has a Cooperative Research and Development AgreementRoad to Inertial Fusion Energy Fusion Power Associates Meeting Washington DC 16 December 2014

  3. Science/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    community. Benefits Fusion is the energy source that powers the sun and stars. In the fusion process, formsScience/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2005 Comparable Appropriation FY 2006 Request Fusion Energy Sciences Science

  4. FUSION POWER ASSOCIATES Annual Meeting and Symposium

    E-Print Network [OSTI]

    Agenda FUSION POWER ASSOCIATES 35TH Annual Meeting and Symposium Fusion Energy: Recent Progress Fusion and the Road Ahead 12:50 The Magnetic Fusion Program in Korea ­ G.S. Lee, Korea 1:10 The Magnetic Fusion Program in China ­ Yuanxi Wan, China 1:30 The Magnetic Fusion Program in Europe ­ Tony Donne, EuroFusion

  5. Parametic Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    E-Print Network [OSTI]

    Prost, Lionel Robert

    2007-01-01

    Ion Injector for the Fusion Energy Research Program, inPotential of Magnetic Fusion Energy: The Interaction ofProgram, Inertial fusion energy: Opportunity for fusion

  6. MgB? Coil Options for Fusion Poloidal Magnets

    E-Print Network [OSTI]

    Giunchi, Giovanni

    A hybrid solution is proposed for the IGNITOR research fusion machine by using of superconducting coils for some poloidal magnets, in association with high field copper magnets for the central solenoid and for the toroidal ...

  7. Study of internal magnetic field via polarimetry in fusion plasmas

    E-Print Network [OSTI]

    Zhang, Jie

    2013-01-01

    Controlled thermonuclear fusion is a promising energy sourceenergy resources, especially nonrenewable fossil fuels [Freidberg, 2007]. Controlled thermonuclear

  8. LA-UR-98-5674 Magnetized Target Fusion

    E-Print Network [OSTI]

    LA-UR-98-5674 Magnetized Target Fusion: A burning FRC plasma in an imploded metal can G. A. Wurden Reversed Configuration (FRC) target plasma for Magnetized Target Fusion (MTF) experiments, using theta using the MOQUI FRC code shows that the required plasma can be formed using conical theta pinch coils

  9. July 31,2008 Dear members of the U.S. fusion energy sciences research community

    E-Print Network [OSTI]

    July 31,2008 Dear members of the U.S. fusion energy sciences research community: I will be leaving my post as Associate Director of the Office of Science for the Office of Fusion Energy Sciences (OFES-term planning exercise for all areas of science covered by the OFES, including magnetic fusion energy sciences

  10. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  11. Liquid Vortex Shielding for Fusion Energy Applications

    SciTech Connect (OSTI)

    Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

    2005-05-15

    Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

  12. Fusion Energy: Visions of the Future

    E-Print Network [OSTI]

    energy conversion Direct energy conversion No $$$ turbines Why Is Aneutronic Fusion Cheap? #12;Dense Star Formation REPRODUCING NATURAL INSTABILITIES Solar Flares #12;Energy (X-rays, Ion Beams) CaptureFusion Energy: Visions of the Future Dec. 10-11, 2013 FOCUS FUSION Cheap, Clean, Safe & Unlimited

  13. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  14. Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

  15. Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

  16. Superconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini and Miklos Porkolab

    E-Print Network [OSTI]

    enabling technology for magnetic confinement fusion devices. Powerful magnetsSuperconducting Magnets Research for a Viable US Fusion Program Joseph V are required for plasma confinement, and, depending on the magnetic configuration

  17. Final report on the Magnetized Target Fusion Collaboration

    SciTech Connect (OSTI)

    John Slough

    2009-09-08

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator was made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. A high density FRC plasmoid is to be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) are obtained in the reevant regime of interest. The process still needs to be optimized, and a final design for implementation at AFRL must now be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

  18. The 2002 Fusion Summer Study will be a forum for the critical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to

    E-Print Network [OSTI]

    in the fusion energy sciences program, and will provide crucial community input to the long range planning to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy

  19. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  20. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

  1. On anomalous plasma transport in the edge of magnetic confinement devices

    E-Print Network [OSTI]

    Angus, Justin Ray

    2012-01-01

    promising magnetic confinement devices for a fusion reactorthermonuclear fusion in magnetic confinement devices.what is fusion energy, how do magnetic confinement devices

  2. Extraction of coherent bursts from turbulent edge plasma in magnetic fusion devices using orthogonal wavelets

    E-Print Network [OSTI]

    École Normale Supérieure

    Extraction of coherent bursts from turbulent edge plasma in magnetic fusion devices using, as they determine the confinement properties of the overall plasma in the bulk region and the energy density to be handled by the limiter or divertor components in the shadowed region of the plasma, where the magnetic

  3. The Requirements for Collision Data on the Species Helium, Beryllium and Boron in Magnetic Confinement Fusion

    E-Print Network [OSTI]

    The Requirements for Collision Data on the Species Helium, Beryllium and Boron in Magnetic Confinement Fusion

  4. Latest Developments in Image Processing Methods and Technologies for Magnetic Confinement Nuclear Fusion

    E-Print Network [OSTI]

    Latest Developments in Image Processing Methods and Technologies for Magnetic Confinement Nuclear Fusion

  5. Activities of the University Fusion Association! D.P. Brennan

    E-Print Network [OSTI]

    Research and Energy): "Framework for a Roadmap to Magnetic !Fusion Energy: Status Report"! !M. Mauel

  6. How low-energy fusion can occur

    E-Print Network [OSTI]

    B. Ivlev

    2012-12-04

    Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. The wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

  7. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    E-Print Network [OSTI]

    Gerber, Richard

    2014-01-01

    plasmas   for   thermonuclear   fusion.   Because  of  the  Thermonuclear  Research  (CTR)  and  the  National  Magnetic   Fusion  

  8. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  9. Krypton Fluoride Laser Driven Inertial Fusion Energy

    E-Print Network [OSTI]

    for Inertial Confinement Fusion Energy Systems San Ramon CA January 29, 2011 presented by John Sethian1 Krypton Fluoride Laser Driven Inertial Fusion Energy Presented to NAS Committee on the Prospects POWER PLANT: Attractive Technology #12;6 Outline S. ObenschainVision of R&D path to Inertial Fusion

  10. Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century

    E-Print Network [OSTI]

    Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos FerreiraInstituto SuperiorSuperior TTéécnicocnico,, LisboaLisboa, Portugal, Portugal 20th International Atomic Energy Agency, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy

  11. Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy

    E-Print Network [OSTI]

    California at San Diego, University of

    1998-01-01

    optimization and selection in mind, tradeoffs among system power density, recirculating power, plant and methodology of cost projections for magnetic-fusion-energy central-station electric power plants have been considered for both the tokamak Demo [2] and the corresponding commercial power plant [3]. Changing market

  12. Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy

    E-Print Network [OSTI]

    1998-01-01

    )]. The cost of electricity (COE) estimate at the busbar (neglecting transmission and distribution cost components of the retail price) combines the total cost estimate with reference economic groundrules to yield and methodology of cost projections for magnetic-fusion-energy central-station electric power plants have been

  13. Fusion in a magnetically-shielded-grid inertial electrostatic confinement device

    E-Print Network [OSTI]

    Hedditch, John; Khachan, Joe

    2015-01-01

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented that shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively-biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  14. Picosecond-petawatt laser-block ignition of avalanche boron fusion by ultrahigh acceleration and ultrahigh magnetic fields

    E-Print Network [OSTI]

    Hora, Heinrich

    2015-01-01

    In contrast to the thermal laser-plasma interaction for fusion by nanosecond pulses, picosecond pulses offer a fundamentally different non-thermal direct conversion of laser energy into ultrahigh acceleration of plasma blocks. This allows to ignite boron fusion which otherwise is most difficult. Trapping by kilotesla magnetic fields and avalanche ignition leads to environmentally clean and economic energy generation.

  15. Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    by the Department of Energy, has the potential to provide a significant fraction of the world's energy needsScience/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile by Subprogram (dollars in thousands) FY 2006 Current Appropriation FY 2007 Request FY 2008 Request Fusion Energy

  16. RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET

    E-Print Network [OSTI]

    RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET A group called the Energy Efficiency Education billion in the DOE budget out of fusion, fission and fossil energy research and into "more cost-effective and environmentally sound energy- efficiency and renewable energy programs." Rep. Philip R. Sharp (D-IN) and chair

  17. Superconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini1

    E-Print Network [OSTI]

    are the ultimate enabling technology for magnetic confinement fusion devices. PowerfulSuperconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini1 , Leslie magnetic fields are required for confinement of the plasma, and, depending

  18. MFE Concept Integration and Performance Measures Magnetic Fusion Concept Working Group

    E-Print Network [OSTI]

    MFE Concept Integration and Performance Measures Magnetic Fusion Concept Working Group Contributors. Simonen, T. Thorson INTRODUCTION This subgroup of the Magnetic Fusion Concepts Working Group discussed the plans for developing the major magnetic confinement concepts: standard pulsed tokamak, advanced tokamak

  19. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    x NOMENCLATURE ICF Inertial Confinement Fusion IFE InertialJ.D. Lindl. Inertial Confinement Fusion. Springer-Verlag,for the laser inertial confinement Fusion-Fission energy (

  20. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  1. Thursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major International Fusion

    E-Print Network [OSTI]

    in the U.S. fusion energy research program. Fusion is the energy source that powers the sun and starsThursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major of a major international magnetic fusion research project, U.S. Secretary of Energy Spencer Abraham announced

  2. Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC

    Office of Scientific and Technical Information (OSTI)

    Selected component failure rate values from fusion safety assessment tasks Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC CONFINEMENT; THERMONUCLEAR DEVICES;...

  3. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  4. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    SciTech Connect (OSTI)

    Lasche, G.P.

    1988-04-05

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy.

  5. A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences

    E-Print Network [OSTI]

    A Strategic Program Plan for Fusion Energy Sciences 1 Fusion Energy Sciences #12;2 Bringing with our dependence on oil and other fossil fuels will largely disap- pear. We will have achieved energy independence. Fusion power plants will provide economical and abundant energy without greenhouse gas emissions

  6. JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER

    E-Print Network [OSTI]

    Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergyJJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges without green house gashouse gas #12;JJ, IAP Cambridge January 20103 3 D + T + He ++ n U235 n n Neutrons

  7. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  8. Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as

    E-Print Network [OSTI]

    Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has as fusion energy produced divided the external energy incident on the fusion reaction chamber. Typical fusion power plant design concepts require a fusion gain of 30 for MFE and 70 for IFE. Fusion energy

  9. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01

    derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (groupNo. LBL-11743. MAGNETIC FUSION ENERGY K. F. Schoenberg andDivision). Office of Fusion Energy (Applied Plasma Physics

  10. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    1980, p. 725. MAGNETIC FUSION ENERGY Staff W. Kunkel and R.Beams. Magnetic Fusion Energy Neutral Beam Development andKunkel, The Prospects of Fusion Energy as a Commercial Power

  11. Starpower: The U.S. and the International Quest for Fusion Energy

    E-Print Network [OSTI]

    Committee on Science, Space, and Technology and endorsed by the Senate Committee on Energy and Natural Fowler Robert park Associate Director Executive Director Magnetic Fusion Energy Office of Public AffairsStarpower: The U.S. and the International Quest for Fusion Energy October 1987 NTIS order #PB88

  12. LANL Fusion Energy Sciences ResearchLANL Fusion Energy Sciences Research G. A. Wurden

    E-Print Network [OSTI]

    LANL Fusion Energy Sciences ResearchLANL Fusion Energy Sciences Research G. A. Wurden Fusion Power for the U.S. Department of Energy's NNSA UNCLASSIFIED #12;| Los Alamos National Laboratory | Abstract (LANL/PPPL/ORNL) on the W7 X stellarator in Greifswald, Germany, principally edge plasma control

  13. Fusion Energy Sciences Advisory Committee Strategic Planning

    E-Print Network [OSTI]

    D R A F T Fusion Energy Sciences Advisory Committee Report on Strategic Planning: Priorities Assessment and Budget Scenarios September 21, 2014 U.S. Department of Energy Office of Science #12; ii ............................................................................................................... 68 #12; iii Preface Fusion, the energy source that powers our sun and the stars

  14. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P. (Arlington, VA)

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  15. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  16. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  17. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  18. Fusion Energy Sciences Advisory Committee Dr. N. Anne Davies

    E-Print Network [OSTI]

    Sciences February 28, 2006 Fusion Energy Sciences Program Update www.ofes.fusion.doe.gov U.S. DepartmentFusion Energy Sciences Advisory Committee Dr. N. Anne Davies Associate Director for Fusion Energy of Energy's Office of Science #12;Fusion is part of SC's part of the American Competitiveness Initiative

  19. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  20. Computational problems in magnetic fusion research

    SciTech Connect (OSTI)

    Killeen, J.

    1981-08-31

    Numerical calculations have had an important role in fusion research since its beginning, but the application of computers to plasma physics has advanced rapidly in the last few years. One reason for this is the increasing sophistication of the mathematical models of plasma behavior, and another is the increased speed and memory of the computers which made it reasonable to consider numerical simulation of fusion devices. The behavior of a plasma is simulated by a variety of numerical models. Some models used for short times give detailed knowledge of the plasma on a microscopic scale, while other models used for much longer times compute macroscopic properties of the plasma dynamics. The computer models used in fusion research are surveyed. One of the most active areas of research is in time-dependent, three-dimensional, resistive magnetohydrodynamic models. These codes are reviewed briefly.

  1. EPRI Fusion Energy Assessment July 19, 2011

    E-Print Network [OSTI]

    EPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck program whenever desired ­ An accelerated roadmap can make ITER the "penultimate" step to fusion energy · Demonstrating advanced plasma performance at DEMO-scale · Making electricity from the process heat #12;Roadmap

  2. Nuclear Fusion Energy Research Ghassan Antar

    E-Print Network [OSTI]

    Shihadeh, Alan

    Nuclear Fusion Energy Research at AUB Ghassan Antar Physics Department American University of Beirut #12;Laboratory for Plasma and Fluid Dynamics [LPFD) Dr. G. Antar 2 Students: - R. Hajjar [Physics Advantages of Fusion on other ways to Produce Energy · Abundant Fuel Supply on Earth and Beyond · No Risk

  3. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    of a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

  4. Comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF (Inertial-Confinement-Fusion) driver

    SciTech Connect (OSTI)

    Kim, C.H.

    1987-04-01

    This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing.

  5. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect (OSTI)

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  6. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    SciTech Connect (OSTI)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580 (Japan); Fujioka, Shinsuke; Johzaki, Tomoyuki [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-087 (Japan); Mori, Yoshitaka [Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Sunahara, Atsushi [Institute for Laser Technology, Suita, Osaka 565-087 (Japan)

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  7. PU AST558, 4/25/05 ST Science & Fusion Energy Martin Peng

    E-Print Network [OSTI]

    plasma particles and waves interact? · How do hot plasmas interact with walls? · How to supply magnetic PPPL Spherical Tokamak Plasma Science & Fusion Energy Development Supported by Columbia U Comp Tokamak (ST) Offers Rich Plasma Science Opportunities and High Fusion Energy Potential · What is ST

  8. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E mc 2 ). The fusion process is...

  9. The Magnetic Fusion Program in China ----Roadmap and Progress

    E-Print Network [OSTI]

    The Magnetic Fusion Program in China ----Roadmap and Progress Presented by Yuanxi Wan1, 2 1 Significant progress of MF research has been achieved since China join ITER project Roadmap of MFE development on the conceptual design and some R&D of CFETR has been achieved A special group for drafting the MF roadmap

  10. A Fusion Development Facility on the Critical Path to Fusion Energy

    SciTech Connect (OSTI)

    Chan, V. S.; Stambaugh, R

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  11. A fusion development facility on the critical path to fusion energy

    SciTech Connect (OSTI)

    Chan, Dr. Vincent; Canik, John; Peng, Yueng Kay Martin

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  12. Sandia Energy - Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy ConversionEngine

  13. AN ACOUSTICALLY DRIVEN MAGNETIZED TARGET FUSION REACTOR

    SciTech Connect (OSTI)

    Laberge, Michel [General Fusion Inc., Vancouver (Canada)

    2009-07-26

    We propose a new acoustic compression scheme for a MTF power plant. A strong acoustic wave is produced by piston impacts. The wave focuses in liquid PbLi to compress a pre-formed FRC plasma. Simulations indicate the possibility of building an economical 60 MWe power plant. A proof-of-principle experiment produces a small D-D fusion yield of 2000 neutrons per shot.

  14. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  15. The New Charge for NonFusionEnergy

    E-Print Network [OSTI]

    The New Charge for NonFusionEnergy FES Applications James W. Van Dam on behalf of Fusion Energy of fusion energy sciences to scientific discovery and the development and deployment of new technologies beyond possible applications in fusion energy. 3 #12;Charge to FESAC · Charge letter to FESAC from

  16. Structures in high-energy fusion data

    E-Print Network [OSTI]

    H. Esbensen

    2012-06-05

    Structures observed in heavy-ion fusion cross sections at energies above the Coulomb barrier are interpreted as caused by the penetration of centrifugal barriers that are well-separated in energy. The structures are most pronounced in the fusion of lighter, symmetric systems, where the separation in energy between successive angular momentum barriers is relatively large. It is shown that the structures or peaks can be revealed by plotting the first derivative of the energy weighted cross section. It is also shown how an orbital angular momentum can be assign to the observed peaks by comparing to coupled-channels calculations. This is illustrated by analyzing high-energy fusion data for $^{12}$C+$^{16}$O and $^{16}$O+$^{16}$O, and the possibility of observing similar structures in the fusion of heavier systems is discussed.

  17. Fusion Energy An Industry-Led Initiative

    E-Print Network [OSTI]

    business not big science InternationalCompetitivenessissue - $26T/yr energy market with $300B/yr futureFusion Energy An Industry-Led Initiative September 10,1993 ATeam Effort TRW General Dynamics;Energy Supply and Needs Global per capita energy usage Global Per Capita energy usage will increase even

  18. SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH

    E-Print Network [OSTI]

    ON THE U.S. FUSION PROGRAM Fusion energy is the power source of our sun and the stars. ItsSUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION fusion researchers, and prepare for the commercialization of fusion energy, the U.S. must have its own

  19. Fusion Energy 101 Jeff Freidberg

    E-Print Network [OSTI]

    : · Huge resources ­ a renewable · No CO2 emissions · No pollution · Inherently safe · No proliferation of a plasma 17 #12;Properties of a fusion plasma · We need enough plasma: (air/100,000) · At a high enough temperature: (air x million) · Holding its heat for a long enough time: · For a sustained fusion plasma

  20. Magneto-inertial fusion with laser compression of a magnetized spherical target

    SciTech Connect (OSTI)

    Kostyukov, I. Yu., E-mail: kost@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation); Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University (Russian Federation)

    2011-12-15

    The paper is devoted to the principles of magneto-inertial fusion and laser-plasma methods of generation of a Megagauss field during spherical implosion of a magnetized target. A model based on a magnetic confinement system, namely, a cusp configuration with inertial compression of the target by a laser driver, is developed. The dynamics of plasma in a cusp compressed under the effect of laser beams is precalculated. Analytical and numerical estimates of the particle number and magnetic field intensity during magneto-inertial plasma compression are obtained. The problems of irradiation of a spherically closed volume by a high-energy laser pulse are discussed.

  1. Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

  2. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  3. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    critical issues in magnetic confinement fusion research. TheMHD) equations in magnetic fusion confinement geometries 8 .Fusion Simulation Program (FSP) mission will be to provide predictive capability for the behavior of magnetic confinement

  4. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser

    E-Print Network [OSTI]

    Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA of solid and gaseous samples to diagnose inertial confinement fusion implosions Rev. Sci. Instrum. 83://pop.aip.org/about/rights_and_permissions #12;Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA

  5. MSc in Plasma Physics & Applications Laser Fusion Energy

    E-Print Network [OSTI]

    Paxton, Anthony T.

    . Thermonuclear fusion provides unlimited energy for all the world which is clean from long lived radioactiveMSc in Plasma Physics & Applications Laser Fusion Energy Why laser fusionDescription of the course fusion for energy production. This unique training scheme involves eight leading European centres

  6. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01

    were derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (H. 1. F. Staff, Heavy Ion Fusion Half-year Report October 1,LBL-12594 (1981). Heavy Ion Fusion Staff, Heavy Ion Fusion

  7. HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates

    E-Print Network [OSTI]

    Nagle, John F.

    HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates Stephanie in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T x-ray scattering is that the bending modulus KC is greatly reduced upon addition of the HIV fusion

  8. A roadmap to the realiza/on of fusion energy

    E-Print Network [OSTI]

    A roadmap to the realiza/on of fusion energy Francesco Romanelli, EFDA STAC #12;Why a roadmap · The need for a long-term strategy on energy Strategic Energy Technology plan, Energy Roadmap 2050 · In this context, Fusion must

  9. Implications of NSTX Lithium Results for Magnetic Fusion Research

    SciTech Connect (OSTI)

    M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

    2010-01-14

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  10. Study of internal magnetic field via polarimetry in fusion plasmas

    E-Print Network [OSTI]

    Zhang, Jie

    2013-01-01

    Motivation Controlled thermonuclear fusion is a promising2007]. Controlled thermonuclear fusion is based on the

  11. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    4.3.3.4 Chamber Radius and Fusion Neutron Flux . . . . .1.1.3.2 Fusion Energy . . . . . . . . .1.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purpose

  12. Failure modes and effects analysis of fusion magnet systems

    SciTech Connect (OSTI)

    Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.

  13. Technical Feasibility of Fusion Energy Extension of the Fusion Program and Basic

    E-Print Network [OSTI]

    translation by JAERI #12;i Contents Introduction 1 Part 1 Technical Feasibility of Fusion Energy 2 1. Future Generation 28 1.3.2.5 Suppression of Global Warming Using Renewable Energy 28 1.3.3 Safety viewed fromi Report on Technical Feasibility of Fusion Energy and Extension of the Fusion Program and Basic

  14. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect (OSTI)

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

  15. Progress in heavy ion drivers inertial fusion energy: From scaled experiments to the integrated research experiment

    E-Print Network [OSTI]

    2001-01-01

    ION DRIVEN INERTIAL FUSION ENERGY: FROM SCALED EXPERIMENTSThe promise of inertial fusion energy driven by heavy ionleading to an inertial fusion energy power plant. The focus

  16. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    E-Print Network [OSTI]

    2005-01-01

    heavy ion inertial fusion energy. ACKNOWLEDGEMENTS Thisheavy ion inertial fusion energy. These include: neutralizedto drift axially). For fusion energy applications, either

  17. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    simulations of fusion and energy systems with unprecedentedRequirements  for  Fusion  Energy  Sciences   14 General  and  Storage  Requirements  for  Fusion  Energy  Sciences  

  18. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    E-Print Network [OSTI]

    Gerber, Richard

    2014-01-01

    Requirements  for  Fusion  Energy  Sciences:  Target  2017  Requirements  for  Fusion  Energy  Sciences:  Target  and  Context   DOE’s  Fusion  Energy  Sciences  program  

  19. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    and  Storage  Requirements  for  Fusion  Energy  Sciences  Requirements  for  Fusion  Energy  Sciences   14 General  Storage  Requirements  for  Fusion  Energy  Sciences   i  

  20. Progress in heavy ion driven inertial fusion energy: From scaled experiments to the integrated research experiment

    E-Print Network [OSTI]

    2001-01-01

    The promise of inertia! fusion energy driven by heavy ionleading to an inertial fusion energy power plant. The focusIRE. 1 INTRODUCTION Inertial fusion energy targets require

  1. Sean Finnegan & Ann Satsangi Fusion Energy Sciences

    E-Print Network [OSTI]

    meter (e.g., the energy density of a hydrogen molecule). This corresponds to a pressure of approximately Associates15 December 2011 Comments on the DOE-SC Program in High Energy Density Laboratory Plasma Science research community in High Energy Density Laboratory Plasma (HEDLP) science including Inertial Fusion

  2. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  3. Fusion cross sections at deep subbarrier energies

    E-Print Network [OSTI]

    K. Hagino; N. Rowley; M. Dasgupta

    2003-02-12

    A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisingly large surface diffusenesses required to fit recent high-precision fusion data.

  4. Alternative pathways to fusion energy (focus on Department of Energy

    E-Print Network [OSTI]

    Alternative pathways to fusion energy (focus on Department of Energy Innovative Confinement for a restructured fusion energy science program [5] 1996 | FESAC: Opportunities in Alternative Confinement Concepts, suggests program for Innovative Concepts [1] 1995 | OTA TPX and the Alternates [2] 1995 | PCAST (given flat

  5. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  6. Applications of high-speed dust injection to magnetic fusion

    SciTech Connect (OSTI)

    Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

    2012-08-08

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

  7. Recent U.S. advances in ion-beam-driven high energy density physics and heavy ion fusion

    E-Print Network [OSTI]

    2006-01-01

    physics and heavy ion fusion energy drivers, including bothoptions towards inertial fusion energy. Acknowledgements:fusion drivers for inertial fusion energy. 1. Introduction A

  8. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  9. Review of the Inertial Fusion Energy Program

    SciTech Connect (OSTI)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  10. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect (OSTI)

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ?10{sup 4} T (100 Megagauss) over small volumes (?10{sup ?10}m{sup 3}) at high plasma densities (?10{sup 28}m{sup ?3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  11. Converting energy from fusion into useful forms

    E-Print Network [OSTI]

    Kovari, M; Jenkins, I; Kiely, C

    2014-01-01

    If fusion power reactors are to be feasible, it will still be necessary to convert the energy of the nuclear reaction into usable form. The heat produced will be removed from the reactor core by a primary coolant, which might be water, helium, molten lithium-lead, molten lithium-containing salt, or CO2. The heat could then be transferred to a conventional Rankine cycle or Brayton (gas turbine) cycle. Alternatively it could be used for thermochemical processes such as producing hydrogen or other transport fuels. Fusion presents new problems because of the high energy neutrons released. These affect the selection of materials and the operating temperature, ultimately determining the choice of coolant and working cycle. The limited temperature ranges allowed by present day irradiated structural materials, combined with the large internal power demand of the plant, will limit the overall thermal efficiency. The operating conditions of the fusion power source, the materials, coolant, and energy conversion system w...

  12. NIF: A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2007-06-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-{micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury uses state-of-the-art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  13. Placing Fusion in the spectrum of energy development

    E-Print Network [OSTI]

    Placing Fusion in the spectrum of energy development programs Niek Lopes Cardozo #12;Niek Lopes Cardozo, Placing fusion in the energy development spectrum Put fusion in same plot with other energy to other energy sources in development. This comparison should be based on an existing representation

  14. Studies of fast electron transport in the problems of inertial fusion energy

    E-Print Network [OSTI]

    Frolov, Boris K.

    2006-01-01

    Problems of Inertial Fusion Energy by Boris K. Frolov DoctorProblems of Inertial Fusion Energy A dissertation submitted

  15. Energy Efficient Routing with Adaptive Data Fusion in Sensor Networks

    E-Print Network [OSTI]

    Liu, Yonghe

    Energy Efficient Routing with Adaptive Data Fusion in Sensor Networks Hong Luo College of Computer Adaptive Fusion Steiner Tree (AFST), for energy efficient data gathering in sensor networks that jointly, other networks may require complex operations for data fusion1 . Energy consumption of beamforming

  16. Fusion Energy Sciences Advisory Committee Meeting Gaithersburg Hilton

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting Gaithersburg Hilton 620 Perry Parkway Director for Fusion Energy Sciences 10:20 Meeting Agenda and Logistics Professor Stewart Prager, FESAC. N. Anne Davies, Associate Director for Fusion Energy Sciences 12:30 Lunch 01:30 OMB Perspective Joel

  17. Update and Outlook for the Fusion Energy Sciences Program

    E-Print Network [OSTI]

    Update and Outlook for the Fusion Energy Sciences Program E.J. Synakowski Associate Director, Office of Science Fusion Energy Sciences Fusion Power Associates Annual Meeting Washington, D.C. December Energy Sciences 3D topologies Samuel Barish, Lead,: Validation Platforms, Stellarators Steve Eckstrand

  18. The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy

    E-Print Network [OSTI]

    -consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

  19. U.S. Heavy Ion Beam Science towards inertial fusion energy

    E-Print Network [OSTI]

    2002-01-01

    Science towards Inertial Fusion Energy B.G. Logan 1), D.Ion Fusion in the U.S. Fusion Energy Sciences Program [25].activities for inertial fusion energy at Lawrence Livermore

  20. Science/Fusion Energy Sciences FY 2012 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    , and creating theoretical and computational models to resolve the essential physics principles. Background and electrons that can conduct electrical currents and can respond to electric and magnetic fields. The science experiments have generated millions of watts of fusion power for seconds at a time. In the vision of a working

  1. MFE Concept Integration and Performance Measures Magnetic Fusion Concept Working Group

    E-Print Network [OSTI]

    MFE Concept Integration and Performance Measures Magnetic Fusion Concept Working Group Contributors. Simonen, T. Thorson INTRODUCTION This subgroup of the Magnetic Fusion Concepts Working Group discussed, spherical torus, compact stellarator, reversed-field pinch, and spheromak The goal was to identify, for each

  2. Low-energy fusion caused by an interference

    E-Print Network [OSTI]

    B. Ivlev

    2012-11-30

    Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

  3. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

    2006-01-25

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

  4. Energy Scaling Laws for Distributed Inference in Random Fusion Networks

    E-Print Network [OSTI]

    Yukich, Joseph E.

    1 Energy Scaling Laws for Distributed Inference in Random Fusion Networks Animashree Anandkumar Abstract--The energy scaling laws of multihop data fusion networks for distributed inference are considered. The fusion network consists of randomly located sensors distributed i.i.d. according to a general spatial

  5. Bold Step by the World to Fusion Energy: ITER

    E-Print Network [OSTI]

    Bold Step by the World to Fusion Energy: ITER Gerald A. Navratil 2006 Con Edison Lecture Fu electrically charged particles at very high energy: Threshold temperature for most reactive fusion reaction' FUSION PLASMA REGIME. · US WORKING WITH INTERNATIONAL COMMUNITY IS NOW READY TO BUILD THE WORLDS FIRST

  6. Study of internal magnetic field via polarimetry in fusion plasmas

    E-Print Network [OSTI]

    Zhang, Jie

    2013-01-01

    process that powers the stars: the fusion of atomic nuclei2011]. In a star the confinement of the fusion plasma is

  7. A Review of the U.S. Department of Energy's Inertial Fusion Energy Program

    E-Print Network [OSTI]

    Tillack, Mark

    FESAC's response to that charge. KEY WORDS: Fusion energy; inertial confinement fusion. EXECUTIVE the energy released as an attractive energy source for mankind. The inertial confinement approach to fusionA Review of the U.S. Department of Energy's Inertial Fusion Energy Program Rulon Linford,1

  8. Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program

    E-Print Network [OSTI]

    Abdou, Mohamed

    , Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

  9. The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2013-05-15

    Rayleigh-Taylor (RT) instabilities at interfaces of disparate mass densities have long been known to generate magnetic fields during inertial confinement fusion implosions. An externally applied magnetic field can also be efficiently amplified by RT instabilities. The focus here is on magnetic field generation and amplification at the gas-ice interface which is RT unstable during the deceleration phase of the implosion. RT instabilities lead to undesirable mix of hot and cold plasmas which enhances thermal energy loss and tends to produce a more massive warm-spot instead of a hot-spot. Two mechanisms are shown here to mitigate the thermal energy loss from the hot-spot. The first mechanism is the reduction of electron thermal conductivity with interface-aligned magnetic fields. This can occur through self-generated magnetic fields via the Biermann battery effect as well as through externally applied magnetic fields that undergo an exponential growth via the stretch-and-fold magnetohydrodynamic dynamo. Self-generated magnetic fields during RT evolution can result in a factor of 2?10 decrease in the electron thermal conductivity at the gas-ice interface, while externally applied magnetic fields that are compressed to 6–1000 T at the onset of deceleration (corresponding to pre-implosion external fields of 0.06–10 T) could result in a factor of 2–500 reduction in electron thermal conductivity at the gas-ice interface. The second mechanism to mitigate thermal energy loss from the hot-spot is to decrease the interface mixing area between the hot and cold plasmas. This is achieved through large external magnetic fields of 1000 T at the onset of deceleration which damp short-wavelength RT modes and long-wavelength Kelvin-Helmholtz modes thus significantly slowing the RT growth and reducing mix.

  10. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect (OSTI)

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  11. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect (OSTI)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  12. Transmutation analysis of realistic low-activation steels for magnetic fusion reactors and IFMIF

    SciTech Connect (OSTI)

    Cabellos, O; Sanz, J; Garc?a-Herranz, N; D?az, S; Reyes, S; Piedloup, S

    2005-11-22

    A comprehensive transmutation study for steels considered in the selection of structural materials for magnetic and inertial fusion reactors has been performed in the IFMIF neutron irradiation scenario, as well as in the ITER and DEMO ones for comparison purposes. An element-by-element transmutation approach is used in the study, addressing the generation of: (1) H and He and (2) solid transmutants. The IEAF-2001 activation library and the activation code ACAB were applied to the IFMIF transmutation analysis, after proving the applicability of ACAB for transmutation calculations of this kind of intermediate energy systems.

  13. Sub-barrier Fusion Cross Sections with Energy Density Formalism

    E-Print Network [OSTI]

    F. Muhammad Zamrun; K. Hagino; N. Takigawa

    2006-06-07

    We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

  14. DANCING WITH THE STARSDANCING WITH THE STARS QUEST FOR FUSION ENERGYQUEST FOR FUSION ENERGY

    E-Print Network [OSTI]

    of the =Sun 264 10 Watts× Potential energy Solar power out Su pu n's lifetime t 14 6 10 .sec= ×= The Sun wouldDANCING WITH THE STARSDANCING WITH THE STARS QUEST FOR FUSION ENERGYQUEST FOR FUSION ENERGY Abhay AS A COAL POWER PLANTTHE SUN AS A COAL POWER PLANT What is the mass of the Sun ?? What is the power output

  15. China To Build Its Own Fusion Reactor ENERGY TECH

    E-Print Network [OSTI]

    Thermonuclear Experimental Reactor project reached agreement in Moscow Tuesday to construct the first fusion devices in thermonuclear reaction," and that "Chinese scientists started to develop a fusion operationChina To Build Its Own Fusion Reactor ENERGY TECH by Edward Lanfranco Beijing (UPI) July 1, 2005

  16. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    11, 1980, p. 725. MAGNETIC FUSION ENERGY Staff W. Kunkel andsupport) Accelerator and Fusion Research Division N.Abt Y.Wong J. Zatver HEAVY ION FUSION Work continued during FY80

  17. Laser Inertial Fusion Energy Control Systems

    SciTech Connect (OSTI)

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  18. The National Ignition Facility - Applications for Inertial Fusion Energy and High Energy Density Science

    SciTech Connect (OSTI)

    Campbell, E.M.; Hogan, W.J.

    1999-08-12

    Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t {approx} 10{sup -10} sec) that {approx} 30% of the fuel undergoes thermonuclear fusion.

  19. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

    E-Print Network [OSTI]

    1998-01-01

    Heavy Ion Driven Inertial Fusion Energy January 30, 1998 W.C. L . Olson, J. Fusion Energy 1, 309 (1982). "Filamentationof Energy Research [Office of Fusion Energy Science], U . S.

  20. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

    E-Print Network [OSTI]

    1998-01-01

    C. L . Olson, J. Fusion Energy 1, 309 (1982). "FilamentationHeavy Ion Driven Inertial Fusion Energy January 30, 1998 W.of Energy Research [Office of Fusion Energy Science], U . S.

  1. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    E-Print Network [OSTI]

    Dart, Eli

    2008-01-01

    Division, and the Office of Fusion Energy Sciences.Requirements Report of the Fusion Energy Sciences NetworkRequirements Workshop Fusion Energy Sciences Program Office,

  2. Reports of the Fusion Energy Science Advisory Committee Strategic Planning

    E-Print Network [OSTI]

    Strategic Planning for U.S. Fusion Energy Sciences Program of recommended strategic initiatives and associated program-wide FES investments. FESAC recommends more extensive

  3. REPORT FROM THE PLANNING WORKSHOP FUSION ENERGY SCIENCES PROGRAM

    E-Print Network [OSTI]

    in a workshop to chart the short and medium term future of the nation's fusion energy science program-reaching benefits to the nation in the near term, and progress toward a renewable and attractive energy sourceREPORT FROM THE PLANNING WORKSHOP FOR THE FUSION ENERGY SCIENCES PROGRAM (October 22 - 24, 1996

  4. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  5. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  6. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect (OSTI)

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  7. Nuclear processes in magnetic fusion reactors with polarized fuel

    E-Print Network [OSTI]

    Michail P. Rekalo; Egle Tomasi-Gustafsson

    2000-10-16

    We consider the processes $d +d \\to n +{^3He}$, $d +{^3He} \\to p +{^4He}$, $d +{^3H} \\to n +{^4He}$, ${^3He} +{^3He}\\to p+p +{^4He}$, ${^3H} +{^3He}\\to d +{^4He}$, with particular attention for applications in fusion reactors. After a model independent parametrization of the spin structure of the matrix elements for these processes at thermal colliding energies, in terms of partial amplitudes, we study polarization phenomena in the framework of a formalism of helicity amplitudes. The strong angular dependence of the final nuclei and of the polarization observables on the polarizations of the fuel components can be helpful in the design of the reactor shielding, blanket arrangement etc..We analyze also the angular dependence of the neutron polarization for the processes $\\vec d +\\vec d \\to n +{^3He}$ and $\\vec d +\\vec {^3H} \\to n +{^4He}$.

  8. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01

    A. Moses, “Inertial fusion energy target output and chamberA. J. Schmitt, et al. , “Fusion energy research with lasers,o?s for inertial fusion energy power plants,” presented at

  9. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    E-Print Network [OSTI]

    Barnard, J.J.

    2008-01-01

    PHYSICS AND INERTIAL FUSION ENERGY J. J. Barnard 1 , J.dense matter and inertial fusion energy related beam-targetas drivers for inertial fusion energy (IFE), for their high

  10. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01

    A. Moses, “Inertial fusion energy target output and chamberA. J. Schmitt, et al. , “Fusion energy research with lasers,and focusing,” J. Fusion Energy 1, 309 (1982). [35] D. R.

  11. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  12. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  13. Accelerator and fusion research division. 1992 Summary of activities

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  14. Magne&c fusion energy from physics to DEMO

    E-Print Network [OSTI]

    challenges R. Stambaugh 10:40 Roadmap to DEMO R. Fonck 11:25 Discussion 12:00 Adjourn start Roadmap to DEMO Burning plasmas Harness fusion energy all themes #12;ITER ~ 2035 start Roadmap to DEMO Burning plasmas Harness fusion energy all themes #12

  15. Key Points of STFC and EPSRC's Fusion for Energy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy

    E-Print Network [OSTI]

    Key Points of STFC and EPSRC's Fusion for Energy Strategy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy research: 1) EPSRC and STFC will support fusion research as a long and demonstrating leadership to realise the goal of fusion energy. 2) EPSRC will develop a long term base funding

  16. White Paper on A New Approach for the Magnetic Fusion Program Dale M. Meade

    E-Print Network [OSTI]

    which have improved their product and lowered costs, and this should be expected to continue. Fusion years, and therefore fusion will be acceptable even at costs several times that of present energy supplies. Over the past twenty years, the other energy technologies have had their own innovation programs

  17. Road Map for a Modular Magnetic Fusion Program Dale M. Meade

    E-Print Network [OSTI]

    are now being done at the energy production scale. This paper describes a modular approach that addresses that limit the maximum plasma pressure, microinstabilities that limit the plasma energy confinement and fast for fusion, and until high-gain plasmas can be produced in the laboratory, the world fusion community

  18. Road Map for a Modular Magnetic Fusion Program Dale M. Meade

    E-Print Network [OSTI]

    are now being done at the energy production scale. This paper describes a modular approach that addresses that limit the maximum plasma pressure, microinstabilities that limit the plasma energy confinement and fast for fusion, and until high­gain plasmas can be produced in the laboratory, the world fusion community

  19. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect (OSTI)

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  20. Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants

    E-Print Network [OSTI]

    Debonnel, Christophe Sylvain

    2006-01-01

    Fusion Energy . . . . . . . . . . . . . . . . . . . . . . . . .Fusion Energy . . . . . . . . . . . . . . . . . . . . .vortex shielding for fusion energy applications. Fusion

  1. Fusion-fission energy systems evaluation

    SciTech Connect (OSTI)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  2. Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat

    E-Print Network [OSTI]

    Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have is well advanced through the International Thermonuclear Experimental Reactor (ITER) programme, which has

  3. Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies

    E-Print Network [OSTI]

    S. V. S. Sastry; S. Kailas; A. K. Mohanty; A. Saxena

    2003-11-12

    The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comparison of the systematics of fusion barrier with and without L-dependence has been presented.

  4. Fusion Ignition Research Experiment Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    magnetic fusion reactor. The critical parts of this science can be obtained in a compact high field tokamak technology as part of a Modular Pathway to Magnetic Fusion Energy. The conclusion is that a compact high for an economical magnetic fusion reactor that is sustained at near steady­state conditions; at this Q value #12

  5. Turbulence, Transport and the Density Limit in Magnetic Fusion Experiments

    E-Print Network [OSTI]

    Greenwald, Martin

    Program) 3 Magnetic Confinement Takes advantage of the motion of charged particles in a magnetic field) · In toroidal devices, plasma is confined by Poloidal magnetic fields #12;DESPITE THE CHALLENGES, PROGRESS HAS AND MAGNETIC CONFINEMENT· · · · THE DENSITY LIMIT PROBLEM INTERLUDE ON TRANSPORT AND TURBULENCE TOWARDS

  6. A 20-year Vision for the UK Contribution to Fusion as an Energy Source

    E-Print Network [OSTI]

    following ITER. The role for the UK in inertial confinement fusion (ICF) over the next 20 years is strongly fusion (MCF) and inertial confinement fusion (ICF) - the full list of which is given in Annex B programme over the next 20 years is given below. In magnetic confinement fusion (MCF) the continued

  7. Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007

    SciTech Connect (OSTI)

    2007-05-16

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  8. Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007

    SciTech Connect (OSTI)

    Kritz, A.; Keyes, D.

    2007-05-18

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  9. Fusion Energy Sciences Advisory Committee Meeting March 7-8, 2011

    E-Print Network [OSTI]

    , Associate Director for Fusion Energy Sciences 12:30 Lunch 1:30 ITER Update: Accomplishments, StatusFusion Energy Sciences Advisory Committee Meeting March 7-8, 2011 Agenda DoubleTree Bethesda Hotel, and Domestic Issues Mr. Tom Vanek and Dr. John Glowienka, Fusion Energy Sciences 2:30 Fusion Energy Research

  10. Modelling Neutral Particle Analyzer Measurements of High Energy Fusion Alpha-Particle Distributions in JET

    E-Print Network [OSTI]

    Modelling Neutral Particle Analyzer Measurements of High Energy Fusion Alpha-Particle Distributions in JET

  11. The role of Z-pinches and related configurations in magnetized target fusion

    SciTech Connect (OSTI)

    Lindemuth, I.R.

    1997-07-10

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system.

  12. Journal of Fusion Energy, Vol. 17, No. 4, 1998 Status and Objectives of Tokamak Systems for Fusion

    E-Print Network [OSTI]

    Journal of Fusion Energy, Vol. 17, No. 4, 1998 Status and Objectives of Tokamak Systems for Fusion). It was the first comprehensive survey of the status of the tokamak fusion research concept, which was to become buildup of the U.S. tokamak program during the latter half of the 1970's and is published now to archive

  13. Indirect hydrogen versus helium or nitrogen cooling for fusion cryogenic and magnet systems Clarke R.H1

    E-Print Network [OSTI]

    Glowacki, Bartek A.

    347 Indirect hydrogen versus helium or nitrogen cooling for fusion cryogenic and magnet systems in fusion cryogenic and magnet systems may be possible through the use of 15-20 K cooling. This approach there is no substitute. By using an intermediate, leak-tight, pressurised helium loop the benefits of 15-20 K cooling can

  14. Energy Subgroup B July 27, 1999 1999 Fusion Summer Study

    E-Print Network [OSTI]

    roadmap. · Success in NIF and the IRE Program will be sufficient to proceed with the Engineering Test (ETF) for IFE · The ETF is the primary Fusion Energy Development step on the IFE roadmap · The ETF

  15. Fusion of strings and cosmic rays at ultrahigh energies

    E-Print Network [OSTI]

    N. Armesto; M. A. Braun; E. G. Ferreiro; C. Pajares; Yu. M. Shabelski

    1996-02-13

    It is shown that the fusion of strings is a source of particle production in nucleus--nucleus collisions outside the kinematical limits of nucleon--nucleon collisions. This fact, together with another effect of string fusion, the reduction of multiplicities, sheds some light on two of the main problems of ultrahigh energy cosmic rays, the chemical composition and the energy of the most energetic detected cosmic rays.

  16. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect (OSTI)

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  17. Summary for FT, IT and SE 20th IAEA Fusion Energy Conference

    E-Print Network [OSTI]

    Summary for FT, IT and SE 20th IAEA Fusion Energy Conference 1 - 6 November 2004 Vilamoura on Plasma Physics and controlled Nuclear Fusion Research has been changed to be IAEA Fusion Energy and should be moved to the ultimat goal of utilizing fusion energy for human being in near future

  18. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Martens, Daniel; Hsu, Scott C.

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  19. Particle Control in Steady State Magnetic Fusion Devices by Moving-

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    al., J. Nucl. Mater. 196-198(1992)45. Thick Liquid Wall After M. Abdou et al., Fusion Eng. Des. 54 2 3 ECR power ( W ) (c) (d) #12;POP exps. on particle control by MS-PFCs (Presented at ANS-TOFE, 2002) #12;Reduced H-recycling over a MS-PFC (Presented at ANS-TOFE, 2004) Time (sec) Normalized

  20. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect (OSTI)

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)

    2013-12-15

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (?1 m), high-current (?1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ?5 ?m into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  1. Fusion: Intro Fusion: Numerics and Asymptotics Fusion: Summary Superconductor: Problem Superconductor: Results Investigation into the Feasibility and

    E-Print Network [OSTI]

    Fournier, John J.F.

    Fusion: Intro Fusion: Numerics and Asymptotics Fusion: Summary Superconductor: Problem Superconductor: Results Investigation into the Feasibility and Operation of a Magnetized Target Fusion Reactor, Committee Member May 7, 2015 Michael Lindstrom Magnetized Target Fusion and Field Perturbations #12;Fusion

  2. Fusion at near-barrier energies within quantum diffusion approach

    E-Print Network [OSTI]

    V. V. Sargsyan; G. G. Adamian; N. V. Antonenko; W. Scheid; H. Q. Zhang

    2013-11-20

    The nuclear deformation and neutron-transfer process have been identified as playing a major role in the magnitude of the sub-barrier fusion (capture) cross sections. There are a several experimental evidences which confirm the importance of nuclear deformation on the fusion. The influence of nuclear deformation is straightforward. If the target nucleus is prolate in the ground state, the Coulomb field on its tips is lower than on its sides, that then increases the capture or fusion probability at energies below the barrier corresponding to the spherical nuclei. The role of neutron transfer reactions is less clear. The importance of neutron transfer with positive Q-values on nuclear fusion (capture) originates from the fact that neutrons are insensitive to the Coulomb barrier and therefore they can start being transferred at larger separations before the projectile is captured by target-nucleus. Therefore, it is generally thought that the sub-barrier fusion cross section will increase because of the neutron transfer. The fusion (capture) dynamics induced by loosely bound radioactive ion beams is currently being extensively studied. However, the long-standing question whether fusion (capture) is enhanced or suppressed with these beams has not yet been answered unambiguously. The study of the fusion reactions involving nuclei at the drip-lines has led to contradictory results.

  3. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  4. Fusion barrier distributions in systems with finite excitation energy

    E-Print Network [OSTI]

    K. Hagino; N. Takigawa; A. B. Balantekin

    1997-06-24

    Eigen-channel approach to heavy-ion fusion reactions is exact only when the excitation energy of the intrinsic motion is zero. In order to take into account effects of finite excitation energy, we introduce an energy dependence to weight factors in the eigen-channel approximation. Using two channel problem, we show that the weight factors are slowly changing functions of incident energy. This suggests that the concept of the fusion barrier distribution still holds to a good approximation even when the excitation energy of the intrinsic motion is finite. A transition to the adiabatic tunneling, where the coupling leads to a static potential renormalization, is also discussed.

  5. Fusion Development Path Panel Preliminary Report

    E-Print Network [OSTI]

    demonstration devices will be built around the world. In order for a future US fusion industry to be competitive facilities around the world, and include both magnetic fusion energy (MFE) and inertial fusion energy (IFE Laboratory, New Mexico · Stewart Prager, University of Wisconsin · Ned Sauthoff, Princeton Plasma Physics

  6. The Spheromak path to fusion energy

    SciTech Connect (OSTI)

    Hooper, E.B., Barnes, C.W., Bellan, P.M., [and others

    1998-04-01

    The spheromak is a simple and robust magnetofluid configuration with several attractive reactor attributes including compact geometry, no material center post, high engineering {beta}, and sustained steady state operation through helicity injection. Spheromak physics was extensively studied in the US program and abroad (especially Japan) in the 1980` s with work continuing into the 1990s in Japan and the UK. Scientific results included demonstration of self-organization at constant helicity, control of the tilt and shift modes by shaped flux conservers, elucidation of the role of magnetic reconnection in the magnetic dynamo, and sustainment of a spheromak by helicity injection. Several groups attained electron temperatures above 100 eV in decaying plasmas, with CTX reaching 400 eV. This experiment had high magnetic field (>l T on the edge and {approximately} 3 T near the symmetry axis) and good confinement. More recently, analysis of CTX found the energy confinement in the plasma core to be consistent with Rechester-Rosenbluth transport in a fluctuating magnetic field, potentially scaling to good confinement at higher electron temperatures. The SPHEX group developed an understanding of the dynamo in sustained spheromaks but in a relatively cold device. These and other physics results provide a foundation for a new ``concept exploration`` experiment to study the physics of a hot, sustained spheromak. If successful, this work leads to a next generation, proof-of-principle program. The new SSPX experiment will address the physics of a large-scale sustained spheromak in a national laboratory (LLNL) setting. The key issue in near term spheromak research will be to explore the possibly deleterious effects of sustainment on confinement. Other important issues include exploring the {beta} scaling of confinement, scaling with Lundquist number S, and determining the need for active current-profile control. Collaborators from universities and other national laboratories are contributing experience from previous work, diagnostics, and physics support. Experiments at PPPL and Swarthmore are being conducted on the physics of magnetic reconnection, yielding physics results which should help advance the confinement work. A spheromak reactor will require steady state operation with the equilibrium fully supported by external coils. Although the present generation of experiments can provide data on the initial stages of the transition from short-pulsed operation, sustainment longer than the wall resistance time will be addressed in the proof-of-principle experiments.

  7. Current Status of DiscussionCurrent Status of DiscussionCurrent Status of DiscussionCurrent Status of Discussion on Roadmap of Fusion Energyon Roadmap of Fusion Energy

    E-Print Network [OSTI]

    of Discussion on Roadmap of Fusion Energyon Roadmap of Fusion Energy Research and Development in Japan Univ.), International WorkshopInternational Workshop MFE Roadmapping in the ITER Era Princeton, 7/25 #12;Roadmap of Fusion DevelopmentRoadmap of Fusion Development in Promotion Plan of Fusion R&D by JAEC

  8. The roadmap to magnetic confinement fusion Cutaway of the ITER tokamak. ( ITER)

    E-Print Network [OSTI]

    Hampshire, Damian

    The roadmap to magnetic confinement fusion Cutaway of the ITER tokamak. (© ITER) There are two ways "tokamak" configuration invented by Tamm and Sakharov in 1950 and declassified in 1957 [1] . Over 198 tokamaks have been built [2] . Four large tokamak projects were built in the 1980s. Two of these

  9. Damage production and accumulation in SiC structures in inertial and magnetic fusion systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    damage and helium production on defect accumulation in SiC/SiC composites are also discussed. Ó 2010Damage production and accumulation in SiC structures in inertial and magnetic fusion systems M spectrum, and pulsed nature of neutron production result in significant differences in damage parameters

  10. Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas O. V. Gotchev,1,2,3

    E-Print Network [OSTI]

    of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement.57.Àz, 52.25.Xz, 52.55.Lf In the magnetic fusion energy (MFE) concept, a strong magnetic field confines with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field

  11. Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants

    E-Print Network [OSTI]

    Debonnel, Christophe Sylvain

    2006-01-01

    Fusion Energy . . . . . . . . . . . . . . . . . . . . . . . . .Fusion Energy . . . . . . . . . . . . . . . . . . . . .of Energy’s inertial fusion energy program. Journal of

  12. Fusion dynamics of symmetric systems near barrier energies

    E-Print Network [OSTI]

    Zhao-Qing Feng; Gen-Ming Jin

    2009-09-06

    The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

  13. INTERNATIONAL ATOMIC ENERGY AGENCY 17th IAEA Fusion Energy Conference

    E-Print Network [OSTI]

    Budny, Robert

    Institute for Plasma Research, University of Maryland, College Park, MD, USA 4 Institute for Fusion Studies

  14. Investigation of sub-meter shields for a low aspect ratio D-T Tokamak fusion reactor

    E-Print Network [OSTI]

    French, Cameron T

    2014-01-01

    A significant effort is being made by fusion researchers to minimize the total size of magnetic fusion devices on the path toward developing fusion energy. The spherical tokamak, which has a very low aspect ratio, is the ...

  15. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments

    SciTech Connect (OSTI)

    Ryutov, D. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2012-06-15

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  16. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    SciTech Connect (OSTI)

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES ??Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid'??s resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  17. Experimental demonstration of fusion-relevant conditions in magnetized

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent)pressure|the typEsilicaliner inertial fusion

  18. Fusion rate enhancement due to energy spread of colliding nuclei

    E-Print Network [OSTI]

    G. Fiorentini; C. Rolfs; F. L. Villante; B. Ricci

    2002-10-24

    Experimental results for sub-barrier nuclear fusion reactions show cross section enhancements with respect to bare nuclei which are generally larger than those expected according to electron screening calculations. We point out that energy spread of target or projectile nuclei is a mechanism which generally provides fusion enhancement. We present a general formula for calculating the enhancement factor and we provide quantitative estimate for effects due to thermal motion, vibrations inside atomic, molecular or crystal system, and due to finite beam energy width. All these effects are marginal at the energies which are presently measurable, however they have to be considered in future experiments at still lower energies. This study allows to exclude several effects as possible explanation of the observed anomalous fusion enhancements, which remain a mistery.

  19. Intermittency and turbulence in a magnetically confined fusion plasma

    E-Print Network [OSTI]

    V. Carbone; L. Sorriso-Valvo; E. Martines; V. Antoni; P. Veltri

    2001-01-30

    We investigate the intermittency of magnetic turbulence as measured in Reversed Field Pinch plasmas. We show that the Probability Distribution Functions of magnetic field differences are not scale invariant, that is the wings of these functions are more important at the smallest scales, a classical signature of intermittency. We show that scaling laws appear also in a region very close to the external wall of the confinement device, and we present evidences that the observed intermittency increases moving towards the wall.

  20. Fusion Engineering and Design 23 (1993) 173-200 173 North-Holland

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    1993-01-01

    a more affordable and competitive fusion reactor. The main feature of a compact reactor is a fusion power, high-power-density reversed-field pinch fusion power reactor design based on the aqueous lithium-field-pinch (RFP) magnetic fusion concept as a compact, high-power-density, and "attractive" fusion energy system

  1. Pionic Fusion Experiments at Subthreshold Energies

    SciTech Connect (OSTI)

    Joulaeizadeh, L.; Bacelar, J.; Loehner, H. [KVI, University of Groningen, Groningen, The Netherlands (Netherlands); Gasparic, I. [Ruder Boskovic Institute, Zagreb (Croatia)

    2008-01-24

    In order to study the role of pions and clustering phenomena in nuclei, two experiments have been performed using the AGOR accelerator facility. In collisions of two nuclei a pion and a fused nucleus were produced. The examined reactions were {sup 4}He({sup 3}He,{pi}{sup 0}){sup 7}Be and {sup 6}Li({sup 4}He,{pi}{sup 0}){sup 10}B at beam energies about 10 MeV above the coherent pion production threshold (256 MeV and 236.4 MeV, respectively). Since the available energy is well below the pion production threshold in an elementary nucleon-nucleon process, a highly coherent mechanism is needed. We identified the reaction by measuring the fused system in the magnetic spectrometer and the produced neutral pions in the Plastic Ball detection system with large acceptance. Our experimental setup provided the exclusive cross sections by identifying all products in overdetermined kinematics. Here we present the preliminary results of the ongoing analysis for the second reaction. About 700 events fulfilling the kinematical conditions for an outgoing {sup 10}B and a {pi}{sup 0} decaying with large opening angle have been selected. Angular distribution of neutral pions will be discussed.

  2. NUCLEAR FISSION AND FUSION 6.A Nuclear Binding Energies

    E-Print Network [OSTI]

    Boal, David

    CHAPTER 6 NUCLEAR FISSION AND FUSION 6.A Nuclear Binding Energies A nucleus is characterized emphasis on the nuclear charge, the mass number of a nucleus plays a large role in its binding energy, and is denoted by 7Li. Some further items from the nuclear lexicon: nuclei with the same Z and differing N

  3. Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

    E-Print Network [OSTI]

    Logan, B.G.

    2010-01-01

    MATTER AND INERTIAL FUSION ENERGY APPLICATIONS ON NDCX-II Byof Science, Office of Fusion Energy Sciences, of the U.S.matter and inertial fusion energy applications on NDCX-II J.

  4. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  5. Fusion Energy Division annual progress report, period ending December 31, 1988

    SciTech Connect (OSTI)

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  6. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, K

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

  7. The National Ignition Facility (NIF) A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2006-11-27

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  8. J. Fusion Energy manuscript No. (will be inserted by the editor)

    E-Print Network [OSTI]

    Mauel, Michael E.

    for magnetic fusion using advanced fuels [3]. The dipole geometry has no magnetic shear, as does the field to be interchange-like for both MHD centrifugal modes [7] and for kinetic MHD modes that have complex frequencies

  9. Taylor/FESAC Priorities/July 18, 2012 Fusion Energy Science Program Priorities

    E-Print Network [OSTI]

    : ­ Develop U.S. experts to take leadership roles · Fusion Nuclear Science Program: ­ Develop fusion materials and nuclear technology needed for fusion energy Essential elements for U.S. Leadership FNSF #12;6 Taylor CMOD DIII-D Fusion Nuclear Science Facility (FNSF) challenges: - High performance, steady

  10. Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies Indiana University: M in the outer crust · Superbursts observed for accreting neutron stars · Fusion of neutron-rich light nuclei as a possible heat source in neutron star crust Fusion cross-section · Dynamics of fusion reaction with neutron

  11. Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic Plan for Commercialization

    E-Print Network [OSTI]

    ­ developing a strategic plan (or roadmap) for commercialization of fusion energy for power production using a Strategic Plan (Roadmap) for commercializing fusion energy for power production. Although the Plan

  12. IEEE TRANS. PLASMA SCIENCE, VOL. XX, NO. X, DECEMBER 201X 1 Dust dynamics in magnetic fusion plasmas

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    IEEE TRANS. PLASMA SCIENCE, VOL. XX, NO. X, DECEMBER 201X 1 Dust dynamics in magnetic fusion plasmas: generation, transport, destruction and applications Zhehui Wang, Member, IEEE, Robert Lunsford

  13. An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices

    E-Print Network [OSTI]

    Hartwig, Zachary Seth

    2014-01-01

    Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

  14. Stabilization of external kink modes in magnetic fusion experiments using a thin conducting shell

    SciTech Connect (OSTI)

    Fitzpatrick, R.

    1995-11-01

    In nearly all magnetic fusion devices the plasma is surrounded by a conducting shell of some description. In most cases this is the vacuum vessel. What effect does a conducting shell have on the stability of external kink modes? Is there any major difference between the effect of a perfectly conducting shell and a shell of finite conductivity? What happens if the shell is incomplete? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistive MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effect of conducting shells on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.).

  15. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet Laboratoroy Useful Links The links...

  16. Tutorial on the Physics of Inertial Confinement Fusion for energy applications

    E-Print Network [OSTI]

    Tutorial on the Physics of Inertial Confinement Fusion for energy applications R. Betti University of Rochester and Princeton Plasma Physics Laboratory 3rd Meeting of the NAS panel on Inertial Fusion Energy · The implications of ignition to fusion ENERGY production Does the NIF address all the plasma-target PHYSICS issues

  17. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program

  18. MEASURING FUSION CROSS-SECTIONS FOR THE C SYSTEM AT NEAR BARRIER ENERGIES

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES Michael Rudolph Michael Rudolph MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES The fusion of neutron-rich 20 O on 12 C at energies in the range of 20 MeV Elab 41 MeV was measured

  19. The Energy Impact of Aggressive Loop Fusion YongKang Zhu , Grigorios Magklis

    E-Print Network [OSTI]

    Scott, Michael L.

    The Energy Impact of Aggressive Loop Fusion YongKang Zhu , Grigorios Magklis , Michael L. Scott effect on energy. By merging program phases, fusion tends to increase the uniformity, or balance to increase IPC, and thus dynamic power, so that fusion-induced improvements in program energy are slightly

  20. Adaptive Data Fusion for Energy Efficient Routing in Wireless Sensor Networks

    E-Print Network [OSTI]

    Liu, Yonghe

    1 Adaptive Data Fusion for Energy Efficient Routing in Wireless Sensor Networks Hong Luo, Jun Luo redundancy and hence curtail network load, the fusion process itself may introduce significant energy Fusion Steiner Tree (AFST), for energy efficient data gathering in sensor networks. Not only does AFST

  1. Establishing the scientific basis for fusion energy and understanding the plasma universe

    E-Print Network [OSTI]

    promoting a sustainable FES future The US research effort has to effectively reap maximal S utu e y pEstablishing the scientific basis for fusion energy and understanding the plasma universe Update on the Fusion Update on the Fusion Energy Sciences ProgramEnergy Sciences Program Ed SynakowskiEd Synakowski

  2. The Fusion Energy Program: The Role of TPX and Alternate Concepts

    E-Print Network [OSTI]

    The Fusion Energy Program: The Role of TPX and Alternate Concepts February 1995 OTA-BP-ETI-141 GPO, The Fusion Energy Program: The Role of TPX and Alternate Concepts, OTA-BP-ETI-141 (Washington, DC: U of alternate concept research as conducted in the U.S. fusion energy program. While the focus of the study

  3. Fusion Energy Sciences Advisory Committee Meeting March 1-2, 2007

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting March 1-2, 2007 Marriott Hotel/301-590-0044 9751. Raymond L. Orbach, Under Secretary of Science 12:30 Lunch 1:30 Fusion Energy Sciences FY 2008 Budget Tom:45 Discussion of the New Charge FESAC 5:30 Adjourn #12;Fusion Energy Sciences Advisory Committee Meeting March 1

  4. Fusion Energy Sciences Advisory Committee Meeting April 9-10, 2014

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting April 9-10, 2014 Hilton Rockville Hotel Synakowski, Associate Director for Fusion Energy Sciences 12:00 noon Lunch 1:15 p.m. ITER Project Status Dr for the FES Program Dr. Ed Synakowski, Associate Director for Fusion Energy Sciences 3:30 p.m. Break 3:45 p

  5. Fusion Energy Sciences Advisory Committee Meeting March 5-6, 2003

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting March 5-6, 2003 Agenda AgendaMar03Rev08 Time interest to the US Sauthoff 1115 Discussion of US Participation in ITER FESAC 1230 Lunch #12;Fusion Energy;Fusion Energy Sciences Advisory Committee Meeting March 5-6, 2003 Agenda Time Topic Speaker 3/6 AM 0900

  6. Fusion Energy Sciences Advisory Committee Meeting Marriott Hotel (301-590-0044)

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting Marriott Hotel (301-590-0044) 9751 Washingtonian Hazeltine, Chair, FESAC 0905 OFES Perspective Dr. N. Anne Davies, Associate Director for Fusion Energy Adjourn #12;Fusion Energy Sciences Advisory Committee Meeting Marriott Hotel, 9751 Washingtonian Blvd

  7. Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices

    E-Print Network [OSTI]

    Barnard, Harold Salvadore

    2014-01-01

    Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

  8. U.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted=

    E-Print Network [OSTI]

    States plan to build a $5 billion fusion reactor, called the International Thermonuclear ExperimentalU.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted= print&position=top Page: 1 January 30, 2003 U.S. to Participate in Fusion Project By THE ASSOCIATED

  9. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010

    E-Print Network [OSTI]

    École Normale Supérieure

    2009-01-01

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universit´e de Nice

  10. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01

    J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [Atzeni, and C Ciampi, 1997 Nuclear Fusion 37, 1665. [38] B G

  11. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01

    1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

  12. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  13. Fusion Energy Development in Korea Current Activities and Development

    E-Print Network [OSTI]

    energy source by technological development and the commercialization of fusion energy Phase Policy Goal in NFRI · KSTAR Experiment Building · NFRI HQ (including ITER Korea) · Home for K-DEMO Design 5 #12;KSTAR, N Superconductor Heating /CD PFC 1.8 m 0.5 m 2.0 0.8 DN, SN 2.0 MA 3.5 T 300 s 5.0 Nb3Sn, NbTi ~ 28

  14. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  15. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  16. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  17. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  18. Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang Xianzhu [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2012-08-15

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the {nabla}n{sub e} Multiplication-Sign {nabla}T{sub e} term in the generalized Ohm's law. Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

  19. Multi-University Research to Advance Discovery Fusion Energy Science using a

    E-Print Network [OSTI]

    Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

  20. January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy

    E-Print Network [OSTI]

    Raffray, A. René

    January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy Applications: from the "Very Cold, CA January 25, 2008 #12;January 25, 2008/ARR 2 Unique Set of Conditions Associated with Fusion · Realization of fusion energy imposes considerable challenges in the areas of engineering, physics and material

  1. January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research

    E-Print Network [OSTI]

    ; to build a fusion reactor, and build a fusion power plant There has been tremendous progress in fusion ·Electromagnetic force: Burning materials breaks chemical bonds releasing stored energy · Coal power plant ·Your car's gas engine · Your fireplace ·Gravitational force: Falling water transforms potential energy

  2. ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program

    E-Print Network [OSTI]

    and technological achievements of the inertial confinement fusion program over the past several decades are immenseORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program Stephen O. Dean for an expanded effort on the development of inertial fusion as an energy source is dis- cussed. It is argued

  3. An evaluation of fusion energy R&D gaps using Technology Readiness Levels

    E-Print Network [OSTI]

    An evaluation of fusion energy R&D gaps using Technology Readiness Levels M. S. Tillack for prioritization. #12;The topic of fusion energy R&D gaps is receiving increased attention page 2 of 16 In EU&D needs that is widely recognized and utilized outside of the fusion community. Initial efforts

  4. Fusion Policy Advisory Committee FINAL REPORT

    E-Print Network [OSTI]

    on Magnetic Fusion of the Energy Research Advisory Board Washington, D .C. 20585 #12;#12;Fusion Policy Advisory Committee United States Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 (202) 586-5444 September 25, 1990 Admiral James D. Watkins The Secretary of Energy U.S. Department

  5. Multiscale methods for analyzing and computing fluid and plasma turbulence: Applications to magnetically confined plasmas in fusion devices.

    E-Print Network [OSTI]

    Schneider, Kai

    to magnetically confined plasmas in fusion devices. The optimization of many industrial processes requires in the case of magnetically confined plasmas encountered in tokamaks. The understanding of confinement of the confinement determines the performance of the device. Plasma turbulence shares numerous properties with fluid

  6. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  7. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    SciTech Connect (OSTI)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ?60?000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60?000 K to measured 4000 K has been obtained.

  8. Evidence for a New Path to the Self-Sustainment of the Thermonuclear Fusion Reactions in Magnetically Confined Burning Plasma Experiments

    E-Print Network [OSTI]

    Evidence for a New Path to the Self-Sustainment of the Thermonuclear Fusion Reactions in Magnetically Confined Burning Plasma Experiments

  9. On the efficacy of imploding plasma liners for magnetized fusion target compression

    SciTech Connect (OSTI)

    Parks, P. B.

    2008-06-15

    A new theoretical model is formulated to study the idea of merging a spherical array of converging plasma jets to form a 'plasma liner' that further converges to compress a magnetized plasma target to fusion conditions [Y. C. F. Thio et al., 'Magnetized target fusion in a spheroidal geometry with standoff drivers', Current Trends in International Fusion Research II, edited by E. Panarella (National Research Council Canada, Ottawa, Canada, 1999)]. For a spherically imploding plasma liner shell with high initial Mach number (M=liner speed/sound speed) the rise in liner density with decreasing radius r goes as {rho}{approx}1/r{sup 2}, for any constant adiabatic index {gamma}=d ln p/d ln {rho}. Accordingly, spherical convergence amplifies the ram pressure of the liner on target by the factor A{approx}C{sup 2}, indicating strong coupling to its radial convergence C=r{sub m}/R, where r{sub m}(R)=jet merging radius (compressed target radius), and A=compressed target pressure/initial liner ram pressure. Deuterium-tritium (DT) plasma liners with initial velocity {approx}100 km/s and {gamma}=5/3, need to be hypersonic M{approx}60 and thus cold in order to realize values of A{approx}10{sup 4} necessary for target ignition. For optically thick DT liners, T<2 eV, n>10{sup 19}-10{sup 20} cm{sup -3}, blackbody radiative cooling is appreciable and may counteract compressional heating during the later stages of the implosion. The fluid then behaves as if the adiabatic index were depressed below 5/3, which in turn means that the same amplification A=1.6x10{sup 4} can be accomplished with a reduced initial Mach number M{approx_equal}12.7({gamma}-0.3){sup 4.86}, valid in the range (10fusion {alpha}-particle heating of the collapsed liner indicates that 'spark' ignition of the DT liner fuel does not appear to be possible for magnetized fusion targets with typical threshold values of areal density {rho}R<0.02 g cm{sup -2}.

  10. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002

    E-Print Network [OSTI]

    2010-01-01

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002, the nuclear reaction which powers the sun and stars, would provide mankind with a safe, environmentally (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

  11. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  12. Fusion at deep subbarrier energies: potential inversion revisited

    E-Print Network [OSTI]

    K. Hagino; N. Rowley

    2008-11-15

    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the $^{16}$O +$^{144}$Sm and $^{16}$O +$^{208}$Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.

  13. Target Physics Scaling for Z-Pinch Inertial Fusion Energy

    SciTech Connect (OSTI)

    Olson, R. E. [Sandia National Laboratories (United States)

    2005-05-15

    The Z-pinch fusion energy power plant concept is based upon an X-ray driven inertial confinement fusion (ICF) capsule having a hypothetical yield of 3 GJ with an overall target gain in the range of 50-100. In the present paper, a combination of analytic arguments, results of radiation-hydrodynamic computational simulations, and empirical scalings from Z-pinch hohlraum experiments are used to demonstrate that the absorption of approximately 6 MJ of X-ray energy by the capsule and 26 MJ by the hohlraum walls of an ICF target ({approx} 32 MJ total X-ray input) will be adequate to provide a 3 GJ yield. As a result, it appears that the Ref. 1 assumption of a 3 GJ thermonuclear yield with an overall target gain approaching 100 is conceptually feasible.

  14. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    SciTech Connect (OSTI)

    Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2013-06-15

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3–4 is found over a wide range of fast electron divergence half-angles.

  15. ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE

    E-Print Network [OSTI]

    of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. #12;1-2 We use these studies to compare technical requirements energy research program has been to develop a viable means of harnessing the virtually unlimited energy

  16. ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. #12;1-2 We use these studies to compare technical requirements energy research program has been to develop a viable means of harnessing the virtually unlimited energy

  17. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  18. Journul of Fusion Energy. Yo/. 5. No. 2. 1986 Introduction to Panel Discussions

    E-Print Network [OSTI]

    Journul of Fusion Energy. Yo/. 5. No. 2. 1986 -- Introduction to Panel Discussions Whither Fusion Research? Robert L. Hirsch' . An unnamed former fusion program director retired and felt he needed some friend appeared before the major monk for his annual two words, which were, " Room cold." The monk nodded

  19. Senator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001

    E-Print Network [OSTI]

    . Unlike fossil fuels, which pollute the air when burned, the only byproduct in a hydrogen fusion reaction and polluting. Beyond expanding renewable energy sources such as those from the sun and the wind, fusion holds is helium -- an element already plentiful in the air. Besides being environmentally benign, fusion

  20. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    SciTech Connect (OSTI)

    Betti, R.; Chang, P. Y.; Anderson, K. S.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Spears, B. K.; Edwards, J.; Lindl, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fatenejad, M. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Shvarts, D. [NRCN, Negev and Ben Gurion University of the Negev, Beer-Sheva 84015 (Israel)

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.

  1. National Academies Committee on the Prospects for Inertial Confinement Fusion Energy Systems

    E-Print Network [OSTI]

    .S. usage, it makes the DoD the single largest energy user in the country." Energy Sources · Laser FusionNational Academies Committee on the Prospects for Inertial Confinement Fusion Energy Systems Tour.S. Naval Research Laboratory Research supported by the Department of Energy, NNSA Presented by Steve

  2. ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER Don Steiner, Jeffrey Freidberg Farrokh Najmabadi William Nevins , and John Perkins The Energy Issues Working Group on Long-Term Visions energy production in the next century? 2. What is fusion's potential for penetrating the energy market

  3. Pulsed High Density Fusion John Slough#

    E-Print Network [OSTI]

    Washington at Seattle, University of

    configuration allowing for much longer energy confinement lifetimes. For this reason, the FRC plasma need. Essentially, the more massive the system required to confine and heat the fusion plasma, the larger the cost required for fusion gain with low steady state reactors ( being the ratio of the plasma to magnetic energy

  4. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect (OSTI)

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  5. Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth

    E-Print Network [OSTI]

    Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth Max Tabak ignition robust burn Supernova core MFE ICF ignition requires large energy and power densities Log10 Achieving the necessary multiplication of power,energy and mass densities requires a well controlled

  6. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01

    and technologies for fusion energy with lasers and direct-direct drive inertial fusion energy targets. Report 06-02,Improved Inertial Fusion Energy Chamber Inter-Shot

  7. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01

    confinement fusion (ICF) to the more-familiar magnetic-fusion have opposite strategies for meeting this criterion. Magnetic confinement

  8. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001

    E-Print Network [OSTI]

    Heidbrink, William W.

    2008-01-01

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

  9. and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016

    E-Print Network [OSTI]

    Solna, Knut

    2008-01-01

    and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 devices Milan Rajkovi´c1 , Milos Skori´c2 , Knut Sølna3 and Ghassan Antar4 1 Institute of Nuclear Sciences Vinca, Belgrade, Serbia 2 National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu

  10. Recent EFDA work on Pulsed DEMO, August 2012, TOFE T N Todd Culham Centre for Fusion Energy, Oxfordshire

    E-Print Network [OSTI]

    Energy, Oxfordshire The Future of Nuclear Power: Fusion Recent EFDA work on pulsed DEMO The UK fusion) · Start-up power requirements, energy storage strategy · Energy storage systems available

  11. Feb15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION

    E-Print Network [OSTI]

    Feb­15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides the same electrical energy requirement per available blanket neutron when the blanket coverage

  12. Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION

    E-Print Network [OSTI]

    Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides the same electrical energy requirement per available blanket neutron when the blanket coverage

  13. Magnetic Resonance - Ultrasound Fusion of the Prostate: Imaging for Cancer Diagnosis

    E-Print Network [OSTI]

    Natarajan, Shyam

    2012-01-01

    fusion for prostate brachytherapy. Preliminary results,”Mri/trus data fusion for brachytherapy,” The Interna- tionalapplications in prostrate brachytherapy: analysis of phantom

  14. On the nuclear interaction. Potential, binding energy and fusion reaction

    E-Print Network [OSTI]

    I. Casinos

    2008-05-22

    The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

  15. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  16. Prospects for inertial fusion as an energy source

    SciTech Connect (OSTI)

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  17. Sandia Energy - Fusion Instabilities Lessened by Unexpected Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy Policy ExpertsFuel OptionsFusion

  18. ROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL THERMONUCLEAR EXPERIMENTAL

    E-Print Network [OSTI]

    research, advantages of Fusion Energy in comparison with fossil, fission and renewable, preliminaryROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL Energy Research Institute, Japan INOUE Nobuyuki Kyoto University, Japan 1. Introduction (Introduction

  19. A review of helium-hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding

    E-Print Network [OSTI]

    Marian, J; Marian, J; Hoang, T; Hoang, T; Fluss, M; Hsiung, LL

    2015-01-01

    of the 24th IAEA Fusion Energy Conference, San Diego, USA,127–147. DOE Office of Fusion Energy Sciences, Washington,damage observed in fusion energy steels and an interaction

  20. Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova

    E-Print Network [OSTI]

    Cesare, Bernardo

    the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING Università degli Studi di Padova in agreement

  1. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    SciTech Connect (OSTI)

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  2. Advances in Understanding Turbulence & Confinement in Fusion Energy Research

    E-Print Network [OSTI]

    complicated (incl. sources & sinks, atomic physics, plasma- wall interactions) Edge region very important Energy Research I. Simple physical pictures of tokamak plasma turbu- lence and how to reduce it. II) and squeezing magnetic fields at high plasma pressure: "Second stabil- ity" Advanced Tokamak or Spherical Torus

  3. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    None

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  4. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    none,

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  5. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) S254S265 PII: S0029-5515(04)88685-X

    E-Print Network [OSTI]

    Tillack, Mark

    2004-01-01

    INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) S254­S265 PII: S0029-5515(04)88685-X A cost-effective target supply for inertial fusion energy D.T. Goodin1 , N.B. Alexander1 , L.C. Brown1 , D.T. Frey1 , R. Gallix1 , C.R. Gibson1 , J

  6. JET Papers presented to the 17th IAEA Fusion Energy Conference (Yokohama, Japan, 19th – 24th October 1998)

    E-Print Network [OSTI]

    JET Papers presented to the 17th IAEA Fusion Energy Conference (Yokohama, Japan, 19th – 24th October 1998)

  7. International Collaboration Opportunities For the US Fusion Sciences Program

    E-Print Network [OSTI]

    by the "Research Needs for Magnetic Fusion Energy Sciences" report (ReNeW, 2009) and the opportunities to address Fusion Energy Sciences" (ReNeW, 2009), which documents the remaining research issues and possible energy, they are operating or constructing a wide spectrum of research and development facilities

  8. Progress on Z-pinch inertial fusion energy.

    SciTech Connect (OSTI)

    Olson, Craig Lee

    2004-09-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  9. Progress in Z-pinch inertial fusion energy.

    SciTech Connect (OSTI)

    Weed, John Woodruff

    2010-03-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  10. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect (OSTI)

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  11. PHYSICAL REVIEW C 76, 035802 (2007) Implications of low-energy fusion hindrance on stellar burning and nucleosynthesis

    E-Print Network [OSTI]

    2007-01-01

    PHYSICAL REVIEW C 76, 035802 (2007) Implications of low-energy fusion hindrance on stellar burning prediction of strongly reduced low-energy astrophysical S-factors for carbon and oxygen fusion reactions [4] to measurements of the fusion cross section above 2.4 MeV (center-of-mass energy) for the 12 C+12

  12. UFA Technical Policy on Burning Plasma A burning plasma (BP) experiment would greatly strengthen the US fusion energy

    E-Print Network [OSTI]

    the US fusion energy sciences program. The TFTR and JET experiments have produced reactor like plasmas advances towards practical fusion energy. The UFA supports the exploration of potential BP experiments and advocates that this important next step be pursued by the U S fusion energy sciences program. The main focus

  13. Study of fusion dynamics using Skyrme energy density formalism with different surface corrections

    E-Print Network [OSTI]

    Ishwar Dutt; Narinder K. Dhiman

    2010-11-19

    Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. For this, the coefficient of surface correction was varied between 1/36 and 4/36, and its impact was studied on about 180 reactions. Our detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

  14. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect (OSTI)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  15. Operator algebras and conformal eld theory III. Fusion of positive energy representations

    E-Print Network [OSTI]

    Proudfoot, Nicholas

    Operator algebras and conformal ®eld theory III. Fusion of positive energy representations of LSU(N) using bounded operators Antony Wassermann Department of Pure Mathematics and Mathematical Statistics. Positive energy representations of LSU

  16. High Energy Electron Confinement in a Magnetic Cusp Configuration

    E-Print Network [OSTI]

    Park, Jaeyoung; Sieck, Paul E; Offermann, Dustin T; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2014-01-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when beta (plasma pressure/magnetic field pressure) is order of unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high beta a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. The current experiment validates this theoretical conjecture for the first time and represents critical progress toward the Polywell fusion concept which combines a high beta cusp configuration with an electrostatic fusion for a compact, economical, power-producing nuclear fusion reactor.

  17. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003

    E-Print Network [OSTI]

    2010-01-01

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating needed for the production of energy. At the same time, research into plasma physics and tokamak theory

  18. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13511356 PII: S0029-5515(02)54166-1

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    2002-01-01

    in an inertial fusion energy power plant R.W. Petzoldt1 , D.T. Goodin1 , A. Nikroo1 , E. Stephens1 , N. Siegel2 (IFE) power plant designs, the fuel is a spherical layer of frozen DT contained in a target fusion energy (IFE) power plant, the fuel is solid DT at 18 K encapsulated inside a target

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004

    E-Print Network [OSTI]

    2010-01-01

    of nuclear energy in the form of nuclear fission were established with the nuclear powered submarine and demonstration fission power plants. The nuclear submarine, Nautilus, was built in only three years and launchedIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004

  20. Mathematical models for strongly magnetized plasmas with mass disparate particles

    E-Print Network [OSTI]

    Negulescu, Claudia

    , thermonuclear fusion (and thus energy) is produced in a tokamak, which is a toroidal plasma confining device , Claudia Negulescu (3rd September 2010) Abstract The controlled fusion is achieved by magnetic confinement

  1. Mathematical models for strongly magnetized plasmas with mass disparate particles

    E-Print Network [OSTI]

    Bostan, Mihai

    , thermonuclear fusion (and thus energy) is produced in a tokamak, which is a toroidal plasma confining device , Claudia Negulescu (August 22, 2010) Abstract The controlled fusion is achieved by magnetic confinement

  2. Studies of ion kinetic effects in shock-driven inertial confinement fusion implosions at OMEGA and the NIF and magnetic reconnection using laser-produced plasmas at OMEGA

    E-Print Network [OSTI]

    Rosenberg, Michael Jonathan

    2014-01-01

    Studies of ion kinetic effects during the shock-convergence phase of inertial confinement fusion (ICF) implosions and magnetic reconnection in strongly-driven, laser-produced plasmas have been facilitated by the use of ...

  3. Paths to fusion energy The next 30 years, the next 10 years

    E-Print Network [OSTI]

    roadmaps agree on Gme scale, differ in details Common views on an aggressive at a demonstraGon power plant in ~ 25 years · Most roadmaps agree on Gme scale, differ The fusion era A roadmap to fusion energy discussed in US present GA PPPL MIT

  4. FRC on the Path to Fusion Energy (Moderate Density Steady-State Approach)

    E-Print Network [OSTI]

    to start from already formed FRC) Plasma measurement in RMF frame of reference so s RMF r Br T *2 22 µ1 FRC on the Path to Fusion Energy (Moderate Density Steady-State Approach) Alan Hoffman Redmond Plasma Physics Laboratory University of Washington (FPA Meeting on Fusion Pathways to the Future

  5. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect (OSTI)

    Richard J. Hawryluk

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  6. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap #24;50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and #12;ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.

  7. Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies

    E-Print Network [OSTI]

    M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

    2011-06-10

    Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

  8. Workshop on Accelerators for Heavy Ion Fusion Summary Report of the Workshop

    E-Print Network [OSTI]

    Seidl, P.A.

    2013-01-01

    ion inertial fusion," Nuclear Fusion, Vol. 33, No. 4 (1993)ion inertial fusion energy,” Nuclear Fusion 45 (2005) S291–

  9. A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage Images

    E-Print Network [OSTI]

    Abidi, Mongi A.

    A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage dual-energy X-ray images for better object classification and threat detection. The fusion step, background noise often gets amplified during the fusion process. This paper applies a background- subtraction

  10. DEUTERIUM BEAM SPECIES MEASURED BY FUSION REACTIONS IN THE NEUTRALIZER

    E-Print Network [OSTI]

    Smith, R.R.

    2010-01-01

    Research, Office of Fusion Energy, Development S. TechnologyResearch, Office of Fusion Energy, Development & Technology

  11. Discovery Fusion Energy Science using a Superconducting Laboratory

    E-Print Network [OSTI]

    Mauel, Michael E.

    Confinement Physics · Space geometry in lab helps test fundamental magnetic confinement physics · Simple) #12;Both Space and Lab Scientists study Magnetic Confinement... · Strongly magnetized * ~ 10+ , O+ , ... · Magnetic reconnection · ... Convection and flux-tube mixing drive profiles

  12. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect (OSTI)

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  13. Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass) 2004 2025 N. America 1.1 1.6 Developing Asia 2.1 3.9 W. Europe 0.6 0.4 E. Europe 0.8 0.6 Total (world Presentation, "The challenge of climate change: Developing our low carbon energy", 28, June 2004, London, UK

  14. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    E-Print Network [OSTI]

    Dart, Eli

    2008-01-01

    Fusion Energy program at Lawrence Livermore Nationalenergy science research national and international programs.Programs 6 General Atomics’ Energy Group: DIII-D National

  15. Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER Era

    E-Print Network [OSTI]

    Materials Labs ­ S. Zinkle Fusion Technology ­ S. Milora 5:30 Depart ORNL 6:00 Reception 7:30 Board:50 Preparations for NIF Ignition Campaign ­ John Lindl, LLNL 9:10 Status of Z-Pinch Research ­ Keith Matzen Technology Program­ Stan Milora, ORNL 1:40 Issues and Opportunities from ITER Review ­ R. Hawryluk, PPPL 2

  16. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 115008 (11pp) doi:10.1088/0029-5515/48/11/115008

    E-Print Network [OSTI]

    Harilal, S. S.

    2008-01-01

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 115008 of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907, USA E-mail: hassanein at stacks.iop.org/NF/48/115008 Abstract Safe and reliable operation is still one of the major challenges

  17. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10.1088/0029-5515/54/2/023004

    E-Print Network [OSTI]

    Harilal, S. S.

    2014-01-01

    | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10 Tatyana Sizyuk and Ahmed Hassanein Center for Materials under Extreme Environment, School of Nuclear intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment

  18. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005

    E-Print Network [OSTI]

    École Normale Supérieure

    2012-01-01

    #12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005 Tomographic reconstruction of tokamak plasma light-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow

  19. Magnetic induction systems to harvest energy from mechanical vibrations

    E-Print Network [OSTI]

    Jonnalagadda, Aparna S

    2007-01-01

    This thesis documents the design process for magnetic induction systems to harvest energy from mechanical vibrations. Two styles of magnetic induction systems - magnet-through-coil and magnet-across-coils - were analyzed. ...

  20. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect (OSTI)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  1. Energy Distribution in Melvin's Magnetic Universe

    E-Print Network [OSTI]

    S. S. Xulu

    1999-12-22

    We use the energy-momentum complexes of Landau and Lifshitz and Papapetrou to obtain the energy distribution in Melvin's magnetic universe. For this space-time we find that these definitions of energy give the same and convincing results. The energy distribution obtained here is the same as we obtained earlier for the same space-time using the energy-momentum complex of Einstein. These results uphold the usefulness of the energy-momentum complexes.

  2. PPPL-3470 PPPL-3470 Road Map for a Modular Magnetic Fusion Program

    E-Print Network [OSTI]

    ). This is the topolographical map for fusion showing the elevations marked by the Q values. This is the roadmap that the world

  3. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  4. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Jiang, Shui-Dong; Mei, Jia-Bin; Yang, Bin; Yang, Chun-Sheng

    2012-01-01

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the ME...

  5. TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say

    E-Print Network [OSTI]

    TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say A crystal with a strange property is at the heart of a clever method for inducing nuclear fusion in a tabletop-sized device-rays for medical therapies. Although the field of room-temperature fusion is littered with scandals and dubious

  6. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics

    SciTech Connect (OSTI)

    Alves, D.; Coelho, R. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)] [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Collaboration: JET-EFDA Contributors

    2013-08-15

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  7. RAPPORTEUR TALK FOR IAEA FUSION MEETING, BRUSSELS

    E-Print Network [OSTI]

    Watson, J.M.

    2010-01-01

    compact replacement for a Cockcroft-Walton injector. An exciting potential application for magnetic fusion

  8. Hot Electron Propagation and Imposed Magnetic Field in Inertial Fusion Hohlraums

    E-Print Network [OSTI]

    Strozzi, D J; Marinak, M M; Larson, D J; Koning, J M; Logan, B G

    2015-01-01

    Simulations with the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility (NIF), with and without an imposed axial magnetic field, are presented. We also study superthermal, or "hot," electron dynamics with the hybrid-PIC code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, when hot electrons from the window are a concern, we find ~2E-3 of the hot electron energy in a source consistent with two-plasmon decay (80 keV temperature) in the laser entrance hole deposits in the deuterium-tritium (DT) fuel, while most of the energy deposits in the high-Z wall. A 70 Tesla field, which may improve capsule performance, magnetizes hot electrons in the hohlraum fill gas, guides them to the capsule, and increases the DT deposition 12x. Early in peak laser power, electrons with >125 keV reach the DT fuel, and those with ~185 keV deposit the largest fraction of their energy (13%) in DT. HYDRA magnetohydrodynamics (MHD) simulations with an initial...

  9. Nuclear Fusion: ITER Project Update

    E-Print Network [OSTI]

    Magnetic Fusion Research is a World-wide Endeavor... #12;U.S. ITER / Sauthoff Slide 3 Roadmap · Overview Slide 13 Roadmap · Overview of fusion and magnetic confinement systems · Demonstrating the scientific

  10. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    E-Print Network [OSTI]

    C. L. Jiang; B. B. Back; H. Esbensen; R. V. F. Janssens; abd K. E. Rehm

    2005-08-01

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the $Q$-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  11. Fusion of [sup 32]S+[sup 154]Sm at sub-barrier energies

    SciTech Connect (OSTI)

    Gomes, P.R.S.; Charret, I.C.; Wanis, R.; Sigaud, G.M. (Departamento de Fisica da Universidade Federal Fluminense, Outeiro S. Joao Batista, Niteroi, 24020 Rio de Janeiro (Brazil)); Vanin, V.R.; Liguori Neto, R. (Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 20510, Sao Paulo, 01498 Sao Paulo (Brazil)); Abriola, D.; Capurro, O.A.; DiGregorio, D.E.; di Tada, M.; Duchene, G.; Elgue, M.; Etchegoyen, A.; Fernandez Niello, J.O.; Ferrero, A.M.J.; Gil, S.; Macchiavelli, A.O.; Pacheco, A.J.; Testoni, J.E. (Laboratorio TANDAR, Departamento de Fisica, Comision Nacional de Energia Atomica, Av. del Libertador 8250, 1429 Buenos Aires (Argentina))

    1994-01-01

    Fusion-evaporation cross sections for the [sup 32]S+[sup 154]Sm system at bombarding energies near the Coulomb barrier have been measured by off-line observation of the [ital K] x rays emitted in the radioactive decay of the residual nuclei. The total fusion cross sections were obtained by adding the contributions from evaporation and fission processes. The fusion excitation function for this system is compared with coupled-channel calculations that include the deformation of the target and vibrational states of both target and projectile.

  12. Energy dependence of potential barriers and its effect on fusion cross-sections

    E-Print Network [OSTI]

    A. S. Umar; C. Simenel; V. E. Oberacker

    2014-01-28

    Couplings between relative motion and internal structures are known to affect fusion barriers by dynamically modifying the densities of the colliding nuclei. The effect is expected to be stronger at energies near the barrier top, where changes in density have longer time to develop than at higher energies. Quantitatively, modern TDHF calculations are able to predict realistic fusion thresholds. However, the evolution of the potential barrier with bombarding energy remains to be confronted with the experimental data. The aim is to find signatures of the energy dependence of the barrier by comparing fusion cross-sections calculated from potentials obtained at different bombarding energies with the experimental data. This comparison is made for the $^{40}$Ca+$^{40}$Ca and $^{16}$O+$^{208}$Pb systems. Fusion cross-sections are computed from potentials calculated with the density-constrained TDHF method. The couplings decrease the barrier at low-energy in both cases. A deviation from the Woods-Saxon nuclear potential is also observed at the lowest energies. In general, fusion cross-sections around a given energy are better reproduced by the potential calculated at this energy. The coordinate-dependent mass plays a crucial role for the reproduction of sub-barrier fusion cross-sections. Effects of the energy dependence of the potential can be found in experimental barrier distributions only if the variation of the barrier is significant in the energy-range spanned by the distribution. It appears to be the case for $^{16}$O+$^{208}$Pb but not for $^{40}$Ca+$^{40}$Ca. These results show that the energy dependence of the barrier predicted in TDHF calculations is realistic. This confirms that the TDHF approach can be used to study the couplings between relative motion and internal degrees of freedom in heavy-ion collisions.

  13. Sandia Energy - Sandia-Univ. of Rochester Win Funding to Demonstrate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Win Funding to Demonstrate Fuel Magnetization and Laser Heating Tools for Low-Cost Fusion Energy Home Energy Nuclear Energy Office of Science Facilities Partnership...

  14. Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible

    E-Print Network [OSTI]

    Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC IAP 2014" " January 15, 2014" This work performed under the auspices of the U.S. Department of Energy

  15. HOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items

    E-Print Network [OSTI]

    HOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items June 23, 2008 Last week the House Energy and Water Development Subcommittee completed its action on their version of the FY09 Energy and Water Development bill. The draft report language is below. The full

  16. Flow-through Z-pinch study for radiation generation and fusion energy production

    SciTech Connect (OSTI)

    Hartman, C.W.; Eddleman, J.L.; Moir, R. [Lawrence Livermore National Lab., CA (United States); Shumlak, U. [Phillips Lab., Kirtland AFB, NM (United States)

    1994-06-20

    We discuss a high-density fusion reactor which utilizes a flow-through Z pinch magnetic confinement configuration. Assessment of this reactor system is motivated by simplicity and small unit size (few hundred MWe) and immunity to plasma contamination made possible at high density. The type reactor discussed here would employ a liquid Li vortex as the first wall/blanket to capture fusion neutrons with minimum induced radioactivity and to achieve high wall loading and a power density of 200 w/cm{sup 3}.

  17. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  18. Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

    E-Print Network [OSTI]

    Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

  19. JET Papers presented at the 16th International Atomic Energy Agency Fusion Energy Conference (Montreal, Canada, 7th-11th October 1996)

    E-Print Network [OSTI]

    JET Papers presented at the 16th International Atomic Energy Agency Fusion Energy Conference (Montreal, Canada, 7th-11th October 1996)

  20. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    E-Print Network [OSTI]

    Ning Wang; Xizhen Wu; Zhuxia Li; Min Liu; Werner Scheid

    2006-09-18

    The Skyrme energy-density functional approach has been extended to study the massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parameterized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with $Z_1Z_2fusion reactions, for example, the $^{238}$U-induced reactions and $^{48}$Ca+$^{208}$Pb the capture excitation functions have been reproduced remarkable well. The influence of structure effects in the reaction partners on the capture cross sections are studied with our parameterized barrier distribution. Through comparing the reactions induced by double-magic nucleus $^{48}$Ca and by $^{32}$S and $^{35}$Cl, the 'threshold-like' behavior in the capture excitation function for $^{48}$Ca induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with $^{36}$S, $^{37}$Cl, $^{48}$Ca and $^{50}$Ti bombarding on $^{248}$Cm, $^{247,249}$Bk, $^{250,252,254}$Cf and $^{252,254}$Es, and as well as the reactions lead to the same compound nucleus with Z=120 and N=182 are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  1. The high-energy limit of H+2 jet production via gluon fusion

    E-Print Network [OSTI]

    V. Del Duca; W. B. Kilgore; C. Oleari; C. R. Schmidt; D. Zeppenfeld

    2002-03-16

    We consider Higgs + 2 jet production via gluon fusion in the limit where either one of the Higgs-jet or the dijet invariant masses become much larger than the typical momentum transfers in the scattering. These limits also occur naturally in Higgs production via weak-boson fusion. We show that the scattering amplitudes factorize in the high energy limit, and we obtain the relevant effective vertices.

  2. Overview of US heavy-ion fusion progress and plans

    E-Print Network [OSTI]

    Logan, B.G.

    2010-01-01

    linac-driven inertial fusion energy and high energy densitytargets for inertial fusion energy (IFE) driven by inductionIBX and future inertial fusion energy drivers, current HIF-

  3. A hybrid model for fusion at deep sub-barrier energies

    E-Print Network [OSTI]

    Ajit Kumar Mohanty

    2010-11-17

    A hybrid model where the tunneling probability is estimated based on both sudden and adiabatic approaches has been proposed to understand the heavy ion fusion phenomena at deep sub-barrier energies. It is shown that under certain approximations, it amounts to tunneling through two barriers: one while overcoming the normal Coulomb barrier (which is of sudden nature) along the radial direction until the repulsive core is reached and thereafter through an adiabatic barrier along the neck degree of freedom while making transition from a di-nuclear to a mono-nuclear regime through shape relaxation. A general feature of this hybrid model is a steep fall-off of the fusion cross section, sharp increase of logarithmic derivative L(E) with decreasing energy and the astrophysical S-factor showing a maxima at deep sub-barrier energies particularly for near symmetric systems. The model can explain the experimental fusion measurements for several systems ranging from near symmetric systems like $^{58}Ni+^{64}Ni, ^{58}Ni+^{58}Ni$ and $ ^{58}Ni+^{69}Y$ to asymmetric one like $^{16}O+^{208}Pb$ where the experimental findings are very surprising. Since the second tunneling is along the neck co-ordinate, it is further conjectured that deep sub-barrier fusion supression may not be observed for the fusion of highly asymmetric projectile target combinations where adiabatic transition occurs automatically without any hindrance. The recent deep sub-barrier fusion cross section measurements of $^{6}Li+^{198}Pt$ system supports this conjecture.

  4. Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier

    E-Print Network [OSTI]

    N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

    2007-02-16

    The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

  5. A review of helium-hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding

    E-Print Network [OSTI]

    Marian, J; Hoang, T; Fluss, M; Hsiung, LL

    2015-01-01

    of the 24th IAEA Fusion Energy Conference, San Diego, USA,147. DOE Of?ce of Fusion Energy Sciences, Washington, DC,the U.S. Department of Energy by Lawrence Livermore National

  6. A review of helium-hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding

    E-Print Network [OSTI]

    Marian, J; Marian, J; Hoang, T; Hoang, T; Fluss, M; Hsiung, LL

    2015-01-01

    of the 24th IAEA Fusion Energy Conference, San Diego, USA,147. DOE Office of Fusion Energy Sciences, Washington, DC,the U.S. Department of Energy by Lawrence Livermore National

  7. Ultrahigh Energy Neutrals from Extreme Magnetic Flares

    E-Print Network [OSTI]

    David Eichler

    2003-03-20

    It is shown that bulk acceleration during reconnection of extremely strong magnetic fields near compact objects can accelerate ions to Lorentz factors of $\\sim 10^2 \\sigma^{3/5}$ under general conditions, where $\\sigma$, the magnetic energy per current-carrying proton rest energy, can approach $10^{15}$. For magnetar-type fields, neutrons and neutrinos can be generated at potentially detectable levels via hadron polarization. Ultrahigh energy photons can also be emitted and escorted from the high field region by Poynting flux.

  8. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA(SC)ScienceArgonneNationalannual

  9. Sandia Energy - Sandia Magnetized Fusion Technique Produces Significant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn

  10. Physics of Superthermal Ions in Tokamak Fusion Test Reactor Plasmas

    E-Print Network [OSTI]

    Budny, Robert

    --General Atomics, M. Petrov--Ioffe Institute, D. Spong--ORNL Abstract In magnetically-confined fusion plasmas, superthermal ions with typical energies of tens to hundreds of keV are often used to heat the plasma to temperatures where the fusion reaction rate is significant, ie Ti>5 keV. These ions can originate from

  11. Fusion Energy Advisory Committee: Advice and recommendations to the US Department of Energy in response to the charge letter of September 1, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This document is a compilation of the written records that relate to the Fusion Energy Advisory Committee`s deliberations with regard to the Letter of Charge received from the Director of Energy Research, dated September 1, 1992. During its sixth meeting, held in March 1993, FEAC provided a detailed response to the charge contained in the letter of September 1, 1992. In particular, it responded to the paragraph: ``I would like the Fusion Energy Advisory Committee (FEAC) to evaluate the Neutron Interactive Materials Program of the Office of Fusion Energy (OFE). Materials are required that will satisfy the service requirements of components in both inertial and magnetic fusion reactors -- including the performance, safety, economic, environmental, and recycle/waste management requirements. Given budget constraints, is our program optimized to achieve these goals for DEMO, as well as to support the near-term ITER program?`` Before FEAC could generate its response to the charge in the form of a letter report, one member, Dr. Parker, expressed severe concerns over one of the conclusions that the committee had reached during the meeting. It proved necessary to resolve the issue in public debate, and the matter was reviewed by FEAC for a second time, during its seventh meeting, held in mid-April, 1993. In order to help it to respond to this charge in a timely manner, FEAC established a working group, designated Panel No. 6, which reviewed the depth and breadth of the US materials program, and its interactions and collaborations with international programs. The panel prepared background material, included in this report as Appendix I, to help FEAC in its deliberations.

  12. on the Establishment of the ITER International Fusion Energy Organization for the Joint Implementation of the ITER Project

    E-Print Network [OSTI]

    AGREEMENT on the Establishment of the ITER International Fusion Energy Organization for the Joint Fusion Energy Organization Article 2 Purpose of the ITER Organization Article 3 Functions of the ITER://fusionforenergy.europa.eu/downloads/aboutf4e/l_35820061216en00620081.pdf #12;Preamble The European Atomic Energy Community (hereinafter

  13. THE FOREST AND THE TREES The development of fusion energy only occupies a very small part of the

    E-Print Network [OSTI]

    small part of the world's energy picture and the fusion community often has difficulty seeing the forest. Scientifically ITER could show low stability limits and/or poor energy and particle confinement. Most importantlyTHE FOREST AND THE TREES Jay Kesner MIT PSFC The development of fusion energy only occupies a very

  14. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  15. STOCHASTIC ACCELERATION BY A SINGLE WAVE IN A MAGNETIZED PLASMA

    E-Print Network [OSTI]

    Smith, G.R.

    2010-01-01

    An approach to thermonuclear fusion, initiated in the earlyapproaches to thermonuclear fusion by means of magnetic

  16. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    E-Print Network [OSTI]

    Sorbom, B N; Palmer, T R; Mangiarotti, F J; Sierchio, J M; Bonoli, P; Kasten, C; Sutherland, D A; Barnard, H S; Haakonsen, C B; Goh, J; Sung, C; Whyte, D G

    2014-01-01

    The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q_p~13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ~23 T peak field on coil with newly available REBCO superconductor technology. External cu...

  17. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    support for fusion energy within the broad materials science community Topic Fusion benefit Science aspect Office of Fusion Energy Sciences Budget Planning meeting March 13, 2001 Gaithersburg, MD #12;INTRODUCTION of fusion energy and enable improved performance, enhanced safety, and reduced overall fusion system costs

  18. The Heavy Ion Fusion Science Virtual National Laboratory Overview of Heavy Ion Fusion / High Energy

    E-Print Network [OSTI]

    with GSI, Germany, to develop HEDP diagnostics. · Unique diagnostic measurements of electron cloud effects program · Compressed intense heavy ion beams in neutralizing background plasma in NDCX-I: 150 ns down to 2 on intense heavy-ion beam transport in both quadrupole and solenoid magnets. · Computer simulation models

  19. Fusion of light proton-rich exotic nuclei at near-barrier energies

    E-Print Network [OSTI]

    P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

    2002-02-08

    We study theoretically fusion of the light proton-rich exotic nuclei $^{17}$F and $^8$B at near-barrier energies in order to investigate the possible role of breakup processes on their fusion cross sections. To this end, coupled channel calculations are performed considering the couplings to the breakup channels of these projectiles. In case of $^{17}$F, the coupling arising out of the inelastic excitation from the ground state to the bound excited state and its couplings to the continuum have also been taken into consideration. It is found that the inelastic excitation/breakup of $^{17}$F affect the fusion cross sections very nominally even for a heavy target like Pb. On the other hand, calculations for fusion of the one-proton halo nucleus $^8$B on a Pb target show a significant suppression of the complete fusion cross section above the Coulomb barrier. This is due to the larger breakup probability of $^8$B as compared to that of $^{17}$F. However, even for $^8$B, there is little change in the complete fusion cross sections as compared to the no-coupling case at sub-barrier energies.

  20. Three-dimensional linear peeling-ballooning theory in magnetic fusion devices

    SciTech Connect (OSTI)

    Weyens, T., E-mail: tweyens@fis.uc3m.es; Sánchez, R.; García, L. [Departamento de Física, Universidad Carlos III de Madrid, Madrid 28911 (Spain)] [Departamento de Física, Universidad Carlos III de Madrid, Madrid 28911 (Spain); Loarte, A.; Huijsmans, G. [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul Lez Durance (France)] [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul Lez Durance (France)

    2014-04-15

    Ideal magnetohydrodynamics theory is extended to fully 3D magnetic configurations to investigate the linear stability of intermediate to high n peeling-ballooning modes, with n the toroidal mode number. These are thought to be important for the behavior of edge localized modes and for the limit of the size of the pedestal that governs the high confinement H-mode. The end point of the derivation is a set of coupled second order ordinary differential equations with appropriate boundary conditions that minimize the perturbed energy and that can be solved to find the growth rate of the perturbations. This theory allows of the evaluation of 3D effects on edge plasma stability in tokamaks such as those associated with the toroidal ripple due to the finite number of toroidal field coils, the application of external 3D fields for elm control, local modification of the magnetic field in the vicinity of ferromagnetic components such as the test blanket modules in ITER, etc.

  1. Virtual Laboratory for Technology For Fusion Energy Science

    E-Print Network [OSTI]

    for attractive fusion power sources, by 3) conducting advanced design studies that integrate the wealth of our understanding to guide R&D priorities and by developing design solutions for next-step and future devices. #12. · The exhaust gas processing system that separates hydrogen isotopes from water, methane and inert gases from

  2. Thermonuclear fusion in dense stars: Electron screening, conductive cooling, and magnetic field effects

    E-Print Network [OSTI]

    Potekhin, A Y

    2012-01-01

    We study the plasma correlation effects on nonresonant thermonuclear reactions of carbon and oxygen in the interiors of white dwarfs and liquid envelopes of neutron stars. We examine the effects of electron screening on thermodynamic enhancement of thermonuclear reactions in dense plasmas beyond the linear mixing rule. Using these improved enhancement factors, we calculate carbon and oxygen ignition curves in white dwarfs and neutron stars. The energy balance and ignition conditions in neutron star envelopes are evaluated, taking their detailed thermal structure into account. The result is compared to the simplified "one-zone model," which is routinely used in the literature. We also consider the effect of strong magnetic fields on the ignition curves in the ocean of magnetars.

  3. June 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source

    E-Print Network [OSTI]

    , June 28 - An international consortium announced Tuesday that France would be the site of the world scientists see as crucial to solving the world's future energy needs. "It is a great success for FranceJune 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source By CRAIG S. SMITH PARIS

  4. Journal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion

    E-Print Network [OSTI]

    Abdou, Mohamed

    Journal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion Technology Research energy program. Based on the new program plan, the parameters are a broad scientific and technology direction. I suc- cinctly list in Table I what the old priorities were and what the new priorities are

  5. Two-dimensional magnetohydrodynamic liner-on-plasma simulations for the compression phase of a magnetized target fusion system based on inverse Z pinch

    SciTech Connect (OSTI)

    Subhash, P. V.; Madhavan, S.; Chaturvedi, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India)

    2006-07-15

    This article reports, for the first time, two-dimensional magnetohydrodynamic liner-on-plasma simulations for the compression phase of a magnetized target fusion (MTF) system with an inverse Z-pinch target. These simulations evolve the complete liner-plasma system along with the driving pulsed-power source. First, it has been demonstrated that closely coupled liner-on-plasma simulations produce results that are significantly different from loosely coupled simulations that have been reported in the literature. Second, it has been found that an initially stable plasma, satisfying the Kadomtsev criteria, and with a small initial pressure perturbation in the axial direction, remains stable all through the compression phase, even though there are large changes in the pressure and magnetic field levels. Third, a plasma that violates the Kadomtsev criteria, even by a small amount, turns out to be unstable, as predicted by theory. In practical terms, this means that it is preferable to stay well away from the stability limit, even at the cost of some reduction of initial plasma pressure. Fourth, even during the burn phase, when there is a large and rapid increase in plasma pressure due to fusion energy deposition, an initially stable plasma generally tends to remain stable, and even improves its stability margin. This observation shows that the inverse Z pinch is fairly benign as a MTF target, as an initially stable plasma remains stable during both the compression and burn phases. Fifth, certain unusual features are observed in the temperature profile--these depend upon the time scale for implosion. This has implications for plasma-surface interactions at the liner and central conductor.

  6. STOCHASTIC ACCELERATION BY A SINGLE WAVE IN A MAGNETIZED PLASMA

    E-Print Network [OSTI]

    Smith, G.R.

    2010-01-01

    augmented magnetic-mirror confinement," Nucl. Fusion B. V.to thermonuclear fusion by means of magnetic confinement

  7. Journal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report

    E-Print Network [OSTI]

    Abdou, Mohamed

    under the auspices of DOE Defense Programs. The organization of this report is the following. In Sec. 1.2, for completeness, a short history of heavy ion fusion is provided. Panel findings and recommendations in Sec. 3. Appendix B provides the response by the full FEAC to the DOE charge letter (Appendix A). 1

  8. Reflections on Fusion's History and Implications for Fusion's Future*

    E-Print Network [OSTI]

    Reflections on Fusion's History and Implications for Fusion's Future* Robert Conn Fusion Energy, "Opportunities and Directions in Fusion Energy Science for the Next Decade", held July 11-23, 1999 in Snowmass, Colorado. #12;2 Abstract History shows that all the major opportunities to advance fusion research were

  9. Development of the B-Stark motional Stark effect diagnostic for measurements of the internal magnetic field in the DIII-D tokamak

    E-Print Network [OSTI]

    Pablant, Novimir Antoniuk

    2010-01-01

    1.1 Magnetic confinement fusion . . . . . . . . . . 1.2Stokes vector magnetic confinement fusion, 1 magnetic fieldare discussed. Magnetic confinement fusion The goal of

  10. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    SciTech Connect (OSTI)

    Lindl, J.D.; Hammel, B.A.; Logan, B. Grant; Meyerhofer, David D.; Payne, S.A.; Sethisn, John D.

    2003-11-13

    This paper describes international experience with the use of Voluntary Agreements for increasing industrial sector energy-efficiency, drawing lessons learned regarding the essential elements of the more successful programs. The paper focuses on a pilot project for implementation of a Voluntary Agreement with two steel mills in Shandong Province that was developed through international collaboration with experts in China, the Netherlands, and the U.S. Designing the pilot project involved development of approaches for energy-efficiency potential assessments for the steel mills, target-setting to establish the Voluntary Agreement energy-efficiency goals, preparing energy-efficiency plans for implementation of energy-saving technologies and measures, and monitoring and evaluating the project's energy savings.

  11. The Effect of Magnetic Turbulence Energy Spectral

    E-Print Network [OSTI]

    Ng, Chung-Sang

    The Effect of Magnetic Turbulence Energy Spectral Scaling on the Heating of the Solar Wind C. S. Ng), Kraichnan (1965) #12;Solar wind turbulence model The steady state solar wind turbulence model developed wind with uniform speed Vsw 1D (radial position r) Turbulence characterized by two fields

  12. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    E-Print Network [OSTI]

    M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

    2008-05-07

    Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

  13. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01

    California 9~516 This work explores the economy of scale for multi- unit inertial fusion energy power plants

  14. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  15. A STUDY OF LIQUID METAL FILM FLOW, UNDER FUSION RELEVANT MAGNETIC FIELDS M. Narula, A. Ying and M.A. Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    A STUDY OF LIQUID METAL FILM FLOW, UNDER FUSION RELEVANT MAGNETIC FIELDS M. Narula, A. Ying and M of the fluid film, unwanted flow deflection, creation of bare spots with no fluid protection, creation of regions of thick stagnant fluid leading to hot spots, stream wise and span wise variation of fluid film

  16. The Energy Impact of Aggressive Loop Fusion YongKang Zhu, Grigorios Magklis, Michael L. Scott, Chen Ding, and David H. Albonesi

    E-Print Network [OSTI]

    Scott, Michael L.

    The Energy Impact of Aggressive Loop Fusion YongKang Zhu, Grigorios Magklis, Michael L. Scott, and thus dynamic power, so that fusion-induced improvements in program energy are slightly smaller than energy con- sumption. We then evaluate the benefits of fusion empiri- cally on synthetic and real

  17. 24th IAEA Fusion Energy Conference, San Diego, CA, October 8-13, 2012 Slide 1 The ITER Blanket System Design

    E-Print Network [OSTI]

    Raffray, A. René

    24th IAEA Fusion Energy Conference, San Diego, CA, October 8-13, 2012 Slide 1 The ITER BlanketSNL , US ITER Domestic Agency; 7F4E, EU ITER Domestic Agency 24th IAEA Fusion Energy Conference ­ IAEA reflect those of the ITER Organization #12;24th IAEA Fusion Energy Conference, San Diego, CA, October 8

  18. G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 -21 October 2006 -Chengdu, China -paper TH/P6-4 1 Particle Simulation Analysis of

    E-Print Network [OSTI]

    Vlad, Gregorio

    G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 - 21 October 2006 - Chengdu, China - paper TH Agency, Naka, Ibaraki 311-0193, Japan #12;G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 - 21 IAEA Fusion Energy Conference, 16 - 21 October 2006 - Chengdu, China - paper TH/P6-4 3 Introduction - 1

  19. Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks

    E-Print Network [OSTI]

    Huang, Yi

    2010-01-01

    for sensors that consume more energy. But unfortunately, theor averaging algorithm) consume less energy than the digitaldigital transmissions consume less energy than Achieved MSE

  20. Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks

    E-Print Network [OSTI]

    Huang, Yi

    2010-01-01

    estimation in energy-constrained wireless sensor networks,”J. Wu, “Energy-e?cient coverage problems in wireless ad hoca transmission energy problem for wireless sensor networks.

  1. Fusion Energy Greg Hammett & Russell Kulsred Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea:Benefits of FES » Fusion

  2. Studies of fast electron transport in the problems of inertial fusion energy

    E-Print Network [OSTI]

    Frolov, Boris K.

    2006-01-01

    approach to Inertial Confinement Fusion (ICF) [1-3] is Fastrelated to the inertial confinement fusion (ICF) [2]. Toscheme of the Inertial Confinement Fusion [5] to medicine [

  3. Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber

    E-Print Network [OSTI]

    Raffray, A. René

    Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M-cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket; nuclear heating I. INTRODUCTION The High Average Power Laser (HAPL) program led by the Naval Research

  4. Research and Development Assessments for Prometheus Heavy Ion and Laser Driven Inertial Fusion Energy Reactor Designs

    E-Print Network [OSTI]

    Tillack, Mark

    station electric power plants have been conceptually designed and analyzed in the Prometheus[1] study led by McDonnell Douglas Aerospace. These plants use inertial fusion energy (IFE) technologies by employing with a list of important R&D tasks that need to be conducted, and (3) identify areas of R&D that are common

  5. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    E-Print Network [OSTI]

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  6. Addressing the issues of target fabrication and injection for inertial fusion energy

    E-Print Network [OSTI]

    Tillack, Mark

    survive injection into the target chamber without damage. An example of a recent direct drive IFE targetAddressing the issues of target fabrication and injection for inertial fusion energy D.T. Goodin a, CA 92024, USA Abstract Addressing the issues associated with target fabrication and injection

  7. Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 1 The hybrid scenario in JET

    E-Print Network [OSTI]

    Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 1 The « hybrid » scenario in JET. Staebler, T. Tala, A. Tuccillo, K.-D. Zastrow and JET-EFDA Contributors to the Work Programme. Outline: - Introduction to the hybrid scenario in JET - Physics analysis (MHD, current, transport) - Projections to ITER

  8. George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 1

    E-Print Network [OSTI]

    George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 1, EURATOM-Association, D-85748, Germany G. Tardini1, C. Forest2, O. Gruber1, P. Mc Carthy3, A. Gude1, L Plasmaphysik, EURATOM-Association, D-85748, Germany. 2The University of Wisconsin, Madison, USA. 3Dep

  9. Anomalous electron-ion energy coupling in electron drift wave turbulence

    E-Print Network [OSTI]

    Zhao, Lei

    a Century of Magnetic Confinement Fusion Research, Instituteto realize fusion are magnetic and inertial confinement. The

  10. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  11. Fusion of light exotic nuclei at near-barrier energies : effect of inelastic excitation

    E-Print Network [OSTI]

    P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

    2002-02-08

    The effect of inelastic excitation of exotic light projectiles (proton- as well as neutron-rich) $^{17}$F and $^{11}$Be on fusion with heavy target has been studied at near-barrier energies. The calculations have been performed in the coupled channels approach where, in addition to the normal coupling of the ground state of the projectile to the continuum, inelastic excitation of the projectile to the bound excited state and its coupling to the continuum have also been taken into consideration. The inclusion of these additional couplings has been found to have significant effect on the fusion excitation function of neutron-rich $^{11}$Be on $^{208}$Pb whereas the effect has been observed to be nominal for the case of proton-rich $^{17}$F on the same target. The pronounced effect of the channel coupling on the fusion process in case of $^{11}$Be is attributed to its well-developed halo structure.

  12. Alignmentkorrekturen und Fusion von Dokumentaufnahmen

    E-Print Network [OSTI]

    Block, Marco

    Alignmentkorrekturen und Fusion von Dokumentaufnahmen Am Fachbereich Mathematik und Informatik . . . . . . . . . . . . . . . . . . . . . . . . 18 Exposure Blending . . . . . . . . . . . . . . . . . . . . . . 19 Exposure Fusion . . . . . . . . . . . . . . . . . . . . . . 23 Varianz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Energy of Image Gradient

  13. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  14. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

    2012-07-05

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

  15. U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: AprilCubicProduction CapacityU.S.KeroseneEnergy

  16. Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks

    E-Print Network [OSTI]

    Huang, Yi

    2010-01-01

    estimation in energy-constrained wireless sensor networks,”a transmission energy problem for wireless sensor networks.J. Wu, “Energy-e?cient coverage problems in wireless ad hoc

  17. Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures

    E-Print Network [OSTI]

    would provide the UK's per capita electricity production for 30 years. · Fusion is environmentally. · The estimated cost of electricity generated by fusion is similar to the cost of electricity produced in other). ITER's expected lifetime cost is less than the amount being spent on the London Olympics. #12;

  18. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOE Patents [OSTI]

    Woolley, Robert D. (Belle Mead, NJ)

    1999-01-01

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  19. Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for

    E-Print Network [OSTI]

    must directly address the end-user requirement for commercial power 3 Plant Primary Criteria (partialAmerican Energy Company · Wisconsin Energy · Nuclear Management Company · Constellation Energy · Dominion plant design · Delivery soon enough to make a difference to global energy imperatives. · Design based

  20. Hindrance of ^{16}O+^{208}Pb fusion at extreme sub-barrier energies

    E-Print Network [OSTI]

    Henning Esbensen; Serban Misicu

    2007-11-20

    We analyze the fusion data for $^{16}$O+$^{208}$Pb using coupled-channels calculations. We include couplings to the low-lying surface excitations of the projectile and target and study the effect of the ($^{16}$O,$^{17}$O) one-neutron pickup. The hindrance of the fusion data that is observed at energies far below the Coulomb barrier cannot be explained by a conventional ion-ion potential and defining the fusion in terms of ingoing-wave boundary conditions (IWBC). We show that the hindrance can be explained fairly well by applying the M3Y double-folding potential which has been corrected with a calibrated, repulsive term that simulates the effect of nuclear incompressibility. We show that the coupling to one-neutron transfer channels plays a crucial role in improving the fit to the data. The best fit is achieved by increasing the transfer strength by 25% relative to the strength that is required to reproduce the one-neutron transfer data. The larger strength is not unrealistic because the calculated inelastic plus transfer cross section is in good agreement with the measured quasielastic cross section. We finally discuss the problem of reproducing the fusion data at energies far above the Coulomb barrier. Here we do not account for the data when we apply the IWBC but the discrepancy is essentially eliminated by applying the M3Y+repulsion potential and a weak, short-ranged imaginary potential.

  1. Validity of the linear coupling approximation in heavy-ion fusion reactions at sub barrier energies

    E-Print Network [OSTI]

    K. Hagino; N. Takigawa; M. Dasgupta; D. J. Hinde; J. R. Leigh

    1996-07-26

    The role of higher order coupling of surface vibrations to the relative motion in heavy-ion fusion reactions at near-barrier energies is investigated. The coupled channels equations are solved to all orders, and also in the linear and the quadratic coupling approximations. Taking $^{64}$Ni + $^{92,96}$Zr reactions as examples, it is shown that all order couplings lead to considerably improved agreement with the experimentally measured fusion cross sections and average angular momenta of the compound nucleus for such heavy nearly symmetric systems. The importance of higher order coupling is also examined for asymmetric systems like $^{16}$O + $^{112}$Cd, $^{144}$Sm, for which previous calculations of the fusion cross section seemed to indicate that the linear coupling approximation was adequate. It is shown that the shape of the barrier distributions and the energy dependence of the average angular momentum can change significantly when the higher order couplings are included, even for systems where measured fusion cross sections may seem to be well reproduced by the linear coupling approximation.

  2. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  3. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  4. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect (OSTI)

    David A. Petti; Susana Reyes; Lee C. Cadwallader; Jeffery F. Latkowski

    2004-09-01

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  5. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept

    SciTech Connect (OSTI)

    Knapp, C. E.; Kirkpatrick, R. C.

    2014-07-15

    A one-dimensional parameter study of a Magneto-Inertial Fusion (MIF) concept indicates that significant gain may be achievable. This concept uses a dynamically formed plasma shell with inwardly directed momentum to drive a magnetized fuel to ignition, which in turn partially burns an intermediate layer of unmagnetized fuel. The concept is referred to as Plasma Jet MIF or PJMIF. The results of an adaptive mesh refinement Eulerian code (Crestone) are compared to those of a Lagrangian code (LASNEX). These are the first published results using the Crestone and LASNEX codes on the PJMIF concept.

  6. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  7. Engineering Challenges in Antiproton Triggered Fusion Propulsion

    SciTech Connect (OSTI)

    Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-01-21

    During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

  8. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  9. Toroidal constant-tension superconducting magnetic energy storage units

    DOE Patents [OSTI]

    Herring, J.S.

    1992-11-03

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  10. Abstract--The Levitated Dipole Experiment (LDX) is a new, innovative magnetic confinement fusion experiment

    E-Print Network [OSTI]

    Garnier, Darren T.

    pressure helium vessel. The pressure vessel is surrounded by a large thermal mass radiation shield and the shield are equipped with a tube heat exchanger for initial nitrogen magnet cooling and daily helium re -4 - 10 -8 torr during normal operation. The cryostat is able to operate with its outside pressure

  11. Fusion Engineering and Design 38 (1997) 159188 ARIES-RS magnet systems

    E-Print Network [OSTI]

    1997-01-01

    section has been optimized, using innovative solutions to minimize the cross section and the cost. The sec the toroidal and poloidal field system for minimized size and cost, optimized structure and increased access-I due to the lower magnetic field. On the other hand, the problems in PUL- SAR with respect

  12. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect (OSTI)

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  13. A TUTORIAL ON IGNITION AND GAIN FOR SMALL FUSION TARGETS

    SciTech Connect (OSTI)

    Kirkpatrick, R. C. [Los Alamos National Laboratory, Los Alamos, NM 087545 (United States)

    2009-07-26

    Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriate to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.

  14. The role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions

    E-Print Network [OSTI]

    Ishwar Dutt; Rajeev K. Puri

    2010-05-06

    We discuss the effect of surface energy coefficients as well as nuclear surface diffuseness in the proximity potential and ultimately in the fusion of heavy-ions. Here we employ different versions of surface energy coefficients. Our analysis reveals that these technical parameters can influence the fusion barriers by a significant amount. A best set of these parameters is also given that explains the experimental data nicely.

  15. http://w3.pppl.gov/~zakharov/LEZ-121218.pdf What Fusion Energy Science (FES) do

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    of magnetic fusion", APS DPP-2007 http://http://w3.pppl.gov/~zakharov/APS-07F.pdf PPPPRINCETON PLASMA PHYSICS after TFTR* Leonid E. Zakharov Princeton Plasma Physics Laboratory, MS-27 P.O. Box 451, Princeton NJ DoE contract No. DE-AC02-09-CH11466. PRINCETON PLASMA PHYSICS LABORATORY PPPL #12;Abstract 2

  16. Magnet Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet Motor Corp Jump to:

  17. Effect of superbanana diffusion on fusion reactivity in stellarators

    SciTech Connect (OSTI)

    Hinton, Fred L. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, California 92093-0424 (United States)

    2012-08-15

    Fusion reactivity is usually obtained using a Maxwellian distribution. However, energy-dependent radial diffusion can modify the energy distribution. Superbanana diffusion is energy-dependent and occurs in nonaxisymmetric magnetic confinement devices, such as stellarators, because of ripple-trapped particles which can take large steps between collisions. In this paper, the D-T fusion reactivity is calculated using a non-Maxwellian energy distribution obtained by solving the Fokker-Planck equation numerically, including radial superbanana diffusion as well as energy scattering. The ions in the tail of the distribution, with energies larger than thermal, which are most needed for fusion, are depleted by superbanana diffusion. In this paper, it is shown that the D-T fusion reactivity is reduced by tail ion depletion due to superbanana diffusion, by roughly a factor of 0.5 for the parameters used in the calculation.

  18. A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E; Diaz de la Rubia, T; Storm, E; Latkowski, J; Farmer, J; Abbott, R; Kramer, K; Peterson, P; Shaw, H; Lehman II, R

    2009-05-22

    The National Ignition Facility (NIF), a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, will soon be completed at the Lawrence Livermore National Laboratory. Experiments designed to accomplish the NIF's goal will commence in 2010, using laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 35 MJ are expected soon thereafter. They propose that a laser system capable of generating fusion yields of 35 to 75 MJ at 10 to 15 Hz (i.e., {approx} 350- to 1000-MW fusion and {approx} 1.3 to 3.6 x 10{sup 20} n/s), coupled to a compact subdritical fission blanket, could be used to generate several GW of thermal power (GWth) while avoiding carbon dioxide emissions, mitigating nuclear proliferation concerns and minimizing the concerns associated with nuclear safety and long-term nuclear waste disposition. this Laser Inertial Fusion Energy (LIFE) based system is a logical extension of the NIF laser and the yields expec ted from the early ignition experiments on NIF. The LIFE concept is a once-through,s elf-contained closed fuel cycle and would have the following characteristics: (1) eliminate the need for spent fuel chemical separation facilities; (4) maintain the fission blanket subcritical at all times (k{sub eff} < 0.90); and (5) minimize future requirements for deep underground geological waste repositories and minimize actinide content in the end-of-life nuclear waste below the Department of Energy's (DOE's) attractiveness Level E (the lowest). Options to burn natural or depleted U, Th, U/Th mixtures, Spent Nuclear Fuel (SNF) without chemical separations of weapons-attractive actinide streams, and excess weapons Pu or highly enriched U (HEU) are possible and under consideration. Because the fission blanket is always subcritical and decay heat removal is possible via passive mechanisms, the technology is inherently safe. Many technical challenges must be met, but a LIFE solution could provide a sustainable path for worldwide growth of nuclear powr for electricity production and hydrogen generation.

  19. Bemerkungen zur "kalten Fusion"

    E-Print Network [OSTI]

    Rainer W. Kuehne

    2006-04-14

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

  20. Bemerkungen zur "kalten Fusion"

    E-Print Network [OSTI]

    Kuehne, R W

    2006-01-01

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.