National Library of Energy BETA

Sample records for magnetic field strength

  1. Effects of magnetic field strength on the low frequency oscillation in Hall thrusters

    SciTech Connect (OSTI)

    Wang Chunsheng; Wei Liqiu; Ning Zhongxi; Yu Daren [Laboratory of Plasma Propulsion, Mail Box 458, Harbin Institute of Technology, Harbin 150001 (China)

    2011-01-15

    In order to study the effect of magnetic field strength on low frequency oscillation in Hall thrusters, experiments were carried out with different operating parameters. Experimental results show that the effect of magnetic field strength on the low frequency oscillation changes with operating parameters. In the decline zone of magnetoampere characteristic curve, low frequency oscillation increases with the increase of magnetic field strength at low mass flow rate, while decreases with the increase of magnetic field strength at high mass flow rate. With further experiments and numerical simulations, it is found that the change of electron current at low mass flow rate and the change of ion current at high mass flow rate account for the variations of low frequency oscillation. Finally, the physical analysis is performed.

  2. MAGNETIC BRAKING FORMULATION FOR SUN-LIKE STARS: DEPENDENCE ON DIPOLE FIELD STRENGTH AND ROTATION RATE

    SciTech Connect (OSTI)

    Matt, Sean P.; Pinsonneault, Marc H.; Greene, Thomas P. E-mail: kmac@ucar.edu E-mail: thomas.p.greene@nasa.gov

    2012-08-01

    We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss, we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision of a few percent. This formula provides a simple method for computing the magnetic braking of Sun-like stars due to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass loss rate, stellar radius, surface gravity, and spin rate, and which is valid for both slow and fast rotators.

  3. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    SciTech Connect (OSTI)

    Kumar, Sanjeev [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Thomas, K. J. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK and Department of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J. [Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 OHE (United Kingdom); Pepper, M. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK and Department of Electrical and Electronic Engineering, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-12-04

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation.

  4. Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength

    E-Print Network [OSTI]

    M. Jardine; A. C. Cameron

    2008-08-21

    The search for radio emission from extra-solar planets has so far been unsuccessful. Much of the effort in modelling the predicted emission has been based on the analogy with the well-known emission from Jupiter. Unlike Jupiter, however, many of the targets of these radio searches are so close to their parent stars that they may well lie inside the stellar magnetosphere. For these close-in planets we determine which physical processes dominate the radio emission and compare our results to those for large-orbit planets that are immersed in the stellar wind. We have modelled the reconnection of the stellar and planetary magnetic fields. We calculate the extent of the planetary magnetosphere if it is in pressure balance with its surroundings and determine the conditions under which reconnection of the stellar and planetary magnetic fields could provide the accelerated electrons necessary for the predicted radio emission. We show that received radio fluxes of tens of mJy are possible for exoplanets in the solar neighbourhood that are close to their parent stars if their stars have surface field strengths above 1-10G. We show that for these close-in planets, the power of the radio emission depends principally on the ratio (Nc/B^{1/3})^2 where Nc is the density at the base of the stellar corona, and B is the stellar surface magnetic field strength. Radio emission is most likely to be detected from planets around stars with high-density coronae, which are therefore likely to be bright X-ray sources. The dependence of stellar coronal density on stellar rotation rate and effective temperature is crucial in predicting radio fluxes from exoplanets.

  5. Influence of magnetic field strength on potential well in the ionization stage of a double stage Hall thruster

    SciTech Connect (OSTI)

    Yu Daren; Song Maojiang; Liu Hui; Zhang Xu; Li Hong [Lab of Plasma Propulsion, Mail Box 458, Harbin Institute of Technology, Harbin 150001 (China)

    2012-07-15

    Similar to a single stage Hall thruster, the magnetic field, which controls electron trajectory and electric field distribution, is the most important factor determining the performance of a double stage Hall thruster. Especially, a potential well, which is helpful to reduce the ion loss on the thruster walls, is shaped in the ionization stage due to the existence of an annular magnetic field topology there. In this paper, the influence of magnetic field strength in the ionization stage on the potential well is researched with both experiments and particle-in-cell simulations. It is found that the depth of potential well increases with the magnetic field strength as a result of enhanced magnetic confinement and lowered electron conductivity. Consequently, the plasma density as well as the ion current entering the acceleration stage increases. However, an excessive magnetic field strength leads to an excess of ion loss on the walls of the acceleration stage. Therefore, there is an appropriate magnetic field strength in the ionization stage that results in a proper potential well and consequently an optimal performance of a double stage Hall thruster.

  6. Chandra Observations of Cygnus A: Magnetic Field Strengths in the Hot Spots of a Radio Galaxy

    E-Print Network [OSTI]

    A. S. Wilson; A. J. Young; P. L. Shopbell

    2000-09-19

    We report X-ray observations of the powerful radio galaxy Cygnus A with the Chandra X-ray Observatory. This letter focuses on the radio hot spots, all four of which are detected in X-rays with a very similar morphology to their radio structure. X-ray spectra have been obtained for the two brighter hot spots (A and D). Both are well described by a power law with photon index \\Gamma = 1.8 \\pm 0.2 absorbed by the Galactic column in the direction of Cygnus A. Thermal X-ray models require too high gas densities and may be ruled out. The images and spectra strongly support synchrotron self-Compton models of the X-ray emission, as proposed by Harris, Carilli & Perley on the basis of ROSAT imaging observations. Such models indicate that the magnetic field in each of the brighter hot spots is 1.5 \\times 10^-4 gauss, with an uncertainty of a few tens of percent. This value is close to the equipartition field strengths assuming no protons are present. The possibility that the X-rays are synchrotron radiation is briefly discussed, but not favored. We speculate that production of the \\gamma \\sim 10^7 electrons necessary for X-ray synchrotron radiation from hot spots is inhibited when the external gas density is high, as is the case when the radio galaxy is within a cooling flow.

  7. Energy Spectrum of a Relativistic Two-dimensional Hydrogen-like Atom in a Constant Magnetic Field of arbitrary strength

    E-Print Network [OSTI]

    V. M. Villalba; R. Pino

    2001-01-23

    We compute, via a variational mixed-base method, the energy spectrum of a two dimensional relativistic atom in the presence of a constant magnetic field of arbitrary strength. The results are compared to those obtained in the non-relativistic and spinless case. We find that the relativistic spectrum does not present $s$ states.

  8. Estimating the Galactic center magnetic field strength from the observed synchrotron flux density

    E-Print Network [OSTI]

    California at Los Angles, University of

    that the magnetic field and cosmic rays are in a minimum-energy state across this region is unlikely to be valid fila- ments observed there is inconsistent with the minimum-energy requirement that there be a substantial energy exchange between the cosmic rays and the magnetic field on time scales short compared

  9. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    E-Print Network [OSTI]

    Chen, Feng

    2015-01-01

    Coronal seismology is extensively used to estimate properties of the corona, e.g. the coronal magnetic field strength are derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. From the simulation of the corona above an active region we synthesise extreme ultraviolet (EUV) emission from the model corona. From this we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5s and a damping tim...

  10. MAGNETIC FIELD STRENGTH FLUCTUATIONS IN THE HELIOSHEATH: VOYAGER 1 OBSERVATIONS DURING 2009

    SciTech Connect (OSTI)

    Burlaga, L. F. [Geospace Physics Laboratory, Code 673, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ness, N. F., E-mail: lburlagahsp@verizon.net, E-mail: nfnudel@yahoo.com [Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States)

    2012-01-01

    We analyze the ''microscale fluctuations'' of the magnetic field strength B on a scale of several hours observed by Voyager1 (V1) in the heliosheath during 2009. The microscale fluctuations of B range from coherent to stochastic structures. The amplitude of microscale fluctuations of B during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) 1 to 331, 2009, is very intermittent. SD(t) has a 1/f or 'pink noise' spectrum on scales from 1 to 100 days, and it has a broad multifractal spectrum f({alpha}) with 0.57 {<=} {alpha} {<=} 1.39. The time series of increments SD(t + {tau}) - SD(t) has a pink noise spectrum with {alpha}' = 0.88 {+-} 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 {+-} 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and S(t) are often associated with a change in B across a data gap and with identifiable physical structures. The 'turbulence' observed by V1 during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of 'turbulence' in the heliosheath.

  11. Measurement of the strength of magnetic fields by means of liquids

    E-Print Network [OSTI]

    Borton, Martha Clara

    1915-01-01

    ­ vestigators, with the exception of A.P. Wills, had been limited to the use of exploring coils for such work. Prom its galvanometer throw when the coil is put into or taken out of the field, its effective area, and the galvanometer constant, the field... strength can be determined as follows: where R is the resistance in ohms, k is the galvanometer constant, #tis the galvanometer throw and A is the effective area. Quincke (3) used an exploring coil, calibrating the galvanometer from comparison...

  12. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    SciTech Connect (OSTI)

    Cornish, S., E-mail: cornish@physics.usyd.edu.au; Gummersall, D.; Carr, M.; Khachan, J. [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-09-15

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory.

  13. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    SciTech Connect (OSTI)

    Usmani, Nawaid, E-mail: Nawaid.Usmani@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Department of Oncology, University of Alberta, Edmonton, AB (Canada); Sloboda, Ron [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada); Kamal, Wafa [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Ghosh, Sunita [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Department of Oncology, University of Alberta, Edmonton, AB (Canada); Monajemi, Tara [Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2011-07-01

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  14. Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength

    E-Print Network [OSTI]

    Jardine, M

    2008-01-01

    The search for radio emission from extra-solar planets has so far been unsuccessful. Much of the effort in modelling the predicted emission has been based on the analogy with the well-known emission from Jupiter. Unlike Jupiter, however, many of the targets of these radio searches are so close to their parent stars that they may well lie inside the stellar magnetosphere. For these close-in planets we determine which physical processes dominate the radio emission and compare our results to those for large-orbit planets that are immersed in the stellar wind. We have modelled the reconnection of the stellar and planetary magnetic fields. We calculate the extent of the planetary magnetosphere if it is in pressure balance with its surroundings and determine the conditions under which reconnection of the stellar and planetary magnetic fields could provide the accelerated electrons necessary for the predicted radio emission. We show that received radio fluxes of tens of mJy are possible for exoplanets in the solar n...

  15. SECTORS AND LARGE-SCALE MAGNETIC FIELD STRENGTH FLUCTUATIONS IN THE HELIOSHEATH NEAR 110 AU: VOYAGER 1, 2009

    SciTech Connect (OSTI)

    Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States); Ness, N. F., E-mail: lburlagahsp@verizon.ne, E-mail: nfnudel@yahoo.co [Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States)

    2010-12-10

    This paper describes observations of daily averages of the magnetic field strength B and the magnetic polarity measured by Voyager 1 (V1) in the heliosheath during 2009 between 108.5 and 112.1 AU and at heliographic latitude 34.{sup 0}4. A negative magnetic polarity sector was observed during 2009 DOY 43-255. A positive polarity sector was observed during 2009 DOY 256-365. We offer the hypothesis that the existence of the two sectors is the result of the displacement of the wavy heliospheric current sheet to the position of V1 as a result of northward flow in the heliosheath. The large size of the sectors is caused by the slow radial motion of the flow observed by V1 in the heliosheath. The distribution of B during 2009 was lognormal, in contrast to the Gaussian distributions observed by V1 in the heliosheath prior to 2009. The large-scale fluctuations of B, described by the distribution of increments of daily averages of B, have a Tsallis distribution with q = 1.6. The large-scale fluctuations of B observed by V1 during 2009 have a multifractal spectrum with the same parameters that V1 observed during 2005 close to the termination shock at 94 AU. These results suggest that the large-scale magnetic fluctuations of B are in a metastable equilibrium state in the heliosheath between 94 AU and 112.1 AU.

  16. The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster

    SciTech Connect (OSTI)

    Yu Daren; Song Maojiang; Li Hong; Liu Hui; Han Ke [Lab of Plasma Propulsion, Mail Box 458, Harbin Institute of Technology, Harbin 150001 (China)

    2012-11-15

    It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

  17. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

    SciTech Connect (OSTI)

    Ekpe, Samuel D.; Jimenez, Francisco J.; Field, David J.; Davis, Martin J.; Dew, Steven K. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); NUCRYST Pharmaceuticals, 10102-114 st., Fort Saskatchewan, Alberta T8L 3W4 (Canada); Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2009-11-15

    Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

  18. Performance of An Adjustable Strength Permanent Magnet Quadrupole

    SciTech Connect (OSTI)

    Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; /STI Optronics, Bellevue; Spencer, C.M.; /SLAC; Volk, J.T.; /Fermilab

    2006-03-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  19. Ion kinetic energy conservation and magnetic field strength constancy in multi-fluid solar wind Alfv\\'enic turbulence

    E-Print Network [OSTI]

    Matteini, L; Pantellini, F; Velli, M; Schwartz, S J

    2015-01-01

    We investigate properties of the plasma fluid motion in the large amplitude low frequency fluctuations of highly Alfv\\'enic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles, which, owing to their drift with respect to protons at about the Alfv\\'en speed along the magnetic field, do not partake in the fluid low frequency fluctuations. Using their velocity to transform proton velocity into the frame of Alfv\\'enic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfv\\'enic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfv\\'enic turbulence, is at the origin of ...

  20. Cross-Calibrating Sunspot Magnetic Field Strength Measurements from the McMath-Pierce Solar Telescope and the Dunn Solar Telescope

    E-Print Network [OSTI]

    Watson, Fraser T; Penn, Matthew J; Tritschler, Alexandra; Pillet, Valentin Martinez; Livingston, William C

    2015-01-01

    In this article we describe a recent effort to cross-calibrate data from an infrared detector at the McMath-Pierce Solar Telescope and the Facility InfraRed Spectropolarimeter (FIRS) at the Dunn Solar Telescope. A synoptic observation program at the McMath-Pierce has measured umbral magnetic field strengths since 1998, and this data set has recently been compared with umbral magnetic field observations from SOHO MDI and SDO HMI. To further improve on the data from McMath-Pierce, we compared the data with measurements taken at the Dunn Solar Telescope with far greater spectral resolution than has been possible with space instrumentation. To minimise potential disruption to the study, concurrent umbral measurements were made so that the relationship between the two datasets can be most accurately characterised. We find that there is a strong agreement between the umbral magnetic field strengths recorded by each instrument, and we reduced the FIRS data in two different ways to successfully test this correlation ...

  1. Sco X-1 and Cyg X-1: Determination of Strength and Structure of Magnetic Field in the Nearest Environment of Accreting Compact Stars

    E-Print Network [OSTI]

    Yu. N. Gnedin; N. A. Silant'ev; L. G. Titarchuk

    2002-07-30

    We estimated the magnetic field strength of compact stars in X-ray binaries Sco X-1 and Cyg X-1, via various methods of determination of magnetic fields. For Sco X-1 we used three independent methods. One of them is based on the correct account of the Faraday rotation of polarization plane in the process of electron scattering of X-rays from accreting neutron stars. Numerical calculations are made with use of first X-rays polarimetric data presented by Long et al. (1979). Other original method of determing the magnetic field developed by Titarchuk at al. (2001) is based on observed quasi-periodic oscillations (QPO) frequencies in X-ray binaries that can be considered as magnetoacoustic oscillations of boundary layer near a neutron star. The optical polarimetric data obtained in 70-th have been also used for estimation of magnetic field of the neutron star in Sco X-1 and of nearest environment around the black hole in Cyg X-1.

  2. Optical sensor of magnetic fields

    DOE Patents [OSTI]

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  3. THE GALACTIC MAGNETIC FIELD

    SciTech Connect (OSTI)

    Jansson, Ronnie; Farrar, Glennys R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  4. WE-G-17A-08: Electron Gun Operation for in Line MRI-Linac Configurations: An Assessment of Beam Fidelity and Recovery Techniques for Different SIDs and Magnetic Field Strengths

    SciTech Connect (OSTI)

    Whelan, B; Keall, P; Constantin, D; Holloway, L; Kolling, S; Oborn, B; Fahrig, R

    2014-06-15

    Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0T MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.

  5. Magnetic Fields Analogous to electric field, a magnet

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic) Opposite magnetic poles attract like magnetic poles repel #12;Like the electric field lines

  6. Electrical conductivity of quark matter in magnetic field

    E-Print Network [OSTI]

    B. Kerbikov; M. Andreichikov

    2011-12-05

    Fermion currents in dense quark matter embedded into magnetic field are under intense discussions motivated by Chiral Magnetic Effect. We argue that conductivity of quark matter may be independent of the magnetic field direction and not proportional to the magnetic field strength.

  7. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  8. SPECTRAL PROBLEMS FOR OPERATORS WITH CROSSED MAGNETIC AND ELECTRIC FIELDS

    E-Print Network [OSTI]

    Petkov, Vesselin

    SPECTRAL PROBLEMS FOR OPERATORS WITH CROSSED MAGNETIC AND ELECTRIC FIELDS MOUEZ DIMASSI Consider the two-dimensional Schr¨odinger operator with homogeneous magnetic and electric fields H = H and > 0 are proportional to the strength of the homogeneous magnetic and electric fields and V (x, y

  9. Fluorescent lamp with static magnetic field generating means

    DOE Patents [OSTI]

    Moskowitz, Philip E. (Peabody, MA); Maya, Jakob (Brookline, MA)

    1987-01-01

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  10. Fluorescent lamp with static magnetic field generating means

    DOE Patents [OSTI]

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  11. PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Krumholz, Mark R.; Crutcher, Richard M.; Hull, Charles L. H.

    2013-04-10

    The gas from which stars form is magnetized, and strong magnetic fields can efficiently transport angular momentum. Most theoretical models of this phenomenon find that it should prevent formation of large (>100 AU), rotationally supported disks around most protostars, even when non-ideal magnetohydrodynamic (MHD) effects that allow the field and gas to decouple are taken into account. Using recent observations of magnetic field strengths and orientations in protostellar cores, we show that this conclusion is incorrect. The distribution of magnetic field strengths is very broad, and alignments between fields and angular momentum vectors within protostellar cores are essentially random. By combining the field strength and misalignment data with MHD simulations showing that disk formation is expected for both weak and misaligned fields, we show that these observations imply that we should expect disk fractions of {approx}10%-50% even when protostars are still deeply embedded in their parent cores, and even if the gas is governed by ideal MHD.

  12. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  13. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  14. Magnetic-field-dosimetry system

    DOE Patents [OSTI]

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  15. Magnetic fields in massive stars

    E-Print Network [OSTI]

    S. Hubrig; M. Schoeller; M. Briquet; M. A. Pogodin; R. V. Yudin; J. F. Gonzalez; T. Morel; P. De Cat; R. Ignace; P. North; G. Mathys; G. J. Peters

    2007-12-02

    We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

  16. Magnetic fields in massive stars

    E-Print Network [OSTI]

    Hubrig, S; Briquet, M; Pogodin, M A; Yudin, R V; González, J F; Morel, T; De Cat, P; Ignace, R; North, P; Mathys, G; Peters, G J

    2007-01-01

    We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

  17. High magnetic field processing of liquid crystalline polymers

    DOE Patents [OSTI]

    Smith, Mark E. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Douglas, Elliot P. (Los Alamos, NM)

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  18. High magnetic field processing of liquid crystalline polymers

    DOE Patents [OSTI]

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  19. Measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  20. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect (OSTI)

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  1. Quark deconfinement and gluon condensate in a weak magnetic field

    E-Print Network [OSTI]

    Alejandro Ayala; C. A. Dominguez; L. A. Hernandez; M. Loewe; Juan Cristobal Rojas; Cristian Villavicencio

    2015-07-01

    We study QCD finite energy sum rules (FESR) for the axial-vector current correlator in the presence of a magnetic field, in the weak field limit and at zero temperature. We find that the perturbative QCD as well as the hadronic contribution to the sum rules get explicit magnetic field-dependent corrections and that these in turn induce a magnetic field dependence on the deconfinement phenomenological parameter s_0 and on the gluon condensate. The leading corrections turn out to be quadratic in the field strength. We find from the dimension d=2 first FESR that the magnetic field dependence of s_0 is proportional to the absolute value of the light-quark condensate. Hence, it increases with increasing field strength. This implies that the parameters describing chiral symmetry restoration and deconfinement behave similarly as functions of the magnetic filed. Thus, at zero temperature the magnetic field is a catalysing agent of both chiral symmetry breaking and confinement. From the dimension d=4 second FESR we obtain the behavior of the gluon condensate in the presence of the external magnetic field. This condensate also increases with increasing field strength.

  2. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOE Patents [OSTI]

    Hilal, Sadek K. (Englewood Cliffs, NJ); Sampson, William B. (Bellport, NY); Leonard, Edward F. (Leonia, NJ)

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  3. EFFECTS OF MAGNETIC FIELDS ON THE PROPAGATION OF NUCLEAR FLAMES IN MAGNETIC WHITE DWARFS

    SciTech Connect (OSTI)

    Kutsuna, Masamichi; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-04-10

    We investigate the effects of the magnetic field on the propagation of laminar flames of nuclear reactions taking place in white dwarfs with masses close to the Chandrasekhar limit. We calculate the velocities of laminar flames parallel and perpendicular to uniform magnetic fields as eigenvalues of steady solutions for magnetic hydrodynamical equations. As a result, we find that even when the magnetic pressure does not dominate the entire pressure it is possible for the magnetic field to suppress the flame propagation through the thermal conduction. Above the critical magnetic field, the flame velocity decreases with increasing magnetic field strength as v {approx} B{sup -1}. In media with densities of 10{sup 7}, 10{sup 8}, and 10{sup 9} g cm{sup -3}, the critical magnetic fields are orders of {approx}10{sup 10}, 10{sup 11}, and 10{sup 12} G, respectively.

  4. Primordial Magnetic Fields in Cosmology

    E-Print Network [OSTI]

    Iain A. Brown

    2008-12-09

    Magnetic fields have been observed in galaxies, clusters of galaxies and probably in superclusters. While mechanisms exist to generate these in the late universe, it is possible that magnetic fields have existed since very early times. This thesis is concerned with methods to predict the form of such imprints. We review in detail a standard, linearised cosmology before introducing an electromagnetic field. We then consider the intrinsic statistics of the magnetic stresses in two ways, analytically and via static realisations. We construct the power spectra, some of which we present for the first time. At the one- and three-point level we find significant intrinsic non-Gaussianities. Finally we turn to the observable impacts a primordial magnetic field. Assuming coherence, the statistics of the source can be mapped onto the CMB in a simple manner. We demonstrate that our approach is valid by reproducing the signals for Gaussian power law fields on the microwave sky. [ABRIDGED

  5. Static magnetic fields enhance turbulence

    E-Print Network [OSTI]

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  6. The AGN origin of cluster magnetic fields

    E-Print Network [OSTI]

    Xu, Hao

    2009-01-01

    Images of gas density and strength of the Biermann Battery3.6 are the images of gas density and battery source term ofImages of gas density, temperature, magnetic energy density and strength of the Biermann Battery

  7. Magnetic Fields Boosted by Gluon Vortices in Color Superconductivity

    E-Print Network [OSTI]

    Efrain J. Ferrer; Vivian de la Incera

    2006-08-28

    We investigate the effects of an external magnetic field in the gluon dynamics of a color superconductor with three massless quark flavors. In the framework of gluon mean-field theory at asymptotic densities, we show that the long-range component $\\widetilde{H}$ of the external magnetic field that penetrates the CFL phase produces an instability when its strength becomes larger than the Meissner mass of the charged gluons. As a consequence, the magnetic field causes the formation of a vortex state characterized by the condensation of charged gluons and the creation of magnetic flux tubes. Inside the flux tubes the magnetic field is stronger than the applied one. This antiscreening effect is connected to the anomalous magnetic moment of the gluon field. We suggest how this same mechanism could serve to remove the chromomagnetic instabilities existing in gapless color superconductivity.

  8. Non-axisymmetric magnetic modes of neutron stars with purely poloidal magnetic fields

    E-Print Network [OSTI]

    Asai, Hidetaka; Yoshida, Shijun

    2015-01-01

    We calculate non-axisymmetric oscillations of neutron stars magnetized by purely poloidal magnetic fields. We use polytropes of index $n=1$ and 1.5 as a background model, where we ignore the equilibrium deformation due to the magnetic field. Since separation of variables is not possible for the oscillation of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. Solving the oscillation equations as the boundary and eigenvalue problem, we find two kinds of discrete magnetic modes, that is, stable (oscillatory) magnetic modes and unstable (monotonically growing) magnetic modes. For isentropic models, the frequency or the growth rate of the magnetic modes is exactly proportional to $B_{\\rm S}$, the strength of the field at the surface. The oscillation frequency and the growth rate are affected by the buoyant force in the interior, and the stable stratification tends to stabilize the unstable magnetic modes.

  9. Mitigated-force carriage for high magnetic field environments

    SciTech Connect (OSTI)

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  10. Tunable Polarization of Spin Polarized Current by Magnetic Field

    SciTech Connect (OSTI)

    Joo, S.; Kim, K.; Lee, J.; Kim, T.; Rhie, K.; Hong, J.; Shin, K-H.

    2010-10-10

    The spin polarization of a high g-factor bulk semiconductor is theoretically investigated in the presence of a magnetic field parallel to a driving electric field. Calculations have been carried out using the energy-dependent relaxation time approximation in association with spin-flip scattering. As the magnitude of the magnetic field increases, the spin-polarized current alternates between the spin-up and spin-down states for the low spin-scattering system. This implies that the current polarization can be tuned by controlling the magnetic field strength, suggesting possible applications to spintronic devices. An experimental method for investigating alternative current polarization is also considered.

  11. First magnetic field models for recently discovered magnetic beta Cephei and slowly pulsating B stars

    E-Print Network [OSTI]

    Hubrig, S; Schoeller, M; Briquet, M; Morel, T; De Cat, P

    2011-01-01

    In spite of recent detections of magnetic fields in a number of beta Cephei and slowly pulsating B (SPB) stars, their impact on stellar rotation, pulsations, and element diffusion is not sufficiently studied yet. The reason for this is the lack of knowledge of rotation periods, the magnetic field strength distribution and temporal variability, and the field geometry. New longitudinal field measurements of four beta Cephei and candidate beta Cephei stars, and two SPB stars were acquired with FORS2 at the VLT. These measurements allowed us to carry out a search for rotation periods and to constrain the magnetic field geometry for four stars in our sample.

  12. An exact Lagrangian integral for the Newtonian gravitational field strength

    E-Print Network [OSTI]

    Thomas Buchert

    2006-01-23

    An exact expression for the gravitational field strength in a self-gravitating dust continuum is derived within the Lagrangian picture of continuum mechanics. From the Euler-Newton system a transport equation for the gravitational field strength is formulated and then integrated along trajectories of continuum elements. The resulting integral solves one of the Lagrangian equations of the corresponding Lagrange-Newton system in general. Relations to known exact solutions without symmetry in Newtonian gravity are discussed. The presented integral may be employed to access the non-perturbative regime of structure formation in Newtonian cosmology, and to apply iterative Lagrangian schemes to solve the Lagrange-Newton system.

  13. The Origin of Magnetic Fields

    E-Print Network [OSTI]

    California at Berkeley, University of

    is an aerodynamic drag force resisting motion of the tube through the external, field­free plasma. The mag­ netic of Sun's X­ray Emission: #12; Emerging Active Regions -- what we see at the photo­ sphere: (from Cauzzi buoyancy force, FT is the force due to magnetic tension (field line bending), FC represents the Coriolis

  14. Reduced MHD in Nearly Potential Magnetic Fields

    E-Print Network [OSTI]

    Strauss, Hank

    Reduced MHD in Nearly Potential Magnetic Fields H.R. Strauss Courant Institute of Mathematical that the magnetic field is close to a potential field. The potential field can have an arbitrary three dimensional. It is also the case in solar and stellar coronal magnetic fields, and in regions of the geomagnetic field

  15. Stable Magnetic Fields in Static Stars

    E-Print Network [OSTI]

    A. Gruzinov

    2008-01-28

    We prove that static fluid stars can stably support magnetic fields (within the ideal MHD approximation).

  16. Extragalactic Magnetic Field and the Highest Energy Cosmic Rays

    E-Print Network [OSTI]

    Sangjin Lee; Angela Olinto; Guenter Sigl

    1995-08-21

    The strength and spectrum of the extragalactic magnetic field are still unknown. Its measurement would help answer the question of whether galactic fields are purely a primordial relic or were dynamically enhanced from a much smaller cosmological seed field. In this letter, we show that the composition, spectrum, and directional distribution of extragalactic ultrahigh energy cosmic rays with energies above $\\simeq 10^{18}\\ev$ can probe the large scale component of the extragalactic magnetic field below the present observational upper limit of $10^{-9}$ Gauss. Cosmic ray detectors under construction or currently in the proposal stage should be able to test the existence of the extragalactic magnetic fields on scales of a few to tens of Mpc and strengths in the range $\\simeq 10^{-10} - 10^{-9}$ Gauss.

  17. Nematic order of model goethite nanorods in a magnetic field

    E-Print Network [OSTI]

    H. H. Wensink; G. J. Vroege

    2005-01-18

    We explore the nematic order of model goethite nanorods in an external magnetic field within Onsager-Parsons density functional theory. The goethite rods are represented by monodisperse, charged spherocylinders with a permanent magnetic moment along the rod main axis, forcing the particles to align parallel to the magnetic field at low field strength. The intrinsic diamagnetic susceptibility anisometry of the rods is negative which leads to a preferred perpendicular orientation at higher field strength. It is shown that these counteracting effects may give rise to intricate phase behavior, including a pronounced stability of biaxial nematic order and the presence of reentrant phase transitions and demixing phenomena. The effect of the applied field on the nematic-to-smectic transition will also be addressed.

  18. Magnetic field distribution in the quiet Sun: a simplified model approach

    E-Print Network [OSTI]

    F. Berrilli; D. Del Moro; B. Viticchie

    2008-08-03

    We simulate the dynamics and the evolution of quiet Sun magnetic elements to produce a probability density function of the field strengths associated with such elements. The dynamics of the magnetic field are simulated through a numerical model in which magnetic elements are passively driven by an advection field presenting spatio-temporal correlations which mimicks the granulation and the mesogranulation scales observed on the solar surface. The field strength can increase due to an amplification process which takes place where the magnetic elements converge. Starting from a delta-like probability density function centered on B=30 G, we obtain magnetic field strengths up to 2 kG (in absolute value). To derive the statistical properties of the magnetic elements several simulation runs are performed. The model is able to produce kG magnetic fields in a time interval of the order of the granulation time scale. The mean unsigned flux density and the mean magnetic energy density of the synthetic quiet Sun reach respectively 100 G and 350 G in the stationary regime. The derived probability density function of the magnetic field strength decreases rapidly from B=30 G to B=100 G and presents a secondary maximum for B=2 kG. From this result it follows that magnetic fields >700 G dominate the unsigned flux density and magnetic energy density although the probability density function of the field strength presents a maximum for B=30 G.

  19. CMB anisotropies from primordial inhomogeneous magnetic fields

    E-Print Network [OSTI]

    Antony Lewis

    2004-08-19

    Primordial inhomogeneous magnetic fields of the right strength can leave a signature on the CMB temperature anisotropy and polarization. Potentially observable contributions to polarization B-modes are generated by vorticity and gravitational waves sourced by the magnetic anisotropic stress. We compute the corresponding CMB transfer functions in detail including the effect of neutrinos. The shear rapidly causes the neutrino anisotropic stress to cancel the stress from the magnetic field, suppressing the production of gravitational waves and vorticity on super-horizon scales after neutrino decoupling. A significant large scale signal from tensor modes can only be produced before neutrino decoupling, and the actual amplitude is somewhat uncertain. Plausible values suggest primordial nearly scale invariant fields of ~ 10^(-10)G today may be observable from their large scale tensor anisotropy. They can be distinguished from primordial gravitational waves by their non-Gaussianity. Vector mode vorticity sources B-mode power on much smaller scales with a power spectrum somewhat similar to that expected from weak lensing, suggesting amplitudes ~ 10^(-9)G may be observable on small scales for a spectral index of n ~ -2.9. In the appendix we review the covariant equations for computing the vector and tensor CMB power spectra that we implement numerically.

  20. NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74

    SciTech Connect (OSTI)

    Kusune, Takayoshi; Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Miao, Jingqi [Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NR (United Kingdom); Tamura, Motohide; Kwon, Jungmi [Department of Astronomy, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sato, Yaeko [National Astronomical Observatory, 2-21-1 Osawa, Mikata, Tokyo 181-8588 (Japan); Watanabe, Makoto [Department of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Nishiyama, Shogo [Faculty of Education, Miyagi University of Education, Sendai 980-0845 (Japan); Nagayama, Takahiro [Department of Physics, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Sato, Shuji [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2015-01-01

    We have made near-infrared (JHK {sub s}) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and far inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ?90 ?G, is stronger than that far inside, ?30 ?G. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.

  1. MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2

    E-Print Network [OSTI]

    Fornberg, Bengt

    MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B, plasma density and magnetic field. We present a hydromag- netic study of the self-confinement of magnetic Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value

  2. Chiral Magnetic Effect in Protoneutron Stars and Magnetic Field Spectral Evolution

    E-Print Network [OSTI]

    Sigl, Günter

    2015-01-01

    We investigate the evolution of the chiral magnetic instability in a protoneutron star and compute the resulting magnetic power and helicity spectra. The instability may act during the early cooling phase of the hot protoneutron star after supernova core collapse, where it can contribute to the buildup of magnetic fields of strength up to the order of $10^{14}$ G. The maximal field strengths generated by this instability, however, depend considerably on the temperature of the protoneutron star, on density fluctuations and turbulence spectrum of the medium. At the end of the hot cooling phase the magnetic field tends to be concentrated around the submillimeter to cm scale, where it is subject to slow resistive damping.

  3. Magnetic fields and the dynamics of spiral galaxies

    E-Print Network [OSTI]

    C. L. Dobbs; D. J. Price

    2007-10-18

    We investigate the dynamics of magnetic fields in spiral galaxies by performing 3D MHD simulations of galactic discs subject to a spiral potential. Recent hydrodynamic simulations have demonstrated the formation of inter-arm spurs as well as spiral arm molecular clouds provided the ISM model includes a cold HI phase. We find that the main effect of adding a magnetic field to these calculations is to inhibit the formation of structure in the disc. However, provided a cold phase is included, spurs and spiral arm clumps are still present if $\\beta \\gtrsim 0.1$ in the cold gas. A caveat to two phase calculations though is that by assuming a uniform initial distribution, $\\beta \\gtrsim 10$ in the warm gas, emphasizing that models with more consistent initial conditions and thermodynamics are required. Our simulations with only warm gas do not show such structure, irrespective of the magnetic field strength. Furthermore, we find that the introduction of a cold HI phase naturally produces the observed degree of disorder in the magnetic field, which is again absent from simulations using only warm gas. Whilst the global magnetic field follows the large scale gas flow, the magnetic field also contains a substantial random component that is produced by the velocity dispersion induced in the cold gas during the passage through a spiral shock. Without any cold gas, the magnetic field in the warm phase remains relatively well ordered apart from becoming compressed in the spiral shocks. Our results provide a natural explanation for the observed high proportions of disordered magnetic field in spiral galaxies and we thus predict that the relative strengths of the random and ordered components of the magnetic field observed in spiral galaxies will depend on the dynamics of spiral shocks.

  4. Magnetic fields in beta Cep, SPB, and Be stars

    E-Print Network [OSTI]

    Schoeller, M; Briquet, M; Ilyin, I

    2013-01-01

    Recent observational and theoretical results emphasize the potential significance of magnetic fields for structure, evolution, and environment of massive stars. Depending on their spectral and photometric behavior, the upper main-sequence B-type stars are assigned to different groups, such as beta Cep stars and slowly pulsating B (SPB) stars, He-rich and He-deficient Bp stars, Be stars, BpSi stars, HgMn stars, or normal B-type stars. All these groups are characterized by different magnetic field geometry and strength, from fields below the detection limit of a few Gauss up to tens of kG. Our collaboration was the first to systematically study the magnetic fields in representative samples of different types of main-sequence B stars. In this article, we give an overview about what we have learned during the last years about magnetic fields in beta Cep, SPB, and Be stars.

  5. Engineering Weyl nodes in Dirac semimetals by a magnetic field

    E-Print Network [OSTI]

    E. V. Gorbar; V. A. Miransky; I. A. Shovkovy

    2013-10-07

    We study the phase diagram of a Dirac semimetal in a magnetic field at a nonzero charge density. It is shown that there exists a critical value of the chemical potential at which a first-order phase transition takes place. At subcritical values of the chemical potential the ground state is a gapped state with a dynamically generated Dirac mass and a broken chiral symmetry. The supercritical phase is the normal (gapless) phase with a nontrivial chiral structure: it is a Weyl semimetal with a pair of Weyl nodes for each of the original Dirac points. The nodes are separated by a dynamically induced chiral shift. The direction of the chiral shift coincides with that of the magnetic field and its magnitude is determined by the quasiparticle charge density, the strength of the magnetic field, and the strength of the interaction. The rearrangement of the Fermi surface accompanying this phase transition is described.

  6. Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements

    E-Print Network [OSTI]

    California at Berkeley, University of

    Quantitative estimates of magnetic field reconnection properties from electric and magnetic field there are positive electric field components tangential to the magnetopause and a magnetic field component normal to it. Because these three components are the smallest of the six electric and magnetic fields

  7. Plasma stability in a dipole magnetic field

    E-Print Network [OSTI]

    Simakov, Andrei N., 1974-

    2001-01-01

    The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

  8. New developments in pulsed fields at the US National High Magnetic Field Laboratory

    SciTech Connect (OSTI)

    Campbell, L.J.; Parkin, D.M.; Rickel, D.G. [Los Alamos National Lab., NM (United States); Pernambuco-Wise, P. [Florida State Univ., Tallahassee, FL (United States)

    1996-12-01

    Los Alamos National Laboratory is a member of a consortium (with Florida State University and the University of Florida) to operate the National High Magnetic Field Laboratory (NHMFL), with funding from the National Science Foundation and the State of Florida. Los Alamos provides unique resources for its component of NHMFL in the form of a 1.4 GW inertial storage motor-generator for high field pulsed magnets and infrastructure for fields generated by flux compression. The NHMFL provides a user facility open to all qualified users, develops magnet technology in association with the private sector, and advances science and technology opportunities. The magnets in service at Los Alamos are of three types. Starting with the pre-existing explosive flux compression capability in 1991, NHMFL added capacitor-driven magnets in December, 1992, and a 20 tesla superconducting magnet in January, 1993. The capacitor-driven magnets continue to grow in diversity and accessibility, with four magnet stations now available for several different magnet types. Two magnets of unprecedented size and strength are nearing completion of assembly and design, respectively. Under final assembly is a quasi-continuous magnet that contains 90 MJ of magnetic energy at full field, and being designed is a non-destructive 100 T magnet containing 140 MJ.

  9. Primordial magnetic field limits from cosmological data

    SciTech Connect (OSTI)

    Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

    2010-10-15

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  10. Primordial magnetic fields and formation of molecular hydrogen

    E-Print Network [OSTI]

    Shiv K Sethi; Biman B. Nath; Kandaswamy Subramanian

    2008-04-22

    We study the implications of primordial magnetic fields for the thermal and ionization history of the post-recombination era. In particular we compute the effects of dissipation of primordial magnetic fields owing to ambipolar diffusion and decaying turbulence in the intergalactic medium (IGM) and the collapsing halos and compute the effects of the altered thermal and ionization history on the formation of molecular hydrogen. We show that, for magnetic field strengths in the range $2 \\times 10^{-10} {\\rm G} \\la B_0 \\la 2 \\times 10^{-9} {\\rm G}$, the molecular hydrogen fraction in IGM and collapsing halo can increase by a factor 5 to 1000 over the case with no magnetic fields. We discuss the implication of the increased molecular hydrogen fraction on the radiative transfer of UV photons and the formation of first structures in the universe.

  11. Anisotropy of magnetic emulsions induced by magnetic and electric fields

    E-Print Network [OSTI]

    Yury I. Dikansky; Alexander N. Tyatyushkin; Arthur R. Zakinyan

    2011-09-10

    The anisotropy of magnetic emulsions induced by simultaneously acting electric and magnetic fields is theoretically and experimentally investigated. Due to the anisotropy, the electric conductivity and magnetic permeability of a magnetic emulsion are no longer scalar coefficients, but are tensors. The electric conductivity and magnetic permeability tensors of sufficiently diluted emulsions in sufficiently weak electric and magnetic fields are found as functions of the electric and magnetic intensity vectors. The theoretically predicted induced anisotropy was verified experimentally. The experimental data are analyzed and compared with theoretical predictions. The results of the analysis and comparison are discussed.

  12. Magnetic field perturbations in the systems where only poloidal magnetic field is present*

    E-Print Network [OSTI]

    magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider · Small perturbations in the general geometry · Uniform magnetic field imposed on the levitated dipole1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D

  13. Transient horizontal magnetic fields in solar plage regions

    E-Print Network [OSTI]

    R. Ishikawa; S. Tsuneta; K. Ichimoto; H. Isobe; Y. Katsukawa; B. W. Lites; S. Nagata; T. Shimizu; R. A. Shine; Y. Suematsu; T. D. Tarbell; A. M. Title

    2008-02-13

    We report the discovery of isolated, small-scale emerging magnetic fields in a plage region with the Solar Optical Telescope aboard Hinode. Spectro-polarimetric observations were carried out with a cadence of 34 seconds for the plage region located near disc center. The vector magnetic fields are inferred by Milne-Eddington inversion. The observations reveal widespread occurrence of transient, spatially isolated horizontal magnetic fields. The lateral extent of the horizontal magnetic fields is comparable to the size of photospheric granules. These horizontal magnetic fields seem to be tossed about by upflows and downflows of the granular convection. We also report an event that appears to be driven by the magnetic buoyancy instability. We refer to buoyancy-driven emergence as type1 and convection-driven emergence as type2. Although both events have magnetic field strengths of about 600 G, the filling factor of type1 is a factor of two larger than that of type2. Our finding suggests that the granular convection in the plage regions is characterized by a high rate of occurrence of granular-sized transient horizontal fields.

  14. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  15. Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field

    E-Print Network [OSTI]

    J. E. Galván-Moya; D. Lucena; W. P. Ferreira; F. M. Peeters

    2014-01-03

    The ground state of colloidal magnetic particles in a modulated channel are investigated as function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo (MC) simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential and the commensurability factor of the system. Interestingly, we found first and second order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A re-entrant behavior is found between two- and four-chain configurations, with continuous second order transitions. Novel configurations are found consisting of frozen in solitons. By changing the orientation and/or strength of the magnetic field and/or the strength and the spatial frequency of the periodic substrate potential, the system transits through different phases.

  16. The effect of power line phase current correlation on magnetic field statistics

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1995-09-01

    Due to normally occurring line currents unbalance, the magnetic field strength will fluctuate in time. The minimum field occurs when the phase currents are balanced, i.e. equal in magnitude and equally spaced in angle. The maximum field levels are obtained when the line currents` fluctuations are statistically independent, and hence, uncorrelated. It is shown that the earth return current due to the unbalance, and therefore, the strength of the magnetic field variations are a function of the line`s phase currents correlation. Power lines whose phase currents are highly correlated will produce a smaller increase in the magnetic field levels for a given percentage of current unbalance.

  17. The evolution of surface magnetic fields in young solar-type stars

    E-Print Network [OSTI]

    Folsom, C P; Bouvier, J; Morin, J; Lèbre, A

    2015-01-01

    Surface rotation rates of young solar-type stars display drastic changes at the end of the pre-main sequence through the early main sequence. This may trigger corresponding changes in the magnetic dynamos operating in these stars, which ought to be observable in their surface magnetic fields. We present here the first results of an observational effort aimed at characterizing the evolution of stellar magnetic fields through this critical phase. We observed stars from open clusters and associations, which range from 20 to 600 Myr, and used Zeeman Doppler Imaging to characterize their complex magnetic fields. We find a clear trend towards weaker magnetic fields for older ages, as well as a tight correlation between magnetic field strength and Rossby number over this age range. Comparing to results for younger T Tauri stars, we observe a very significant change in magnetic strength and geometry, as the radiative core develops during the late pre-main sequence.

  18. Polarization bispectrum for measuring primordial magnetic fields

    SciTech Connect (OSTI)

    Shiraishi, Maresuke, E-mail: maresuke.shiraishi@pd.infn.it [Dipartimento di Fisica e Astronomia ''G. Galilei'', Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy)

    2013-11-01

    We examine the potential of polarization bispectra of the cosmic microwave background (CMB) to constrain primordial magnetic fields (PMFs). We compute all possible bispectra between temperature and polarization anisotropies sourced by PMFs and show that they are weakly correlated with well-known local-type and secondary ISW-lensing bispectra. From a Fisher analysis it is found that, owing to E-mode bispectra, in a cosmic-variance-limited experiment the expected uncertainty in the amplitude of magnetized bispectra is 80% improved in comparison with an analysis in terms of temperature auto-bispectrum alone. In the Planck or the proposed PRISM experiment cases, we will be able to measure PMFs with strength 2.6 or 2.2 nG. PMFs also generate bispectra involving B-mode polarization, due to tensor-mode dependence. We also find that the B-mode bispectrum can reduce the uncertainty more drastically and hence PMFs comparable to or less than 1 nG may be measured in a PRISM-like experiment.

  19. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    SciTech Connect (OSTI)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of magnetic shielding would be required.

  20. Dirac oscillator in an external magnetic field

    E-Print Network [OSTI]

    Bhabani Prasad Mandal; Shweta Verma

    2009-12-19

    We show that 2+1 dimensional Dirac oscillators in an external magnetic field is mapped onto the same with reduced angular frequency in absence of magnetic field. This can be used to study the atomic transitions in a radiation field. Relativistic Landau levels are constructed explicitly. Several interesting features of this system are discussed.

  1. DC-based magnetic field controller

    DOE Patents [OSTI]

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  2. PALEOMAGNETISM Solar nebula magnetic fields recorded

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    REPORTS PALEOMAGNETISM Solar nebula magnetic fields recorded in the Semarkona meteorite Roger R. Walsworth,6,7 Aaron T. Kuan9 Magnetic fields are proposed to have played a critical role in some of the most on the intensity of these fields. Here we show that dusty olivine-bearing chondrules from the Semarkona meteorite

  3. Probing ISM Magnetic Fields With SNRs

    E-Print Network [OSTI]

    Roland Kothes Jo-Anne Brown

    2008-12-17

    As supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy.

  4. Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields

    E-Print Network [OSTI]

    H. Sotani; K. D. Kokkotas; N. Stergioulas

    2007-10-11

    We present the formalism and numerical results for torsional oscillations of relativistic stars endowed with a strong dipole magnetic field. We do a systematic search of parameter space by computing torsional mode frequencies for various values of the harmonic index $\\ell$ and for various overtones, using an extended sample of models of compact stars, varying in mass, high-density equation of state and crust model. We show that torsional mode frequencies are sensitive to the crust model if the high-density equation of state is very stiff. In addition, torsional mode frequencies are drastically affected by a dipole magnetic field, if the latter has a strength exceeding roughly $10^{15}$G and we find that the magnetic field effects are sensitive to the adopted crust model. Using our extended numerical results we derive empirical relations for the effect of the magnetic field on torsional modes as well as for the crust thickness. We compare our numerical results to observed frequencies in SGRs and find that certain high-density EoS and mass values are favored over others in the non-magnetized limit. On the other hand, if the magnetic field is strong, then its effect has to be taken into account in attempts to formulate a theory of asteroseismology for magnetars.

  5. Measuring Magnetic Fields in the Solar Atmosphere

    E-Print Network [OSTI]

    de Wijn, A G

    2012-01-01

    Since the discovery by Hale in the early 1900s that sunspots harbor strong magnetic field, magnetism has become increasingly important in our understanding of processes on the Sun and in the Heliosphere. Many current and planned instruments are capable of diagnosing magnetic field in the solar atmosphere. Photospheric magnetometry is now well-established. However, many challenges remain. For instance, the diagnosis of magnetic field in the chromosphere and corona is difficult, and interpretation of measurements is harder still. As a result only very few measurements have been made so far, yet it is clear that if we are to understand the outer solar atmosphere we must study the magnetic field. I will review the history of solar magnetic field measurements, describe and discuss the three types of magnetometry, and close with an outlook on the future.

  6. Quark Antiscreening at Strong Magnetic Field and Inverse Magnetic Catalysis

    E-Print Network [OSTI]

    E. J. Ferrer; V. de la Incera; X. J. Wen

    2015-02-17

    The dependence of the QCD coupling constant with a strong magnetic field and the implications for the critical temperature of the chiral phase transition are investigated. It is found that the coupling constant becomes anisotropic in a strong magnetic field and that the quarks, confined by the field to the lowest Landau level where they pair with antiquarks, produce an antiscreening effect. These results lead to inverse magnetic catalysis, providing a natural explanation for the behavior of the critical temperature in the strong-field region.

  7. Relationship Between Solar Wind Speed and Coronal Magnetic Field Properties

    E-Print Network [OSTI]

    Fujiki, Ken'ichi; Iju, Tomoya; Hakamada, Kazuyuki; Kojima, Masayoshi

    2015-01-01

    We have studied the relationship between the solar-wind speed $[V]$ and the coronal magnetic-field properties (a flux expansion factor [$f$] and photospheric magnetic-field strength [$B_{\\mathrm{S}}$]) at all latitudes using data of interplanetary scintillation and solar magnetic field obtained for 24 years from 1986 to 2009. Using a cross-correlation analyses, we verified that $V$ is inversely proportional to $f$ and found that $V$ tends to increase with $B_{\\mathrm{S}}$ if $f$ is the same. As a consequence, we find that $V$ has extremely good linear correlation with $B_{\\mathrm{S}}/f$. However, this linear relation of $V$ and $B_{\\mathrm{S}}/f$ cannot be used for predicting the solar-wind velocity without information on the solar-wind mass flux. We discuss why the inverse relation between $V$ and $f$ has been successfully used for solar-wind velocity prediction, even though it does not explicitly include the mass flux and magnetic-field strength, which are important physical parameters for solar-wind accele...

  8. Magnetic Braiding and Parallel Electric Fields

    E-Print Network [OSTI]

    A. L. Wilmot-Smith; G. Hornig; D. I. Pontin

    2008-10-08

    The braiding of the solar coronal magnetic field via photospheric motions - with subsequent relaxation and magnetic reconnection -- is one of the most widely debated ideas of solar physics. We readdress the theory in the light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field to an ideal force-free equilibrium; that equilibrium is found to be smooth, with only large- scale current structures. However, the equilibrium is shown to have a highly filamentary integrated parallel current structure with extremely short length- scales. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of a force- free field. Thus the inevitable consequence of the magnetic braiding process is shown to be a loss of equilibrium of the coronal field, probably via magnetic reconnection events.

  9. Graphene Nanoribbon in Sharply Localized Magnetic Fields

    E-Print Network [OSTI]

    Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

    2013-03-20

    We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

  10. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    SciTech Connect (OSTI)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  11. Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields

    E-Print Network [OSTI]

    Mitsusuke Tarama; Peet Cremer; Dmitry Y. Borin; Stefan Odenbach; Hartmut Löwen; Andreas M. Menzel

    2014-09-24

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  12. Magnetic Field Line Stickiness in Tokamaks

    E-Print Network [OSTI]

    Martins, Caroline G L; Caldas, I L

    2013-01-01

    We present simulated figures of the diverted magnetic field lines of the tokamak ITER, obtained by numerically integrating a Hamiltonian model with electrical currents in five wire loops and control coils. We show evidences of a sticky island embedded in the chaotic region near the divertor plates, which traps magnetic field lines for many toroidal turns increasing their connection lengths to these plates.

  13. Vacuum magnetic fields with dense flux surfaces

    SciTech Connect (OSTI)

    Cary, J R

    1982-05-01

    A procedure is given for eliminating resonances and stochasticity in nonaxisymmetric vacuum toroidal magnetic field. The results of this procedure are tested by the surface of section method. It is found that one can obtain magnetic fields with increased rotational transform and decreased island structure while retaining basically the same winding law.

  14. Permanent magnet edge-field quadrupole

    DOE Patents [OSTI]

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  15. Method for the detection of a magnetic field utilizing a magnetic vortex

    DOE Patents [OSTI]

    Novosad, Valentyn (Chicago, IL); Buchanan, Kristen (Batavia, IL)

    2010-04-13

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  16. Advances in Zero-Field Nuclear Magnetic Resonance Spectroscopy

    E-Print Network [OSTI]

    Theis, Thomas

    2012-01-01

    in order to apply oscillating magnetic fields (test signals)x field, an oscillating magnetic field in the z direction isused to apply an oscillating magnetic field ranging from 2

  17. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    SciTech Connect (OSTI)

    Mozer, F. S.; Hull, A.

    2010-10-15

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  18. External-field-free magnetic biosensor

    SciTech Connect (OSTI)

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  19. Colour superconductivity in a strong magnetic field

    E-Print Network [OSTI]

    Efrain J. Ferrer; Vivian de la Incera; Cristina Manuel

    2005-11-30

    We explore the effects of an applied strong external magnetic field in a three flavour massless colour superconductor. The long-range component of the B field that penetrates the superconductor enhances some quark condensates, leading to a different condensation pattern. The external field also reduces the flavour symmetries in the system, and thus it changes drastically the corresponding low energy physics. Our considerations are relevant for the study of highly magnetized compact stars.

  20. Magnetic fields on resistance spaces

    E-Print Network [OSTI]

    Michael Hinz; Luke Rogers

    2015-02-03

    On a metric measure space $X$ that supports a regular, strongly local resistance form we consider a magnetic energy form that corresponds to the magnetic Laplacian for a particle confined to $X$. We provide sufficient conditions for closability and self-adjointness in terms of geometric conditions on the reference measure without assuming energy dominance.

  1. Probing correlations of early magnetic fields using ?-distortion

    SciTech Connect (OSTI)

    Ganc, Jonathan; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk

    2014-08-01

    The damping of a non-uniform magnetic field between the redshifts of about 10{sup 4} and 10{sup 6} injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called ?-distortion. We can calculate the correlation (? T) of this distortion with the temperature anisotropy T of the CMB to search for a correlation ( B{sup 2}?) between the magnetic field B and the curvature perturbation ?; knowing the ( B{sup 2}?) correlation would help us distinguish between different models of magnetogenesis. Since the perturbations which produce the ?-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of ( B{sup 2}?), which is naturally parameterized by b{sub NL} (a parameter defined analogously to f{sub NL}). We find that a PIXIE-like CMB experiments has a signal to noise S/N? 1.0 × b{sub NL} ( B-tilde {sub ?}/10nG){sup 2}, where B-tilde {sub ?} is the magnetic field's strength on ?-distortion scales normalized to today's redshift; thus, a 10 nG field would be detectable with b{sub NL}=O(1). However, if the field is of inflationary origin, we generically expect it to be accompanied by a curvature bispectrum (?{sup 3}) induced by the magnetic field. For sufficiently small magnetic fields, the signal ( B{sup 2} ?) will dominate, but for B-tilde {sub ?}?> 1 nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a ( B{sup 2}?) correlation and explain why there will be no contribution from the evolution of the magnetic field in response to the curvature perturbation.

  2. Enhanced density and magnetic fields in interstellar OH masers

    E-Print Network [OSTI]

    Vincent L. Fish; Mark J. Reid; Karl M. Menten; Thushara Pillai

    2006-08-04

    Aims: We have observed the 6030 and 6035 MHz transitions of OH in high-mass star-forming regions to obtain magnetic field estimates in both maser emission and absorption. Methods: Observations were taken with the Effelsberg 100 m telescope. Results: Our observations are consistent with previous results, although we do detect a new 6030 MHz maser feature near -70 km/s in the vicinity of W3(OH). In absorption we obtain a possible estimate of -1.1 +/- 0.3 mG for the average line-of-sight component of the magnetic field in the absorbing OH gas in K3-50 and submilligauss upper limits for the line-of-sight field strength in DR 21 and W3. Conclusions: These results indicate that the magnetic field strength in the vicinity of OH masers is higher than that of the surrounding, non-masing material, which in turn suggests that the density of masing OH regions is higher than that of their surroundings.

  3. Nature of Electric and Magnetic Fields; How the Fields Transform

    E-Print Network [OSTI]

    Ivezic, Tomislav

    2015-01-01

    In this paper the proofs are given that the electric and magnetic fields are properly defined vectors on the four-dimensional (4D) spacetime (the 4-vectors in the usual notation) and not the usual 3D fields. Furthermore, the proofs are presented that under the mathematically correct Lorentz transformations (LT), e.g., the electric field vector transforms as any other vector transforms, i.e., again to the electric field vector; there is no mixing with the magnetic field vector B, as in the usual transformations (UT) of the 3D fields. The derivations of the UT from some well-known textbooks are discussed and objected.

  4. Nature of Electric and Magnetic Fields; How the Fields Transform

    E-Print Network [OSTI]

    Tomislav Ivezic

    2015-08-10

    In this paper the proofs are given that the electric and magnetic fields are properly defined vectors on the four-dimensional (4D) spacetime (the 4-vectors in the usual notation) and not the usual 3D fields. Furthermore, the proofs are presented that under the mathematically correct Lorentz transformations (LT), e.g., the electric field vector transforms as any other vector transforms, i.e., again to the electric field vector; there is no mixing with the magnetic field vector B, as in the usual transformations (UT) of the 3D fields. The derivations of the UT from some well-known textbooks are discussed and objected.

  5. One-electron linear systems in a strong magnetic field

    E-Print Network [OSTI]

    J. C. Lopez V.; A. Turbiner

    2000-01-19

    Using a variational method we study a sequence of the one-electron atomic and molecular-type systems H, H_2^+, H_3^(2+) and H_4^(3+) in the presence of a homogeneous magnetic field ranging B = 0 - 4.414x10^{13} G. These systems are taken as a linear configuration aligned with the magnetic lines. For H_3^(2+) the potential energy surface has a minimum for B\\sim 10^{11} G which deepens with growth of the magnetic field strength (JETP Lett. 69, 844 (1999)); for B \\gtrsim 10^{12} G the minimum of the potential energy surface becomes sufficiently deep to have longitudinal vibrational state. We demonstrate that for the (ppppe) system the potential energy surface at B \\gtrsim 4.414x10^{13} G develops a minimum, indicating the possible existence of exotic molecular ion H_4^(3+). We find that for almost all accessible magnetic fields H_2^+ is the most bound one-electron linear system while for magnetic fields B \\gtrsim 10^{13} G the molecular ion H_3^(2+) becomes the most bound.

  6. ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.

    E-Print Network [OSTI]

    ECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric's and Laplace's equations. Boundary value problems, method of images · Steady electric currents, static magnetic, students will be able to... 1. Identify the characteristics of static electric and magnetic fields in free

  7. Solar nebula magnetic fields recorded in the Semarkona meteorite

    E-Print Network [OSTI]

    Fu, Roger R.; Weiss, Benjamin P.; Lima, Eduardo A.; Harrison, Richard J.; Bai, Xue-Ning; Desch, Steven J.; Ebel, Denton S.; Suavet, Clement; Wang, Huapei; Glenn, David; Le Sage, David; Kasama, Takeshi; Walsworth, Ronald L.; Kuan, Aaron T.

    2014-11-13

    stream_source_info Final-Revised-Submisson.pdf.txt stream_content_type text/plain stream_size 143440 Content-Encoding UTF-8 stream_name Final-Revised-Submisson.pdf.txt Content-Type text/plain; charset=UTF-8   1   Solar nebula... constrain the strength of nebular magnetic fields. Chondrules are 55   millimeter-sized lithic constituents of primitive meteorites that formed in transient heating events 56   in the solar nebula. If a stable field was present during cooling...

  8. Electrical properties of chain microstructure magnetic emulsions in magnetic field

    E-Print Network [OSTI]

    Arthur Zakinyan; Yuri Dikansky; Marita Bedzhanyan

    2014-02-05

    The work deals with the experimental study of the emulsion whose dispersion medium is a magnetic fluid while the disperse phase is formed by a glycerin-water mixture. It is demonstrated that under effect of a magnetic field chain aggregates form from the disperse phase drops. Such emulsion microstructure change affects its macroscopic properties. The emulsion dielectric permeability and specific electrical conductivity have been measured. It is demonstrated that under the effect of relatively weak external magnetic fields (~ 1 kA/m) the emulsion electrical parameters may change several fold. The work theoretically analyzes the discovered regularities of the emulsion electrical properties.

  9. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ?~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore »and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  10. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    SciTech Connect (OSTI)

    Toplosky, V. J.; Han, K.; Walsh, R. P. [National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Swenson, C. A. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-01-27

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  11. Largeamplitude compressive "sawtooth" magnetic field oscillations in the Martian magnetosphere

    E-Print Network [OSTI]

    California at Berkeley, University of

    Largeamplitude compressive "sawtooth" magnetic field oscillations in the Martian magnetosphere J. S of largeamplitude "sawtooth" magnetic field oscillations in the induced magnetosphere of Mars and discuss, and J. P. Eastwood (2011), Largeamplitude compressive "sawtooth" magnetic field oscillations

  12. LABORATORY VI MAGNETIC FIELDS AND FORCES

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VI - 1 LABORATORY VI MAGNETIC FIELDS AND FORCES Magnetism plays a large role in our world for the differences as you go through the problems in this lab. In this set of laboratory problems, you will map: After successfully completing this laboratory, you should be able to: · Explain the differences

  13. Lunar magnetic field measurements with a cubesat

    E-Print Network [OSTI]

    Garrick-Bethell, Ian

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

  14. HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.

    2011-01-01

    D. C. 'Niobium-Titanium Superconducting Material s ', in S.Nb -Ti and Nb3Sn superconductors. , •• ,""" s. S. Clamp, Tie14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.

  15. Chapter 8 Electric and Magnetic Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values, Chapter 8 Electric and Magnetic Fields I-5 Corridor Reinforcement Project Draft EIS 8-11 November 2012 Table 8-2 West Alternative and Options-Length-Weighted Average...

  16. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these structures are highly stable, very strong magnetic fields of around half a tesla (approximately one-third the field of the strongest permanent magnet) were previously...

  17. Laminated magnet field coil sheath

    DOE Patents [OSTI]

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  18. Apparatus and method for magnetically processing a specimen

    DOE Patents [OSTI]

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  19. 2D control of field-driven magnetic bubble movement using Dzyaloshinskii-Moriya interactions

    E-Print Network [OSTI]

    Petit, Dorothée; Seem, Peter R.; Tillette, Marine; Mansell, Rhodri; Cowburn, Russell P.

    2015-01-12

    =UTF-8 2D control of field-driven magnetic bubble movement using Dzyaloshinskii-Moriya interactions Dorothe´e Petit,1 Peter R. Seem,2 Marine Tillette,1 Rhodri Mansell,1 and Russell P. Cowburn1 1)Thin Film Magnetism group, Cavendish Laboratory... . Within the creep regime formalism, it was found that the velocity dependence of the DW upon the IP field and DMI strength could be attributed to the dependence of the DW energy density upon the IP field and DMI strength16. More practically, the parts...

  20. Generation of flat-top pulsed magnetic fields with feedback control approach

    E-Print Network [OSTI]

    Kohama, Yoshimitsu

    2015-01-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet, and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of +-0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  1. Magnetic field adjustment structure and method for a tapered wiggler

    DOE Patents [OSTI]

    Halbach, Klaus (Berkeley, CA)

    1988-01-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  2. ARE DECAYING MAGNETIC FIELDS ABOVE ACTIVE REGIONS RELATED TO CORONAL MASS EJECTION ONSET?

    SciTech Connect (OSTI)

    Suzuki, J. [Department of Astronomy, University of California, Berkeley, CA 94720-7450 (United States); Welsch, B. T.; Li, Y. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2012-10-10

    Coronal mass ejections (CMEs) are powered by magnetic energy stored in non-potential (current-carrying) coronal magnetic fields, with the pre-CME field in balance between outward magnetic pressure of the proto-ejecta and inward magnetic tension from overlying fields that confine the proto-ejecta. In studies of global potential (current-free) models of coronal magnetic fields-Potential Field Source Surface (PFSS) models-it has been reported that model field strengths above flare sites tend to be weaker when CMEs occur than when eruptions fail to occur. This suggests that potential field models might be useful to quantify magnetic confinement. One straightforward implication of this idea is that a decrease in model field strength overlying a possible eruption site should correspond to diminished confinement, implying an eruption is more likely. We have searched for such an effect by post facto investigation of the time evolution of model field strengths above a sample of 10 eruption sites. To check if the strengths of overlying fields were relevant only in relatively slow CMEs, we included both slow and fast CMEs in our sample. In most events we study, we find no statistically significant evolution in either (1) the rate of magnetic field decay with height, (2) the strength of overlying magnetic fields near 50 Mm, or (3) the ratio of fluxes at low and high altitudes (below 1.1 R{sub Sun }, and between 1.1 and 1.5 R{sub Sun }, respectively). We did observe a tendency for overlying field strengths and overlying flux to increase slightly, and their rates of decay with height to become slightly more gradual, consistent with increased confinement. The fact that CMEs occur regardless of whether the parameters we use to quantify confinement are increasing or decreasing suggests that either (1) the parameters that we derive from PFSS models do not accurately characterize the actual large-scale field in CME source regions, (2) systematic evolution in the large-scale magnetic environment of CME source regions is not, by itself, a necessary condition for CMEs to occur, or both.

  3. CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION

    E-Print Network [OSTI]

    White, Stephen

    . The spiralling motion of electrons in the 200­ 2000 G fields in the solar corona produces sufficient opacity to render the corona optically thick, making it easy to recognize such sources in microwave images from. Keywords: Sun, solar corona, solar magnetic fields, solar radio emission Introduction Since the realization

  4. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields

    SciTech Connect (OSTI)

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2014-09-15

    Purpose: MR-Linac devices under development worldwide will require standard calibration, commissioning, and quality assurance. Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is therefore evaluated in varying transverse and longitudinal magnetic fields for this purpose. Methods: The Monte Carlo code PENELOPE was used to model irradiation of a PTW 60003 diamond detector and IBA PFD diode detector in the presence of a magnetic field. The field itself was varied in strength, and oriented both transversely and longitudinally with respect to the incident photon beam. The long axis of the detectors was oriented either parallel or perpendicular to the photon beam. The dose to the active volume of each detector in air was scored, and its ratio to dose with zero magnetic field strength was determined as the “dose response” in magnetic field. Measurements at low fields for both detectors in transverse magnetic fields were taken to evaluate the accuracy of the simulations. Additional simulations were performed in a water phantom to obtain few representative points for beam profile and percent depth dose measurements. Results: Simulations show significant dose response as a function of magnetic field in transverse field geometries. This response can be near 20% at 1.5 T, and it is highly dependent on the detectors’ relative orientation to the magnetic field, the energy of the photon beam, and detector composition. Measurements at low transverse magnetic fields verify the simulations for both detectors in their relative orientations to radiation beam. Longitudinal magnetic fields, in contrast, show little dose response, rising slowly with magnetic field, and reaching 0.5%–1% at 1.5 T regardless of detector orientation. Water tank and in air simulation results were the same within simulation uncertainty where lateral electronic equilibrium is present and expectedly differed at the beam edge in transverse field orientations only. Due to the difference in design, the two detectors behaved differently. Conclusions: When transverse magnetic fields are present, great care must be taken when using diamond or diode detectors. Dose response varies with relative detector orientation, magnetic field strength, and between detectors. This response can be considerable (?20% for both detectors). Both detectors in longitudinal fields exhibit little to no dose response as a function of magnetic field. Water tank simulations seem to suggest that the diode detector is better suited to general beam commissioning, and each detector must be investigated separately.

  5. Magnetic Field Amplification via Protostellar Disc Dynamos

    E-Print Network [OSTI]

    Dyda, Sergei; Ustyugova, Galina V; Koldoba, Alexander V; Wasserman, Ira

    2015-01-01

    We model the generation of a magnetic field in a protostellar disc using an \\alpha-dynamo and perform axisymmetric magnetohydrodynamics (MHD) simulations of a T Tauri star. We find that for small values of the dimensionless dynamo parameter $\\alpha_d$ the poloidal field grows exponentially at a rate ${\\sigma} \\propto {\\Omega}_K \\sqrt{\\alpha_d}$ , before saturating to a value $\\propto \\sqrt{\\alpha_d}$ . The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order $10^{-9} M_{\\odot}/\\rm{yr}$ for T Tauri stars. For large values of $\\alpha_d$ magnetic loops are generated over the entire disc. These quickly come to dominate the disc dynamics and cause the disc to break up due to the magnetic pressure.

  6. Height variation of the vector magnetic field in solar spicules

    E-Print Network [OSTI]

    Suarez, D Orozco; Bueno, J Trujillo

    2015-01-01

    Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He I 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife; Canary Islands; Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid inclinations (about 50 degree) above 2 Mm height.

  7. Radio frequency sheaths in an oblique magnetic field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle ? with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, ? assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore »to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  8. Sensitivity Reach of the Neutron EDM Experiment: The Electric Field Strength

    SciTech Connect (OSTI)

    Hennings-Yeomans, R.; Cooper, M.; Currie, S. A.; Makela, M. F.; Ramsey, J. C.; Tajima, S.; Womack, T. L. [Physics Division, Los Alamos National Laboratory, Los Alamos NM 87545 (United States); Long, J. C. [Department of Physics, Indiana University, 727 E. Third St. Bloomington, IN 47405-7105 (United States); Stanislaus, S. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States)

    2010-08-04

    The search for an electric dipole moment of the neutron tests physics beyond the Standard Model such as new sources of CP-violation and Supersymmetry. The nEDM experiment aims to improve the sensitivity on the current limit of the electric dipole moment of the neutron to <10{sup -27} e{center_dot}cm. The experiment will use a flux of Ultra Cold Neutrons (UCNs) produced and stored in a bath of superfluid He-II. A change in precession frequency is expected for a non-zero EDM when an electric field is applied parallel and antiparallel to a magnetic field across the neutron storage cell. A dominant parameter in terms of reducing the statistical uncertainty of this measurement is the strength of the applied electric field. An experiment to measure if superfluid He-II can sustain up to 50 kV/cm for a volume and electrode spacings comparable to the nEDM experiment has been constructed at Los Alamos National Laboratory. It consists in a large-area parallel plate capacitor immersed in a 200 liter central volume inside a suitable cryostat that in turn is connected to a dilution refrigerator unit. A description of test runs and the status of the experiment is presented.

  9. Electric/magnetic field sensor

    DOE Patents [OSTI]

    Schill, Jr., Robert A. (Henderson, NV); Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  10. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Magnetic Vortex Core Reversal by Low-Field Excitations Print Wednesday, 28 March 2007 00:00 In micrometer-sized magnetic thin...

  11. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    SciTech Connect (OSTI)

    Jedamzik, Karsten [Laboratoire de Univers et Particules, UMR5299-CNRS, Université de Montpellier II, F-34095 Montpellier (France); Abel, Tom, E-mail: karsten.jedamzik@um2.fr, E-mail: tabel@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC/Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ? 10{sup ?11} Gauss by cosmic microwave background observations.

  12. High magnetic field ohmically decoupled non-contact technology

    DOE Patents [OSTI]

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  13. The effect of a magnetic field on the spin-selective transport in double-stranded DNA

    SciTech Connect (OSTI)

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-05-28

    Spin-polarization in double-stranded DNA is studied in the presence of a magnetic field applied along its helix axis using the non-equilibrium Green's function method. The spin-polarization could be tuned by changing the magnetic field. In some special cases, the double-stranded DNA behaved as a perfect spin-filter. Furthermore, the dependency of the spin-polarization on the spin-orbit strength and dephasing strength is studied.

  14. Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields

    SciTech Connect (OSTI)

    Reynolds, M. [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2013-04-15

    Purpose: The magnetic fields of an integrated MR-Linac system will alter the paths of electrons that produce ions in the ionization chambers. The dose response of selected ion chambers is evaluated in the presence of varying transverse and longitudinal magnetic fields. The investigation is useful in calibration of therapeutic x-ray beams associated with MR-Linac systems. Methods: The Monte Carlo code PENELOPE was used to model the irradiation of NE2571, and PR06C ionization chambers in the presence of a transverse and longitudinal (with respect to the photon beam) magnetic fields of varying magnitude. The long axis of each chamber was simulated both parallel and perpendicular to the incident photon beam for each magnetic field case. The dose deposited in each chamber for each case was compared to the case with zero magnetic field by means of a ratio. The PR06C chamber's response was measured in the presence of a transverse magnetic field with field strengths ranging from 0.0 to 0.2 T to compare to simulated results. Results: The simulations and measured data show that in the presence of a transverse magnetic field there is a considerable dose response (maximum of 11% near 1.0 T in the ion chambers investigated, which depends on the magnitude of magnetic field, and relative orientation of the magnetic field, radiation beam, and ion chamber. Measurements made with the PR06C chamber verify these results in the region of measurement. In contrast, a longitudinal magnetic field produces only a slight increase in dose response (2% at 1.5 T) that rises slowly with increasing magnetic field and is seemingly independent of chamber orientation. Response trends were similar for the two ion chambers and relative orientations considered, but slight variations are present from chamber to chamber. Conclusions: Care must be taken when making ion chamber measurements in a transverse magnetic field. Ion chamber responses vary not only with transverse field strength, but with chamber orientation and type, and can be considerable. Longitudinal magnetic fields influence ion chamber responses relatively little (2% at 1.5 T), and only at field strengths in excess of 1.0 T.

  15. Computing nonlinear force free coronal magnetic fields

    E-Print Network [OSTI]

    T. Wiegelmann; T. Neukirch

    2008-01-21

    Knowledge of the structure of the coronal magnetic field is important for our understanding of many solar activity phenomena, e.g. flares and CMEs. However, the direct measurement of coronal magnetic fields is not possible with present methods, and therefore the coronal field has to be extrapolated from photospheric measurements. Due to the low plasma beta the coronal magnetic field can usually be assumed to be approximately force free, with electric currents flowing along the magnetic field lines. There are both observational and theoretical reasons which suggest that at least prior to an eruption the coronal magnetic field is in a nonlinear force free state. Unfortunately the computation of nonlinear force free fields is way more difficult than potential or linear force free fields and analytic solutions are not generally available. We discuss several methods which have been proposed to compute nonlinear force free fields and focus particularly on an optimization method which has been suggested recently. We compare the numerical performance of a newly developed numerical code based on the optimization method with the performance of another code based on an MHD relaxation method if both codes are applied to the reconstruction of a semi-analytic nonlinear force-free solution. The optimization method has also been tested for cases where we add random noise to the perfect boundary conditions of the analytic solution, in this way mimicking the more realistic case where the boundary conditions are given by vector magnetogram data. We find that the convergence properties of the optimization method are affected by adding noise to the boundary data and we discuss possibilities to overcome this difficulty.

  16. Quasi-TEM electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field

    SciTech Connect (OSTI)

    Kartashov, I. N., E-mail: igorkartashov@mail.ru; Kuzelev, M. V., E-mail: kuzelev@mail.ru [Moscow State University, Physics Department (Russian Federation)

    2014-12-15

    Electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field are investigated. The existence of quasi-TEM modes in a finite-strength magnetic field is demonstrated. It is shown that, in the limits of infinitely strong and zero magnetic fields, this mode transforms into a true TEM mode. The possibility of excitation of such modes by an electron beam in the regime of the anomalous Doppler effect is analyzed.

  17. Diagnosis of magnetic and electric fields of chromospheric jets through spectropolarimetric observations of H I Paschen lines

    SciTech Connect (OSTI)

    Anan, T.; Ichimoto, K.; Casini, R. E-mail: ichimoto@kwasan.kyoto-u.ac.jp

    2014-05-10

    Magnetic fields govern the plasma dynamics in the outer layers of the solar atmosphere, and electric fields acting on neutral atoms that move across the magnetic field enable us to study the dynamical coupling between neutrals and ions in the plasma. In order to measure the magnetic and electric fields of chromospheric jets, the full Stokes spectra of the Paschen series of neutral hydrogen in a surge and in some active region jets that took place at the solar limb were observed on 2012 May 5, using the spectropolarimeter of the Domeless Solar Telescope at Hida observatory, Japan. First, we inverted the Stokes spectra taking into account only the effect of magnetic fields on the energy structure and polarization of the hydrogen levels. Having found no definitive evidence of the effects of electric fields in the observed Stokes profiles, we then estimated an upper bound for these fields by calculating the polarization degree under the magnetic field configuration derived in the first step, with the additional presence of a perpendicular (Lorentz type) electric field of varying strength. The inferred direction of the magnetic field on the plane of the sky approximately aligns to the active region jets and the surge, with magnetic field strengths in the range 10 G < B < 640 G for the surge. Using magnetic field strengths of 70, 200, and 600 G, we obtained upper limits for possible electric fields of 0.04, 0.3, and 0.8 V cm{sup –1}, respectively. This upper bound is conservative, since in our modeling we neglected the possible contribution of collisional depolarization. Because the velocity of neutral atoms of hydrogen moving across the magnetic field derived from these upper limits of the Lorentz electric field is far below the bulk velocity of the plasma perpendicular to the magnetic field as measured by the Doppler shift, we conclude that the neutral atoms must be highly frozen to the magnetic field in the surge.

  18. Effect of an Oscillating Magnetic Field on the Release Properties of Magnetic Collagen Gels

    E-Print Network [OSTI]

    Spinu, Leonard

    -15 The oscillating magnetic field was generated by a plate demagnetizer or by moving a permanent magnet backEffect of an Oscillating Magnetic Field on the Release Properties of Magnetic Collagen Gels Vania M The paper describes the effect of an oscillating magnetic field (OMF) on the morphology and release

  19. Periodicity of the solar full-disk magnetic fields

    SciTech Connect (OSTI)

    Xiang, N. B.; Qu, Z. N.; Zhai, Q. [National Astronomical Observatories/Yunnan Observatory, CAS, Kunming 650011 (China)

    2014-07-01

    A full-disk solar magnetogram has been measured each day since 1970 January 19, and the daily Magnetic Plage Strength Index (MPSI) and the daily Mount Wilson Sunspot Index (MWSI) were calculated for each magnetogram at the Mount Wilson Observatory. The MPSI and MWSI are used to investigate the periodicity of the solar full-disk magnetic activity through autocorrelation analyses. Just two periods, the solar cycle and the rotation cycle, are determined in both the MPSI (the solar full-disk weak magnetic field activity) and MWSI (the solar full-disk strong magnetic field activity) with no annual signal found. The solar cycle for MPSI (10.83 yr) is found to be obviously longer than that for MWSI (9.77 yr). The rotation cycle is determined to be 26.8 ± 0.63 sidereal days for MPSI and 27.4 ± 2.4 sidereal days for MWSI. The rotation cycle length for MPSI is found to fluctuate around 27 days within a very small amplitude, but for MWSI it obviously temporally varies with a rather large amplitude. The rotation cycle for MWSI seems longer near solar minimum than at solar maximum. Cross-correlation analyses of daily MPSI and MWSI are carried out, and it is inferred that the MPSI components partly come from relatively early MWSI measurements.

  20. THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION

    SciTech Connect (OSTI)

    Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Li Di [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 301-429, Pasadena, CA 91109 (United States); Clemens, D. P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Krco, Marko, E-mail: nchapman@u.northwestern.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2011-11-01

    We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A{sub V} {approx} 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 {mu}G and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales ({approx}2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

  1. Sensor for detecting changes in magnetic fields

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  2. Sensor for detecting changes in magnetic fields

    DOE Patents [OSTI]

    Praeg, W.F.

    1980-02-26

    A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  3. Solar neutrino oscillations and bounds on neutrino magnetic moment and solar magnetic field

    E-Print Network [OSTI]

    E. Kh. Akhmedov; J. Pulido

    2002-09-18

    If the observed deficit of solar neutrinos is due to neutrino oscillations, neutrino conversions caused by the interaction of their transition magnetic moments with the solar magnetic field (spin-flavour precession) can still be present at a subdominant level. In that case, the combined action of neutrino oscillations and spin-flavour precession can lead to a small but observable flux of electron antineutrinos coming from the sun. Non-observation of these nuebar's could set limits on neutrino transition moment \\mu and the strength and coordinate dependence of the solar magnetic field B_\\perp. The sensitivity of the nuebar flux to the product \\mu B_\\perp is strongest in the case of the vacuum oscillation (VO) solution of the solar neutrino problem; in the case of the LOW solution, it is weaker, and it is the weakest for the LMA solution. For different solutions, different characteristics of the solar magnetic field B_\\perp(r) are probed: for the VO solution, the nuebar flux is determined by the integral of B_\\perp(r) over the solar convective zone, for LMA it is determined by the magnitude of B_\\perp in the neutrino production region, and for LOW it depends on the competition between this magnitude and the derivative of B_\\perp(r) at the surface of the sun.

  4. Magnetic fields and density functional theory

    SciTech Connect (OSTI)

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  5. Weakly bound electrons in external magnetic field

    E-Print Network [OSTI]

    I. V. Mamsurov; F. Kh. Chibirova

    2007-03-07

    The effect of the uniform magnetic field on the electron in the spherically symmetric square-well potential is studied. A transcendental equation that determines the electron energy spectrum is derived. The approximate value of the lowest (bound) energy state is found. The approximate wave function and probability current density of this state are constructed.

  6. Passive levitation in alternating magnetic fields

    DOE Patents [OSTI]

    Romero, Louis (Albuquerque, NM); Christenson, Todd (Albuquerque, NM); Aronson, Eugene A. (Albuquerque, NM)

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  7. Passive levitation in alternating magnetic fields

    DOE Patents [OSTI]

    Romero, Louis (Albuquerque, NM); Christenson, Todd (Albuquerque, NM); Aronson, Eugene A. (Albuquerque, NM)

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  8. Electro-Mechanical Resonant Magnetic Field Sensor

    E-Print Network [OSTI]

    Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

    2002-01-01

    We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

  9. Charm production in a strong magnetic field

    SciTech Connect (OSTI)

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G. de; Strickland, M.

    2014-11-11

    We discuss the effects of a strong magnetic field on B and D mesons, focusing on the changes of the energy levels and the masses of the bound states. Using the Color Evaporation Model we discuss the possible changes in the production of J/? and ?. We briefly comment the recent experimental data.

  10. SYNCHROTRON AGING IN FILAMENTED MAGNETIC FIELDS

    E-Print Network [OSTI]

    Eilek, Jean

    SYNCHROTRON AGING IN FILAMENTED MAGNETIC FIELDS J. A. EILEK 1;2 , D. B. MELROSE 2 and M.A. WALKER 2 radio sources whose dynamical ages are known to be significantly greater than the ages inferred from; In addition, it is becoming increasingly clear that radio galaxies suffer from an ``aging problem

  11. Measurement of a false electric dipole moment signal from $^{199}$Hg atoms exposed to an inhomogeneous magnetic field

    E-Print Network [OSTI]

    S. Afach; C. A. Baker; G. Ban; G. Bison; K. Bodek; Z. Chowdhuri; M. Daum; M. Fertl; B. Franke; P. Geltenbort; K. Green; M. G. D. van der Grinten; Z. Grujic; P. G. Harris; W. Heil; V. Hélaine; R. Henneck; M. Horras; P. Iaydjiev; S. N. Ivanov; M. Kasprzak; Y. Kermaïdic; K. Kirch; P. Knowles; H. -C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; A. Mtchedlishvili; O. Naviliat-Cuncic; J. M. Pendlebury; F. M. Piegsa; G. Pignol; P. N. Prashant; G. Quéméner; D. Rebreyend; D. Ries; S. Roccia; P. Schmidt-Wellenburg; N. Severijns; A. Weis; E. Wursten; G. Wyszynski; J. Zejma; J. Zenner; G. Zsigmond

    2015-08-03

    We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for $^{199}{\\rm Hg}$ atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.

  12. Magnetic Field Line Tracing Calculations for Conceptual PFC Design...

    Office of Scientific and Technical Information (OSTI)

    Conference: Magnetic Field Line Tracing Calculations for Conceptual PFC Design in the National Compact Stellarator Experiment Citation Details In-Document Search Title: Magnetic...

  13. 600-T Magnetic Fields due to Cold Electron Flow in a simple Cu-Coil irradiated by High Power Laser pulses

    E-Print Network [OSTI]

    Zhu, Baojun; Yuan, Dawei; Li, Yanfei; Li, Fang; Liao, Guoqian; Zhao, Jiarui; Zhong, Jiayong; Xue, Feibiao; Wei, Huigang; Zhang, Kai; Han, Bo; Pei, Xiaoxing; Liu, Chang; Zhang, Zhe; Wang, Weimin; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2015-01-01

    A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.

  14. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect (OSTI)

    Bellan, P. M.

    2013-08-15

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  15. Warm Magnetic Field Measurements of LARP HQ Magnet

    SciTech Connect (OSTI)

    Caspi, S; Cheng, D; Deitderich, D; Felice, H; Ferracin, P; Hafalia, R; Joseph, J; Lizarazo, J; Martchevskii, M; Nash, C; Sabbi, G L; Vu, C; Schmalzle, J; Ambrosio, G; Bossert, R; Chlachidze, G; DiMarco, J; Kashikhin, V

    2011-03-28

    The US-LHC Accelerator Research Program is developing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb{sub 3}Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b{sub 6} ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.

  16. Superconducting Magnet Division

    E-Print Network [OSTI]

    Gupta, Ramesh

    Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e

  17. Full 180u Magnetization Reversal with Electric Fields

    E-Print Network [OSTI]

    Chen, Long-Qing

    Full 180u Magnetization Reversal with Electric Fields J. J. Wang1 *, J. M. Hu1,2 *, J. Ma1 , J. X reversal with an electric field rather than a current or magnetic field is a fundamental challenge morphological engineering approach to accomplishing full 1806 magnetization reversals with electric fields

  18. Solar axions as an energy source and modulator of the Earth magnetic field

    E-Print Network [OSTI]

    V. D. Rusov; E. P. Linnik; K. Kudela; S. Cht. Mavrodiev; T. N. Zelentsova; V. P. Smolyar; K. K. Merkotan

    2010-08-16

    We show existence of strong negative correlation between the temporal variations of magnetic field toroidal component of the solar tachocline (the bottom of convective zone) and the Earth magnetic field (Y-component). The possibility that hypothetical solar axions, which can transform into photons in external electric or magnetic fields (the inverse Primakoff effect), can be the instrument by which the magnetic field of convective zone of the Sun modulates the magnetic field of the Earth is considered. We propose the axion mechanism of "solar dynamo-geodynamo" connection, where an energy of axions, which form in the Sun core, is modulated at first by the magnetic field of the solar tachocline zone (due to the inverse coherent Primakoff effect) and after that is absorbed in the liquid core of the Earth under influence of the terrestrial magnetic field, thereby playing the role of an energy source and a modulator of the Earth magnetic field. Within the framework of this mechanism new estimations of the strength of an axion coupling to a photon (ga_gamma about 5*10^-9 GeV^-1) and the axion mass (ma ~ 30 eV) have been obtained.

  19. The measurement and analysis of the magnetic field of a synchrotron light source magnet 

    E-Print Network [OSTI]

    Graf, Udo Werner

    1994-01-01

    In this thesis a unique system is used to measure the magnetic field of a superconducting synchrotron light source magnet. The magnet measured is a superferric dipole C-magnet designed to produce a magnetic field up to 3 Tesla in magnitude. Its...

  20. Vacuum current and magnetic field induced by an impenetrable flux tube. Dirichlet problem

    E-Print Network [OSTI]

    Volodymyr M. Gorkavenko; Iryna V. Ivanchenko

    2015-05-10

    We consider the vacuum polarization effects created by a finite radius magnetic-flux-carrying tube that is impenetrable for quantum matter. The vacuum polarization depends on the choice of a boundary condition at the edge of the tube. We impose a perfectly reflecting (Dirichlet) boundary condition at the edge of the tube on the charged massive scalar matter field which is quantized outside the tube. We find that a current is induced in the vacuum of the quantized scalar field and it circulates around the tube. As a consequence of the Maxwell equation, a magnetic field strength is also induced in the vacuum and is directed along the tube. We restrict our consideration to a plane case. The behavior of the current and the field strength is comprehensively analyzed. In contrast to the model of singular magnetic filament, magnetic field strength is finite at the edge of the string. Induced vacuum effects strongly depend on the tube radius $r_0$. They are quite negligible at $mr_0 > 1$, whereas it becomes noticeable at $mr_0\\ll1$. Induced vacuum effects are less than in the case of singular magnetic filament.

  1. Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas

    SciTech Connect (OSTI)

    Naseri, N.; Rozmus, W. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Bychenkov, V. Yu. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation)

    2010-08-15

    Axial magnetic field generation by intense circularly polarized laser beams in underdense plasmas has been studied with three-dimensional particle-in-cell simulations and by means of theoretical analysis. Comparisons between analytical models and simulation results have identified an inverse Faraday effect as the main mechanism of the magnetic field generation in inhomogeneous plasmas. The source of azimuthal nonlinear currents and of the axial magnetic field depends on the transverse inhomogeneities of the electron density and laser intensity. The fields reach a maximum strength of several tens of megagauss for laser pulses undergoing relativistic self-focusing and channeling in moderately relativistic regime. Ultrarelativistic laser conditions inhibit magnetic field generation by directly reducing a source term and by generating fully evacuated plasma channels.

  2. Magnetic Fields in Population III Star Formation

    SciTech Connect (OSTI)

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  3. Classical T Tauri stars: magnetic fields, coronae, and star-disc interactions

    E-Print Network [OSTI]

    Johnstone, C P; Gregory, S G; Donati, J -F; Hussain, G

    2013-01-01

    The magnetic fields of young stars set their coronal properties and control their spin evolution via the star-disc interaction and outflows. Using 14 magnetic maps of 10 classical T Tauri stars (CTTSs) we investigate their closed X-ray emitting coronae, their open wind-bearing magnetic fields, and the geometry of magnetospheric accretion flows. The magnetic fields of all the CTTSs are multipolar. Stars with simpler (more dipolar) large-scale magnetic fields have stronger fields, are slower rotators, and have larger X-ray emitting coronae compared to stars with more complex large-scale magnetic fields. The field complexity controls the distribution of open and closed field regions across the stellar surface, and strongly influences the location and shapes of accretion hot spots. However, the higher order field components are of secondary importance in determining the total unsigned open magnetic flux, which depends mainly on the strength of the dipole component and the stellar surface area. Likewise, the dipol...

  4. Filament formation in wind-cloud interactions. I. Spherical clouds in uniform magnetic fields

    E-Print Network [OSTI]

    Banda-Barragán, Wladimir; Federrath, Christoph; Crocker, Roland; Bicknell, Geoffrey

    2015-01-01

    Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here we improve on previous simulations by utilising sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios >12, subsonic velocity dispersions ~0.1-0.3 of the wind sound speed, and magnetic field amplifications ~100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength...

  5. Control of stochasticity in magnetic field lines

    E-Print Network [OSTI]

    Cristel Chandre; Michel Vittot; Guido Ciraolo; Philippe Ghendrih; Ricardo Lima

    2005-11-03

    We present a method of control which is able to create barriers to magnetic field line diffusion by a small modification of the magnetic perturbation. This method of control is based on a localized control of chaos in Hamiltonian systems. The aim is to modify the perturbation locally by a small control term which creates invariant tori acting as barriers to diffusion for Hamiltonian systems with two degrees of freedom. The location of the invariant torus is enforced in the vicinity of the chosen target. Given the importance of confinement in magnetic fusion devices, the method is applied to two examples with a loss of magnetic confinement. In the case of locked tearing modes, an invariant torus can be restored that aims at showing the current quench and therefore the generation of runaway electrons. In the second case, the method is applied to the control of stochastic boundaries allowing one to define a transport barrier within the stochastic boundary and therefore to monitor the volume of closed field lines.

  6. Quantization of exciton in magnetic field background

    E-Print Network [OSTI]

    Pulak Ranjan Giri; S. K. Chakrabarti

    2007-11-22

    The possible mismatch between the theoretical and experimental absorption of the edge peaks in semiconductors in a magnetic field background may arise due to the approximation scheme used to analytically calculate the absorption coefficient. As a possible remedy we suggest to consider nontrivial boundary conditions on x-y plane by in-equivalently quantizing the exciton in background magnetic field. This inequivalent quantization is based on von Neumann's method of self-adjoint extension, which is characterized by a parameter \\Sigma. We obtain bound state solution and scattering state solution, which in general depend upon the self-adjoint extension parameter \\Sigma. The parameter \\Sigma can be used to fine tune the optical absorption coefficient K(\\Sigma) to match with the experiment.

  7. Tachocline Confinement by an Oscillatory Magnetic Field

    E-Print Network [OSTI]

    E. Forgacs-Dajka; K. Petrovay

    2006-06-02

    Helioseismic measurements indicate that the solar tachocline is very thin, its full thickness not exceeding 4% of the solar radius. The mechanism that inhibits differential rotation to propagate from the convective zone to deeper into the radiative zone is not known, though several propositions have been made. In this paper we demonstrate by numerical models and analytic estimates that the tachocline can be confined to its observed thickness by a poloidal magnetic field B_p of about one kilogauss, penetrating below the convective zone and oscillating with a period of 22 years, if the tachocline region is turbulent with a diffusivity of eta 10^10 cm^2/s (for a turbulent magnetic Prandtl number of unity). We also show that a similar confinement may be produced for other pairs of the parameter values (B_p, eta). The assumption of the dynamo field penetrating into the tachocline is consistent whenever eta>10^9 cm^2/s.

  8. The strong magnetic field of the large-amplitude beta Cephei pulsator V1449 Aql

    E-Print Network [OSTI]

    Hubrig, S; Briquet, M; Schoeller, M; Gonzalez, J F; Nunez, N; De Cat, P; Morel, T

    2011-01-01

    Only for very few beta Cephei stars has the behaviour of the magnetic field been studied over the rotation cycle. During the past two years we have obtained multi-epoch polarimetric spectra of the beta Cephei star V1449 Aql with SOFIN at the Nordic Optical Telescope to search for a rotation period and to constrain the geometry of the magnetic field. The mean longitudinal magnetic field is measured at 13 different epochs. The new measurements, together with the previous FORS1 measurements, have been used for the frequency analysis and the characterization of the magnetic field. V1449 Aql so far possesses the strongest longitudinal magnetic field of up to 700G among the beta Cephei stars. The resulting periodogram displays three dominant peaks with the highest peak at f=0.0720d^-1 corresponding to a period P=13.893d. The magnetic field geometry can likely be described by a centred dipole with a polar magnetic field strength B_d around 3kG and an inclination angle beta of the magnetic axis to the rotation axis o...

  9. Magnetic field studies of massive main sequence stars

    E-Print Network [OSTI]

    Schoeller, M; Ilyin, I; Kharchenko, N V; Briquet, M; Langer, N; Oskinova, L M

    2011-01-01

    We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and a dozen O stars. Since the effects of those magnetic fields have been found to be substantial by recent models, we are looking into their impact on stellar rotation, pulsation, stellar winds, and chemical abundances. Accurate studies of the age, environment, and kinematic characteristics of the magnetic stars are also promising to give us new insight into the origin of the magnetic fields. Furthermore, longer time series of magnetic field measurements allow us to observe the temporal variability of the magnetic field and to deduce the stellar rotation period and the magnetic field geometry. Studies of the magnetic field in massive stars are indispensable to understand the conditions controlling the presence of those fields and their implications on the stellar phy...

  10. The Galactic Magnetic Field and UHECR Optics

    E-Print Network [OSTI]

    Farrar, Glennys R; Khurana, Deepak; Sutherland, Michael

    2015-01-01

    A good model of the Galactic magnetic field is crucial for estimating the Galactic contribution in dark matter and CMB-cosmology studies, determining the sources of UHECRs, and also modeling the transport of Galactic CRs since the halo field provides an important escape route for by diffusion along its field lines. We briefly review the observational foundations of the Jansson-Farrar 2012 model for the large scale structure of the GMF, underscoring the robust evidence for a N-to-S directed, spiraling halo field. New results on the lensing effect of the GMF on UHECRs are presented, displaying multiple images and dramatic magnification and demagnification that varies with source direction and CR rigidity.

  11. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    SciTech Connect (OSTI)

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%–60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%–36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  12. Time evolution of the total electric-field strength in multimode lasers

    SciTech Connect (OSTI)

    Brunner, W.; Fischer, R.; Paul, H.

    1988-05-01

    Our previous numerical studies of the output characteristics of multimode lasers are extended to include the evolution of the total electric-field strength. The regular or irregular behavior of the system, which becomes manifest in the evolution of the amplitudes and the phases in the different modes, is reflected also in the evolution of the total electric-field strength in a stroboscopic view. (The total electric-field strength, with its high-frequency time dependence suppressed, is considered at times t, t+..delta..t, t+2..delta..t,..., where ..delta..t is a multiple of the round-trip time in the resonator.) Moreover, it is demonstrated that the evolution of the system is very sensitive to slight changes in the initial conditions. This finding supports the view that the irregularity falls in the class of the so-called deterministic chaos.

  13. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect (OSTI)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  14. 2.6 ELECTRIC AND MAGNETIC FIELDS Introduction

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    325 §2.6 ELECTRIC AND MAGNETIC FIELDS Introduction In electromagnetic theory the mks system MKS units Replacement symbol GAUSSIAN units # E (Electric field) volt/m # E statvolt/cm # B (Magnetic Magnetic field) ampere/m c # H 4# oersted # J (Current density) ampere/m 2 # J statampere/cm 2 # A (Vector

  15. 2.6 ELECTRIC AND MAGNETIC FIELDS Introduction

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    325 §2.6 ELECTRIC AND MAGNETIC FIELDS Introduction In electromagnetic theory the mks system MKS units Replacement symbol GAUSSIAN units E (Electric field) volt/m E statvolt/cm B (Magnetic field gauss-cm V (Electric potential) volt V statvolt (Dielectric constant) 4 µ (Magnetic permeability) 4µ c2

  16. Lorentz and "apparent" transformations of the electric and magnetic fields

    E-Print Network [OSTI]

    Tomislav Ivezic

    2006-07-21

    It is recently discovered that the usual transformations of the three-dimensional (3D) vectors of the electric and magnetic fields differ from the Lorentz transformations (LT) (boosts) of the corresponding 4D quantities that represent the electric and magnetic fields. In this paper, using geometric algebra formalism, this fundamental difference is examined representing the electric and magnetic fields by bivectors.

  17. Mapping the magnetic field vector in a fountain clock

    SciTech Connect (OSTI)

    Gertsvolf, Marina; Marmet, Louis [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  18. Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac

    SciTech Connect (OSTI)

    St Aubin, J.; Steciw, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-09-15

    Purpose: Due to the close proximity of the linear accelerator (linac) to the magnetic resonance (MR) imager in linac-MR systems, it will be subjected to magnet fringe fields larger than the Earth's magnetic field of 5x10{sup -5} T. Even with passive or active shielding designed to reduce these fields, some magnitude of the magnetic field is still expected to intersect the linac, causing electron deflection and beam loss. This beam loss, resulting from magnetic fields that cannot be eliminated with shielding, can cause a detuning of the waveguide due to excessive heating. The detuning, if significant, could lead to an even further decrease in output above what would be expected strictly from electron deflections caused by an external magnetic field. Thus an investigation of detuning was performed through various simulations. Methods: According to the Lorentz force, the electrons will be deflected away from their straight course to the target, depositing energy as they impact the linac copper waveguide. The deposited energy would lead to a heating and deformation of the copper structure resulting in resonant frequency changes. PARMELA was used to determine the mean energy and fraction of total beam lost in each linac cavity. The energy deposited into the copper waveguide from the beam losses caused by transverse magnetic fields was calculated using the Monte Carlo program DOSRZnrc. From the total energy deposited, the rise in temperature and ultimately the deformation of the structure was estimated. The deformed structure was modeled using the finite element method program COMSOL MULTIPHYSICS to determine the change in cavity resonant frequency. Results: The largest changes in resonant frequency were found in the first two accelerating cavities for each field strength investigated. This was caused by a high electron fluence impacting the waveguide inner structures coupled with their low kinetic energies. At each field strength investigated, the total change in accelerator frequency was less than a manufacturing tolerance of 10 kHz and is thus not expected to have a noticeable effect on accelerator performance. Conclusions: The amount of beam loss caused by magnetic fringe fields for a linac in a linac-MR system depends on the effectiveness of its magnetic shielding. Despite the best efforts to shield the linac from the magnetic fringe fields, some persistent magnetic field is expected which would result in electron beam loss. This investigation showed that the detuning of the waveguide caused by additional electron beam loss in persistent magnetic fields is not a concern.

  19. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    SciTech Connect (OSTI)

    Roy, Amitava E-mail: aroy@barc.gov.in; Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed; Endo, Akira; Mocek, Tomas

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064?nm, Nd:YAG laser pulses with varying pulse duration (5–15?ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ?0.5?T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ?5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ?1.2?cm/?s and reduced to ?0.75?cm/?s with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5?T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  20. The Use of Small Coolers in a Magnetic Field

    SciTech Connect (OSTI)

    Green, Michael A.; Witte, Holger

    2007-07-25

    Small 4 K coolers are used to cool superconducting magnets.These coolers are usually used with high temperature suerconductor (HTS)leads. In most cases, magnet is shielded with iron or active shieldcoils. Thus the field at the cooler is low. There are instances when thecooler must be in a magnetic field. Gifford McMahon (GM) coolers or pulsetube coolers are commercially available to cool the magnets. This paperwill discuss how the two types of coolers are affected by the straymagnetic field. Strategies for using coolers on magnets that generatestray magnetic fields are discussed.

  1. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    SciTech Connect (OSTI)

    Yang Xuefeng [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China); Wang Zhengxiong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  2. Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic/ferroelectric layered heterostructures

    E-Print Network [OSTI]

    Chen, Long-Qing

    Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic://jap.aip.org/about/rights_and_permissions #12;Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic; published online 22 June 2011) The electric-field-induced in-plane magnetic domain switching in magnetic

  3. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, David C. (Ames, IA)

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  4. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  5. Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array

    E-Print Network [OSTI]

    Tigran G. Arshakian; Rainer Beck; Marita Krause; Dmitry Sokoloff

    2008-11-18

    Aims. We investigate the cosmological evolution of large- and small-scale magnetic fields in galaxies in the light of present models of formation and evolution of galaxies. Methods. We use the dynamo theory to derive the timescales of amplification and ordering of magnetic fields in disk and puffy galaxies. Turbulence in protogalactic halos generated by thermal virialization can drive an efficient turbulent dynamo. Results from simulations of hierarchical structure formation cosmology provide a tool to develop an evolutionary model of regular magnetic fields coupled with galaxy formation and evolution. Results. The turbulent (small-scale) dynamo was able to amplify a weak seed magnetic field in halos of protogalaxies to a few muG strength within a few 10^8 yr. This turbulent field served as a seed to the mean-field (large-scale) dynamo. Galaxies similar to the Milky Way formed their disks at z~10 and regular fields of muG strength and a few kpc coherence length were generated within 2 Gyr (at z~3), but field-ordering on the coherence scale of the galaxy size required an additional 6 Gyr (at z~0.5). Giant galaxies formed their disks at z~10, allowing more efficient dynamo generation of strong regular fields (with kpc coherence length) already at z~4. However, the age of the Universe is short for fully coherent fields in giant galaxies larger than 15 kpc to have been achieved. Dwarf galaxies should have hosted fully coherent fields at z~1. After a major merger, the strength of the turbulent field is enhanced by a factor of a few. Conclusions. This evolutionary scenario can be tested by measurements of polarized synchrotron emission and Faraday rotation with the planned SKA. We predict an anticorrelation between galaxy size and ratio between ordering scale and galaxy size (abridged).

  6. SU-E-J-51: Dose Response of Common Solid State Detectors in Homogeneous Transverse and Longitudinal Magnetic Fields

    SciTech Connect (OSTI)

    Reynolds, M; Fallone, B; Rathee, S

    2014-06-01

    Purpose: Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is evaluated in varying transverse and longitudinal magnetic fields for eventual use in MR-Linac devices. Methods: A PTW 60003 and IBA PFD detector were modeled in the Monte Carlo code PENELOPE, incorporating a magnetic field which was varied in strength and oriented both transversely and longitudinally with respect to the incident photon beam. The detectors' long axis was in turn oriented either parallel or perpendicular to the photon beam. Dose to the active volume of each detector was scored, and its ratio to dose with zero magnetic field strength (dose response) was determined. Accuracy of the simulations was evaluated by measurements using both chambers taken at low field with a small electromagnet. Simulations were also performed in a water phantom to compare to the in air results. Results: Significant dose response was found in transverse field geometries, nearing 20% at 1.5T. The response is highly dependent on relative orientations to the magnetic field and photon beam, and on detector composition. Low field measurements confirm these results. In the presence of longitudinal magnetic fields, the detectors exhibit little dose response, reaching 0.5–1% at 1.5T regardless of detector orientation. Water tank simulations compared well to the in air simulations when not at the beam periphery, where in transverse magnetic fields only, the water tank simulations differed from the in air results. Conclusion: Transverse magnetic fields can cause large deviations in dose response, and are highly position orientation dependent. Comparatively, longitudinal magnetic fields exhibit little to no dose response in each detector as a function of magnetic field strength. Water tank simulations show longitudinal fields are generally easier to work with, but each detector must be evaluated separately.

  7. Scattering Polarization in the Presence of Magnetic and Electric Fields

    E-Print Network [OSTI]

    Yee Yee Oo; M. Sampoorna; K. N. Nagendra; Sharath Ananthamurthy; G. Ramachandran

    2007-02-12

    The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the $Q/I$ profiles and rotation of the plane of polarization in the $U/I$ profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady state and time varying electric fields that surround radiating atoms in Solar atmospheric layers.

  8. Graphene transparency in weak magnetic fields

    E-Print Network [OSTI]

    David Valenzuela; Saúl Hernández-Ortiz; Marcelo Loewe; Alfredo Raya

    2014-10-20

    We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.

  9. Magnetic fields in relativistic collisionless shocks

    SciTech Connect (OSTI)

    Santana, Rodolfo; Kumar, Pawan [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Barniol Duran, Rodolfo, E-mail: santana@astro.as.utexas.edu, E-mail: pk@astro.as.utexas.edu, E-mail: rbarniol@phys.huji.ac.il [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2014-04-10

    We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study ? {sub B} (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is ? X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ?t {sup –1}, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on ? {sub B} n {sup 2/(p+1)} for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm{sup –3}, the distribution of ? {sub B} measurements (upper limits) for our optical (X-ray) sample has a range of ?10{sup –8}-10{sup –3} (?10{sup –6}-10{sup –3}) and median of ?few × 10{sup –5} (?few × 10{sup –5}). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ?10 ?G, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AF?n {sup 0.21}). The range of AF measurements (upper limits) for our optical (X-ray) sample is ?1-1000 (?10-300) with a median of ?50 (?50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.

  10. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOE Patents [OSTI]

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  11. Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field

    E-Print Network [OSTI]

    van Marle, Allard Jan; Marcowith, Alexandre

    2015-01-01

    The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B=5, 10, and 20 muG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 muG interstellar magnetic field and a 10,000 K interstellar medium and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influnece the morphology of the circumstellar bubbles. O...

  12. MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. II. FIELD-PLASMA INTERACTION B. Fornberg,2

    E-Print Network [OSTI]

    Fornberg, Bengt

    MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. II. FIELD-PLASMA INTERACTION N. Flyer,1 B. Fornberg In the first paper of this series, we treated the self-confinement of nonlinear force-free magnetic fields study of axisymmetric force-free magnetic fields in the unbounded space outside a unit sphere, presented

  13. Ehrenfest theorems for field strength and electric current in Abelian projected SU(2) lattice gauge theory

    E-Print Network [OSTI]

    G. DiCecio; A. Hart; R. W. Haymaker

    1997-09-22

    We derive an Ehrenfest theorem for SU(2) lattice gauge theory which, after Abelian projection, relates the Abelian field strength and a dynamical electric current and defines these operators for finite lattice spacing. Preliminary results from the ongoing numerical test of the relation are presented, including the contributions from gauge fixing and the Faddeev-Popov determinant (the ghost fields) in the maximally Abelian gauge.

  14. Magnetic field survey at PG&E photovoltaic sites

    SciTech Connect (OSTI)

    Chang, G.J.; Jennings, C.

    1994-08-01

    Public awareness has aroused concerns over the possible effects of magnetic fields on human health. While research continues to determine if magnetic fields do, in fact, affect human health, concerned individuals are requesting data on magnetic field sources in their environments to base personal decisions about limiting their exposure to these sources. Timely acceptance and implementation of photovoltaics (PV), particularly for distributed applications such as PV rooftops, windows, and vehicles, may be hampered by the lack of PV magnetic field data. To address this situation, magnetic flux density was measured around equipment at two PVUSA (Photovoltaics for Utility Scale Applications) project sites in Kerman and Davis, California. This report documents the data and compares the PV magnetic fields with published data on more prevalent magnetic field sources. Although not comprehensive, electric and magnetic field (EMF) data taken at PVUSA indicate that 60-Hz magnetic fields (the EMF type of greatest public concern) are significantly less for PV arrays than for household applications. Therefore, given the present EMF research knowledge, PV array EMF may not merit considerable concern. The PV system components exhibiting significant AC magnetic fields are the transformers and power conditioning units (PCUs). However, the AC magnetic fields associated with these components are localized and are not detected at PV system perimeters. Concern about transformer and PCU EMF would apply to several generation and storage technologies.

  15. Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping

    E-Print Network [OSTI]

    Augustine, Mathew P.

    Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping Matthew P. Augustine and Kurt W. Zilm Department of Chemistry, Yale University, New Haven exchange with optically pumped Rb vapor is investigated in high magnetic field. Operation in a high field

  16. Pulsed power hydrodynamics : a new application of high magnetic fields.

    SciTech Connect (OSTI)

    Reinovsky, R. E. (Robert E.); Anderson, W. E. (Wallace E.); Atchison, W. L. (Walter L.); Faehl, R. J. (Rickey J.); Keinigs, R. K. (Rhonald K.); Lindemuth, I. R.; Scudder, D. W. (David W.); Shlachter, Jack S.; Taylor, Antoinette J.,

    2002-01-01

    Pulsed Power Hydrodynamics is a new application of high magnetic fields recently developed to explore advanced hydrodynamics, instabilities, fluid turbulences, and material properties in a highly precise, controllable environment at the extremes of pressure and material velocity. The Atlas facility at Los Alamos is the world's first and only laboratory pulsed power system designed specifically to explore this relatively new family of megagauss magnetic field applications. Constructed in 2000 and commissioned in August 2001, Atlas is a 24-MJ high-performance capacitor bank delivering up to 30 MA with a current risetime of 5-6 {micro}sec. The high-precision, cylindrical, imploding liner is the tool most frequently used to convert electrical energy into the hydrodynamic (particle kinetic) energy needed to drive the experiments. For typical liner parameters including initial radius of 5 cm, the peak current of 30 MA delivered by Atlas results in magnetic fields just over 1 MG outside the liner prior to implosion. During the 5 to 10-{micro}sec implosion, the field outside the liner rises to several MG in typical situations. At these fields the rear surface of the liner is melted and it is subject to a variety of complex behaviors including: diffusion dominated andor melt wave field penetration and heating, magneto Raleigh-Taylor sausage mode behavior at the liner/field interface, and azimuthal asymmetry due to perturbations in current drive. The first Atlas liner implosion experiments were conducted in September 2000 and 10-15 experiments are planned in the: first year of operation. Immediate applications of the new pulsed power hydrodynamics techniques include material property topics including: exploration of material strength at high rates of strain, material failure including fracture and spall, and interfacial dynamics at high relative velocities and high interfacial pressures. A variety of complex hydrodynamic geometries will be explored and experiments will be designed to explore uristable perturbation growth and transition to turbulence. This paper will provide an overview of the range of problems to which pulsed power hydrodynamics can be applied and the issues associated with these techniques. Other papers at this Conference will present specifics of individual experiments and elaborate on the liner physics issues.

  17. Electron Cyclotron Heating in a Non-Uniform Magnetic Field

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    Electron Cyclotron Heating in a Non-Uniform Magnetic Field by J.e. Sprott December 1968 Presented with uniform or mirror magnetic fields. 2-4 Microwave heat ing in multipoles and other nonuniform magnetic will outline a simple theoretical model which can be used to estimate the electron cyclotron heating rate

  18. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOE Patents [OSTI]

    Praeg, W.F.

    1995-01-31

    An apparatus is disclosed for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers. 19 figs.

  19. ON THE INTERACTION BETWEEN CONVECTION AND MAGNETIC FIELDS Fausto Cattaneo

    E-Print Network [OSTI]

    Emonet, Thierry

    found in these different regimes are described and analyzed. Subject headings: convection -- Sun: magnetic fields -- Sun: photosphere 1. INTRODUCTION Magnetic activity is exhibited by late-type stars with deep convective envelopes, but the fine structure of the magnetic field can only be detected on the Sun

  20. Motion of charged particles in ABC magnetic fields Alejandro Luque #

    E-Print Network [OSTI]

    Motion of charged particles in ABC magnetic fields Alejandro Luque # Departament de Matemâ?? atica consequences of our study are the existence of confinement regions of charges near some magnetic lines, magnetic field, Hamiltonian dynamical system, el­ liptic equilibrium point, quasi­periodic solution

  1. Efficient solar anti-neutrino production in random magnetic fields

    E-Print Network [OSTI]

    O. G. Miranda; T. I. Rashba; A. I. Rez; J. W. F. Valle

    2004-05-12

    We have shown that the electron anti-neutrino appearance in the framework of the spin flavor conversion mechanism is much more efficient in the case of neutrino propagation through random than regular magnetic field. This result leads to much stronger limits on the product of the neutrino transition magnetic moment and the solar magnetic field based on the recent KamLAND data. We argue that the existence of the random magnetic fields in the solar convective zone is a natural sequence of the convective zone magnetic field evolution.

  2. Magnetic fields of HgMn stars

    E-Print Network [OSTI]

    Hubrig, S; Ilyin, I; Korhonen, H; Schoeller, M; Savanov, I; Arlt, R; Castelli, F; Curto, G Lo; Briquet, M; Dall, T H

    2012-01-01

    The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. We re-analyse available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD65949 and the hotter analog of HgMn stars, the PGa star HD19400, using FORS2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. We downloaded from the ESO archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudina...

  3. Physics in Ultra-strong Magnetic Fields

    E-Print Network [OSTI]

    Duncan, R C

    2000-01-01

    In magnetic fields stronger than B_Q = 4.4 X 10^13 Gauss, an electron'sLandau excitation energy exceeds its rest energy. I review the physics of thisstrange regime and some of its implications for the crusts and magneto- spheresof neutron stars. In particular, I describe how ultra-strong fields >> render the vacuum birefringent and capable of distorting and magnifying images ("magnetic lensing"); >> change the self-energy of electrons: as B increases they are first slightly lighter than $m_e$, then slightly heavier; >> cause photons to rapidly split and merge with each other; >> distort atoms into long, thin cylinders and molecules into strong, polymer-like chains; >> enhance the pair density in thermal pair-photon gases; >> stronglysuppress photon-electron scattering, and >> drive the vacuum itself unstable,at extremely large B. In a concluding section, I discuss recent observations of the spindownhistories of soft gamma repeaters and anomalous X-ray pulsars. The magnetarmodel gives a promising framework for...

  4. Physics in Ultra-strong Magnetic Fields

    E-Print Network [OSTI]

    Robert C. Duncan

    2000-02-23

    In magnetic fields stronger than B_Q = 4.4 X 10^13 Gauss, an electron's Landau excitation energy exceeds its rest energy. I review the physics of this strange regime and some of its implications for the crusts and magneto- spheres of neutron stars. In particular, I describe how ultra-strong fields >> render the vacuum birefringent and capable of distorting and magnifying images ("magnetic lensing"); >> change the self-energy of electrons: as B increases they are first slightly lighter than $m_e$, then slightly heavier; >> cause photons to rapidly split and merge with each other; >> distort atoms into long, thin cylinders and molecules into strong, polymer-like chains; >> enhance the pair density in thermal pair-photon gases; >> strongly suppress photon-electron scattering, and >> drive the vacuum itself unstable, at extremely large B. In a concluding section, I discuss recent observations of the spindown histories of soft gamma repeaters and anomalous X-ray pulsars. The magnetar model gives a promising framework for understanding these data.

  5. Magnetic Fields in Quasar Cores II

    E-Print Network [OSTI]

    G. B. Taylor

    1999-11-22

    Multi-frequency polarimetry with the Very Long Baseline Array (VLBA) telescope has revealed absolute Faraday Rotation Measures (RMs) in excess of 1000 rad/m/m in the central regions of 7 out of 8 strong quasars studied (e.g., 3C 273, 3C 279, 3C 395). Beyond a projected distance of ~20 pc, however, the jets are found to have |RM| < 100 rad/m/m. Such sharp RM gradients cannot be produced by cluster or galactic-scale magnetic fields, but rather must be the result of magnetic fields organized over the central 1-100 pc. The RMs of the sources studied to date and the polarization properties of BL Lacs, quasars and galaxies are shown to be consistent so far with the predictions of unified schemes. The direct detection of high RMs in these quasar cores can explain the low fractional core polarizations usually observed in quasars at centimeter wavelengths as the result of irregularities in the Faraday screen on scales smaller than the telescope beam. Variability in the RM of the core is reported for 3C 279 between observations taken 1.5 years apart, indicating that the Faraday screen changes on that timescale, or that the projected superluminal motion of the inner jet components samples a new location in the screen with time. Either way, these changes in the Faraday screen may explain the dramatic variability in core polarization properties displayed by quasars.

  6. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    SciTech Connect (OSTI)

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can; Kele?, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17?18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+?R{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter ? along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.

  7. H I absorption from the epoch of reionization and primordial magnetic fields

    SciTech Connect (OSTI)

    Vasiliev, Evgenii O. [Southern Federal University, Rostov on Don 344090 (Russian Federation); Sethi, Shiv K. [Raman Research Institute, Bangalore 560080 (India)

    2014-05-10

    We study the impact of primordial magnetic fields on the H I absorption from the epoch of reionization. The presence of these fields results in two distinct effects: (1) the heating of the halos from the decay of the magnetic fields owing to ambipolar diffusion, and (2) an increase in the number of halos owing to additional matter fluctuations induced by magnetic fields. We analyze both of these effects and show that the latter is potentially observable because the number of halos along of line of sight can increase by many orders of magnitude. While this effect is not strongly dependent on the magnetic field strength in the range 0.3-0.6 nG, it is extremely sensitive to the magnetic field power spectral index for the near scale-free models. Therefore, the detection of such absorption features could be a sensitive probe of the primordial magnetic field and its power spectrum. We discuss the detectability of these features with the ongoing and future radio interferometers. In particular, we show that LOFAR might be able to detect these absorption features at z ? 10 in less than 10 hr of integration if the flux of the background source is 400 mJy.

  8. Large-scale magnetic field of the G8 dwarf xi Bootis A

    E-Print Network [OSTI]

    P. Petit; J. -F. Donati; M. Auriere; J. D. Landstreet; F. Lignieres; S. Marsden; D. Mouillet; F. Paletou; N. Toque; G. A. Wade

    2005-05-20

    We investigate the magnetic geometry of the active G8 dwarf xi Bootis A, from spectropolarimetric observations obtained in 2003 with the MuSiCoS echelle spectropolarimeter at the Telescope Bernard Lyot (Observatoire du Pic du Midi, France). We repeatedly detect a photospheric magnetic field, with periodic variations consistent with rotational modulation. Circularly polarized (Stokes V) line profiles present a systematic asymmetry, showing up as an excess in amplitude and area of the blue lobe of the profiles. A direct modeling of Stokes V profiles suggests that the global magnetic field is composed of two main components, with an inclined dipole and a large-scale toroidal field. We derive a dipole intensity of about 40 G, with an inclination of 35 degrees of the dipole with respect to the rotation axis. The toroidal field strength is of order of 120 G. A noticeable evolution of the field geometry is observed over the 40 nights of our observing window and results in an increase of the field strength and of the dipole inclination. This study is the first step of a long-term monitoring of xi Bootis A and other active solar-type stars, with the aim to investigate secular fluctuations of stellar magnetic geometries induced by activity cycles.

  9. Effects of an external magnetic field, and of oblique radio-frequency electric fields on multipactor discharge on a dielectric

    E-Print Network [OSTI]

    Valfells, Ágúst

    Effects of an external magnetic field, and of oblique radio-frequency electric fields magnetic field, the rf magnetic field, and of an oblique rf electric field, on multipactor discharge that a magnetic field parallel to either the rf electric field or the dc electric field does not qualitatively

  10. Exploring the origin of magnetic fields in massive stars: II. New magnetic field measurements in cluster and field stars

    E-Print Network [OSTI]

    Hubrig, S; Ilyin, I; Kharchenko, N V; Oskinova, L M; Langer, N; Gonzalez, J F; Kholtygin, A F; Briquet, M

    2013-01-01

    Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FORS2 (FOcal Reducer low dispersion Spectrograph) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic O...

  11. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect (OSTI)

    Song, P.; Vasyli?nas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  12. Magneto-elastic oscillations of neutron stars with dipolar magnetic fields

    E-Print Network [OSTI]

    Michael Gabler; Pablo Cerdá Durán; Nikolaos Stergioulas; José A. Font; Ewald Müller

    2012-04-12

    By means of two dimensional, general-relativistic, magneto-hydrodynamical simulations we investigate the oscillations of magnetized neutron star models (magnetars) including the description of an extended solid crust. The aim of this study is to understand the origin of the QPOs observed in the giant flares of SGRs. We confirm the existence of three different regimes: (a) a weak magnetic field regime Bmagnetic fields 5 x 10^13 Gfield regime B>10^15 G, where magneto-elastic oscillations reach the surface and approach the behavior of purely Alfv\\'en QPOs. When the Alfv\\'en QPOs are confined to the core of the neutron star, we find qualitatively similar QPOs as in the absence of a crust. The lower QPOs associated with the closed field lines of the dipolar magnetic field configuration are reproduced as in our previous simulations without crust, while the upper QPOs connected to the open field lines are displaced from the polar axis. Additionally, we observe a family of edge QPOs. Our results do not leave much room for a crustal-mode interpretation of observed QPOs in SGR giant flares, but can accommodate an interpretation of these observations as originating from Alfv\\'en-like, global, turning-point QPOs in models with dipolar magnetic field strengths in the narrow range of 5 x 10^15 G magnetic field strengths in known magnetars. The discrepancy may be resolved in models including a more complicated magnetic field structure or with models taking superfluidity of the neutrons and superconductivity of the protons in the core into account.

  13. The effects of high magnetic field on the morphology and microwave electromagnetic properties of MnO{sub 2} powder

    SciTech Connect (OSTI)

    Jia Zhang [Department of Materials Processing Engineering, School of Materials Science and Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116085, Liaoning Province (China); Duan Yuping, E-mail: duanyp@dlut.edu.c [Department of Materials Processing Engineering, School of Materials Science and Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116085, Liaoning Province (China); Li Shuqing, E-mail: lsq6668@126.co [Beijing Aeronautical Manufacturing Technology Research Institute, 1 Jun Zhuang east Road, Chaoyang District, Beijing 100024 (China); Li Xiaogang, E-mail: lixiaogang99@263.ne [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Liu Shunhua [Department of Materials Processing Engineering, School of Materials Science and Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116085, Liaoning Province (China)

    2010-07-15

    MnO{sub 2} with a sea urchin-like ball chain shape was first synthesized in a high magnetic field via a simple chemical process, and a mechanism for the formation of this grain shape was discussed. The as-synthesized samples were characterized by XRD, SEM, TEM, and vector network analysis. The dielectric constant and the loss tangent clearly decreased under a magnetic field. The magnetic loss tangent and the imaginary part of the magnetic permeability increased substantially. Furthermore, the theoretically calculated values of reflection loss showed that the absorption peaks shifted to a higher frequency with increases in the magnetic field strength. - Graphical abstract: MnO{sub 2} with a sea urchin-like ball chain shape is first synthesized in a high magnetic field via a simple hydrothermal route.

  14. Effect of Electric and Magnetic Fields on Spin Dynamics in the Resonant Electric Dipole Moment Experiment

    E-Print Network [OSTI]

    Alexander J. Silenko

    2007-10-02

    A buildup of the vertical polarization in the resonant electric dipole moment (EDM) experiment [Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006)] is affected by a horizontal electric field in the particle rest frame oscillating at a resonant frequency. This field is defined by the Lorentz transformation of an oscillating longitudinal electric field and a uniform vertical magnetic one. The effect of a longitudinal electric field is significant, while the contribution from a magnetic field caused by forced coherent longitudinal oscillations of particles is dominant. The effect of electric field on the spin dynamics was not taken into account in previous calculations. This effect is considerable and leads to decreasing the EDM effect for the deuteron and increasing it for the proton. The formula for resonance strengths in the EDM experiment has been derived. The spin dynamics has been calculated.

  15. The evolution of surface magnetic fields in young solar-type stars I: the first 250 Myr

    E-Print Network [OSTI]

    Folsom, C P; Bouvier, J; Lèbre, A; Amard, L; Palacios, A; Morin, J; Donati, J -F; Jeffers, S V; Marsden, S C; Vidotto, A A

    2016-01-01

    The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should be observable in their surface magnetic fields. Here we present a study aimed at observing the evolution of these magnetic fields through this critical time period. We observed stars in open clusters and stellar associations of known ages, and used Zeeman Doppler Imaging to characterize their complex magnetic large-scale fields. Presented here are results for 15 stars, from 5 associations, with ages from 20 to 250 Myr, masses from 0.7 to 1.2 solar masses, and rotation periods from 0.4 to 6 days. We find complex large-scale magnetic field geometries, with global average strengths from 14 to 140 G. There is a clear trend towards decreasing average large-scale magnetic field strength with age, and a tight correlation between magnetic field strength and Rossby number. ...

  16. Particle energization through time-periodic helical magnetic fields

    E-Print Network [OSTI]

    Mitra, Dhrubaditya

    We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with coefficients A=B=C=1 are chaotic, and we show ...

  17. Neutron scattering in magnetic fields (*) W. C. Koehler

    E-Print Network [OSTI]

    Boyer, Edmond

    691 Neutron scattering in magnetic fields (*) W. C. Koehler Solid State Division, Oak Ridge. Abstract 2014 The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two of the scattering sample ; in the second the field acts on the neutron itself. Several examples are discussed

  18. The origin, evolution and signatures of primordial magnetic fields

    E-Print Network [OSTI]

    Kandaswamy Subramanian

    2015-04-09

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak $\\sim 10^{-16}$ Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and other phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-$\\alpha$ forest are outlined. Constraints from radio and $\\gamma$-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  19. Diffusion Processes in Turbulent Magnetic Fields

    E-Print Network [OSTI]

    Alex Lazarian

    2007-07-05

    We study of the effect of turbulence on diffusion processes within magnetized medium. While we exemplify our treatment with heat transfer processes, our results are quite general and are applicable to different processes, e.g. diffusion of heavy elements. Our treatment is also applicable to describing the diffusion of cosmic rays arising from magnetic field wandering. In particular, we find that when the energy injection velocity is smaller than the Alfven speed the heat transfer is partially suppressed, while in the opposite regime the effects of turbulence depend on the intensity of driving. In fact, the scale $l_A$ at which the turbulent velocity is equal the Alfven velocity is a new important parameter. When the electron mean free path $\\lambda$ is larger than $l_A$, the stronger the the turbulence, the lower thermal conductivity by electrons is. The turbulent motions, however, induces their own advective transport, that can provide effective diffusivity. For clusters of galaxies, we find that the turbulence is the most important agent for heat transfer. We also show that the domain of applicability of the subdiffusion concept is rather limited.

  20. On the Influence of Weak Magnetic and Electric Fields on the Fluctuations of Ionic Electric Currents in Blood Circulation

    E-Print Network [OSTI]

    Zakirjon Kanokov; Juern W. P. Schmelzer; Avazbek K. Nasirov

    2009-04-07

    An analysis of a variety of existing experimental data leads to the conclusion on the existence of a resonance mechanism allowing weak magnetic fields to affect biological processes. These fields may either be static magnetic fields comparable in magnitude with the magnetic field of the earth or weak ultra-low frequency time-dependent fields. So far, a generally accepted theoretical model allowing one to understand the effect of magnetic and electric fields on biological processes is not available. By this reason, it is not clear which characteristics of the fields, like magnetic and electric field strength, frequency of change of the field, shape of the electromagnetic wave, the duration of the magnetic or electric influence or some particular combination of them, are responsible for the biological effect. In the present analysis it is shown that external time-independent magnetic fields may cause a resonance amplification of ionic electric currents in biological tissues and, in particular, in the vasculature system due to a Brownian motion of charges. These resonance electric currents may cause necrotic changes in the tissues or blood circulation and in this way significantly affect the biological organism. The magnitude of the magnetic fields leading to resonance effects is estimated, it is shown that it depends significantly on the radius of the blood capillaries.

  1. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field Leonid E. Zakharov the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks takes into account the propulsion e#11;ect, viscosity and the drag force due to magnetic pumping

  2. Electrostatic and Magnetic Fields in Bilayer Graphene

    E-Print Network [OSTI]

    Ahmed Jellal; Ilham Redouani; Hocine Bahlouli

    2014-11-14

    We compute the transmission probability through rectangular potential barriers and p-n junctions in the presence of a magnetic and electric fields in bilayer graphene taking into account the full four bands of the energy spectrum. For energy E higher than the interlayer coupling $\\gamma_1 (E>\\gamma_1)$ two propagation modes are available for transport giving rise to four possible ways for transmission and reflection probabilities. However, when the energy is less then the height of the barrier the Dirac fermions exhibits transmission resonances and only one mode of propagation is available. We study the effect of the interlayer electrostatic potential $\\delta$ and the different geometry parameters of the barrier on the transmission probability.

  3. Temperature compensated current sensor using reference magnetic field

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul (Seminole, FL); Brubaker, Michael Allen (Loveland, CO); Yakymyshyn, Pamela Jane (Seminole, FL)

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by a separate but identical magnetic field sensor and is used to correct variations in the output signal due to temperature variations and aging.

  4. Tuning the band structures of a one-dimensional width-modulated magnonic crystal by a transverse magnetic field

    SciTech Connect (OSTI)

    Di, K.; Lim, H. S. Zhang, V. L.; Ng, S. C.; Kuok, M. H.; Nguyen, H. T.; Cottam, M. G.

    2014-02-07

    Theoretical studies, based on three independent techniques, of the band structure of a one-dimensional width-modulated magnonic crystal under a transverse magnetic field are reported. The band diagram is found to display distinct behaviors when the transverse field is either larger or smaller than a critical value. The widths and center positions of bandgaps exhibit unusual non-monotonic and large field-tunability through tilting the direction of magnetization. Some bandgaps can be dynamically switched on and off by simply tuning the strength of such a static field. Finally, the impact of the lowered symmetry of the magnetic ground state on the spin-wave excitation efficiency of an oscillating magnetic field is discussed. Our finding reveals that the magnetization direction plays an important role in tailoring magnonic band structures and hence in the design of dynamic spin-wave switches.

  5. Radial Oscillations of Neutron Stars in Strong Magnetic Fields

    E-Print Network [OSTI]

    V. K. Gupta; Vinita Tuli; S. Singh; J. D. Anand; Ashok Goyal

    2001-01-29

    The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state(EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to include strong magnetic field. It is found that magnetised neutron stars support higher maximum mass where as the effect of magnetic field on radial stability for observed neutron star masses is minimal.

  6. Supersymmetric Kähler oscillator in a constant magnetic field

    E-Print Network [OSTI]

    Stefano Bellucci; Armen Nersessian

    2004-01-30

    We propose the notion of the oscillator on K\\"ahler space and consider its supersymmetrization in the presence of a constant magnetic field.

  7. Gauss-Bonnet holographic superconductors with magnetic field

    E-Print Network [OSTI]

    M. R. Setare; D. Momeni

    2011-10-28

    We study the Gauss-Bonnet (GB) holographic superconductors in the presence of an external magnetic field. We describe the phenomena away from the probe limit. We derive the critical magnetic field of the GB holographic superconductors with backreaction. Our analytical approach matches the numerical calculations. We calculate the backreaction corrections up to first order of $O(\\kappa^2=8\\pi G)$ to the critical temperature $T_C$ and the critical magnetic field $B_C$ for a GB superconductor. We show that the GB coupling $\\alpha$ makes the condensation weaker but the backreaction corrections $O(\\kappa^2)$ make the critical magnetic field stronger.

  8. Electric Field Control of Ferromagnetism and Magnetic Devices Using Multiferroics

    E-Print Network [OSTI]

    Heron, John Thomas

    2013-01-01

    magnetoelectrics and spintronic devices. The two conceptsof a magnetization and spintronic devices. The field ofof multiferroics in spintronic devices has been either to

  9. Heat pulse propagation in chaotic three-dimensional magnetic fields

    SciTech Connect (OSTI)

    Del-Castillo-Negrete, Diego [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Blazevski, Daniel [Institute for Mechanical Systems, ETH, Zurich (Switzerland)

    2014-06-01

    Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ?), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

  10. Microstructural Modification of a Cast Iron by Magnetic Field Processing

    SciTech Connect (OSTI)

    Kenik, Edward A [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Ludtka, Gerard Michael [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL

    2010-01-01

    The current study deals with the microstructural modification of a nodular cast iron during solidification under the influence of high magnetic fields (up to 18 tesla).

  11. Magnetic field measurements via visible spectroscopy on the Z machine

    SciTech Connect (OSTI)

    Gomez, M. R., E-mail: mrgomez@sandia.gov; Hansen, S. B.; Peterson, K. J.; Bliss, D. E.; Carlson, A. L.; Lamppa, D. C.; Rochau, G. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Schroen, D. G. [General Atomics, San Diego, California 92121 (United States)

    2014-11-15

    Sandia's Z Machine uses its high current to magnetically implode targets relevant to inertial confinement fusion. Since target performance is highly dependent on the applied drive field, measuring magnetic field at the target is essential for accurate simulations. Recently, the magnetic field at the target was measured through splitting of the sodium 3s-3p doublet at 5890 and 5896 Å. Spectroscopic dopants were applied to the exterior of the target, and spectral lines were observed in absorption. Magnetic fields in excess of 200 T were measured, corresponding to drive currents of approximately 5 MA early in the pulse.

  12. A simple method for characterization of the magnetic field in an ion trap using Be+ ions

    E-Print Network [OSTI]

    Jianwei Shen; Andrii Borodin; Stephan Schiller

    2014-10-06

    We demonstrate a simple method for the determination of the magnetic field in an ion trap using laser-cooled Be+ ions. The method is not based on magnetic resonance and thus does not require delivering radiofrequency (RF) radiation to the trap. Instead, stimulated Raman spectroscopy is used, and only an easily generated optical sideband of the laser cooling wave is required. The d.c. magnetic vector, averaged over the Be+ ion ensemble, is determined. Furthermore, the field strength can be minimized and an upper limit for the field gradient can be determined. The resolution of the method is 0.04 G at present. The relevance for precision rovibrational spectroscopy of molecular hydrogen ions is briefly discussed.

  13. VLBA Observations of G5.89-0.39: OH masers and magnetic field structure

    E-Print Network [OSTI]

    D. P. Stark; W. M. Goss; E. Churchwell; V. L. Fish; I. M. Hoffman

    2006-10-05

    We present VLBA observations of 1667 MHz OH maser emission from the massive star formation region G5.89-0.39. The observations were phase referenced allowing the absolute positions of the masers to be obtained. The 1667 MHz masers have radial velocities that span ~50 km/s but show little evidence of tracing the bipolar molecular outflow, as has been claimed in previous studies. We identify 23 Zeeman pairs through comparison of masers in left and right circular polarization. Magnetic field strengths range from -2 mG to +2 mG, and an ordered reversal in magnetic field direction is observed toward the southern region of the UC HII region. We suggest that the velocity and magnetic field structure of the 1667 MHz masers can be explained in the context of a model in which the masers arise in a neutral shell just outside a rapidly exanding ionized shell.

  14. Measurements of the Ion Species of Cathodic Arc Plasma in an Axial Magnetic Field

    SciTech Connect (OSTI)

    Oks, Efim; Anders, Andre

    2010-10-19

    Metal and gas ion species and their charge state distributions were measured for pulsed copper cathodic arcs in argon background gas in the presence of an axial magnetic field. It was found that changing the cathode position relative to anode and ion extraction system as well as increasing the gas pressure did not much affect the arc burning voltage and the related power dissipation. However, the burning voltage and power dissipation greatly increased as the magnetic field strength was increased. The fraction of metal ions and the mean ion charge state were reduced as the discharge length was increased. The observations can be explained by the combination of charge exchange collisions and electron impact ionization. They confirm that previously published data on characteristic material-dependent charge state distributions (e.g., Anders and Yushkov, J. Appl. Phys., Vol. 91, pp. 4824-4832, 2002) are not universal but valid for high vacuum conditions and the specifics of the applied magnetic fields.

  15. Plasma chemistry fluctuations in a reactive arc plasma in the presence of magnetic fields

    SciTech Connect (OSTI)

    Rosen, J.; Anders, A.; Schneider, J.M.

    2002-01-13

    The effect of a magnetic field on the plasma chemistry and pulse-to-pulse fluctuations of cathodic arc ion charge state distributions in a reactive environment were investigated. The plasma composition was measured by time-of-flight charge-to-mass spectrometry. The fluctuation of the concentrations of Al+, Al2+ and Al3+ was found to increase with an increasing magnetic field strength. We suggest that this is caused by magnetic field dependent fluctuations of the energy input into cathode spots as seen through fluctuations of the cathode potential. These results are qualitatively consistent with the model of partial local Saha equilibrium and are of fundamental importance for the evolution of the structure of films deposited by reactive cathodic arc deposition.

  16. Measuring and shimming the magnetic field of a 4 Tesla MRI magnet 

    E-Print Network [OSTI]

    Kyriazis, Georgios

    1993-01-01

    The Biomedical Magnetic Resonance Laboratory (BMRL) of the University of Illinois at Urbana-Champaign (UIUC) has ordered from the Texas Accelerator Center (TAC) a superconducting, self-shielded, solenoidal magnet with a maximum field of 4 Tesla...

  17. THE DISTRIBUTION OF QUIET-SUN MAGNETIC FIELDS AT DIFFERENT HELIOCENTRIC ANGLES

    SciTech Connect (OSTI)

    Orozco Suarez, D.; Katsukawa, Y.

    2012-02-20

    This paper presents results from the analysis of high signal-to-noise ratio spectropolarimetric data taken at four heliocentric angles in quiet-Sun internetwork regions with the Hinode satellite. First, we find that the total circular and total linear polarization signals vary with heliocentric angle, at least for fields with large polarization signals. We also report changes on the Stokes V amplitude asymmetry histograms with viewing angle for fields weaker than 200 G. Then, we subject the data to a Milne-Eddington inversion and analyze the variation of the field vector probability density functions with heliocentric angle. Weak, highly inclined fields permeate the internetwork at all heliocentric distances. For fields weaker than 200 G, the distributions of field inclinations peak at 90 Degree-Sign and do not vary with viewing angle. The inclination distributions change for fields stronger than 200 G. We argue that the shape of the inclination distribution for weak fields partly results from the presence of coherent, loop-like magnetic features at all heliocentric distances and not from tangled fields within the field of view. We also find that the average magnetic field strength is about 180 G (for 75% of the pixels) and is constant with heliocentric angle. The average vertical and horizontal magnetic field components are 70 and 150 G. The latter (former) is slightly greater (smaller) near the limb. Finally, the ratio between the horizontal and vertical components of the fields ranges from {approx}1 for strong fields to {approx}3.5 for weak fields, suggesting that the magnetic field vector is not isotropically distributed within the field of view.

  18. Observation of low magnetic field density peaks in helicon plasma

    SciTech Connect (OSTI)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2013-04-15

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

  19. Three-dimensional model and simulation of vacuum arcs under axial magnetic fields

    SciTech Connect (OSTI)

    Wang Lijun; Jia Shenli; Zhou Xin; Wang Haijing; Shi Zongqian

    2012-01-15

    In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.

  20. Bounds on QCD axion mass and primordial magnetic field from CMB $?$-distortion

    E-Print Network [OSTI]

    Damian Ejlli

    2015-08-19

    The oscillation of the CMB photons into axions can cause CMB spectral distortion in the presence of large scale magnetic field. With the COBE limit on the $\\mu$ parameter and a homogeneous magnetic field with strength $B\\lesssim 3.2$ nG at the horizon scale, an upper limit on the axion mass is found to be, $m_a\\lesssim 4.8\\times 10^{-5}$ eV for the KSVZ axion model. On the other hand, using the value of excluded axion mass $m_a\\simeq 3.5\\times 10^{-6}$ eV from the ADMX experiment together with the COBE bound on $\\mu$, is found $B\\simeq 46$ nG for the KSVZ axion model and $B\\simeq 130$ nG for DFSZ axion model, for a homogeneous magnetic field with coherence length at the present epoch $\\lambda_B\\simeq 1.3$ Mpc. Forecast on $B$ and $m_a$ for PIXIE/PRISM expected sensitivity on $\\mu$ are derived. If CMB $\\mu$ distortion would be detected by the future space missions PIXIE/PRISM and assuming that the strength of the large scale magnetic field is close to its canonical value, $B\\simeq 1-3$ nG, axions in the mass range $2\\, \\mu$eV - $3\\, \\mu$eV would be potential candidates of CMB $\\mu$-distortion.

  1. Bounds on QCD axion mass and primordial magnetic field from CMB $?$-distortion

    E-Print Network [OSTI]

    Damian Ejlli

    2014-11-19

    The oscillation of the CMB photons into axions can cause CMB spectral distortion in the presence of large scale magnetic field. With the COBE limit on the $\\mu$ parameter and a homogeneous magnetic field with strength $B\\lesssim 3.2$ nG at the horizon scale, stronger lower limit on the axion mass in comparison with the limit of the ADMX experiment is found to be, $4.8\\times 10^{-5}$ eV $\\lesssim m_a$ for the KSVZ axion model. On the other hand, using the experimental limit on the axion mass $3.5\\times 10^{-6}$ eV $\\lesssim m_a$ from the ADMX experiment together with the COBE bound on $\\mu$, is found $B\\lesssim 53$ nG for the KSVZ axion model and $B\\lesssim 141$ nG for DFSZ axion model, for a homogeneous magnetic field with coherence length at the present epoch $\\lambda_B\\sim 1.3$ Mpc. Limits on $B$ and $m_a$ for PIXIE/PRISM expected sensitivity on $\\mu$ are derived. If CMB $\\mu$ distortion would be detected by the future space missions PIXIE/PRISM and assuming that the strength of the large scale magnetic field is close to its canonical value, $B\\sim 1-3$ nG, axions in the mass range $2\\, \\mu$eV - $3\\, \\mu$eV would be potential candidates of CMB $\\mu$-distortion.

  2. ON THE ROLE OF THE MAGNETIC FIELD ON JET EMISSION IN X-RAY BINARIES

    SciTech Connect (OSTI)

    Casella, P.; Pe'er, A.

    2009-09-20

    Radio and X-ray fluxes of accreting black holes in their hard state are known to correlate over several orders of magnitude. This correlation, however, shows a large scatter: black hole candidates with very similar X-ray luminosity, spectral energy distribution, and variability show rather different radio luminosities. This challenges theoretical models that aim at describing both the radio and the X-ray fluxes in terms of radiative emission from a relativistic jet. More generally, it opens important questions on how similar accretion flows can produce substantially different outflows. Here we present a possible explanation for this phenomenon based on the strong dependence of the jet spectral energy distribution on the magnetic field strength and on the idea that the strength of the jet magnetic field varies from source to source. Because of the effect of radiative losses, sources with stronger jet magnetic field values would have lower radio emission. We discuss the implications of this scenario, the main one being that the radio flux does not necessarily provide a direct measure of the jet power. We further discuss how a variable jet magnetic field, reaching a critical value, can qualitatively explain the observed spectral transition out of the hard state.

  3. High field strength following the Kauai R-N geomagnetic reversal

    SciTech Connect (OSTI)

    Paul, H.A. . Dept. of Geology)

    1993-04-01

    The paleomagnetism of superposed lava flows on Kauai, Hawaii shows that the ancient geomagnetic field was unusually strong following a reverse-to-normal polarity transition that occurred about 4 million years ago. Paleointensities were determined by a standard experimental procedure (Thelliers' method) that recreates the process of remanence acquisition in volcanic rocks. This experiment makes it possible to infer the strength of the geomagnetic field present with each lava flow formed, thus producing an accurate picture of the ancient field's behavior after the reversal. Samples from 10 volcanic units yielded virtual dipole moments (VDMs) ranging from 7.4 [times] 10[sup 22] Am[sup 2] to 14.5 [times] 10[sup 22] Am[sup 2] with an average of 11.1[times]10[sup 22] Am[sup 2]. This value is high in comparisons to the average VDM for the past 5 m.y., approximately 8.7[times]10[sup 22] Am[sup 2]. In contrast to the highly variable dipole moment observed following a 15 m.y. old reversal at Steen s Mountain, Oregon, the field following the Kauai transition was relatively steady. Surprisingly, the maximum dipole moments following the two reversals were nearly equal. This similarity hints that high field strength may be a systematic feature of the geodynamo immediately following a polarity reversal.

  4. Including stereoscopic information in the reconstruction of coronal magnetic fields

    E-Print Network [OSTI]

    T. Wiegelmann; T. Neukirch

    2008-01-23

    We present a method to include stereoscopic information about the three dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force free fields for simplicity. The method uses the line of sight magnetic field on the photosphere as observational input. The value of $\\alpha$ is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.

  5. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect (OSTI)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  6. Far-field mapping of the longitudinal magnetic and electric optical fields C. Ecoffey, T. Grosjean

    E-Print Network [OSTI]

    Boyer, Edmond

    ) become noticeable and light has to be seen as a 3D vectorial electromagnetic field. The enhancedFar-field mapping of the longitudinal magnetic and electric optical fields C. Ecoffey, T. Grosjean of the longitudinal magnetic and electric optical fields with a standard scanning microscope that involves a high

  7. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL); Battles, James E. (Oak Forest, IL); Hull, John R. (Hinsdale, IL); Rote, Donald M. (Lagrange, IL)

    1990-01-01

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

  8. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1990-12-04

    An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.

  9. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1988-06-17

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

  10. Confining quantum particles with a purely magnetic field

    E-Print Network [OSTI]

    Yves Colin De Verdière; Francoise Truc

    2009-10-15

    We consider an open domain with a compact boundary in an Euclidean space and a Schroedinger operator with magnetic field on this domain. We give sufficient conditions on the rate of growth of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples on polytopes and domains with smooth boundaries; these examples of "magnetic bottles" are highly simplified models of what is done for nuclear fusion in tokamacs.

  11. The magnetic field and confined wind of the O star $?^1$~Orionis~C

    E-Print Network [OSTI]

    G. A. Wade; A. W. Fullerton; J. -F. Donati; J. D. Landstreet; P. Petit; S. Strasser

    2006-01-26

    In this paper we confirm the presence of a globally-ordered, kG-strength magnetic field in the photosphere of the young O star $\\theta^1$~Orionis~C, and examine the properties of its optical line profile variations. A new series of high-resolution MuSiCoS Stokes $V$ and $I$ spectra has been acquired which samples approximately uniformly the rotational cycle of $\\theta^1$~Orionis~C. Using the Least-Squares Deconvolution (LSD) multiline technique, we have succeeded in detecting variable Stokes $V$ Zeeman signatures associated with the LSD mean line profile. These signatures have been modeled to determine the magnetic field geometry. We have furthermore examined the profi le variations of lines formed in both the wind and photosphere using dynamic spectra. Based on spectrum synthesis fitting of the LSD profiles, we determine that the polar strength of the magnetic dipole component is $1150 \\la B_{\\rm d}\\la 1800$~G and that the magnetic obliquity is $27\\degr \\la \\beta \\la 68\\degr$, assuming $i=45\\pm 20\\degr$. The best-fit values for $i=45\\degr$ are $B_{\\rm d} = 1300 \\pm 150 (1\\sigma)$~G and $\\beta = 50\\degr \\pm 6\\degr (1\\sigma)$. Our data confirm the previous detection of a magnetic field in this star, and furthermore demonstrate the sinusoidal variability of the longitudinal field and accurately determine the phases and intensities of the magnetic extrema. The analysis of ``photospheric'' and ``wind'' line profile variations supports previous reports of the optical spectroscopic characteristics, and provides evidence for infall of material within the magnetic equatorial plane.

  12. A small-bore high-field superconducting quadrupole magnet

    SciTech Connect (OSTI)

    Barlow, D.B.; Kraus, R.H.; Lobb, C.T.; Menzel, M.T. ); Walstrom, P.L. )

    1990-01-01

    A prototype superconducting quadrupole magnet was designed and built for use in superconducting coupled-cavity linacs where the use of permanent magnets is ruled out by consideration of trapped flux losses. The magnet has a clear bore diameter of 1.8 cm and outside diameter of 11 cm and length of 11 cm. The magnet was operated at a temperature of 4.2 K and obtained a peak quadrupole field gradient of 320 T/m.

  13. Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun

    E-Print Network [OSTI]

    Ryohko Ishikawa; Saku Tsuneta

    2008-12-09

    Properties of transient horizontal magnetic fields (THMFs) in both plage and quiet Sun regions are obtained and compared. Spectro-polarimetric observations with the Solar Optical Telescope (SOT) on the Hinode satellite were carried out with a cadence of about 30 seconds for both plage and quiet regions located near disk center. We select THMFs that have net linear polarization (LP) higher than 0.22%, and an area larger than or equal to 3 pixels, and compare their occurrence rates and distribution of magnetic field azimuth. We obtain probability density functions (PDFs) of magnetic field strength and inclination for both regions.The occurrence rate in the plage region is the same as for the quiet Sun. The vertical magnetic flux in the plage region is ~8 times larger than in the quiet Sun. There is essentially no preferred orientation for the THMFs in either region. However, THMFs in the plage region with higher LP have a preferred direction consistent with that of the plage-region's large-scale vertical field pattern. PDFs show that there is no difference in the distribution of field strength of horizontal fields between the quiet Sun and the plage regions when we avoid the persistent large vertical flux concentrations for the plage region. The similarity of the PDFs and of the occurrence rates in plage and quiet regions suggests that a local dynamo process due to the granular motion may generate THMFs all over the sun. The preferred orientation for higher LP in the plage indicates that the THMFs are somewhat influenced by the larger-scale magnetic field pattern of the plage.

  14. Method of using triaxial magnetic fields for making particle structures

    DOE Patents [OSTI]

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  15. THEORY OF PASSIVE MAGNETIC FIELD TRANSPORT OF PETROVAY

    E-Print Network [OSTI]

    Petrovay, Kristóf

    THEORY OF PASSIVE MAGNETIC FIELD TRANSPORT KRIST ' OF PETROVAY E¨otv¨os University, Department by the kinematics of the turbulence (i.e. it is ``passive''), and it can be described by a one­fluid model like mean to the dynamo layer must be thoroughly understood. This paper reviews the theory of passive magnetic field

  16. Submillimeter Polarimetry and the Galactic Center Magnetic Field

    E-Print Network [OSTI]

    Novak, Giles

    Submillimeter Polarimetry and the Galactic Center Magnetic Field D.T. Chuss NASA Goddard Space Flight Center C.D. Dowell Jet Propulsion Laboratory R.H. Hildebrand University of Chicago G. Novak that of the magnetic field. In addition, we present new Hertz data on the Dust Ridge, an arched structure

  17. Magnetic field modulated dust streams from Jupiter in Interplanetary space

    E-Print Network [OSTI]

    Hamilton, Douglas P.

    Magnetic field modulated dust streams from Jupiter in Interplanetary space Alberto Flandes Ciencias´es-Galicia Ciencias Espaciales, Instituto de Geof´isica, UNAM, M´exico. Linda Spilker Jet Propulsion Laboratory is sufficient to allow the planet's magnetic field to accelerate them away from the planet where

  18. DIPPED MAGNETIC FIELD CONFIGURATIONS ASSOCIATED WITH FILAMENTS AND BARBS

    E-Print Network [OSTI]

    Priest, Eric

    DIPPED MAGNETIC FIELD CONFIGURATIONS ASSOCIATED WITH FILAMENTS AND BARBS D. H. MACKAY, A. W. It is assumed that the field configurations are suitable to represent filaments if they contain magnetic dips have the correct left-bearing/right-bearing orientation for dextral/sinistral filaments. When

  19. Nuclear magnetic absorption line widths in weak magnetic fields with a Robinson oscillator 

    E-Print Network [OSTI]

    Flugum, Timothy Lee

    1987-01-01

    precession Effects of a weak transverse rotating field C. Nuclear Magnetic Relaxation Introduction The Boltzmann factor The longitudinal relaxation time, T, The transverse relaxation time. Tz Instrument Tq and magnetic field homogeneity requirements... the oscillating (effectively rotating) magnetic field, Bt, was used by Bloch in his pioneer "nuclear induction" NMR experiments using bulk matter. The nuclear induction method thus uses "crossed coils" with their axes both perpendicular to the strong, steady...

  20. Vacuum magnetic field mapping experiments for validated determination of the helical field coil location in stellarators

    SciTech Connect (OSTI)

    Peterson, J.; Hanson, J.; Hartwell, G.; Knowlton, S. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2010-03-15

    Understanding the behavior of plasmas in magnetic confinement fusion devices typically requires accurate knowledge of the magnetic field structure. In stellarator-type confinement devices, the helical magnetic field is produced by currents in external coils and may be traced experimentally in the absence of plasma through the experimental technique of vacuum magnetic field mapping. Field mapping experiments, such as these, were performed on the recently constructed compact toroidal hybrid to verify the range of accessible magnetic configurations, compare the actual magnetic configuration with the design configuration, and identify any vacuum field errors that lead to perturbations of the vacuum magnetic flux surfaces. Furthermore, through the use of a new coil optimization routine, modifications are made to the simulation coil model such that better agreement exists between the experimental and simulation results. An outline of the optimization procedure is discussed in conjunction with the results of one such optimization process performed on the helical field coil.

  1. Magnetic fields in non-convective regions of stars

    E-Print Network [OSTI]

    Braithwaite, J

    2015-01-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them, the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and...

  2. Brownian Dynamics of charged particles in a constant magnetic field

    E-Print Network [OSTI]

    Hou, L J; Piel, A; Shukla, P K

    2009-01-01

    Numerical algorithms are proposed for simulating the Brownian dynamics of charged particles in an external magnetic field, taking into account the Brownian motion of charged particles, damping effect and the effect of magnetic field self-consistently. Performance of these algorithms is tested in terms of their accuracy and long-time stability by using a three-dimensional Brownian oscillator model with constant magnetic field. Step-by-step recipes for implementing these algorithms are given in detail. It is expected that these algorithms can be directly used to study particle dynamics in various dispersed systems in the presence of a magnetic field, including polymer solutions, colloidal suspensions and, particularly complex (dusty) plasmas. The proposed algorithms can also be used as thermostat in the usual molecular dynamics simulation in the presence of magnetic field.

  3. Plasma-satellite interaction driven magnetic field perturbations

    SciTech Connect (OSTI)

    Saeed-ur-Rehman, E-mail: surehman@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Theoretical Physics Division, PINSTECH, Nilore Islamabad 44000 (Pakistan); Marchand, Richard, E-mail: Richard.Marchand@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-09-15

    We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

  4. Faraday rotation: effect of magnetic field reversals

    E-Print Network [OSTI]

    Melrose, D B

    2010-01-01

    The standard formula for the rotation measure, RM, which determines the position angle, $\\psi={\\rm RM}\\lambda^2$, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution $\\Delta\\psi$ needed to correct this omission. In contrast with a result proposed by \\cite{BB10}, $\\Delta\\psi$ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correc...

  5. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    SciTech Connect (OSTI)

    Melrose, D. B. [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)

    2010-12-20

    The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  6. Magnetic field annealing for improved creep resistance

    DOE Patents [OSTI]

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  7. Plasma expansion in the presence of a dipole magnetic field

    SciTech Connect (OSTI)

    Winske, D.; Omidi, N. [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); SciberNet, Inc., Solana Beach, California 92075 (United States)

    2005-07-15

    Simulations of the initial expansion of a plasma injected into a stationary magnetized background plasma in the presence of a dipole magnetic field are carried out in two dimensions with a kinetic ion, massless fluid electron (hybrid) electromagnetic code. For small values of the magnetic dipole, the injected ions have large gyroradii compared to the scale length of the dipole field and are essentially unmagnetized. As a result, these ions expand, excluding the ambient magnetic field and plasma to form a diamagnetic cavity. However, for stronger magnetic dipoles, the ratio of the gyroradii of the injected ions to the dipole field scale length is small so that they remain magnetized, and hence trapped in the dipole field, as they expand. The trapping and expansion then lead to additional plasma currents and resulting magnetic fields that not only exclude the background field but also interact with the dipole field in a more complex manner that stretches the closed dipole field lines. A criterion to distinguish between the two regimes is derived and is then briefly discussed in the context of applying the results to the plasma sail scheme for the propulsion of small spacecraft in the solar wind.

  8. Disk-Evaporation Fed Corona: Structure and Evaporation Feature with Magnetic Field

    E-Print Network [OSTI]

    Lei Qian; B. F. Liu; Xue-Bing Wu

    2007-07-03

    The disk-corona evaporation model naturally interprets many observational phenomena in black hole X-ray binaries, such as the truncation of an accretion disk and the spectral state transitions. On the other hand, magnetic field is known to play an important role in transporting angular momentum and producing viscosity in accretion flows. In this work, we explicitly take the magnetic field in the accretion disk corona into account and numerically calculate the coronal structure on the basis of our two-temperature evaporation code. We show that the magnetic field influences the coronal structure by its contribution to the pressure, energy and radiative cooling in the corona and by decreasing the vertical heat conduction. We found that the maximal evaporation rate keeps more or less constant ($\\sim 0.03$ Eddington rate) while the strength of magnetic fields changes, but that the radius corresponding to the maximal evaporation rate decreases with increasing magnetic field. This predicts that the spectral state transition always occurs at a few percent of Eddington accretion rate, while the inner edge of thin disk can be at $\\sim 100 R_{\\rm S} $ or even less in the hard state before the transition to the soft state. These results alleviate the problem that previous evaporation models predict too large a truncation radius, and are in better agreement with the observational results of several black hole X-ray binaries, though discrepancies remain.

  9. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kisner, Roger A; Ahmad, Aquil

    2010-08-01

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  10. Noncommutative Dirac oscillator in an external magnetic field

    E-Print Network [OSTI]

    Bhabani Prasad Mandal; Sumit Kumar Rai

    2012-03-13

    We show that (2+1) dimensional noncommutative Dirac oscillator in an external magnetic field is mapped onto the same but with reduced angular frequency in absence of magnetic field. We construct the relativistic Landau levels by solving corresponding Dirac equation in (2+1) dimensional noncommutative phase space. We observe that lowest Landau levels are exactly same as in commutative space and independent of non-commutative parameter. All the Landau levels become independent of noncommutative parameter for a critical value of the magnetic field. Several other interesting features along with the relevance of such models in the study of atomic transitions in a radiation field have been discussed.

  11. Superconductive magnetic energy storage (SMES) external fields and safety considerations

    SciTech Connect (OSTI)

    Polk, C. . Dept. of Electrical Engineering); Boom, R.W.; Eyssa, Y.M. . Applied Superconductivity Center)

    1992-01-01

    This paper addresses preferred SMES configurations and the external magnetic fields which they generate. Possible biological effects of fields are reviewed briefly. It is proposed that SMES units be fenced at the 10 gauss (1 mT) level to keep unrestricted areas safe, even for persons with cardiac pacemakers. For a full size 5000 MWh (1.8 {times} 10 {sup 13} J) SMES the magnetic field decreases to 10 gauss at a radial distance of 2 km from the center of the coil. Other considerations related to the environmental impact of large SMES magnetic fields are discussed briefly.

  12. The generation and stability of magnetic fields in CP stars

    E-Print Network [OSTI]

    R. Arlt

    2008-01-29

    A variety of magnetohydrodynamic mechanisms that may play a role in magnetic, chemically peculiar (mCP) stars is reviewed. These involve dynamo mechanisms in laminar flows as well as turbulent environments, and magnetic instabilities of poloidal and toroidal fields as well as combinations of the two. While the proto-stellar phase makes the survival of primordial fields difficult, the variety of magnetic field configurations on mCP stars may be an indication for that they are instability remnants, but there is no process which is clearly superior in explaining the strong fields.

  13. Conductivity of SU(2) gluodynamics vacuum induced by magnetic field

    SciTech Connect (OSTI)

    Polikarpov, M. I.; Larina, O. V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Buividovich, P. V. [JINR, Dubna, Moscow region, 141980 (Russian Federation); ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Chernodub, M. N. [CNRS, LMPT, Federation Denis Poisson, Universite de Tours, 37200 (France); ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Kalaydzhyan, T. K. [DESY Hamburg, Theory Group, Notkestrasse 85, D22607 Hamburg (Germany); ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Kharzeev, D. E. [Physics Department, Brookhaven National Laboratory Upton, New York 11973-5000 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520-8120 (United States); Luschevskaya, E. V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); JINR, Dubna, Moscow region, 141980 (Russian Federation)

    2011-05-23

    We study the electric conductivity of the vacuum of quenched SU(2) lattice gauge theory in the magnetic field, B, both in the confinement and in the deconfinement phases. In the confinement phase the external magnetic field induces nonzero electric conductivity along the direction of the field, transforming the system from an insulator into an anisotropic conductor. In the deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic field. We also find that the conductivity grows as the quark mass decreases, the behavior has a form B/{radical}(m).

  14. ANALYSIS OF QUIET-SUN INTERNETWORK MAGNETIC FIELDS BASED ON LINEAR POLARIZATION SIGNALS

    SciTech Connect (OSTI)

    Orozco Suarez, D.; Bellot Rubio, L. R.

    2012-05-20

    We present results from the analysis of Fe I 630 nm measurements of the quiet Sun taken with the spectropolarimeter of the Hinode satellite. Two data sets with noise levels of 1.2 Multiplication-Sign 10{sup -3} and 3 Multiplication-Sign 10{sup -4} are employed. We determine the distribution of field strengths and inclinations by inverting the two observations with a Milne-Eddington model atmosphere. The inversions show a predominance of weak, highly inclined fields. By means of several tests we conclude that these properties cannot be attributed to photon noise effects. To obtain the most accurate results, we focus on the 27.4% of the pixels in the second data set that have linear polarization amplitudes larger than 4.5 times the noise level. The vector magnetic field derived for these pixels is very precise because both circular and linear polarization signals are used simultaneously. The inferred field strength, inclination, and filling factor distributions agree with previous results, supporting the idea that internetwork (IN) fields are weak and very inclined, at least in about one quarter of the area occupied by the IN. These properties differ from those of network fields. The average magnetic flux density and the mean field strength derived from the 27.4% of the field of view with clear linear polarization signals are 16.3 Mx cm{sup -2} and 220 G, respectively. The ratio between the average horizontal and vertical components of the field is approximately 3.1. The IN fields do not follow an isotropic distribution of orientations.

  15. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    DOE Patents [OSTI]

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  16. Magnetic fields, spots and weather in chemically peculiar stars

    E-Print Network [OSTI]

    O. Kochukhov

    2007-11-30

    New observational techniques and sophisticated modelling methods has led to dramatic breakthroughs in our understanding of the interplay between the surface magnetism, atomic diffusion and atmospheric dynamics in chemically peculiar stars. Magnetic Doppler images, constructed using spectropolarimetric observations of Ap stars in all four Stokes parameters, reveal the presence of small-scale field topologies. Abundance Doppler mapping has been perfected to the level where distributions of many different chemical elements can be deduced self-consistently for one star. The inferred chemical spot structures are diverse and do not always trace underlying magnetic field geometry. Moreover, horizontal chemical inhomogeneities are discovered in non-magnetic CP stars and evolving chemical spots are observed for the first time in the bright mercury-manganese star alpha And. These results show that in addition to magnetic fields, another important non-magnetic structure formation mechanism acts in CP stars.

  17. Power spectrum of post-inflationary primordial magnetic fields

    E-Print Network [OSTI]

    Hector J. Hortua; Leonardo Castañeda

    2014-12-16

    The origin of large scale magnetic fields is one of the most puzzling topics in cosmology and astrophysics. It is assumed that the observed magnetic fields result from the amplification of an initial field produced in the early universe. In this paper we compute the exact power spectrum of magnetic fields created after inflation best known as post inflationary magnetic fields, using the first order cosmological perturbation theory. Our treatment differs from others works because we include an infrared cutoff which encodes only causal modes in the spectrum. The cross-correlation between magnetic energy density with Lorentz force and the anisotropic part of the electromagnetic field are exactly computed. We compare our results with previous works finding agreement in cases where the ratio between lower and upper cutoff is very small. However, we found that spectrum is strongly affected when this ratio is greater than 0.2. Moreover, the effect of a post inflationary magnetic field with a lower cutoff on the angular power spectrum in the temperature distribution of CMB was also exactly calculated. The main feature is a shift of the spectrum's peak as function of the infrared cutoff, therefore analyzing this effect we could infer the value of this cutoff and thus constraining the primordial magnetic fields generation models.

  18. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    SciTech Connect (OSTI)

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-12-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The ordered component and standard relations between polarization, color excess, and H{sup o} column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at {approx}975 A does not appear to play a role in grain alignment for the low-density ISM studied here.

  19. Bose Glass of Quasiparticles in Doped Quantum Magnet Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Bose Glass of Quasiparticles in Doped Quantum Magnet Gregory S. Boebinger, National High Magnetic. This BEC can localize in the presence of disorder caused by Br- doping to form a Bose Glass. The BEC-Bose Glass (BEC-BG) transition can be carefully controlled by magnetic field, allowing us to sensitively

  20. Controllable adhesion using field-activated fluids Randy H. Ewoldt

    E-Print Network [OSTI]

    Controllable adhesion using field-activated fluids Randy H. Ewoldt Institute for Mathematics for variable- strength controllable adhesion. The adhesive performance is measured experimentally in tensile magnet. Increasing the magnetic field strength induces higher peak adhesive forces. We hypothesize

  1. Neutrino spin-flavor oscillations in rapidly varying magnetic fields

    E-Print Network [OSTI]

    Maxim Dvornikov

    2006-11-13

    The general formalism for the description of neutrino oscillations in arbitrary rapidly varying external fields is elaborated. We obtain the new effective Hamiltonian which determines the evolution of the averaged neutrino wave function. The general technique is applied to the neutrino oscillations in rapidly varying magnetic fields. We evaluate the transition probabilities of the neutrino spin-flavor oscillations in magnetic fields of the Sun and compare them with the numerical solutions of the Schroedinger equation with the exact Hamiltonian.

  2. Color superconductivity in a strong external magnetic field

    E-Print Network [OSTI]

    Cristina Manuel

    2006-07-26

    We explore the effects of an applied strong external magnetic field in a three flavor massless color superconductor. The long-range component of the B field that penetrates the superconductor enhances some quark condensates, leading to a different condensation pattern. The external field also reduces the flavor symmetries in the system, and thus it changes drastically the corresponding low energy physics. Our considerations are relevant for the study of highly magnetized compact stars.

  3. Simulating Astrophysical Magnetic Fields with Smoothed Particle Magnetohydrodynamics

    E-Print Network [OSTI]

    Tricco, Terrence S

    2015-01-01

    Numerical methods to improve the treatment of magnetic fields in smoothed field magnetohydrodynamics (SPMHD) are developed and tested. Chapter 2 is a review of SPMHD. In Chapter 3, a mixed hyperbolic/parabolic scheme is developed which cleans divergence error from the magnetic field. Average divergence error is an order of magnitude lower for all test cases considered, and allows for the stable simulation of the gravitational collapse of magnetised molecular cloud cores. The effectiveness of the cleaning may be improved by explicitly increasing the hyperbolic wave speed or by cycling the cleaning equations between timesteps. In the latter, it is possible to achieve DivB=0. Chapter 4 develops a switch to reduce dissipation of the magnetic field from artificial resistivity. Compared to the existing switch in the literature, this leads to sharper shock profiles in shocktube tests, lower overall dissipation of magnetic energy, and importantly, is able to capture magnetic shocks in the highly super-Alfvenic regime...

  4. Magnetic field restructuring associated with two successive solar eruptions

    SciTech Connect (OSTI)

    Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong

    2014-08-20

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  5. Spectropolarimetric diagnostics of unresolved magnetic fields in the quiet solar photosphere

    E-Print Network [OSTI]

    Shchukina, Nataliya

    2012-01-01

    A few years before the Hinode space telescope was launched, an investigation based on the Hanle effect in atomic and molecular lines indicated that the bulk of the quiet solar photosphere is significantly magnetized, due to the ubiquitous presence of an unresolved magnetic field with an average strength = 130 G. It was pointed out also that this "hidden" field must be much stronger in the intergranular regions of solar surface convection than in the granular regions, and it was suggested that this unresolved magnetic field could perhaps provide the clue for understanding how the outer solar atmosphere is energized. In fact, the ensuing magnetic energy density is so significant that the energy flux estimated using the typical value of 1 km/s for the convective velocity (thinking in rising magnetic loops) or the Alfven speed (thinking in Alfven waves generated by magnetic reconnection) turns out to be substantially larger than that required to balance the chromospheric energy losses. Here we present a brief re...

  6. Relation between photospheric flow fields and the magnetic field distribution on the solar surface

    SciTech Connect (OSTI)

    Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.

    1988-04-01

    Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.

  7. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect (OSTI)

    Velas, K. M. [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)] [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States); Milroy, R. D. [Plasma Science and Innovation-Center, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)] [Plasma Science and Innovation-Center, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub ?}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10?kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  8. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    SciTech Connect (OSTI)

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  9. Evidence for a Weak Galactic Center Magnetic Field from Diffuse Low Frequency Nonthermal Radio Emission

    E-Print Network [OSTI]

    T. N. LaRosa; C. L. Brogan; S. N. Shore; T. J. Lazio; N. E. Kassim; M. E. Nord

    2005-06-24

    New low-frequency 74 and 330 MHz observations of the Galactic center (GC) region reveal the presence of a large-scale ($6\\arcdeg\\times 2\\arcdeg$) diffuse source of nonthermal synchrotron emission. A minimum energy analysis of this emission yields a total energy of $\\sim (\\phi^{4/7}f^{3/7})\\times 10^{52}$ ergs and a magnetic field strength of $\\sim 6(\\phi/f)^{2/7}$ \\muG (where $\\phi$ is the proton to electron energy ratio and $f$ is the filling factor of the synchrotron emitting gas). The equipartition particle energy density is $1.2(\\phi/f)^{2/7}$ \\evcm, a value consistent with cosmic-ray data. However, the derived magnetic field is several orders of magnitude below the 1 mG field commonly invoked for the GC. With this field the source can be maintained with the SN rate inferred from the GC star formation. Furthermore, a strong magnetic field implies an abnormally low GC cosmic-ray energy density. We conclude that the mean magnetic field in the GC region must be weak, of order 10 \\muG (at least on size scales $\\ga 125\\arcsec$).

  10. Magnetic field effects on the thermonuclear combustion front of Chandrasekhar mass white dwarfs

    E-Print Network [OSTI]

    Cristian R. Ghezzi; Elisabete M. de Gouveia Dal Pino; Jorge E. Horvath

    2000-12-06

    The explosion of a type Ia supernova starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities, in particular, the Rayleigh-Taylor instability, begin to act. A cellular stationary combustion and a turbulent combustion regime are rapidly achieved by the flame and maintained up to the end of the so-called flamelet regime when the transition to detonation is believed to occur. The burning velocity at these regimes is well described by the fractal model of combustion. Using a semi-analytic approach, we describe the effect of magnetic fields on the fractalization of the front considering a white dwarf with a nearly dipolar magnetic field. We find an intrinsic asymmetry on the velocity field that may be maintained up to the free expansion phase of the remnant. Considering the strongest values inferred for a white dwarf's magnetic fields with strengths up to $10^{8}-10^{9}$ G at the surface and assuming that the field near the centre is roughly 10 times greater, asymmetries in the velocity field higher than $10-20 %$ are produced between the magnetic polar and the equatorial axis of the remnant which may be related to the asymmetries found from recent spectropolarimetric observations of very young SN Ia remnants. Dependence of the asymmetry with white dwarf composition is also analyzed.

  11. Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations

    E-Print Network [OSTI]

    Michael Gabler; Pablo Cerdá-Durán; José A. Font; Ewald Müller; Nikolaos Stergioulas

    2013-02-27

    We study magneto-elastic oscillations of highly magnetized neutron stars (magnetars) which have been proposed as an explanation for the quasi-periodic oscillations (QPOs) appearing in the decaying tail of the giant flares of soft gamma-ray repeaters (SGRs). We extend previous studies by investigating various magnetic field configurations, computing the Alfv\\'en spectrum in each case and performing magneto-elastic simulations for a selected number of models. By identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR 1806-20) with the fundamental Alfv\\'en QPOs, we estimate the required surface magnetic field strength. For the magnetic field configurations investigated (dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal component and a toroidal field confined to the region of field lines closing inside the star, and for poloidal fields with an additional quadrupole-like component) the estimated dipole spin-down magnetic fields are between 8x10^14 G and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources producing giant flares. A number of these models exhibit a rich Alfv\\'en continuum revealing new turning points which can produce QPOs. This allows one to explain most of the observed QPO frequencies as associated with magneto-elastic QPOs. In particular, we construct a possible configuration with two turning points in the spectrum which can explain all observed QPOs of SGR 1900+14. Finally, we find that magnetic field configurations which are entirely confined in the crust (if the core is assumed to be a type I superconductor) are not favoured, due to difficulties in explaining the lowest observed QPO frequencies (f<30 Hz).

  12. Electric field of a point-like charge in a strong magnetic field

    E-Print Network [OSTI]

    A. E. Shabad; V. V. Usov

    2006-07-22

    We describe the potential produced by a point electric charge placed into a constant magnetic field, so strong that the electron Larmour length is much shorter than its Compton length. The standard Coulomb law is modified due to the vacuum polarization by the external magnetic field. Only mode-2 photons mediate the static interaction. The corresponding vacuum polarization component, taken in the one-loop approximation, grows linearly with the magnetic field. Thanks to this fact a scaling regime occurs in the limit of infinite magnetic field, where the potential is determined by a universal function, independent the magnetic field. The scaling regime implies a short-range character of interaction in the Larmour scale, expressed as a Yukawa law. On the contrary, the electromagnetic interaction regains its long-range character in a larger scale, characterized by the Compton length. In this scale the tail of the Yukawa potential follows an anisotropic Coulomb law: it decreases as the distance from the charge increases, slower along the magnetic field and faster across. The equipotential surface is an ellipsoid stretched along the magnetic field. As a whole, the modified Coulomb potential is a narrower-shaped function than the standard Coulomb function, the narrower the stronger the field. The singular behavior in the vicinity of the charge remains unsuppressed by the magnetic field. These results may be useful for studying atomic spectra in super- strong magnetic fields of several Schwinger's characteristic values.

  13. THE LIGHT CURVE AND INTERNAL MAGNETIC FIELD OF THE MODE-SWITCHING PULSAR PSR B0943+10

    SciTech Connect (OSTI)

    Storch, Natalia I.; Lai, Dong [Center for Space Research, Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Ho, Wynn C. G. [Mathematical Sciences and STAG Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Heinke, Craig O. [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB, T6G 2E1 (Canada)

    2014-07-10

    A number of radio pulsars exhibit intriguing mode-switching behavior. Recent observations of PSR B0943+10 revealed correlated radio and X-ray mode switches, providing a new avenue for understanding this class of objects. The large X-ray pulse fraction observed during the radio-quiet phase (Q-mode) was previously interpreted as a result of changing obscuration of X-rays by dense magnetosphere plasma. We show that the large X-ray pulse fraction can be explained by including the beaming effect of a magnetic atmosphere, while remaining consistent with the dipole field geometry constrained by radio observations. We also explore a more extreme magnetic field configuration, where a magnetic dipole displaced from the center of the star produces two magnetic polar caps of different sizes and magnetic field strengths. These models are currently consistent with data in radio and X-rays and can be tested or constrained by future X-ray observations.

  14. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect (OSTI)

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  15. Electromagnetic Waves Reflectance of Graphene -- Magnetic Semiconductor Superlattice in Magnetic Field

    E-Print Network [OSTI]

    Kuzmin, Dmitry A; Shavrov, Vladimir G

    2014-01-01

    Electrodynamic properties of the graphene - magnetic semiconductor - graphene superlattice placed in magnetic field have been investigated theoretically in Faraday geometry with taking into account dissipation processes. Frequency and field dependences of the reflectance, transmittance and absorbtance of electromagnetic waves by such superlattice have been calculated for different numbers of periods of the structure and different sizes of the periods with using a transfer matrix method. The possibility of efficient control of electrodynamic properties of graphene - magnetic semiconductor - graphene superlattice has been shown.

  16. Universality of critical magnetic field in holographic superconductor

    E-Print Network [OSTI]

    D. Momeni; R. Myrzakulov

    2015-02-11

    In this letter we study aspects of the holographic superconductors analytically in the presence of a constant external magnetic field. We show that the critical temperature and critical magnetic field can be calculated at nonzero temperature. We detect the Meissner effect in such superconductors. A universal relation between black hole mass $ M$ and critical magnetic field $H_c$ is proposed as $\\frac{H_c}{M^{2/3}}\\leq 0.687365$. We discuss some aspects of phase transition in terms of black hole entropy and the Bekenstein's entropy to energy upper bound.

  17. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, Richard W. (San Ramon, CA); Hoffman, Myron A. (Davis, CA)

    1983-01-01

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

  18. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect (OSTI)

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  19. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, R.W.; Hoffman, M.A.

    1983-07-19

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  20. Luminosity and cooling of highly magnetised white dwarfs: Suppression of luminosity by strong magnetic fields

    E-Print Network [OSTI]

    Mukul Bhattacharya; Banibrata Mukhopadhyay; Subroto Mukerjee

    2015-09-03

    We investigate the luminosity and cooling of highly magnetised white dwarfs. We consider white dwarfs with electron-degenerate core and nondegenerate surface layers where cooling occurs by diffusion of photons. We find the temperature and density profiles in the surface layers or envelope of white dwarfs for radially constant and varying magnetic fields by solving the magnetostatic equilibrium and photon diffusion equations in a Newtonian framework. We also obtain the properties of white dwarfs at the core-envelope interface, when the core is assumed to be practically isothermal due to large thermal conductivity. With the increase in magnetic field, the interface temperature and density are found to be increasing. While the interface radius also increases with the increase in magnetic field when the field is hypothesised to be constant throughout the star, the interface radius decreases for varying fields. However, for white dwarfs having fixed interface radius or interface temperature, we find that the luminosity significantly decreases, falling in the range ~ 10^{-6}-10^{-13} solar luminosity, with the increase in magnetic field strength at the interface and hence envelope, in the corresponding range ~ 10^9-10^{11} G, in particular for the varying magnetic fields which are expected to be more realistic. This is remarkable as it argues for magnetised white dwarfs to be dimmer and be practically hidden in the H-R diagram. We also find the cooling rates corresponding to these luminosities. Interestingly, the decrease in temperature with time, for the fields under consideration, is not found to be appreciable --- at most by a factor of two and that is also for the constant field cases.

  1. Neutrino electromagnetic properties: new approach to oscillations in magnetic fields

    E-Print Network [OSTI]

    Dmitriev, Alexander; Studenikin, Alexander

    2015-01-01

    Several new and interesting aspects of neutrino oscillations in a magnetic field are considered: 1) We develop a standard usually used approach to the neutrino spin oscillations in the neutrino mass basis and obtain the effective neutrino spin (and "spin-mass") oscillation Hamiltonian that can be used for description of the neutrino oscillations between different pairs of neutrino states with different masses and helicities; 2) We derive the exact solution of the Dirac equation for a massive neutrino with nonzero magnetic moment in the presence of a constant transversal magnetic field that is rotating along the direction of the neutrino propagation (the twisting magnetic field) and on the basis of the obtained energy spectrum the neutrino spin oscillation effective Hamiltonian is derive; 3) We develop a new approach to neutrino spin oscillations that is based on the description of the neutrino spin states with the corresponding spin operator that commutes with the neutrino dynamics Hamiltonian in the magnetic...

  2. Magnetic Field Confinement in the Corona: The Role of Magnetic Helicity Accumulation

    E-Print Network [OSTI]

    Mei Zhang; Natasha Flyer; Boon Chye Low

    2006-03-01

    A loss of magnetic field confinement is believed to be the cause of coronal mass ejections (CMEs), a major form of solar activity in the corona. The mechanisms for magnetic energy storage are crucial in understanding how a field may possess enough free energy to overcome the Aly limit and open up. Previously, we have pointed out that the accumulation of magnetic helicity in the corona plays a significant role in storing magnetic energy. In this paper, we investigate another hydromagnetic consequence of magnetic-helicity accumulation. We propose a conjecture that there is an upper bound on the total magnetic helicity that a force-free field can contain. This is directly related to the hydromagnetic property that force-free fields in unbounded space have to be self-confining. Although a mathematical proof of this conjecture for any field configuration is formidable, its plausibility can be demonstrated with the properties of several families of power-law, axisymmetric force-free fields. We put forth mathematical evidence, as well as numerical, indicating that an upper bound on the magnetic helicity may exist for such fields. Thus, the accumulation of magnetic helicity in excess of this upper bound would initiate a non-equilibrium situation, resulting in a CME expulsion as a natural product of coronal evolution.

  3. The effect of Strong Magnetic Field On the Standard Model of Quasars and AGNs

    E-Print Network [OSTI]

    Peng, Qiuhe

    2015-01-01

    Recent observational evidence indicates that the center of our Milky Way harbours a super-massive object with ultra-strong radial magnetic field (Eatough et al., 2013). Here we demonstrate that the radiations observed in the vicinity of the Galactic Center (GC) (Falcke and Marko 2013) cannot be emitted by the gas of the accretion disk since the accreting plasma is prevented from approaching to the GC by the abnormally strong radial magnetic field. These fields obstruct the infalling accretion flow from the inner region of the disk and the central massive black hole in the standard model. It is expected that the observed radiations near the Galactic Center cannot be generated by the central black hole. We also demonstrate that the observed ultra-strong radial magnetic field near the Galactic Center ( Eatough et al., 2013) cannot be generated by the - turbulence dynamo mechanism of Parker since preliminary qualitative estimate in terms of this mechanism gives a magnetic field strength six orders of magnitude sm...

  4. Dynamics of a dielectric droplet suspended in a magnetic fluid in electric and magnetic fields

    E-Print Network [OSTI]

    Arthur Zakinyan; Elena Tkacheva; Yury Dikansky

    2012-03-24

    The behavior of a microdrop of dielectric liquid suspended in a magnetic fluid and exposed to the action of electric and magnetic fields is studied experimentally. With increasing electric field, the deformation of droplets into oblate ellipsoid, toroid and curved toroid was observed. At the further increase in the electric field, the bursting of droplets was also revealed. The electrorotation of deformed droplets was observed and investigated. The influence of an additional magnetic field on the droplet dynamics was studied. The main features of the droplet dynamics were interpreted and theoretically examined.

  5. Maintaining the closed magnetic-field-line topology of a field-reversed configuration (FRC)

    E-Print Network [OSTI]

    not significantly change the FRC's closed field structure. The FRC is an example of a self-organized plasma wherein field-line closure analysis. The study of field-line closure for FRC-like plasmas with transverse1 Maintaining the closed magnetic-field-line topology of a field-reversed configuration (FRC

  6. Comments on Critical Electric and Magnetic Fields from Holography

    E-Print Network [OSTI]

    S. Bolognesi; F. Kiefer; E. Rabinovici

    2013-01-29

    We discuss some aspects of critical electric and magnetic fields in a field theory with holographic dual description. We extend the analysis of arxiv:1109.2920, which finds a critical electric field at which the Schwinger pair production barrier drops to zero, to the case of magnetic fields. We first find that, unlike ordinary weakly coupled theories, the magnetic field is not subject to any perturbative instability originating from the presence of a tachyonic ground state in the W-boson spectrum. This follows from the large value of the 't Hooft coupling \\lambda, which prevents the Zeeman interaction term to overcome the particle mass at high B. Consequently, we study the next possible B-field instability, i.e. monopole pair production, which is the S-dual version of the Schwinger effect. Also in this case a critical magnetic field is expected when the tunneling barrier drops to zero. These Schwinger-type criticalities are the holographic duals, in the bulk, to the fields E or B reaching the tension of F1 or D1 strings respectively. We then discuss how this effect is modified when electric and magnetic fields are present simultaneously and dyonic states in the spectrum can be pair produced by a generic E - B background. Finally, we analyze finite temperature effects on Schwinger criticalities, i.e. in the AdS-Schwarzshild black hole background.

  7. Transportation of Static Magnetic Fields by a practically realizable Magnetic Hose

    E-Print Network [OSTI]

    Zhou, P -B; Liu, H; Li, X -T; Zhang, H; Yang, C; Ye, C -Q

    2015-01-01

    A practically realizable magnetic hose, constructed by wrapping a ferromagnetic cylinder with alternate superconductor-ferromagnet heterostructure, was developed and its capability to transfer the static magnetic fields, e.g., generated by an Nd-Fe-B magnet, was examined in this letter. A diverse dependence of the transfer efficiency on the diameter of the inner cylinder was found in the magnetic hose demonstrators and the underlying cause was clarified by the finite-element simulations. Transfer efficiency of over 50% in terms of a moderate field has been achieved in the best demonstrator of this study, even with a thin sheet merely having moderate magnetism to embody the ferromagnet in the heterostructure. This work links the theoretically derived model with a physical reality and may also conceive fantastic solutions to form a magnetic circuit with minimum leakage or to create a magnetically shielded space, both of which are deemed promising in most electromagnetic devices.

  8. 1 Magnetic Fields and Solar This article describesthe relationshipbetweenmagnetic

    E-Print Network [OSTI]

    reconnection. The free magnetic energy is con- verted to thermal and non- thermal energy to power solar ares, which create thermal emissions and accel- eration of non-thermal particles. The total energy1 Magnetic Fields and Solar Flares This article describesthe relationshipbetweenmagnetic elds

  9. November 18, 2005 Chandra Observations of Magnetic Fields and Relativistic

    E-Print Network [OSTI]

    Schwartz, Daniel

    November 18, 2005 Chandra Observations of Magnetic Fields and Relativistic Beaming in Four Quasar microwave background. If particles and magnetic #12;elds are near minimum energy density 1 Harvard CSIRO Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia 4 Jet Propulsion

  10. History of Solar Magnetic Fields since George Ellery Hale

    E-Print Network [OSTI]

    Stenflo, Jan

    2015-01-01

    As my own work on the Sun's magnetic field started exactly 50 years ago at Crimea in the USSR, I have been a participant in the field during nearly half the time span since Hale's discovery in 1908 of magnetic fields in sunspots. The present historical account is accompanied by photos from my personal slide collection, which show a number of the leading personalities who advanced the field in different areas: measurement techniques, from photographic to photoelectric and imaging methods in spectro-polarimetry; theoretical foundations of MHD and the origin of cosmic magnetic fields (birth of dynamo theory); the quest for increased angular resolution from national projects to international consortia (for instruments both on ground and in space); introduction of the Hanle effect in astrophysics and the Second Solar Spectrum as its playground; small-scale nature of the field, the fundamental resolution limit, and transcending it by resolution-independent diagnostics.

  11. Vorticity and magnetic field production in relativistic ideal fluids

    E-Print Network [OSTI]

    Jian-Hua Gao; Bin Qi; Shou-Yu Wang

    2015-01-26

    In the framework of relativistic ideal hydrodynamics, we study the production mechanism for vorticity and magnetic field in relativistic ideal fluids. It is demonstrated that in the uncharged fluids the thermal vorticity will always satisfy the Kelvin's theorem and the circulation must be conserved. However, in the charged fluids, the vorticity and magnetic field can be produced by the interaction between the entropy gradients and the fluid velocity gradients. Especially, in the multiple charged fluids, the vorticity and magnetic field can be produced by the interaction between the inhomogenous charge density ratio and the fluid velocity gradients even if the entropy distribution is homogeneous, which provides another mechanism for the production of vorticity and magnetic field in relativistic plasmas or in the early universe.

  12. LOWER BOUNDS ON INTERGALACTIC MAGNETIC FIELDS FROM SIMULTANEOUSLY...

    Office of Scientific and Technical Information (OSTI)

    bounds on intergalactic magnetic fields (IGMFs) from upper limits on the pair echo emission from the blazar Mrk 501, that is, delayed GeV emission from secondary esup -esup...

  13. Mechanical design of a high field common coil magnet

    E-Print Network [OSTI]

    Caspi, S.

    2011-01-01

    paper presents the mechanical design for a 14 tesla 2-in-143481 SC MAG #668 MECHANICAL DESIGN OF A mGH FIELD COMMONpaper describes the mechanical design of a second magnet in

  14. Ferrofluid surface and volume flows in uniform rotating magnetic fields

    E-Print Network [OSTI]

    Elborai, Shihab M. (Shihab Mahmoud), 1977-

    2006-01-01

    Ferrofluid surface and volume effects in uniform dc and rotating magnetic fields are studied. Theory and corroborating measurements are presented for meniscus shapes and resulting surface driven flows, spin-up flows, and ...

  15. Low-field classroom nuclear magnetic resonance system

    E-Print Network [OSTI]

    Zimmerman, Clarissa Lynette

    2010-01-01

    The goal of this research was to develop a Low-field Classroom NMR system that will enable hands-on learning of NMR and MRI concepts in a Biological-Engineering laboratory course. A permanent magnet system, designed using ...

  16. CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE

    SciTech Connect (OSTI)

    Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Tevzadze, Alexander G., E-mail: tinatin@andrew.cmu.edu [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia)

    2013-06-10

    We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

  17. Confined Dirac Particles in Constant and Tilted Magnetic Field

    E-Print Network [OSTI]

    Abdulaziz D. Alhaidari; Hocine Bahlouli; Ahmed Jellal

    2012-02-23

    We study the confinement of charged Dirac particles in 3+1 space-time due to the presence of a constant and tilted magnetic field. We focus on the nature of the solutions of the Dirac equation and on how they depend on the choice of vector potential that gives rise to the magnetic field. In particular, we select a "Landau gauge" such that the momentum is conserved along the direction of the vector potential yielding spinor wavefunctions, which are localized in the plane containing the magnetic field and normal to the vector potential. These wave functions are expressed in terms of the Hermite polynomials. We point out the relevance of these findings to the relativistic quantum Hall effect and compare with the results obtained for a constant magnetic field normal to the plane in 2+1 dimensions.

  18. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect (OSTI)

    Del-Castillo-Negrete, Diego B [ORNL; Chacon, Luis [ORNL

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  19. Neutron in a Strong Magnetic Field: Finite Volume Effects

    E-Print Network [OSTI]

    Brian C. Tiburzi

    2014-03-04

    We investigate the neutron's response to magnetic fields on a torus with the aid of chiral perturbation theory, and expose effects from non-vanishing holonomies. The determination of such effects necessitates non-perturbative treatment of the magnetic field; and, to this end, a strong-field power counting is employed. Using a novel coordinate-space method, we find the neutron propagates in a coordinate-dependent effective potential that we obtain by integrating out charged pions winding around the torus. Knowledge of these finite volume effects will aid in the extraction of neutron properties from lattice QCD computations in external magnetic fields. In particular, we obtain finite volume corrections to the neutron magnetic moment and magnetic polarizability. These quantities have not been computed correctly in the literature. In addition to effects from non-vanishing holonomies, finite volume corrections depend on the magnetic flux quantum through an Aharonov-Bohm effect. We make a number of observations that demonstrate the importance of non-perturbative effects from strong magnetic fields currently employed in lattice QCD calculations. These observations concern neutron physics in both finite and infinite volume.

  20. Error field and magnetic diagnostic modeling for W7-X

    SciTech Connect (OSTI)

    Lazerson, Sam A.; Gates, David A.; NEILSON, GEORGE H.; OTTE, M.; Bozhenkov, S.; Pedersen, T. S.; GEIGER, J.; LORE, J.

    2014-07-01

    The prediction, detection, and compensation of error fields for the W7-X device will play a key role in achieving a high beta (? = 5%), steady state (30 minute pulse) operating regime utilizing the island divertor system [1]. Additionally, detection and control of the equilibrium magnetic structure in the scrape-off layer will be necessary in the long-pulse campaign as bootstrapcurrent evolution may result in poor edge magnetic structure [2]. An SVD analysis of the magnetic diagnostics set indicates an ability to measure the toroidal current and stored energy, while profile variations go undetected in the magnetic diagnostics. An additional set of magnetic diagnostics is proposed which improves the ability to constrain the equilibrium current and pressure profiles. However, even with the ability to accurately measure equilibrium parameters, the presence of error fields can modify both the plasma response and diverter magnetic field structures in unfavorable ways. Vacuum flux surface mapping experiments allow for direct measurement of these modifications to magnetic structure. The ability to conduct such an experiment is a unique feature of stellarators. The trim coils may then be used to forward model the effect of an applied n = 1 error field. This allows the determination of lower limits for the detection of error field amplitude and phase using flux surface mapping. *Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  1. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac

    SciTech Connect (OSTI)

    St Aubin, J.; Santos, D. M.; Steciw, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-09-15

    Purpose: Linac-magnetic resonance (MR) systems have been proposed in order to achieve real-time image guided radiotherapy. The design of a new linac-MR system with the in-line 6 MV linac generating x-rays along the symmetry axis of an open MR imager is outlined. This new design allows for a greater MR field strength to achieve better quality images while reducing hot and cold spots in treatment planning. An investigation of linac's performance in the longitudinal fringe magnetic fields of the MR imager is given. Methods: The open MR imager fringe magnetic field was modeled using the analytic solution of the magnetic field generated from current carrying loops. The derived solution was matched to the magnetic fringe field isolines provided for a 0.5 T open MR imager through Monte Carlo optimization. The optimized field solution was then added to the previously validated 6 MV linac simulation to quantify linac's performance in the fringe magnetic field of a 0.5 T MR imager. To further the investigation, linac's performance in large fringe fields expected from other imagers was investigated through the addition of homogeneous longitudinal fields. Results: The Monte Carlo optimization of the analytic current loop solution provided good agreement with the magnetic fringe field isolines supplied by the manufacturer. The range of magnetic fields the linac is expected to experience when coupled to the 0.5 T MR imager was determined to be from 0.0022 to 0.011 T (as calculated at the electron gun cathode). The effect of the longitudinal magnetic field on the electron beam was observed to be only in the electron gun. The longitudinal field changed the electron gun optics, affecting beam characteristics, such as a slight increase in the injection current and beam diameter, and an increasingly nonlaminar transverse phase space. Although the target phase space showed little change in its energy spectrum from the altered injection phase space, a reduction in the target current and spatial distribution peak intensity was observed. Despite these changes, the target phase space had little effect on the depth dose curves or dose profiles calculated for a 40x40 cm{sup 2} field at 1.5 cm depth. At longitudinal fields larger than 0.012 T, a drastic reduction in the injection current from the electron gun was observed due to a large fraction of electrons striking the anode. This further reduced the target current, which reached a minimum of 28{+-}2 mA at 0.06 T. A slow increase in the injection and target currents was observed at fields larger than 0.06 T due to greater beam collimation in the anode beam tube. Conclusions: In an effort to achieve higher quality images and a reduction in hot and cold spots in the treatment plan, a parallel configuration linac-MR system is presented. The longitudinal magnetic fields of the MR imager caused large beam losses within the electron gun. These losses may be eliminated through a redesign of the electron gun optics incorporating a longitudinal magnetic field, or through magnetic shielding, which has already been proven successful for the transverse configuration.

  2. Dirac sextic oscillator in the constant magnetic field

    E-Print Network [OSTI]

    Ramazan Koc; Mehmet Koca

    2005-11-19

    We introduce a Dirac equation which reproduces the usual radial sextic oscillator potential in the non-relativistic limit. We determine its energy spectrum in the presence of the magnetic field. It is shown that the equation is solved in the context of quasi-exactly-solvable problems. The equation possesses hidden $sl_{2}$-algebra and the destroyed symmetry of the equation can be recovered for a specific values of the magnetic field which leads to exact determination of the eigenvalues.

  3. A study of Overhauser pumping in weak magnetic fields 

    E-Print Network [OSTI]

    Gondran, Gregory Rhea

    1986-01-01

    RESONANCE THEORY. . Basic Dynamics Larmor Precession; Effect of a Rotating Field III. SPIN ENSEMBLES Paramagnetism The Bloch Equation Relaxation Effects Steady State Solutions. IV. OVERHAUSER PUMPING . V. EXPERIMENTAL DETECTION METHOD . . The DC... for positive gyromagnetic ratio. III. SPIN ENSEMBLES Paramagnetism NMR deals with samples which have a net macroscopic magnetization due to the nuclear spins when placed in a static magnetic field B, . This effect is known as:nuclear paramagnetism...

  4. One-way Ponderomotive Barrier in a Uniform Magnetic Field

    SciTech Connect (OSTI)

    I.Y. Dodin; N.J. Fisch

    2005-02-14

    The possibility of an asymmetric ponderomotive barrier in a nonuniform dc magnetic field by high-frequency radiation near the cyclotron resonance for selected plasma species was contemplated in Physics of Plasmas 11 (November 2004) 5046-5064. Here we show that a similar one-way barrier, which reflects particles incident from one side while transmitting those incident from the opposite side, can be produced also in a uniform magnetic field, entirely due to inhomogeneity of high-frequency drive.

  5. Motion Caused by Magnetic Field in Lobachevsky Space

    E-Print Network [OSTI]

    V. V. Kudryashov; Yu. A. Kurochkin; E. M. Ovsiyuk; V. M. Red'kov

    2010-06-27

    We study motion of a relativistic particle in the 3-dimensional Lobachevsky space in the presence of an external magnetic field which is analogous to a constant uniform magnetic field in the Euclidean space. Three integrals of motion are found and equations of motion are solved exactly in the special cylindrical coordinates. Motion on surface of the cylinder of constant radius is considered in detail.

  6. Propellantless propulsion in magnetic fields by partially shielded current

    E-Print Network [OSTI]

    Bergamin, L; Pinchook, A

    2006-01-01

    A new device for propellantless propulsion in presence of a magnetic field is discussed. The functional principle shares some features with electrodynamic tethers. However, the tether structure is replaced by a closed wire, which is partially shielded from the magnetic field by means of a superconductor. Therefore, it does not depend on the presence of a plasma. We show that even a relatively small device can yield interesting propulsivet forces for drag compensation or for orbital transfers.

  7. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect (OSTI)

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ?10{sup 4} T (100 Megagauss) over small volumes (?10{sup ?10}m{sup 3}) at high plasma densities (?10{sup 28}m{sup ?3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  8. Consistent generation of magnetic fields in axion inflation models

    E-Print Network [OSTI]

    Tomohiro Fujita; Ryo Namba; Yuichiro Tada; Naoyuki Takeda; Hiroyuki Tashiro

    2015-04-15

    There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton $\\phi$ through the characteristic term $\\phi F\\tilde F$, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. The EM field is subsequently amplified by parametric resonance during the period of inflaton oscillation. Once the thermal plasma is formed (reheating), the produced helical magnetic fields undergo a turbulent process called inverse cascade, which shifts their peak correlation scales from smaller to larger scales. We consistently take all these effects into account within the regime where the perturbation of $\\phi$ is negligible and obtain $B_{\\rm eff} \\sim 10^{-19}$G, indicating the necessity of additional mechanisms to accommodate the observations.

  9. Deriving Potential Coronal Magnetic Fields from Vector Magnetograms

    E-Print Network [OSTI]

    Welsch, Brian T

    2015-01-01

    The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampere's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used, since available line-of-sight magnetic field measurements approximated the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid potential field that minimizes the integrated square of the residu...

  10. Spin echo without an external permanent magnetic field

    E-Print Network [OSTI]

    Joakim Bergli; Leonid Glazman

    2006-09-19

    The spin echo techniques aim at the elimination of the effect of a random magnetic field on the spin evolution. These techniques conventionally utlize the application of a permanent field which is much stronger than the random one. The strong field, however, may also modify the magnetic response of the medium containing the spins, thus altering their ``natural'' dynamics. We suggest an iterative scheme for generating a sequence of pulses which create an echo without an external permanent field. The approximation to the ideal echo improves with the sequence length.

  11. Large-Scale Magnetic Fields, Dark Energy and QCD

    E-Print Network [OSTI]

    Federico R. Urban; Ariel R. Zhitnitsky

    2010-08-20

    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavouring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the $U(1)_A$ problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: $\\rho_{EM}\\simeq B^2 \\simeq (\\frac{\\alpha}{4\\pi})^2 \\rho_{DE}$, $\\rho_{DE}$ hence acting as a source for the magnetic energy $\\rho_{EM}$. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the universe; the presence of parity violation on the enormous scales $1/H$, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.

  12. Magnetic Fields via Polarimetry: Progress of Grain Alignment Theory

    E-Print Network [OSTI]

    A. Lazarian

    2002-08-28

    Most astrophysical systems, e.g. stellar winds, the diffuse interstellar medium, molecular clouds, are magnetized with magnetic fields that influence almost all of their properties. One of the most informative techniques of magnetic field studies is based on the use of starlight polarization and polarized emission arising from aligned dust. How reliable the interpretation of the polarization maps in terms of magnetic fields is the issue that the grain alignment theory addresses. Although grain alignment is a problem of half a century standing, recent progress achieved in the field makes us believe that we are approaching the solution of this mystery. I review basic physical processes involved in grain alignment and discuss the niches for different alignment mechanisms. I show why mechanisms that were favored for decades do not look so promising right now, while the radiative torque mechanism ignored for more than 20 years looks so attractive. I define the observational tests and outline the circumstances when grain alignment theory predicts that new yet untapped information of magnetic field structure is available through polarimetry. In particular, I touch upon mapping magnetic fields in circumstellar regions, interplanetary space and in comet comae.

  13. Dredging-induced near-field resuspended sediment concentrations and source strengths. Final report

    SciTech Connect (OSTI)

    Collins, M.A.

    1995-08-01

    Dredging in riverine, lacustrine, and estuarine environments introduces bottom sediments into overlying waters because of imperfect entrainment and incomplete capture of sediments resuspended during the dredging process and the spillage or leakage of sediments during subsequent transportation and disposal of the dredged sediments. Resuspension of bottom sediments and resulting dispersal may pose water quality problems in waters near dredging operations. Interest in this issue increases when the sediment being dredged is highly contaminated. Resuspension of sediments by dredging is affected by dredge characteristics, dredge operating conditions, properties of bottom and suspended sediments, and site-specific conditions such as bottom topography, ambient current, and depth. This report summarizes field studies conducted by the U.S. Army Corps of Engineers to assess the suspended sediment concentrations in the water column in the vicinity of various dredge types. These concentration data are combined with conceptual models for resuspended sediment source strength geometries and velocity patterns to estimate sediment source strengths for cutterhead and clamshell dredges. Although unverified, these models provide a starting point for a more thorough analytical evaluation of the entire resuspension, transport, and deposition process.

  14. Magnetic Fields are not ignorable in the dynamics of disks

    E-Print Network [OSTI]

    E. Battaner; E. Florido; A. Guijarro

    2000-09-25

    Magnetic fields are considered to be dominant when $\\epsilon_{B}\\geq\\epsilon_{K}$, being $\\epsilon_{B}=B^{2}/8\\pi$ the magnetic energy density and $\\epsilon_{K}=1/2 \\rho\\theta^{2}$ the rotation energy density, for a conventional moderate B= 1 $\\mu$G. They are considered to be negligible when $\\epsilon_{B}<\\epsilon_{K}$ for $B\\sim 10 \\mu$G. With no assumption and no theoretical calculation, we show that magnetic fields cannot be ignored in the outer parts of a galaxy like the Milky Way and in the whole disk of a dwarf galaxy.

  15. $\\mathrm H_2^+$ in a weak magnetic field

    E-Print Network [OSTI]

    Héctor Medel Cobaxin; Alexander Alijah; Juan Carlos López Vieyra; Alexander V. Turbiner

    2014-09-22

    The electronic energy of $\\mathrm H_2^+$ in magnetic fields of up to $B=0.2B_0$ (or 4.7 $\\times 10^4$ Tesla) is investigated. Numerical values of the magnetic susceptibility for both the diamagnetic and paramagnetic contributions are reported for arbitrary orientations of the molecule in the magnetic field. It is shown that both diamagnetic and paramagnetic susceptibilities grow with inclination, while paramagnetic susceptibility is systematically much smaller than the diamagnetic one. Accurate two-dimensional Born-Oppenheimer surfaces are obtained with special trial functions. Using these surfaces, vibrational and rotational states are computed and analysed for the isotopologues $\\mathrm H_2^+$ and $\\mathrm D_2^+$.

  16. Fluorescent lamp unit with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  17. Tuning magnetic disorder in diluted magnetic semiconductors using high fields to 89 Tesla

    SciTech Connect (OSTI)

    Crooker, Scott A; Samarth, Nitin

    2008-01-01

    We describe recent and ongoing studies at the National High Magnetic Field Laboratory at Los Alamos using the new '100 Tesla Multi-Shot Magnet', which is presently delivering fields up to {approx}89 T during its commissioning. We discuss the first experiments performed in this magnet system, wherein the linewidth of low-temperature photoluminescence spectra was used to directly reveal the degree of magnetic alloy disorder 'seen' by excitons in single Zn{sub 0.80}Cd{sub 0.22}Mn{sub 0.08}Se quantum wells. The magnetic potential landscape in II-VI diluted magnetic semiconductors (DMS) is typically smoothed when the embedded Mn{sup 2+} spins align in an applied field. However, an important (but heretofore untested) prediction of current models of compositional disorder is that magnetic alloy fluctuations in many DMS compounds should increase again in very large magnetic fields approaching 100 T. We observed precisely this increase above {approx}70 T, in agreement with a simple model of magnetic alloy disorder.

  18. Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields II. Global Alfvén Modes

    E-Print Network [OSTI]

    H. Sotani; K. D. Kokkotas; N. Stergioulas; M. Vavoulidis

    2006-11-21

    We investigate torsional Alfv\\'{e}n modes of relativistic stars with a global dipole magnetic field. It has been noted recently (Glampedakis et al. 2006) that such oscillation modes could serve as as an alternative explanation (in contrast to torsional crustal modes) for the SGR phenomenon, if the magnetic field is not confined to the crust. We compute global Alfv\\'{e}n modes for a representative sample of equations of state and magnetar masses, in the ideal MHD approximation and ignoring $\\ell \\pm 2$ terms in the eigenfunction. We find that the presence of a realistic crust has a negligible effect on Alfv\\'{e}n modes for $B > 4\\times 10^{15}$ G. Furthermore, we find strong avoided crossings between torsional Alfv\\'{e}n modes and torsional crust modes. For magnetar-like magnetic field strengths, the spacing between consecutive Alfv\\'{e}n modes is of the same order as the gap of avoided crossings. As a result, it is not possible to identify modes of predominantly crustal character and all oscillations are predominantly Alfv\\'{e}n-like. Interestingly, we find excellent agreement between our computed frequencies and observed frequencies in two SGRs, for a maximum magnetic field strenght in the range of (0.8--1.2)$\\times 10^{16}$ G.

  19. Plasma control by modification of helicon wave propagation in low magnetic fields

    SciTech Connect (OSTI)

    Lafleur, T.; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2010-07-15

    By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasma potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.

  20. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM); Mueller, Fred M. (Los Alamos, NM); Smith, James L. (Los Alamos, NM)

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  1. Neutrino oscillations in matter and in twisting magnetic fields

    E-Print Network [OSTI]

    Maxim Dvornikov

    2007-11-30

    We find the solution to the Dirac equation for a massive neutrino with a magnetic moment propagating in background matter and interacting with the twisting magnetic field. In frames of the relativistic quantum mechanics approach to the description of neutrino evolution we use the obtained solution to derive neutrino wave functions satisfying the given initial condition. We apply the results to the analysis of neutrino spin oscillations in matter under the influence of the twisting magnetic field. Then on the basis of the yielded results we describe spin-flavor oscillations of Dirac neutrinos that mix and have non-vanishing matrix of magnetic moments. We again formulate the initial condition problem, derive neutrinos wave functions and calculate the transition probabilities for different magnetic moments matrices. The consistency of the obtained results with the quantum mechanical treatment of spin-flavor oscillations is discussed. We also consider several applications to astrophysical and cosmological neutrinos.

  2. Electric and magnetic field reduction by alternative transmission line options

    SciTech Connect (OSTI)

    Stewart, J.R. (Power Technologies, Inc., Schenectady, NY (United States)); Dale, S.J. (Oak Ridge National Lab., TN (United States)); Klein, K.W. (Energetics, Inc., Columbia, MD (United States))

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  3. Magnetic field fluctuations observed in the heliosheath and interstellar magnetic field by Voyager 1 at 115.7-124.9 AU during 2011-2013

    SciTech Connect (OSTI)

    Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States); Ness, N. F. [Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Florinski, V.; Heerikhuisen, J., E-mail: lburlagahsp@verizon.net, E-mail: nfnudel@yahoo.com [Department of Space Science, University of Alabama, Huntsville, AL 35899 (United States)

    2014-09-10

    We discuss microscale fluctuations of the hour averages of the magnetic field B observed on a scale of one day by Voyager 1 (V1) from 2011.0 to 2012.3143 (when it was within the distant heliosheath, where the average magnetic field strength (B) = 0.17 nT) and during the interval from 2012.6503 to 2013.5855 (when it was within the interstellar plasma with (B) = 0.47 nT). In both regions, the fluctuations were primarily compressive fluctuations, varying along the average B (?T direction in RTN coordinates). In the heliosheath, the average of the daily standard deviations (SDs) of the compressive and transverse components of B were (SD{sub c}) = 0.010 nT and (SD{sub t}) ? 0.005 nT (which is the limit of the measurement). In the distant heliosheath (SD{sub c})/(B) = 0.06, and the distributions of SD were skewed and highly kurtotic. The interstellar magnetic field (ISMF) strength was B = 0.48 nT, but the fluctuations were below the limit of measurement: (SD{sub c}) = 0.004 nT and (abs(SD{sub t})) = 0.004 nT. The distributions of these interstellar SDs have skewness and kurtosis consistent with a Gaussian noise distribution. We also discuss the fluctuations of 48 s averages of B on a scale of 1 day during a 30 day interval when V1 was observing the ISMF. For the fluctuations in all three components of B, SD = 0.010 nT, which gives an upper limit on the fluctuations of the ISMF on the scales observed by V1. This SD rules out the possibility that there is significant power in electromagnetic fluctuations generated by pickup ion ring instabilities at these scales, which strongly constrains models of the IBEX ribbon.

  4. Quasi-harmonic oscillatory motion of charged particles around a Schwarzschild black hole immersed in an uniform magnetic field

    E-Print Network [OSTI]

    Martin Kološ; Zden?k Stuchlík; Arman Tursunov

    2015-06-22

    In order to test the role of large-scale magnetic fields in quasiperiodic oscillation phenomena observed in microquasars, we study oscillatory motion of charged particles in vicinity of a Schwarzschild black hole immersed into an external asymptotically uniform magnetic field. We determine the fundamental frequencies of small harmonic oscillations of charged test particles around stable circular orbits in the equatorial plane of a magnetized black hole, and discuss the radial profiles of frequencies of the radial and latitudinal harmonic oscillations in dependence on the mass of the black hole and the strength of the magnetic field. We demonstrate that assuming relevance of resonant phenomena of the radial and latitudinal oscillations of charged particles at their frequency ratio $3:2$, the oscillatory frequencies of charged particles can be well related to the frequencies of the twin high-frequency quasi-periodic oscillations observed in the microquasars GRS 1915+105, XTE 1550-564 and GRO 1655-40.

  5. Quasi-harmonic oscillatory motion of charged particles around a Schwarzschild black hole immersed in an uniform magnetic field

    E-Print Network [OSTI]

    Kološ, Martin; Tursunov, Arman

    2015-01-01

    In order to test the role of large-scale magnetic fields in quasiperiodic oscillation phenomena observed in microquasars, we study oscillatory motion of charged particles in vicinity of a Schwarzschild black hole immersed into an external asymptotically uniform magnetic field. We determine the fundamental frequencies of small harmonic oscillations of charged test particles around stable circular orbits in the equatorial plane of a magnetized black hole, and discuss the radial profiles of frequencies of the radial and latitudinal harmonic oscillations in dependence on the mass of the black hole and the strength of the magnetic field. We demonstrate that assuming relevance of resonant phenomena of the radial and latitudinal oscillations of charged particles at their frequency ratio $3:2$, the oscillatory frequencies of charged particles can be well related to the frequencies of the twin high-frequency quasi-periodic oscillations observed in the microquasars GRS 1915+105, XTE 1550-564 and GRO 1655-40.

  6. Observational testing of magnetospheric magnetic field models at geosynchronous orbit

    SciTech Connect (OSTI)

    Weiss, L.A.; Thomsen, M.F.; Reeves, G.D.; McComas, D.J.

    1996-09-01

    Empirical mode which estimate the magnetic field direction and magnitude at any point within the magnetosphere under a variety of conditions play an important role in space weather forecasting. We report here on a number of different studies aimed at quantitatively evaluating these models, and in particular the Tsyganenko T89a model. The models are evaluated in two basic ways: (1) by comparing the range of magnetic field tilt angles observed at geosynchronous orbit with the ranges predicted for the same locations by the models; and (2) by comparing the observed magnetic field mapping between the ionosphere and geosynchronous orbit (using two-satellite magnetic field conjunctions) with the model predictions at the same locations. We find that while the T89a model predicts reasonably well the basic variation in tilt angle with local time and permits a range of field inclinations adequate to encompass the majority of observed angles on the dawn, dusk, and night sides, it is unable to reproduce the range of inclinations on the dayside. The model also predicts a smaller magnetic latitude range of geosynchronous field line footpoints than the observed two-satellite mapping indicate. Together, these results suggest that the next generation of field models should allow a greater range of stretching, especially in local time sectors away from midnight. It is important to note, however, that any increased range should encompass less-stretched configurations: although there are certainly cases where the models are not sufficiently stretched, we find that on average all magnetic field models tested, including T89a, are too stretched. Finally, in investigating how well the observed degree of field stretch was ordered by various magnetospheric indices, we find that the tilt of the field at geosynchronous orbit is a promising candidate for the incorporation into future models.

  7. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM); Mueller, Fred M. (Los Alamos, NM); Smith, James L. (Los Alamos, NM)

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  8. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOE Patents [OSTI]

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  9. ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Chapman, Nicholas L.; Matthews, Tristan G.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Davidson, Jacqueline A. [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 264-782, Pasadena, CA 91109 (United States); Houde, Martin [Department of Physics and Astronomy, University of Western Ontario, London, ON (Canada); Kwon, Woojin; Looney, Leslie W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Li Zhiyun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Matthews, Brenda [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peng Ruisheng [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); Vaillancourt, John E. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232-11, Moffett Field, CA 94035-0001 (United States); Volgenau, Nikolaus H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States)

    2013-06-20

    We present 350 {mu}m polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 {mu}m polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15 Degree-Sign ). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis.

  10. Influence of solar chaotic magnetic fields on neutrino oscillations

    E-Print Network [OSTI]

    E. Torrente-Lujan

    1999-12-02

    We consider the effect of a random magnetic field in the convective zone of the Sun on resonant neutrino spin-flavour oscillations. The expected signals in the different experiments (SK, GALLEX-SAGE,Homestake) are obtained as a function of the level of noise, regular magnetic field and neutrino mixing parameters. Previous results obtained for small mixing and ad-hoc regular magnetic profiles are reobtained. We find that MSW regions are stable up to very large levels of noise (P=0.7-0.8) and they are acceptable from the point of view of antineutrino production. For strong noise any parameter region $(\\Delta m^2, \\sin^2 2\\theta)$ is excluded: this model of noisy magnetic field is not compatible with particle physics solutions to the SNP. scenario.

  11. Cubic Ideal Ferromagnets at Low Temperature and Weak Magnetic Field

    E-Print Network [OSTI]

    Christoph P. Hofmann

    2015-11-10

    The low-temperature series for the free energy density, pressure, magnetization and susceptibility of cubic ideal ferromagnets in weak external magnetic fields are discussed within the effective Lagrangian framework up to three loops. The structure of the simple, body-centered, and face-centered cubic lattice is taken into account explicitly. The expansion involves integer and half-integer powers of the temperature. The corresponding coefficients depend on the magnetic field and on low-energy effective constants that can be expressed in terms of microscopic quantities. Our formulas may also serve as efficiency or consistency check for other techniques like Green's function methods, where spurious terms in the low-temperature expansion have appeared. We explore the sign and magnitude of the spin-wave interaction in the pressure, magnetization and susceptibility, and emphasize that our effective field theory approach is fully systematic and rigorous.

  12. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOE Patents [OSTI]

    Xu,Shoujun (Berkeley, CA); Lowery, Thomas L. (Belmont, MA); Budker, Dmitry (El Cerrito, CA); Yashchuk, Valeriy V. (Richmond, CA); Wemmer, David E. (Berkeley, CA); Pines, Alexander (Berkeley, CA)

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  13. Electric and magnetic fields program overview

    SciTech Connect (OSTI)

    1995-09-01

    DOE`s EMF Program is presented. The possibility of biological effects from electromagnetic fields created by electricity is examined. Current research at many National Laboratories is reviewed.

  14. Effects of power law primordial magnetic field on big bang nucleosynthesis

    E-Print Network [OSTI]

    Dai G. Yamazaki; Motohiko Kusakabe

    2012-12-12

    Big bang nucleosynthesis (BBN) is affected by the energy density of a primordial magnetic field (PMF). For an easy derivation of constraints on models for PMF generations, we assume a PMF with a power law (PL) distribution in wave number defined with a field strength, a PL index, and maximum and minimum scales at a generation epoch. We then show a relation between PL-PMF parameters and the scale invariant (SI) strength of PMF for the first time. We perform a BBN calculation including PMF effects, and show abundances as a function of baryon to photon ratio $\\eta$. The SI strength of the PMF is constrained from observational constraints on abundances of $^4$He and D. The minimum abundance of $^7$Li/H as a function of $\\eta$ slightly moves to a higher $^7$Li/H value at a larger $\\eta$ value when a PMF exists during BBN. We then discuss degeneracies between the PL-PMF parameters in the PMF effect. In addition, we assume a general case in which both the existence and the dissipation of PMF are possible. It is then found that an upper limit on the SI strength of the PMF can be derived from a constraint on $^4$He abundance, and that a lower limit on the allowed $^7$Li abundance is significantly higher than those observed in metal-poor stars.

  15. DOES MAGNETIC-FIELD-ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION?

    SciTech Connect (OSTI)

    Li Zhiyun [Astronomy Department, University of Virginia, Charlottesville, VA (United States); Krasnopolsky, Ruben; Shang, Hsien [Academia Sinica, Theoretical Institute for Advanced Research in Astrophysics, Taipei, Taiwan (China)

    2013-09-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.

  16. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2002-03-13

    The paper gives the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integro-differential equation which takes into account the propulsion effect, viscosity and the drag force due to magnetic pumping and other interactions with the magnetic field. A criterion is obtained for the stabilization of the ''sausage'' instability of the streams by centrifugal force.

  17. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    SciTech Connect (OSTI)

    Petrie, G. J. D.

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  18. Spectroscopic ion beam imaging for investigations into magnetic field mapping of a plasma

    E-Print Network [OSTI]

    is the inference of the magnetic field (Bp and Bt) of a magnetically confined plasma from the curvature of a singly changes in magnetic field with time in almost any magnetic confinement device. II. PRINCIPLE OF LOCAL,3 As an HIBP's charged probing ions travel through a plasma, they are deflected by the confining magnetic field

  19. Lung dosimetry in a linac-MRI radiotherapy unit with a longitudinal magnetic field

    SciTech Connect (OSTI)

    Kirkby, C.; Murray, B.; Rathee, S.; Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, Department of Oncology and Department of Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-09-15

    Purpose: There is interest in developing linac-MR systems for MRI-guided radiation therapy. To date, the designs for such linac-MR devices have been restricted to a transverse geometry where the static magnetic field is oriented perpendicular to the direction of the incident photon beam. This work extends possibilities in this field by proposing and examining by Monte Carlo simulations, a probable longitudinal configuration where the magnetic field is oriented in the same direction as the photon beam. Methods: The EGSnrc Monte Carlo (MC) radiation transport codes with algorithms implemented to account for the magnetic field deflection of charged particles were used to compare dose distributions for linac-MR systems in transverse and longitudinal geometries. Specifically, the responses to a 6 MV pencil photon beam incident on water and lung slabs were investigated for 1.5 and 3.0 T magnetic fields. Further a five field lung plan was simulated in the longitudinal and transverse geometries across a range of magnetic field strengths from 0.2 through 3.0 T. Results: In a longitudinal geometry, the magnetic field is shown to restrict the radial spread of secondary electrons to a small degree in water, but significantly in low density tissues such as lung in contrast to the lateral shift in dose distribution seen in the transverse geometry. These effects extend to the patient case, where the longitudinal configuration demonstrated dose distributions more tightly confined to the primary photon fields, which increased dose to the planning target volume (PTV), bettered dose homogeneity within a heterogeneous (in density) PTV, and reduced the tissue interface effects associated with the transverse geometry. Conclusions: Dosimetry issues observed in a transverse linac-MR geometry such as changes to the depth dose distribution and tissue interface effects were significantly reduced or eliminated in a longitudinal geometry on a representative lung plan. Further, an increase in dose to the PTV, resulting from the magnetic field confining electrons to the forward direction, shows potential for a reduction in dose to the surrounding tissues.

  20. Magnetic Fields in Quantum Degenerate Systems and in Vacuum

    E-Print Network [OSTI]

    H. Perez Rojas; E. Rodriguez Querts

    2006-12-28

    We consider self-magnetization of charged and neutral vector bosons bearing a magnetic moment in a gas and in vacuum. For charged vector bosons (W bosons) a divergence of the magnetization in both the medium and the electroweak vacuum occurs for the critical field B=B_{wc}=m_{w}^{2}/e. For B>B_{wc} the system is unstable. This behavior suggests the occurrence of a phase transition at B=B_{c}, where the field is self-consistently maintained. This mechanism actually prevents $B$ from reaching the critical value B_{c}. For virtual neutral vector bosons bearing an anomalous magnetic moment, the ground state has a similar behavior for B=B_{nbc}=m_{nb}^{2}/q . The magnetization in the medium is associated to a Bose-Einstein condensate and we conjecture a similar condensate occurs also in the case of vacuum. The model is applied to virtual electron-positron pairs bosonization in a magnetic field B \\sim B_{pc}\\lesssim 2m_{e}^{2}/e, where m_e is the electron mass. This would lead also to vacuum self-magnetization in QED, where in both cases the symmetry breaking is due to a condensate of quasi-massless particles.

  1. The emergence of weakly twisted magnetic fields in the sun

    SciTech Connect (OSTI)

    Archontis, V.; Hood, A. W.; Tsinganos, K.

    2013-11-20

    We have studied the emergence of a weakly twisted magnetic flux tube from the upper convection zone into the solar atmosphere. It is found that the rising magnetized plasma does not undergo the classical, single ?-shaped loop emergence, but it becomes unstable in two places, forming two magnetic lobes that are anchored in small-scale bipolar structures at the photosphere, between the two main flux concentrations. The two magnetic lobes rise and expand into the corona, forming an overall undulating magnetic flux system. The dynamical interaction of the lobes results in the triggering of high-speed and hot jets and the formation of successive cool and hot loops that coexist in the emerging flux region. Although the initial emerging field is weakly twisted, a highly twisted magnetic flux rope is formed at the low atmosphere, due to shearing and reconnection. The new flux rope (hereafter post-emergence flux rope) does not erupt. It remains confined by the overlying field. Although there is no ejective eruption of the post-emergence rope, it is found that a considerable amount of axial and azimuthal flux is transferred into the solar atmosphere during the emergence of the magnetic field.

  2. Treating Cancer with Strong Magnetic Fields and Ultrasound

    E-Print Network [OSTI]

    Dr. Friedwardt Winterberg

    2009-06-03

    It is proposed to treat cancer by the combination of a strong magnetic field with intense ultrasound. At the low electrical conductivity of tissue the magnetic field is not frozen into the tissue, and oscillates against the tissue which is brought into rapid oscillation by the ultrasound. As a result, a rapidly oscillating electric field is induced in the tissue, strong enough to disrupt cancer cell replication. Unlike radio frequency waves, which have been proposed for this purpose, ultrasound can be easily focused onto the regions to be treated. This method has the potential for the complete eradication of the tumor.

  3. Nonrelativistic molecular models under external magnetic and AB flux fields

    E-Print Network [OSTI]

    Sameer M. Ikhdair; Babatunde J. Falaye; Majid Hamzavi

    2014-12-21

    By using the wave function ansatz method, we study the energy eigenvalues and wave function for any arbitrary $m$-state in two-dimensional Schr\\"{o}dinger wave equation with various power interaction potentials in constant magnetic and Aharonov-Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We calculate the energy levels of some diatomic molecules in the presence and absence of external magnetic and AB flux fields using different potential models. We found that the effect of the Aharonov-Bohm field is much as it creates a wider shift for $m\

  4. B fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars beta CMa and epsilon CMa

    E-Print Network [OSTI]

    Fossati, L; Morel, T; Langer, N; Briquet, M; Carroll, T A; Hubrig, S; Nieva, M F; Oskinova, L M; Przybilla, N; Schneider, F R N; Scholler, M; Simon-Diaz, S; Ilyin, I; de Koter, A; Reisenegger, A; Sana, H

    2014-01-01

    Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD44743; B1 II/III) and epsilon CMa (HD52089; B1.5 II). For both stars, we consistently detected the signature of a weak (<30 G in absolute value) longitudinal magnetic field. We determined the physical parameters of both stars and characterise their X-ray spectrum. For beta CMa, our mode identification analysis led to determining a rotation period of 13.6+/-1.2 days and of an inclination angle of the rotation axis of 57.6+/-1.7 degrees, with respect to the line of sight. On the basis of these measurements and assuming a dipolar field geometry, we derived a best fitting obliquity of ~22 degrees and a dipolar magnetic field strength (Bd) of ~100 G (60magnetic massive stars. For epsilon CMa we could only determine a lower limit on the dipolar magnetic field strength of 13 G. For this s...

  5. Quiet Sun internetwork magnetic fields from the inversion of Hinode measurements

    E-Print Network [OSTI]

    D. Orozco Suarez; L. R. Bellot Rubio; J. C. del Toro Iniesta; S. Tsuneta; B. W. Lites; K. Ichimoto; Y. Katsukawa; S. Nagata; T. Shimizu; R. A. Shine; Y. Suematsu; T. D. Tarbell; A. M. Title

    2007-10-07

    We analyze Fe I 630 nm observations of the quiet Sun at disk center taken with the spectropolarimeter of the Solar Optical Telescope aboard the Hinode satellite. A significant fraction of the scanned area, including granules, turns out to be covered by magnetic fields. We derive field strength and inclination probability density functions from a Milne-Eddington inversion of the observed Stokes profiles. They show that the internetwork consists of very inclined, hG fields. As expected, network areas exhibit a predominance of kG field concentrations. The high spatial resolution of Hinode's spectropolarimetric measurements brings to an agreement the results obtained from the analysis of visible and near-infrared lines.

  6. Equilibrium and stability studies of plasmas confined in a dipole magnetic field using magnetic measurements

    E-Print Network [OSTI]

    Karim, Ishtak

    2007-01-01

    The Levitated Dipole Experiment (LDX) is the first experiment of its kind to use a levitated current ring to confine a plasma in a dipole magnetic field. Unlike most other confinement devices, plasma compressibility ...

  7. EFFECT OF MANUFACTURING ERRORS ON FIELD QUALITY OF DIPOLE MAGNETS FOR THE SSC

    E-Print Network [OSTI]

    Meuser, R.B.

    2010-01-01

    Field Aberrations for CBA and Tevatron Dipole Magnets (a reference radius of 10 mm) n CBA Dipole Magnets Des. AIDTevatron magnets and the BNL CBA magnets. The estimates were

  8. Extragalactic jets with helical magnetic fields: relativistic MHD simulations

    E-Print Network [OSTI]

    R. Keppens; Z. Meliani; B. van der Holst; F. Casse

    2008-02-14

    Extragalactic jets are inferred to harbor dynamically important, organized magnetic fields which presumably aid in the collimation of the relativistic jet flows. We here explore by means of grid-adaptive, high resolution numerical simulations the morphology of AGN jets pervaded by helical field and flow topologies. We concentrate on morphological features of the bow shock and the jet beam behind the Mach disk, for various jet Lorentz factors and magnetic field helicities. We investigate the influence of helical magnetic fields on jet beam propagation in overdense external medium. We use the AMRVAC code, employing a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with equivalent low-relativistic jets which get surrounded by cocoons with vortical backflows filled by mainly toroidal field, the high speed jets demonstrate only localized, strong toroidal field zones within the backflow vortical structures. We find evidence for a more poloidal, straight field layer, compressed between jet beam and backflows. This layer decreases the destabilizing influence of the backflow on the jet beam. In all cases, the jet beam contains rich cross-shock patterns, across which part of the kinetic energy gets transferred. For the high speed reference jet considered here, significant jet deceleration only occurs beyond distances exceeding ${\\cal O}(100 R_j)$, as the axial flow can reaccelerate downstream to the internal cross-shocks. This reacceleration is magnetically aided, due to field compression across the internal shocks which pinch the flow.

  9. Coil Winding for the Series-Connected Hybrid Magnet Mark D. Bird, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Coil Winding for the Series-Connected Hybrid Magnet Mark D. Bird, National High Magnetic Field will produce for MagLab users magnetic fields of 36T featuring unprecedented (1ppm) homogeneity. Winding of the superconducting coil, the largest component of the magnet windings, is well underway. The superconducting coil

  10. Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    E-Print Network [OSTI]

    E. N. Egorov; A. E. Hramov

    2006-06-27

    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.

  11. Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source

    SciTech Connect (OSTI)

    Phukan, Ananya, E-mail: ananya.phukan26@gmail.com; Goswami, K. S.; Bhuyan, P. J. [Centre of Plasma Physics, Institute for Plasma Research Sonapur, Kamrup (M), Assam 782402 (India)

    2014-08-15

    The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (?{sub D})

  12. On spontaneous formation of current sheets: Untwisted magnetic fields

    SciTech Connect (OSTI)

    Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307 (United States); Low, B. C.; Smolarkiewicz, P. K. [National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307 (United States)

    2010-11-15

    This is a study of the spontaneous formation of electric current sheets in an incompressible viscous fluid with perfect electrical conductivity, governed by the magnetohydrodynamic Navier-Stokes equations. Numerical solutions to two initial value problems are presented for a three-dimensional, periodic, untwisted magnetic field evolving, with no change in magnetic topology under the frozen-in condition and at characteristic fluid Reynolds numbers of the order of 500, from a nonequilibrium initial state with the fluid at rest. The evolution converts magnetic free energy into kinetic energy to be all dissipated away by viscosity so that the field settles into a minimum-energy, static equilibrium. The solutions demonstrate that, as a consequence of the frozen-in condition, current sheets must form during the evolution despite the geometric simplicity of the prescribed initial fields. In addition to the current sheets associated with magnetic neutral points and field reversal layers, other sheets not associated with such magnetic features are also in evidence. These current sheets form on magnetic flux surfaces. This property is used to achieve a high degree of the frozen-in condition in the simulations, by describing the magnetic field entirely in terms of the advection of its flux surfaces and integrating the resulting governing equations with a customized version of a general-purpose high-resolution (viz., nonoscillatory) hydrodynamical simulation code EULAG [J. M. Prusa et al., Comput. Fluids 37, 1193 (2008)]. Incompressibility imposes the additional global constraint that the flux surfaces must evolve with no change in the spatial volumes they enclose. In this approach, current sheet formation is demonstrated graphically by the progressive pressing together of suitably selected flux surfaces until their separation has diminished below the minimal resolved distance on a fixed grid. The frozen-in condition then fails in the simulation as the field reconnects through an effecting numerical resistivity. The principal results are related to the Parker theory of current-sheet formation and dissipation in the solar corona.

  13. Small animal electric and magnetic field exposure systems. Final report

    SciTech Connect (OSTI)

    Patterson, R.C.; Dietrich, F.M.

    1993-10-01

    Laboratory evaluation of electric and magnetic fields (EMF) and cancer in animals requires exposure of relatively large numbers of animals, usually rats or mice, to 60-Hz fields under very well controlled conditions for periods of up to two years. This report describes two exposure systems, the first of which is based on modifications of an existing electric field exposure system to include magnetic field exposure capability. In this system, each module houses 576--768 mice, which can be exposed to electric field levels of up to 100 kV/m and magnetic field levels of up to 10 Gauss. When a module was operated at 10 Gauss, measured levels of noise and vibration fell substantially below the detection threshold for humans. Moreover, temperature rise in the coils did not exceed 12{degrees}C at the 10 Gauss level. Specifications and test results for the second system, which provides magnetic field exposure capability only, are similar, except that each module houses 624--780 mice. After installation of the second system at the West Los Angeles Veterans Medical Center in Los Angeles, California, additional results were obtained. This report provides a complete description of the engineering design, specifications, and test results for the completed systems.

  14. Determination of the Coronal Magnetic Field by Hot Loop Oscillations

    E-Print Network [OSTI]

    Tongjiang Wang; Davina E. Innes; Jiong Qiu

    2006-12-20

    We apply a new method to determine the magnetic field in coronal loops using observations of coronal loop oscillations. We analyze seven Doppler shift oscillation events detected by SUMER in the hot flare line Fe XIX to obtain oscillation periods of these events. The geometry, temperature, and electron density of the oscillating loops are measured from coordinated multi-channel soft X-ray imaging observations from SXT. All the oscillations are consistent with standing slow waves in their fundamental mode. The parameters are used to calculate the magnetic field of coronal loops based on MHD wave theory. For the seven events, the plasma $\\beta$ is in the range 0.15-0.91 with a mean of 0.33$\\pm$0.26, and the estimated magnetic field varies between 21-61 G with a mean of 34$\\pm$14 G. With background emission subtracted, the estimated magnetic field is reduced by 9%-35%. The maximum backgroud subtraction gives a mean of 22$\\pm$13 G in the range 12-51 G. We discuss measurement uncertainties and the prospect of determining coronal loop magnetic fields from future observations of coronal loops and Doppler shift oscillations.

  15. Electrostatic waves in carbon nanotubes with an axial magnetic field

    SciTech Connect (OSTI)

    Abdikian, Alireza; Bagheri, Mehran

    2013-10-15

    Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

  16. The dependence of stellar mass and angular momentum losses on latitude and on active region and dipolar magnetic fields

    E-Print Network [OSTI]

    Garraffo, Cecilia; Cohen, Ofer

    2015-01-01

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfv\\'en wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates and that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-sc...

  17. Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps

    SciTech Connect (OSTI)

    Awschalom, D.D.; Crooker, S.A.; Lyo, S.K.; Rickel, D.G.; Samarth, N.

    1999-05-24

    Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.

  18. MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.

    SciTech Connect (OSTI)

    COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.; GANETIS,G.; GHOSH,A.; GUPTA,R.; HARRISON,M.; JAIN,A.; MARONE,A.; MURATORE,J.; PARKER,B.; SAMPSON,W.; SOIKA,R.; WANDERER,P.

    2002-08-04

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test results will be discussed.

  19. Memorandum Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  20. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  1. Development of high magnetic fields for energy research

    SciTech Connect (OSTI)

    Thompson, J.D.; Campbell, L.J.; Modler, R.; Movshovich, R. [Los Alamos National Lab., NM (United States); Lawrence, J.M. [Univ. of California, Irvine, CA (United States); Awschalom, D.D. [Univ. of California, Santa Barbara, CA (United States)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary purpose of work has been to develop the scientific basis for DOE support of a program that would build a novel, nondestructive 100-tesla magnet that would be available as a user facility for cutting-edge, energy-related research and technology at very high magnetic fields.

  2. Maintaining the closed magnetic-field-line topology of a field-reversed configuration with the addition of static transverse magnetic fields

    E-Print Network [OSTI]

    Washington at Seattle, University of

    not significantly change the FRC's closed field structure. The FRC is an example of a self-organized plasma wherein motivates the present field-line closure analysis. The study of field-line closure for FRC-like plasmas with the addition of static transverse magnetic fields S. A. Cohen Princeton University, Plasma Physics Laboratory

  3. Field-induced magnetostructural transition in Gd5ge4 studied by pulsed magnetic fields

    SciTech Connect (OSTI)

    Ouyang, Z.W.; Nojiri, H.; Yoshii, S.; Rao, G.H.; Wang, Y.C.; Pecharsky, V.K.; Gschneidner Jr., K.A.

    2008-05-22

    The field-induced magnetostructural transformation in Gd{sub 5}Ge{sub 4} was examined by magnetization measurements in pulsed magnetic fields. The low-temperature irreversibility of the transition can be destroyed by the magnetocaloric effect, and depending on the heat exchange between the sample and its surroundings, the irreversibility (or kinetic arrest) can also be retained. Measurements by using various magnetic-field sweep rates were conducted to examine the dynamic response of the system in the transition region. The critical fields for the magnetostructural transition below 20 K are field sweep rate dependent--the larger the field sweep rate, the higher the critical field. However, this rate dependence is readily suppressed with increasing temperature.

  4. Electron vortex beams in a magnetic field and spin filter

    E-Print Network [OSTI]

    Debashree Chowdhury; Banasri Basu; Pratul Bandyopadhyay

    2015-02-25

    We investigate the propagation of electron vortex beams in a magnetic field. It is pointed out that when electron vortex beams carrying orbital angular momentum propagate in a magnetic field, the Berry curvature associated with the scalar electron moving in a cyclic path around the vortex line is modified from that in free space. This alters the spin-orbit interaction, which affects the propagation of nonparaxial beams. The electron vortex beams with tilted vortex lead to spin Hall effect in free space. In presence of a magnetic field in time space we have spin filtering such that either positive or negative spin states emerge in spin Hall currents with clustering of spin $\\frac{1}{2}$ states.

  5. Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field

    SciTech Connect (OSTI)

    Oikawa, Kohei, E-mail: oikawa@ecei.tohoku.ac.jp; Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)] [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-02-15

    Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ?350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ?10{sup 19} m{sup ?3} near the source exit and ?10{sup 18} m{sup ?3} near the magnetic filter can be obtained, which are higher than those with the solenoids.

  6. COMPLEX SCATTERED RADIATION FIELDS AND MULTIPLE MAGNETIC FIELDS IN THE PROTOSTELLAR CLUSTER IN NGC 2264

    SciTech Connect (OSTI)

    Kwon, Jungmi; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hashimoto, Jun; Nakajima, Yasushi; Nakamura, Fumitaka [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Nagayama, Takahiro [Department of Astrophysics, Nagoya University, Nagoya 464-8602 (Japan); Nagata, Tetsuya [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Hough, James H. [Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Werner, Michael W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Teixeira, Paula S., E-mail: jungmi.kwon@nao.ac.jp [European Southern Observatory, D-85748 Garching bei Muenchen (Germany)

    2011-11-01

    Near-infrared imaging polarimetry in the J, H, and K{sub s} bands has been carried out for the protostellar cluster region around NGC 2264 IRS 2 in the Monoceros OB1 molecular cloud. Various infrared reflection nebula clusters (IRNCs) associated with NGC 2264 IRS 2 and the IRAS 12 S1 core, as well as local infrared reflection nebulae (IRNe), were detected. The illuminating sources of the IRNe were identified with known or new near- and mid-infrared sources. In addition, 314 point-like sources were detected in all three bands and their aperture polarimetry was studied. Using a color-color diagram, reddened field stars and diskless pre-main-sequence stars were selected to trace the magnetic field (MF) structure of the molecular cloud. The mean polarization position angle of the point-like sources is 81 Degree-Sign {+-} 29 Degree-Sign in the cluster core, and 58 Degree-Sign {+-} 24 Degree-Sign in the perimeter of the cluster core, which is interpreted as the projected direction on the sky of the MF in the observed region of the cloud. The Chandrasekhar-Fermi method gives a rough estimate of the MF strength to be about 100 {mu}G. A comparison with recent numerical simulations of the cluster formation implies that the cloud dynamics is controlled by the relatively strong MF. The local MF direction is well associated with that of CO outflow for IRAS 12 S1 and consistent with that inferred from submillimeter polarimetry. In contrast, the local MF direction runs roughly perpendicular to the Galactic MF direction.

  7. Particle energization through time-periodic helical magnetic fields

    E-Print Network [OSTI]

    Mitra, Dhrubaditya; Dasgupta, Brahmananda; Niklasson, Eyvind; Ram, Abhay

    2013-01-01

    We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with $A=B=C=1$ are chaotic, and we show that the motion of a charged particle in such a field is also chaotic at late time with positive Lyapunov exponent. We further show that in time-periodic (frequency $\\omega$) ABC fields the kinetic energy of a charged particle can increase indefinitely with time. At late times the mean kinetic energy grows as a power law in time with exponent $\\xi$ that approaches unity. For an initial distribution of particles, whose kinetic energy is uniformly distributed within some interval, the PDF of kinetic energy is, at late time, close to a Gaussian but with steeper tails.

  8. Particle energization through time-periodic helical magnetic fields

    E-Print Network [OSTI]

    Dhrubaditya Mitra; Axel Brandenburg; Brahmananda Dasgupta; Eyvind Niklasson; Abhay Ram

    2014-04-30

    We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with coefficients $A=B=C=1$ are chaotic, and we show that the motion of a charged particle in such a field is also chaotic at late times with positive Lyapunov exponent. We further show that in time-periodic ABC fields, the kinetic energy of a charged particle can increase indefinitely with time. At late times the mean kinetic energy grows as a power law in time with an exponent that approaches unity. For an initial distribution of particles, whose kinetic energy is uniformly distributed within some interval, the PDF of kinetic energy is, at late times, close to a Gaussian but with steeper tails.

  9. Polarizable vacuum analysis of electric and magnetic fields

    E-Print Network [OSTI]

    Xing-Hao Ye

    2009-08-22

    The electric and magnetic fields are investigated on the basis of quantum vacuum. The analysis of the electromagnetic energy and force indicates that an electric field is a polarized distribution of the vacuum virtual dipoles, and that a magnetic field in vacuum is a rearrangement of the vacuum polarization. It means that an electromagnetic wave is a successional changing of the vacuum polarization in space. Also, it is found that the average half length of the virtual dipoles around an elementary charge is a=2.8 *10^(-15)m. The result leads to the step distribution of the field energy around an electron, the relation between the fine structure constant and the vacuum polarization distribution, and an extremely high energy density of the electromagnetic field.

  10. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields

    E-Print Network [OSTI]

    Washington at Seattle, University of

    plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component rotating magnetic fields H. Y. Guo, A. L. Hoffman, and L. C. Steinhauer Redmond Plasma Physics Laboratory in field reversed configurations FRC . A major concern about this method has been the fear of opening up

  11. Neutrino electromagnetic properties: new approach to oscillations in magnetic fields

    E-Print Network [OSTI]

    Alexander Dmitriev; Riccardo Fabbricatore; Alexander Studenikin

    2015-06-15

    Several new and interesting aspects of neutrino oscillations in a magnetic field are considered: 1) We develop a standard usually used approach to the neutrino spin oscillations in the neutrino mass basis and obtain the effective neutrino spin (and "spin-mass") oscillation Hamiltonian that can be used for description of the neutrino oscillations between different pairs of neutrino states with different masses and helicities; 2) We derive the exact solution of the Dirac equation for a massive neutrino with nonzero magnetic moment in the presence of a constant transversal magnetic field that is rotating along the direction of the neutrino propagation (the twisting magnetic field) and on the basis of the obtained energy spectrum the neutrino spin oscillation effective Hamiltonian is derive; 3) We develop a new approach to neutrino spin oscillations that is based on the description of the neutrino spin states with the corresponding spin operator that commutes with the neutrino dynamics Hamiltonian in the magnetic field. The obtained new results can have important phenomenological applications.

  12. First HARPSpol discoveries of magnetic fields in massive stars

    E-Print Network [OSTI]

    Alecian, E; Neiner, C; Wade, G A; de Batz, B; Henrichs, H; Grunhut, J H; Bouret, J -C; Briquet, M; Gagne, M; Naze, Y; Oksala, M E; Rivinius, T; Townsend, R H D; Walborn, N R; Weiss, W

    2011-01-01

    In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. In this Letter, we report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements are strongly varying for HD 130807 from $\\sim$-100 G to $\\sim$700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from $\\sim$-40 to -80 G, and from $\\sim$-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of the MiMeS objectives: the understanding ...

  13. Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals

    E-Print Network [OSTI]

    Vladimir A. Miransky; Igor A. Shovkovy

    2015-04-10

    A range of quantum field theoretical phenomena driven by external magnetic fields and their applications in relativistic systems and quasirelativistic condensed matter ones, such as graphene and Dirac/Weyl semimetals, are reviewed. We start by introducing the underlying physics of the magnetic catalysis. The dimensional reduction of the low-energy dynamics of relativistic fermions in an external magnetic field is explained and its role in catalyzing spontaneous symmetry breaking is emphasized. The general theoretical consideration is supplemented by the analysis of the magnetic catalysis in quantum electrodynamics, chromodynamics and quasirelativistic models relevant for condensed matter physics. By generalizing the ideas of the magnetic catalysis to the case of nonzero density and temperature, we argue that other interesting phenomena take place. The chiral magnetic and chiral separation effects are perhaps the most interesting among them. In addition to the general discussion of the physics underlying chiral magnetic and separation effects, we also review their possible phenomenological implications in heavy-ion collisions and compact stars. We also discuss the application of the magnetic catalysis ideas for the description of the quantum Hall effect in monolayer and bilayer graphene, and conclude that the generalized magnetic catalysis, including both the magnetic catalysis condensates and the quantum Hall ferromagnetic ones, lies at the basis of this phenomenon. We also consider how an external magnetic field affects the underlying physics in a class of three-dimensional quasirelativistic condensed matter systems, Dirac semimetals. While at sufficiently low temperatures and zero density of charge carriers, such semimetals are expected to reveal the regime of the magnetic catalysis, the regime of Weyl semimetals with chiral asymmetry is realized at nonzero density...

  14. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect (OSTI)

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along the Cu-pyz-Cu directions. The structure of the two compounds is similar, but in the case of the Cu-compound the Cu-Cu pathways are linear, whereas in the Ni-compound they are kinked. The pulsed-field data combined with information from temperature-dependent susceptibility, muon-spin rotation, electron-spin resonance and ligand-field calculations suggest that, far from being magnetically Q2D, the Ni-compound is fairly one-dimensional with the dominant exchange (J{sub 1D} = 3.1 K and J{sub {perpendicular}}/J{sub 1D} = 0.63) directed along the Ni-FHF-Ni direction. Ni(NCS){sub 2}(pyzdo){sub 2} was also investigated. Previous ultra-high field measurements using the 100 T magnet have shown that this compound has a saturation field close to 80 T. The purpose of the present studies is to map out the phase diagram of this material at mid-range fields. The data are shown in the inset to the figure. This continuing project probes the ability of organic ligands to mediate magnetic exchange, the link between structure, dimensionality and bulk magnetic properties, as well as the role of spin number in quantum magnets. Ultimately the investigations aim to determine to what extent it is possible to produce self-assembly molecular materials with tailor-made magnetic characteristics.

  15. Radial Oscillations of Rotating Strange Stars in Strong Magnetic Fields

    E-Print Network [OSTI]

    S. Singh; N. Chandrika Devi; V. K. Gupta; Asha Gupta; J. D. Anand

    2000-12-20

    In this paper we study radial oscillations of rotating strange stars in strong magnetic fields in the Density Dependent Quark Mass (DDQM) model. We see that increase of frequency i.e. difference in frequency of rotating and non-rotating stars is more for higher magnetic fields. The change is small for low mass stars but it increases with the mass of the star. This change of frequency is significant for maximum mass whereas it is marginal for a 1.4 solar mass star.

  16. Novel energy level structure of Dirac oscillator in magnetic field

    E-Print Network [OSTI]

    Md. Moniruzzaman; S. B. Faruque

    2015-08-12

    We have presented an elegant high energy quantum problem, namely, the full Dirac oscillator under axial magnetic field with its full solution. We have found the energy spectrum which is rich and at the same time has a novel structure. The quantized energy levels show coupling of the oscillator frequency with the Larmor frequency in the 2D surface where the electrons under consideration follow a 2D oscillator. The axis in which magnetic field is pointed, the electrons follow a 1D oscillator. There is also coupling between spin and orbital motion and also a coupling between a resultant effect of orbital and spin motion with Larmor precession.

  17. Utilizing Nitrogen Vacancy Centers to measure oscillating magnetic fields

    E-Print Network [OSTI]

    Adam Zaman Chaudhry

    2014-04-11

    We show how nitrogen vacancy (NV) centers can be used to determine the amplitude, phase and frequency of unknown weak monochromatic and multichromatic oscillating magnetic fields using only the periodic dynamical decoupling (PDD) and Carr-Purcell-Meiboom-Gill (CPMG) sequences. The effect of decoherence on the measurement of the magnetic field parameters is explicitly analyzed, and we take into account the fact that different pulse sequences suppress decoherence to different extents. Since the sensitivity increases with increasing sensing time while it decreases due to decoherence, we use the Fisher information matrix in order to optimize the number of pulses that should be used.

  18. Gamma-Ray Bursts as Sources of Strong Magnetic Fields

    E-Print Network [OSTI]

    Granot, Jonathan; Bromberg, Omer; Racusin, Judith L; Daigne, Frédéric

    2015-01-01

    Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their $\\gamma$-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.

  19. Vector Magnetic Fields and Electric Currents from the Imaging Vector Magnetograph

    E-Print Network [OSTI]

    Jing Li; A. A. van Ballegooijen; Don Mickey

    2008-11-01

    First, we describe a general procedure to produce high quality vector magnetograms using the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. At the spatial resolution 2"x2", the Stokes Q,U,V uncertainty reaches 0.001-0.0005 in time-averaged data over 1-hour in the quiet Sun. When vector magnetic fields are inferred from the time-averaged Stokes spectral images of FeI 6302.5A, the resulting uncertainties are on the order of 10 G for the longitudinal fields, 40 G for the transverse field strength and 9 degree for the magnetic azimuth. The magnetic field inversion used in this work is the "Triplet" code, which was developed and implemented in the IVM software package by the late Barry J. LaBonte. The inversion code is described in detail in the Appendix. Second, we solve for the absolute value of the vertical electric current density, |Jz|, accounting for the above IVM problems, for two different active regions. One is a single sunspot region (NOAA 10001 observed on 20 June 2002) while the other is a more complex, quadrupolar region (NOAA10030 observed on 15 July 2002). We use a calculation that does not require disambiguation of 180 degree in the transverse field directions. The |Jz| uncertainty is on the order of 7.0 mA m^-2. The vertical current density increases with increasing vertical magnetic field. The rate of increase is about 1 -2 times as large in the quadrupolar NOAA 10030 region as in the simple NOAA 10001, and it is more spatially variable over NOAA 10030 than over NOAA 10001.

  20. A high-precision search for magnetic field oscillations in the roAp star HD 24712

    E-Print Network [OSTI]

    O. Kochukhov; G. A. Wade

    2007-02-28

    We have obtained a time series of 81 high-cadence circular polarization observations of the rapidly oscillating Ap star HD 24712 with the new ESPaDOnS spectropolarimeter at CFHT. We used the high-S/N, high-resolution Stokes I and V spectra to investigate possible variation of the mean longitudinal field over the pulsation cycle in this roAp star. Our multiline magnetic field and radial velocity measurements utilized 143 spectral lines of rare-earth elements, attaining precision better than 13 G and 19 m/s, respectively. A multiperiodic radial velocity variation with an amplitude of 40-136 m/s is clearly detected at the known pulsation frequencies of HD 24712. At the same time, no evidence for pulsational changes of the magnetic field can be found. We derive a 3sigma upper limit of 10 G, or about 1% of the mean longitudinal field strength, for magnetic field oscillations in the upper atmosphere of HD 24712. The absence of detectable pulsational variability of the magnetic field provides a valuable constraint for the interaction between pulsations and magnetic field in roAp stars and is compatible with the recent predictions of detailed theoretical models of stellar magnetoacoustic oscillations.

  1. Stellar magnetic field measurements Zeeman-Doppler imaging and magnetic-flux

    E-Print Network [OSTI]

    cool stars and solar-like stars Instrumentation The most successful spectrographs field measurements of the Herbig Ae stars HD 101412 (left panel) and HD 150193 (right panel) (FORS 2). Left panel: Phase diagram and residuals for the longitudinal magnetic field measurements of the Cephei

  2. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    SciTech Connect (OSTI)

    Dr. Scott Campbell

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J{sub E} at the operating conditions, resistive transition index (n-value) suffic

  3. Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources 

    E-Print Network [OSTI]

    Kurpad, Krishna Nagaraj

    2005-11-01

    The primary design criterion for RF transmit coils for MRI is uniform transverse magnetic (B1) field. Currently, most high frequency transmit coils are designed as periodic, symmetric structures that are resonant at the imaging frequency...

  4. Electric and Magnetic Fields (EMF) RAPID Engineering Program, Project 7: Development of Field Exposure Models

    SciTech Connect (OSTI)

    Bracken, T.D.; Rankin, R.F.; Wiley, J.A.

    1999-05-01

    The purpose of this project was to develop a conceptual model for estimating magnetic field (EMF) personal exposure (PE) of individuals or groups and construct a working model using existing data.

  5. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  6. On collisional diffusion in a stochastic magnetic field

    SciTech Connect (OSTI)

    Abdullaev, S. S. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, EURATOM Association, 52425 Jülich (Germany)] [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, EURATOM Association, 52425 Jülich (Germany)

    2013-08-15

    The effect of particle collisions on the transport in a stochastic magnetic field in tokamaks is investigated. The model of resonant magnetic perturbations generated by external coils at the plasma edge is used for the stochastic magnetic field. The particle collisions are simulated by a random walk process along the magnetic field lines and the jumps across the field lines at the collision instants. The dependencies of the local diffusion coefficients on the mean free path ?{sub mfp}, the diffusion coefficients of field lines D{sub FL}, and the collisional diffusion coefficients, ?{sub ?} are studied. Based on these numerical data and the heuristic arguments, the empirical formula, D{sub r}=?{sub ?}+v{sub ||}D{sub FL}/(1+L{sub c}/?{sub mfp}), for the local diffusion coefficient is proposed, where L{sub c} is the characteristic length of order of the connection length l{sub c}=?qR{sub 0}, q is the safety factor, R{sub 0} is the major radius. The formula quite well describes the results of numerical simulations. In the limiting cases, the formula describes the Rechester-Rosenbluth and Laval scalings.

  7. Heat pulse propagation in chaotic 3-dimensional magnetic fields

    E-Print Network [OSTI]

    D. del-Castillo-Negrete; D. Blazevski

    2014-09-10

    Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum, $\\langle T \\rangle_{max}(t)$, the time delay of the temperature response as function of the radius, $\\tau$, and the radial heat flux $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$, are also studied as functions of the magnetic field stochasticity and $\\ell_B$. In all cases, the scaling of $\\langle T \\rangle_{max}$ with $t$ transitions from sub-diffusive, $\\langle T \\rangle_{max} \\sim t^{-1/4}$, at short times ($\\chi_\\parallel t 10^5$). A strong dependence on $\\epsilon$ is also observed on $\\tau$ and $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$. The radial propagation of pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, $\\tau$, in reversed shear configurations is an order of magnitude longer than the one in monotonic $q$-profiles.

  8. Formation of magnetic discontinuities through superposition of force-free magnetic fields: Periodic boundaries

    SciTech Connect (OSTI)

    Kumar, Dinesh; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)] [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)] [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2013-11-15

    In ideal magnetohydrodynamics characterized by an infinite electrical conductivity, the magnetic flux across an arbitrary fluid surface is conserved in time. The magnetofluid then can be partitioned into contiguous subvolumes of fluid, each of which entraps its own subsystem of magnetic flux. During dynamical evolution of the magnetofluid, these subvolumes press into each other; and in the process, two such subvolumes may come into direct contact while ejecting a third interstitial subvolume. Depending on the orientations of magnetic fields of the two interacting subvolumes, the magnetic field at the common surface of interaction may become discontinuous and a current sheet is formed there. This process of current sheet formation and their subsequent decay is believed to be a plausible mechanism for coronal heating and may also be responsible for various eruptive phenomena at the solar corona. In this work, we explore this theoretical concept through numerical simulations of a viscous, incompressible magnetofluid characterized by infinite electrical conductivity. In particular, we show that if the initial magnetic field is prescribed by superposition of two linear force-free fields with different torsion coefficients, then formation of current sheets are numerically realizable in the neighborhood of magnetic nulls.

  9. A configurable component-based software system for magnetic field measurements

    SciTech Connect (OSTI)

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  10. A new probe of magnetic fields during high-mass star formation: Zeeman splitting of 6.7 GHz methanol masers

    E-Print Network [OSTI]

    W. H. T. Vlemmings

    2008-04-07

    Context: The role of magnetic fields during high-mass star formation is a matter of fierce debate, yet only a few direct probes of magnetic field strengths are available. Aims: The magnetic field is detected in a number of massive star-forming regions through polarization observations of 6.7 GHz methanol masers. Although these masers are the most abundant of the maser species occurring during high-mass star formation, most magnetic field measurements in the high-density gas currently come from OH and H2 O maser observations. Methods: The 100-m Effelsberg telescope was used to measure the Zeeman splitting of 6.7 GHz methanol masers for the first time. The observations were performed on a sample of 24 bright northern maser sources. Results: Significant Zeeman splitting is detected in 17 of the sources with an average magnitude of 0.56 m/s . Using the current best estimate of the 6.7 GHz methanol maser Zeeman splitting coefficient and a geometrical correction, this corresponds to an absolute magnetic field strength of 23 mG in the methanol maser region. Conclusions: The magnetic field is dynamically important in the dense maser regions. No clear relation is found with the available OH maser magnetic field measurements. The general sense of direction of the magnetic field is consistent with other Galactic magnetic field measurements, although a few of the masers display a change of direction between different maser features. Due to the abundance of methanol masers, measuring their Zeeman splitting provides the opportunity to construct a comprehensive sample of magnetic fields in high-mass star-forming regions.

  11. New Electric Field in Asymmetric Magnetic Reconnection K. Malakit,1,2

    E-Print Network [OSTI]

    New Electric Field in Asymmetric Magnetic Reconnection K. Malakit,1,2 M. A. Shay,2 P. A. Cassak,3-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the ``Larmor permits an electric field that breaks the frozen- in condition and allows magnetic field lines to change

  12. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  13. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    E-Print Network [OSTI]

    P. H. Diamond; M. A. Malkov

    2006-05-15

    We present a theory for the generation of mesoscale ($kr_{g}\\ll 1$, where $r_{g}$ is the cosmic ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfven waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by diffusion of Alfven wave packet in $k-$space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic field on $r_{g}$ scales.

  14. Neutrino Propagation and Oscillations in a Strong Magnetic Field

    E-Print Network [OSTI]

    Efrain J. Ferrer; Vivian de la Incera

    2004-08-08

    We review the results on neutrino propagation in neutral and charged media under strong magnetic fields $M_{W}^{2}\\gg B\\gg m_{e}^{2}$. It is shown that the neutrino energy density gets a magnetic contribution in both charged and neutral media, which is linear in the magnetic field, of first order in $G_{F}$, and independent of the charge density. This new term enters as a correction to the neutrino kinetic energy and produces an anisotropic contribution to the neutrino index of refraction. As a consequence, in a neutral medium a highly anisotropic resonant level-crossing condition takes place for the oscillation between electron-neutrinos and the other neutrino species. Possible cosmological applications are presented.

  15. Pulsar Magnetic Field Oscillation Model and Verification Method

    E-Print Network [OSTI]

    Zhu-Xing Liang; Yi Liang

    2014-05-06

    We constructed the magnetic field oscillation model (hereafter the MO model) by analogizing the periodically reversing phenomenon of the solar magnetic field to pulsars. Almost all kinds of pulsar radiation phenomena are best explained using the MO model, especially polarization characteristics, glitch, generation rate, the geodetic precession of pulsars and the configuration of pulsar-wind nebula of the Crab. The MO model also provides satisfactory explanation for other characteristics of pulsars, e.g., interpulse, spin-down, pulse nulling, beat and pulse drift, the loss rate of the rotating energy, and the accuracy of frequency. We present eight verification methods for the MO model. In addition to pulsars, our MO model can also be used to explain the pulse emission from non-compact stars such as the ultracool dwarf TVLM 513-46546 and the magnetic chemically peculiar star CU Virginis.

  16. Plasma Equilibrium in a Magnetic Field with Stochastic Regions

    SciTech Connect (OSTI)

    J.A. Krommes and Allan H. Reiman

    2009-04-23

    The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schluter currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory. An analytically tractable model, previously studied in the context of resonance-broadening theory, is applied with particular attention paid to the periodicity constraints required in toroidal configurations. It is shown that even a very weak radial diffusion of the magnetic field lines can have a significant effect on the equilibrium in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schluter currents. Implications for the numerical calculation of 3D equilibria are discussed

  17. Entangled states, Lorentz transformations, Spin-precession in magnetic fields

    E-Print Network [OSTI]

    A. Chakrabarti

    2009-03-07

    Two positive mass, spin $\\frac 12$ particles created in an entangled state are studied in the presence of a constant magnetic field inducing distinct precessions, depending on the respective momenta, of the two spins. The charge and anomalous magnetic moment of each particle is taken into account. Consequences for entanglement and, more generally, on correlations, are derived. We start, however, with a compact derivation of the effects of Lorentz transformations on such entangled states, though that has been studied by several authors. Our formalism displays conveniently the analogies and the differences between the two cases. Moreover, combining the two, one obtains the case of constant, orthogonal electric and magnetic fields. More general perspectives are evoked in the concluding remarks.

  18. Electron Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer,* C. B. Forest,

    E-Print Network [OSTI]

    Biewer, Theodore

    Electron Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer,* C. B. Forest, J. K where magnetic islands overlap and field lines are stochastic. The measurements show that (1 are small, the magnetic field lines break into chains of magnetic islands at mode-rational sur- faces where

  19. Effect of a static magnetic field on blood flow to the metacarpus in horses

    E-Print Network [OSTI]

    Kirschvink, Joseph L.

    Effect of a static magnetic field on blood flow to the metacarpus in horses Phillip E Steyn, BVSc of a static magnetic field on relative blood flow to the metacarpus of horses. Design-Randomized controlled minutes later. A magnetic wrap that emitted a static magnetic field was applied to 1 metacarpus

  20. The magnetic field and wind confinement of b Cephei: new clues for interpreting the Be phenomenon?

    E-Print Network [OSTI]

    Donati, Jean-François

    The magnetic field and wind confinement of b Cephei: new clues for interpreting the Be phenomenon of the weakest detected to date, this magnetic field is strong enough to magnetically confine the wind of b Cep collected by Henrichs et al. and propose for this star a consistent model of the large-scale magnetic field

  1. Relativistic electrons and magnetic fields of the M87 jet on the ?10 Schwarzschild radii scale

    SciTech Connect (OSTI)

    Kino, M.; Takahara, F.; Hada, K.; Doi, A.

    2014-05-01

    We explore energy densities of the magnetic fields and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self-absorption (SSA), the observing frequency is identical to the SSA turnover frequency. As a first step, we assume the radio core has a simple uniform sphere geometry. Using the observed angular size of the radio core measured by the Very Long Baseline Array at 43 GHz, we estimate the energy densities of magnetic fields (U{sub B} ) and relativistic electrons (U{sub e} ) on the basis of the standard SSA formula. Imposing the condition that the Poynting power and kinetic power of relativistic electrons should be smaller than the total power of the jet, we find that (1) the allowed range of the magnetic field strength (B {sub tot}) is 1 G ? B {sub tot} ? 15 G and that (2) 1 × 10{sup –5} ? U{sub e} /U{sub B} ? 6 × 10{sup 2} holds. The uncertainty of U{sub e} /U{sub B} comes from the strong dependence on the angular size of the radio core and the minimum Lorentz factor of non-thermal electrons (? {sub e,min}) in the core. It is still unsettled whether resultant energetics are consistent with either the magnetohydrodynamic jet or the kinetic power dominated jet even on the ?10 Schwarzschild radii scale.

  2. Pulsed field UCu5 Hall effect and magnetization (I)

    SciTech Connect (OSTI)

    Mcdonald, Ross D [Los Alamos National Laboratory; Ayala - Valenzuela, Oscar E [Los Alamos National Laboratory; Ben, Ueland G [Los Alamos National Laboratory; Corneliu, Miclea [Los Alamos National Laboratory; Movshovich, R [Los Alamos National Laboratory; Tompson, J. D. [Los Alamos National Laboratory; Bauer, E [Los Alamos National Laboratory; Batista, C. D. [Los Alamos National Laboratory; Martin, I [Los Alamos National Laboratory

    2011-01-14

    Prior studies of UCu{sub 5} identified the material as undergoing antiferromagnetic ordering at a temperature of 15 K with a subsequent reduction of the electronic density of states, evident as sharp upturn in resistance, at 1.4 K. High field magnetization measurements indicate a complex temperature-field phase diagram comprising of numerous phases below 15 K up and up to 60 T, with NMR and neutron measurements identifying both simple anitferromagnetic and 4Q-magnetic structures at low fields. The purpose of our investigations is to identify the possibly strong coupling between the itinerant electrons and the local spin structures, such as quantum amplification of the Hall effect due to (field induced) non-colinear spin textures. Comparison with prior literature indicates the sensitivity of the phase stability of the different spin textures to composition and sample preparation. However, the 'simplified' phase diagram of this composition offers the possibility of exploring, anomalous Hall properties arising from a field induced non-colinear spin texture over a wide range of temperatures and magnetic fields.

  3. Response of Holographic QCD to Electric and Magnetic Fields

    E-Print Network [OSTI]

    Oren Bergman; Gilad Lifschytz; Matthew Lippert

    2008-06-16

    We study the response of the Sakai-Sugimoto holographic model of large N_c QCD at nonzero temperature to external electric and magnetic fields. In the electric case we find a first-order insulator-conductor transition in both the confining and deconfining phases of the model. In the deconfining phase the conductor is described by the parallel 8-brane-anti-8-brane embedding with a current of quarks and anti-quarks. We compute the conductivity and show that it agrees precisely with a computation using the Kubo formula. In the confining phase we propose a new kind of 8-brane embedding, corresponding to a baryonic conductor. In the magnetic field case we show that the critical temperature for chiral-symmetry restoration in the deconfined phase increases with the field and approaches a finite value in the limit of an infinite magnetic field. We also illustrate the nonlinear behavior of the electric and magnetic susceptibilities in the different phases.

  4. A linear helicon plasma device with controllable magnetic field gradient

    SciTech Connect (OSTI)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-06-15

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  5. Computing in the Fast Lane Magnetic Fields of Dreams

    E-Print Network [OSTI]

    . This ultimately led to the Laboratory's first supercomputer: the Mathematical Analyzer, Numerical IntegratorComputing in the Fast Lane Magnetic Fields of Dreams MCNP: A Code in Demand Agent-Based Models 1663 of complex materials. Information Science and Technology Revolution Computer simulation of complex systems

  6. Relativistic Shocks: Particle Acceleration and Magnetic Field Generation, and Emission

    E-Print Network [OSTI]

    K. -I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

    2004-10-07

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g.,Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock at the same simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale (mainly transverse) magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of ``jitter'' radiation from deflected electrons (positrons) as opposed to synchrotron radiation.

  7. Triggering for Magnetic Field Measurements of the LCLS Undulators

    SciTech Connect (OSTI)

    Hacker, Kirsten

    2010-12-13

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  8. Massive disk outflows mediated by extreme magnetic fields

    E-Print Network [OSTI]

    Shiber, Sagiv; Soker, Noam

    2015-01-01

    We argue that magnetic fields amplified within a very high accretion-rate disk around main sequence stars can lead to the formation of massive bipolar outflows that can remove most of the disk's mass and energy. This efficient directional removal of energy and mass allows the high accretion-rate disk to be built. We construct thick disks where the magnetic fields are amplified by an Alpha-Omega dynamo in the disk, bringing the fluctuating components of the magnetic field to be much stronger than the large-scale component. By examining the possible activity of the magnetic fields we conclude that main sequence stars can accrete mass at very high rates, up to 0.01Mo/yr for solar type stars, and up to 1Mo/yr for very massive stars. Such energetic outflows can account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, such as the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; Red Novae; Red Transi...

  9. Spin flip probability of electron in a uniform magnetic field

    SciTech Connect (OSTI)

    Hammond, Richard T. [Department of Physics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and Army Research Office, Research Triangle Park, North Carolina 27703 (United States)

    2012-03-19

    The probability that an electromagnetic wave can flip the spin of an electron is calculated. It is assumed that the electron resides in a uniform magnetic field and interacts with an incoming electromagnetic pulse. The scattering matrix is constructed and the time needed to flip the spin is calculated.

  10. Field quality study in Nb(3)Sn accelerator magnets

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; DiMarco, J.; Kashikhin, V.S.; Lamm, M.; Novitski, I.; Schlabach, P.; Velev, G.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-05-01

    Four nearly identical Nb{sub 3}Sn dipole models of the same design were built and tested at Fermilab. It provided a unique opportunity of systematic study the field quality effects in Nb{sub 3}Sn accelerator magnets. The results of these studies are reported in the paper.

  11. Spectral confinement and current for atoms in strong magnetic fields

    E-Print Network [OSTI]

    S. Fournais

    2006-08-28

    We study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. The results obtained allow us to calculate the quantum current in the entire semiclassical region $B \\ll Z^3$.

  12. Universal formulae for thermoelectric transport with magnetic field and disorder

    E-Print Network [OSTI]

    Amoretti, Andrea

    2015-01-01

    We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and disorder. The computations are performed within the gauge/gravity framework, however we propose and argue for a possible universal relevance of the results relying on comparisons and extensions of previous hydrodynamical analyses and experimental data.

  13. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    SciTech Connect (OSTI)

    Sugama, H.; Watanabe, T.-H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan)] [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-01-15

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background magnetic fields varying on a transport time scale are obtained by using the Lagrangian, which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background magnetic fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here.

  14. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M., E-mail: schryver@lmsal.co [Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304 (United States)

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  15. Innermost stable circular orbit near dirty black holes in magnetic field and ultra-high energy particle collisions

    E-Print Network [OSTI]

    O. B. Zaslavskii

    2015-09-06

    We consider the behavior of the innermost stable circular orbit (ISCO) in the magnetic field near "dirty" (surrounded by matter) axially-symmetric black holes. The cases of near-extremal, extremal and nonextremal black holes are analyzed. For nonrotating black holes, in the strong magnetic field ISCO approaches the horizon (when backreaction of the field on geometry is neglected). Rotation destroys this phenomenon. The angular momentum and radius of ISCO look model-independent in the main approximation. We also study the collisions between two particles that results in the ultra-high energy $E_{c.m.}$ in the centre of mass frame. Two scenarios are considered - when one particle moves on the near-horizon ISCO or when collision occurs on the horizon, one particle having the energy and angular momentum typical of ISCO. If the magnetic field is strong enough and a black hole is slow rotating, $E_{c.m.}$ can become arbitrarily large. Kinematics of high-energy collision is discussed. As an example, we consider the magnetized Schwarzschild black hole for an arbitrary strength of the field (the Ernst solution). It is shown that backreaction of the magnetic field on the geometry can bound the growth of $E_{c.m.}$.

  16. Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519).

    SciTech Connect (OSTI)

    Alexander, C. Scott; Haill, Thomas A.; Dalton, Devon Gardner; Rovang, Dean Curtis; Lamppa, Derek C.

    2013-09-01

    The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

  17. MRI of the lung using hyperpolarized He-3 at very low magnetic field (3 mT)

    E-Print Network [OSTI]

    Bidinosti, C P; Tastevin, G; Vignaud, A; Nacher, P J

    2004-01-01

    Optical pumping of He-3 produces large (hyper) nuclear-spin polarizations independent of the magnetic resonance imaging (MRI) field strength. This allows lung MRI to be performed at reduced fields with many associated benefits, such as lower tissue susceptibility gradients and decreased power absorption rates. Here we present results of 2D imaging as well as accurate 1D gas diffusion mapping of the human lung using He-3 at very low field (3 mT). Furthermore, measurements of transverse relaxation in zero applied gradient are shown to accurately track pulmonary oxygen partial pressure, opening the way for novel imaging sequences.

  18. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    E-Print Network [OSTI]

    Firpo, Marie-Christine; 10.1063/1.3562493

    2011-01-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possibl...

  19. MAGNETIC FIELD MEASUREMENTS OF HD2, A HIgh Nb3Sn DIPOLE MAGNET

    SciTech Connect (OSTI)

    Wang, X.; Caspi, S.; Cheng, D. W.; Felice, H.; Ferracin, P.; Hafalia, R. R.; Joseph, J. M.; Lietzke, A. F.; Lizarazo, J.; McInturff, A. D.; Sabbi, G. L.; Sasaki, K.

    2009-05-04

    The Superconducting Magnet Program at Lawrence Berkeley National Laboratory has designed and tested HD2, a 1 m long Nb{sub 3}Sn accelerator-type dipole based on a simple block-type coil geometry with flared ends. HD2 represents a step toward the development of cost-effective accelerator quality magnets operating in the range of 13-15 T. The design was optimized to minimize geometric harmonics and to address iron saturation and conductor magnetization effects. Field quality was measured during recent cold tests. The measured harmonics are presented and compared to the design values.

  20. Magnetization Oscillation of a Spinor Condensate Induced by Magnetic Field Gradient

    E-Print Network [OSTI]

    Jie Zhang; Baoguo Yang; Yunbo Zhang

    2011-05-02

    We study the spin mixing dynamics of ultracold spin-1 atoms in a weak non-uniform magnetic field with field gradient $G$, which can flip the spin from +1 to -1 so that the magnetization $m=\\rho_{+}-\\rho_{-}$ is not any more a constant. The dynamics of $m_F=0$ Zeeman component $\\rho_{0}$, as well as the system magnetization $m$, are illustrated for both ferromagnetic and polar interaction cases in the mean-field theory. We find that the dynamics of system magnetization can be tuned between the Josephson-like oscillation similar to the case of double well, and the interesting self-trapping regimes, i.e. the spin mixing dynamics sustains a spontaneous magnetization. Meanwhile the dynamics of $\\rho_0$ may be sufficiently suppressed for initially imbalanced number distribution in the case of polar interaction. A "beat-frequency" oscillation of the magnetization emerges in the case of balanced initial distribution for polar interaction, which vanishes for ferromagnetic interaction.

  1. Magnification bias as a novel probe for primordial magnetic fields

    SciTech Connect (OSTI)

    Camera, S. [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Fedeli, C. [INAF — Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Moscardini, L., E-mail: stefano.camera@tecnico.ulisboa.pt, E-mail: cosimo.fedeli@oabo.inaf.it, E-mail: lauro.moscardini@unibo.it [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy)

    2014-03-01

    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10{sup ?4} nG for values of the PMF power spectral index n{sub B} ? 0.

  2. Lattice coupling to electronic and magnetic instabilities in high magnetic fields

    SciTech Connect (OSTI)

    Thompson, J.D.; Graf, T.; Hundley, M.; Neumeier, J. [Los Alamos National Lab., NM (United States); Lacerda, A. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lawrence, J. [California Univ., Irvine, CA (United States); Phillips, N. [California Univ., Berkeley, CA (United States)

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project focused on understanding electronic and magnetic instabilities in broad classes of materials in which the instabilities are coupled to the underlying crystallographic structure. Explaining these properties of materials poses outstanding theoretical and experimental challenges that are at the forefront of materials science/condensed matter physics. Very high magnetic fields available at the Los Alamos National High Magnetic Field Laboratory (NHMFL) are a key parameter in helping to provide this understanding. We have developed new experimental capabilities (thermal- expansion/magnetostriction, uniaxial stress and high-field heat capacity) needed to characterize how structure couples to the instabilities.

  3. LOCAL STUDY OF ACCRETION DISKS WITH A STRONG VERTICAL MAGNETIC FIELD: MAGNETOROTATIONAL INSTABILITY AND DISK OUTFLOW

    SciTech Connect (OSTI)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2013-04-10

    We perform three-dimensional, vertically-stratified, local shearing-box ideal MHD simulations of the magnetorotational instability (MRI) that include a net vertical magnetic flux, which is characterized by midplane plasma {beta}{sub 0} (ratio of gas to magnetic pressure). We have considered {beta}{sub 0} = 10{sup 2}, 10{sup 3}, and 10{sup 4}, and in the first two cases the most unstable linear MRI modes are well resolved in the simulations. We find that the behavior of the MRI turbulence strongly depends on {beta}{sub 0}: the radial transport of angular momentum increases with net vertical flux, achieving {alpha} {approx} 0.08 for {beta} = 10{sup 4} and {alpha} {approx}> 1.0 for {beta}{sub 0} = 100, where {alpha} is the height-integrated and mass-weighted Shakura-Sunyaev parameter. A critical value lies at {beta}{sub 0} {approx} 10{sup 3}: for {beta}{sub 0} {approx}> 10{sup 3}, the disk consists of a gas pressure dominated midplane and a magnetically dominated corona. The turbulent strength increases with net flux, and angular momentum transport is dominated by turbulent fluctuations. The magnetic dynamo that leads to cyclic flips of large-scale fields still exists, but becomes more sporadic as net flux increases. For {beta}{sub 0} {approx}< 10{sup 3}, the entire disk becomes magnetically dominated. The turbulent strength saturates, and the magnetic dynamo is fully quenched. Stronger large-scale fields are generated with increasing net flux, which dominates angular momentum transport. A strong outflow is launched from the disk by the magnetocentrifugal mechanism, and the mass flux increases linearly with net vertical flux and shows sign of saturation at {beta}{sub 0} {approx}< 10{sup 2}. However, the outflow is unlikely to be directly connected to a global wind: for {beta}{sub 0} {approx}> 10{sup 3}, the large-scale field has no permanent bending direction due to dynamo activities, while for {beta}{sub 0} {approx}< 10{sup 3}, the outflows from the top and bottom sides of the disk bend towards opposite directions, inconsistent with a physical disk wind geometry. Global simulations are needed to address the fate of the outflow.

  4. Ohmic Decay of Magnetic Fields due to non-spherical accretion in the Crusts of Neutron Stars

    E-Print Network [OSTI]

    Mikael Sahrling

    1998-04-04

    We consider magnetic field evolution of neutron stars during polar-cap accretion. The size of the polar cap increases as the field decays, and is set by the last open field line before the accretion disk. Below the polar cap we find the temperature to be so high that electron-phonon scattering dominates the resistivity. Outside the polar cap region, the temperature is such the resistivity is dominated by temperature independent impurity scattering which can be a few orders of magnitude larger than the electron- phonon resistivity. The time-scale for field decay is therefore initially given by impurity scattering dominated resistivity. When the field strength has been reduced to $\\sim 10^8 gauss$ the accretion is spherical and the time scale for field decay is given by the smaller electron-phonon scattering resistivity. The field strength is now reduced rapidly compared to before and this could be a reason for there being no pulsars known with field strengths below $10^8 gauss$. We also investigate the evolution of multipoles at the neutron star surface. We find that contribution from higher-order multipoles are at most 30% to that of the dipole mode.

  5. THE MAGNETIC CONFINEMENT OF ELECTRON AND PHOTON DOSE PROFILES AND THE POSSIBLE EFFECT OF THE MAGNETIC FIELD ON

    E-Print Network [OSTI]

    Becchetti, Fred

    THE MAGNETIC CONFINEMENT OF ELECTRON AND PHOTON DOSE PROFILES AND THE POSSIBLE EFFECT OF THE MAGNETIC FIELD ON RELATIVE BIOLOGICAL EFFECTIVENESS by Yu Chen A dissertation submitted in partial magnetic field can significantly improve electron beam dose profiles. This could permit improved targeting

  6. Self-assembling paramagnetic colloids in oscillating magnetic fields

    E-Print Network [OSTI]

    Alison E. Koser; Nathan C. Keim; Paulo E. Arratia

    2013-11-06

    Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. In order to investigate the role of hydrodynamic interactions in the collective behavior of an active fluid, we choose a model system: paramagnetic particles submerged in water and activated by an oscillating magnetic field. The magnetic field induces magnetic attractions among the paramagnetic particles, activating the particles, and injecting energy into the fluid. Over many cycles, the particles aggregate together and form clusters. In order to form clusters, however, the particles must overcome viscous drag. We investigate the relative roles of viscosity and magnetism. When the role of viscosity is important, the particles cannot form large clusters. But when the role of magnetism is important, the particles rapidly form organized, large clusters. Our results shown in this fluid dynamics video suggest that viscous stresses slow the clustering rate and decrease the size of clusters in a self-assembling colloidal system.

  7. Apparatus for unilateral generation of a homogeneous magnetic field

    DOE Patents [OSTI]

    Fukushima, E.; Rath, A.R.; Roeder, S.B.W.

    1984-05-01

    An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coils in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.

  8. Apparatus for unilateral generation of a homogeneous magnetic field

    DOE Patents [OSTI]

    Fukushima, Eiichi (Los Alamos, NM); Rath, Alan R. (San Diego, CA); Roeder, Stephen B. W. (La Mesa, CA)

    1988-01-01

    An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coil in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.

  9. Anisotropies in magnetic field evolution and local Lyapunov exponents

    SciTech Connect (OSTI)

    Tang, X.Z.; Boozer, A.H.

    2000-01-13

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates.

  10. Anisotropies in magnetic field evolution and local Lyapunov exponents

    SciTech Connect (OSTI)

    Tang, X. Z. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Boozer, A. H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2000-04-01

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates. (c) 2000 American Institute of Physics.

  11. Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect

    E-Print Network [OSTI]

    Keun-Young Kim; Kyung Kiu Kim; Yunseok Seo; Sang-Jin Sin

    2015-08-24

    We study the thermoelectric conductivities of a strongly correlated system in the presence of a magnetic field by the gauge/gravity duality. We consider a class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum relaxation. General analytic formulas for the direct current(DC) conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study, we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, for small momentum relaxation, the Nernst signal shows a bell-shaped dependence on the magnetic field, which is a feature of the normal phase of cuprates. We compute all alternating current(AC) electric, thermoelectric, and thermal conductivities by numerical analysis and confirm that their zero frequency limits precisely reproduce our analytic DC formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effects on the conductivities including cyclotron resonance poles.

  12. A numerical study of rotating magnetic fields as a current drive for field reversed configurations

    E-Print Network [OSTI]

    Washington at Seattle, University of

    , confinement, and sustainment TCS 5 experiment, an RMF will be applied to an existing FRC. The plasma Richard D. Milroy University of Washington, Redmond Plasma Physics Laboratory, Seattle, Washington 98195 of a Rotating Magnetic Field RMF as a current drive mechanism in a Field Reversed Configuration FRC . This model

  13. Sustainment of elongated field reversed configurations with localized rotating magnetic field current drive

    E-Print Network [OSTI]

    Washington at Seattle, University of

    this by increasing its penetration into the FRC, brought about automatically by a slight decrease in plasma density current drive H. Y. Guo and A. L. Hoffman Redmond Plasma Physics Laboratory, University of Washington magnetic field RMF antenna length on the sustainment of RMF driven field reversed configurations FRC have

  14. Penetration of a transverse magnetic field by an accelerated field-reversed configuration

    E-Print Network [OSTI]

    Washington at Seattle, University of

    . Slough and A. L. Hoffman Redmond Plasma Physics Laboratory, University of Washington, Seattle, Washington 98102 Received 23 June 1998; accepted 14 October 1998 The field-reversed configuration FRC is a compact. The study of the acceleration and penetration physics of the FRC into a transverse magnetic field gradient

  15. Physics Overview of Rotating Magnetic Field Current Drive for a Field-Reversed Configuration

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Richard D. Milroy Redmond Plasma Physics Laboratory, University of Washington Introduction A Rotating Magnetic Field (RMF) can be used to drive the current in a Field-Reversed Configuration (FRC). This method can be used to sustain an existing FRC, as well as generate a new FRC from a background pre

  16. Rotating magnetic field current drive of high-temperature field reversed configurations with high scaling

    E-Print Network [OSTI]

    Washington at Seattle, University of

    scaling H. Y. Guo,a A. L. Hoffman, and R. D. Milroy Redmond Plasma Physics Laboratory, University in the Translation, Confinement, and Sustainment--Upgrade TCSU device has allowed much higher plasma temperatures to be achieved in the field reversed configurations FRC under rotating magnetic field RMF formation

  17. Rayleigh-Taylor instabilities with sheared magnetic fields

    SciTech Connect (OSTI)

    Ruderman, M. S. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Terradas, J.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-04-20

    Magnetic Rayleigh-Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes of an interface and a slab model under the presence of gravity are analytically calculated assuming that the orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate, corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As an application of the results found in this paper we have indirectly determined the shear angle in solar prominence threads using their lifetimes and the estimation of the Alfvén speed of the structure.

  18. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOE Patents [OSTI]

    Casada, Donald A. (Knoxville, TN); Haynes, Howard D. (Knoxville, TN)

    1993-01-01

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  19. Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M.; Devereaux, T. P.

    2015-02-01

    Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstancesmore »be regarded as more complex than the physics of a spin-orbital chain.« less

  20. Tokamak with mechanical compression of toroidal magnetic field

    DOE Patents [OSTI]

    Ohkawa, Tihiro (La Jolla, CA)

    1981-01-01

    A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.

  1. Quantum Mechanics with a Momentum-Space Artificial Magnetic Field

    E-Print Network [OSTI]

    Hannah M. Price; Tomoki Ozawa; Iacopo Carusotto

    2014-11-19

    The Berry curvature is a geometrical property of an energy band which acts as a momentum space magnetic field in the effective Hamiltonian describing single-particle quantum dynamics. We show how this perspective may be exploited to study systems directly relevant to ultracold gases and photonics. Given the exchanged roles of momentum and position, we demonstrate that the global topology of momentum space is crucially important. We propose an experiment to study the Harper-Hofstadter Hamiltonian with a harmonic trap that will illustrate the advantages of this approach and that will also constitute the first realization of magnetism on a torus.

  2. Visualizing and predicting CMEs and geomagnetic storms from solar magnetic fields

    E-Print Network [OSTI]

    Li, Yan

    1 Visualizing and predicting CMEs and geomagnetic storms from solar magnetic fields Yan Li. Because solar photospheric magnetic fields are the main source of the magnetic field in the corona. However, because the solar field is both complex and influenced by the solar wind, it is difficult

  3. ELECTRIC TURBULENCE IN A PLASMA SUBJECT TO A STRONG MAGNETIC FIELD

    E-Print Network [OSTI]

    Vasseur, Alexis

    ELECTRIC TURBULENCE IN A PLASMA SUBJECT TO A STRONG MAGNETIC FIELD G. Loeper12 A. Vasseur12 of a stochastic electric field on a plasma subject to a strong magnetic field. This is motivated by the study Abstract We consider in this paper a plasma subject to a strong deterministic magnetic field and we

  4. Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap

    E-Print Network [OSTI]

    California at San Diego, University of

    Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap S. G discusses the motion of the weakly bound atoms in the electric and magnetic field of the plasma and trap in the magnetic and electric field of the trap. Because the binding is so weak, even a modest electric field

  5. Use of High Magnetic Field to Control Microstructural Evolution in Metallic and Magnetic Materials

    SciTech Connect (OSTI)

    Ludtka, G.M.; Mackiewicz- Ludtka, G.; Wilgen, J.B.; Kisner, R.A.

    2010-06-27

    The Amendment 1, referred to as Phase 2, to the original CRADA NFE-06-00414 added tasks 3 through 7 to the original statement of work that had two main tasks that were successfully accomplished in Phase 1 of this project. In this Phase 2 CRADA extension, extensive research and development activities were conducted using high magnetic field processing effects for the purpose of manipulating microstructure in the SAE 5160 steel to refine grain size isothermally and to develop nanocrystalline spacing pearlite during continuous cooling, and to enhance the formability/forgability of the non-ferrous precipitation hardening magnesium alloy AZ90 by applying a high magnetic field during deformation processing to investigate potential magnetoplasticity in this material. Significant experimental issues (especially non-isothermal conditions evolving upon insertion of an isothermal sample in the high magnetic field) were encountered in the isothermal phase transformation reversal experiments (Task 4) that later were determined to be due to various condensed matter physics phenomenon such as the magnetocaloric (MCE) effect that occurs in the vicinity of a materials Curie temperature. Similarly the experimental deformation rig had components for monitoring deformation/strain (Task 3) that were susceptible to the high magnetic field of the ORNL Thermomagnetic Processing facility 9-T superconducting magnet that caused electronic components to fail or record erroneous (very noisy) signals. Limited experiments on developing nanocrystalline spacing pearlite were not sufficient to elucidate the impact of high magnetic field processing on the final pearlite spacing since significant statistical evaluation of many pearlite colonies would need to be done to be conclusive. Since extensive effort was devoted to resolving issues for Tasks 3 and 7, only results for these focused activities are included in this final CRADA report along with those for Task 7 (described in the Objectives Section of this report).

  6. Formation of Moving Magnetic Features and Penumbral Magnetic Fields with Hinode/SOT

    E-Print Network [OSTI]

    Masahito Kubo; Kiyoshi Ichimoto; Toshifumi Shimizu; Saku Tsuneta; Yoshinori Suematsu; Yukio Katsukawa; Shin'ichi Nagata; Theodore D Tarbell; Richard A Shine; Alan M Title; Zoe A Frank; Bruce W Lites; David Elmore

    2007-09-12

    Vector magnetic fields of moving magnetic features (MMFs) are well observed with the Solar Optical Telescope (SOT) aboard the Hinode satellite. We focus on the evolution of three MMFs with the SOT in this study. We found that an MMF having relatively vertical fields with polarity same as the sunspot is detached from the penumbra around the granules appeared in the outer penumbra. This suggests that granular motions in the outer penumbra are responsible for the disintegration of the sunspot. Two MMFs with polarity opposite to the sunspot are located around the outer edge of horizontal fields extending from the penumbra. This is an evidence that the MMFs with polarity opposite to the sunspot are prolongation of penumbral horizontal fields. Radshifts larger than sonic velocity in the photosphere are detected for some of the MMFs with polarity opposite to the sunspot.

  7. Cosmological magnetic fields from inflation in extended electromagnetism

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2011-01-10

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Due to the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields $B_{\\lambda}> 10^{-12}$ G are typically generated with coherence lengths ranging from sub-galactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  8. On the possible origin of the large scale cosmic magnetic field

    SciTech Connect (OSTI)

    Coroniti, F. V.

    2014-01-10

    The possibility that the large scale cosmic magnetic field is directly generated at microgauss, equipartition levels during the reionization epoch by collisionless shocks that are forced to satisfy a downstream shear flow boundary condition is investigated through the development of two models—the accretion of an ionized plasma onto a weakly ionized cool galactic disk and onto a cool filament of the cosmic web. The dynamical structure and the physical parameters of the models are synthesized from recent cosmological simulations of the early reionization era after the formation of the first stars. The collisionless shock stands upstream of the disk and filament, and its dissipation is determined by ion inertial length Weibel turbulence. The downstream shear boundary condition is determined by the rotational neutral gas flow in the disk and the inward accretion flow along the filament. The shocked plasma is accelerated to the downstream shear flow velocity by the Weibel turbulence, and the relative shearing motion between the electrons and ions produces a strong, ion inertial scale current sheet that generates an equipartition strength, large scale downstream magnetic field, ?10{sup –6} G for the disk and ?6 × 10{sup –8} G for the filament. By assumption, hydrodynamic turbulence transports the shear-shock generated magnetic flux throughout the disk and filament volume.

  9. In-plane electric fields in magnetic islands during collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Chen Lijen; Bhattacharjee, Amitava; Torbert, Roy B.; Bessho, Naoki; Daughton, William; Roytershteyn, Vadim

    2012-11-15

    Magnetic islands are a common feature in both the onset and nonlinear evolution of magnetic reconnection. In collisionless regimes, the onset typically occurs within ion-scale current layers leading to the formation of magnetic islands when multiple X lines are involved. The nonlinear evolution of reconnection often gives rise to extended electron current layers (ECL) which are also unstable to formation of magnetic islands. Here, we show that the excess negative charge and strong out-of-plane electron velocity in the ECL are passed on to the islands generated therein, and that the corresponding observable distinguishing the islands generated in the ECL is the strongly enhanced in-plane electric fields near the island core. The islands formed in ion-scale current layers do not have these properties of the ECL-generated islands. The above result provides a way to assess the occurrence and importance of extended ECLs that are unstable to island formation in space and laboratory plasmas.

  10. Particle acceleration by fluctuating electric fields at a magnetic field null point

    E-Print Network [OSTI]

    P. Petkaki; A. L. MacKinnon

    2007-07-09

    Particle acceleration consequences from fluctuating electric fields superposed on an X-type magnetic field in collisionless solar plasma are studied. Such a system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. We explore numerically the consequences for charged particle distributions of fluctuating electric fields superposed on an X-type magnetic field. Particle distributions are obtained by numerically integrating individual charged particle orbits when a time varying electric field is superimposed on a static X-type neutral point. This configuration represents the effects of the passage of a generic MHD disturbance through such a system. Different frequencies of the electric field are used, representing different possible types of wave. The electric field reduces with increasing distance from the X-type neutral point as in linear dynamic magnetic reconnection. The resulting particle distributions have properties that depend on the amplitude and frequency of the electric field. In many cases a bimodal form is found. Depending on the timescale for variation of the electric field, electrons and ions may be accelerated to different degrees and often have energy distributions of different forms. Protons are accelerated to $\\gamma$-ray producing energies and electrons to and above hard X-ray producing energies in timescales of 1 second. The acceleration mechanism is possibly important for solar flares and solar noise storms but is also applicable to all collisionless plasmas.

  11. Critical magnetic fields for the magnetic Dirac-Coulomb operator Maria J. ESTEBAN

    E-Print Network [OSTI]

    Eilbeck, Chris

    as the most possible hypothesis for the so called "gamma ray outbursts" John60, Edinburgh, June 2008 ­ p.2 as the most possible hypothesis for the so called "gamma ray outbursts" Earth's magnetic field = 1 Gauss could : ­ destabilize matter, distorting atoms and molecules and forming polymer-like chains

  12. Magnetic field induced quantum dot brightening in liquid crystal synergized magnetic and semiconducting nanoparticle composite assemblies

    SciTech Connect (OSTI)

    Amaral, Jose Jussi; Wan, Jacky; Rodarte, Andrea L.; Ferri, Christopher; Quint, Makiko T.; Pandolfi, Ronald J.; Scheibner, Michael; Hirst, Linda S.; Ghosh, Sayantani

    2014-10-22

    The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small applied magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.

  13. A model of the ULF magnetic and electric field generated from a dust devil

    E-Print Network [OSTI]

    Cummer, Steven A.

    A model of the ULF magnetic and electric field generated from a dust devil W. M. Farrell,1 J. R emit ULF magnetic radiation. On Mars, dust devils may also generate such magnetic emissions, which in the vortex wind fields accounts for the magnetic emission. To test this hypothesis in general

  14. The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime

    E-Print Network [OSTI]

    Bostan, Mihai

    -scale character of the problem. Motivated by the magnetic confinement fusion (MCF) the study of strong magneticThe Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime Mihai-Poisson equations with strong external magnetic field. The derivation of the limit model follows by formal expansion

  15. Analysis of Recurrent Patterns in Toroidal Magnetic Fields Allen R. Sanderson, Member, IEEE Guoning Chen

    E-Print Network [OSTI]

    Utah, University of

    Breslau ¶ Princeton Plasma Physics Laboratory Abstract-- In the development of magnetic confinement fusion patterns 1 INTRODUCTION The development of magnetic confinement fusion which will poten- tially be a future the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector

  16. Effect of magnetic field applied during secondary annealing on texture and grain size of silicon steel

    E-Print Network [OSTI]

    Garmestani, Hamid

    Abstract Temper cold rolled silicon steel samples were annealed with and without an applied magnetic field. Keywords: Soft magnet; Magnetic annealing; Texture; Grain growth 1. Introduction Silicon steel is a softEffect of magnetic field applied during secondary annealing on texture and grain size of silicon

  17. Magnetic field advection in two interpenetrating plasma streams

    SciTech Connect (OSTI)

    Ryutov, D. D.; Kugland, N. L.; Levy, M. C.; Plechaty, C.; Ross, J. S.; Park, H. S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2013-03-15

    Laser-generated colliding plasma streams can serve as a test-bed for the study of various astrophysical phenomena and the general physics of self-organization. For streams of a sufficiently high kinetic energy, collisions between the ions of one stream with the ions of the other stream are negligible, and the streams can penetrate through each other. On the other hand, the intra-stream collisions for high-Mach-number flows can still be very frequent, so that each stream can be described hydrodynamically. This paper presents an analytical study of the effects that these interpenetrating streams have on large-scale magnetic fields either introduced by external coils or generated in the plasma near the laser targets. Specifically, a problem of the frozen-in constraint is assessed and paradoxical features of the field advection in this system are revealed. A possibility of using this system for studies of magnetic reconnection is mentioned.

  18. Double Barriers and Magnetic Field in Bilayer Graphene

    E-Print Network [OSTI]

    Ilham Redouani; Ahmed Jellal; Hocine Bahlouli

    2015-05-21

    We study the transmission probability in an AB-stacked bilayer graphene of Dirac fermions scattered by a double barrier structure in the presence of a magnetic field. We take into account the full four bands of the energy spectrum and use the boundary conditions to determine the transmission probability. Our numerical results show that for energies higher than the interlayer coupling, four ways for transmission probabilities are possible while for energies less than the height of the barrier, Dirac fermions exhibits transmission resonances and only one transmission channel is available. We show that, for AB-stacked bilayer graphene, there is no Klein tunneling at normal incident. We find that the transmission displays sharp peaks inside the transmission gap around the Dirac point within the barrier regions while they are absent around the Dirac point in the well region. The effect of the magnetic field, interlayer electrostatic potential and various barrier geometry parameters on the transmission probabilities are also discussed.

  19. Magnetic field mapping for HIE-ISOLDE cavities

    E-Print Network [OSTI]

    Bianchi, Antonio

    2015-01-01

    In this report the importance of a magnetic field mapping (B-mapping) around the HIE-ISOLDE superconducting cavities is described. In fact the cavities are not always above the HIE-ISOLDE specification, so it is important to understand the reason of their bad performances and improve them. For doing the B-mapping, the supports for three fluxgate sensors are designed and manufactured. The material of the supports is PEEK: a proper thermoplastic for the extreme operation conditions of the cavities. According to simulation of behavior of external magnetic field, an initial configuration of the sensors is proposed for the first measurements, in order to get the extent of Meissner effect around the superconducting cavities.

  20. Relativistic Shocks: Particle Acceleration and Magnetic Field Generation, and Emission

    E-Print Network [OSTI]

    Nishikawa, K I; Richardson, G; Preece, R; Sol, H; Fishman, G J

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g.,Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock at the same simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. The simul...

  1. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    E-Print Network [OSTI]

    Nishikawa, K I; Hededal, C B; Richardson, G; Preece, R; Sol, H; Fishman, G J

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock at the same simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. While so...

  2. Magnetic field decay in neutron stars: from Soft Gamma Repeaters to "weak field magnetars"

    E-Print Network [OSTI]

    Dall'Osso, S; Piran, T

    2011-01-01

    The recent discovery of the "weak field, old magnetar", the soft gamma repeater SGR 0418+5729, whose dipole magnetic field is less than 7.5 \\times 10^{12} G, has raised perplexing questions: How can the neutron star produce SGR-like bursts with such a low magnetic field? What powers the observed X-ray emission when neither the rotational energy nor the magnetic dipole energy are sufficient? These observations, that suggest either a much larger energy reservoir or a much younger true age (or both), have renewed the interest in the evolutionary sequence of magnetars. We examine, here, a phenomenological model for the magnetic field decay: B_dip} \\propto (B_dip)^{1+a} and compare its predictions with the observed period, P,the period derivative, \\dot{P}, and the X-ray luminosity, L_X, of magnetar candidates. We find a strong evidence for a dipole field decay on a timescale of \\sim 10^3 yr for the strongest (\\sim 10^{15} G) field objects, with a decay index within the range 1 \\leq a 10^{16} G) initial value. Our...

  3. Solar Magnetic Field Studies Using the 12-Micron Emission Lines. IV. Observations of a Delta-Region Solar Flare

    E-Print Network [OSTI]

    Donald E. Jennings; Drake Deming; George McCabe; Pedro Sada; Thomas Moran

    2001-12-05

    We have recently developed the capability to make solar vector (Stokes IQUV) magnetograms using the infrared line of MgI at 12.32 microns. On 24 April 2001, we obtained a vector magnetic map of solar active region NOAA 9433, fortuitously just prior to the occurrence of an M2 flare. Examination of a sequence of SOHO/MDI magnetograms, and comparison with ground-based H-alpha images, shows that the flare was produced by the cancellation of newly emergent magnetic flux outside of the main sunspot. The very high Zeeman-sensitivity of the 12-micron data allowed us to measure field strengths on a spatial scale which was not directly resolvable. At the flare trigger site, opposite polarity fields of 2700 and 1000 Gauss occurred within a single 2 arc-sec resolution element, as revealed by two resolved Zeeman splittings in a single spectrum. Our results imply an extremely high horizontal field strength gradient (5 G/km) prior to the flare, significantly greater than seen in previous studies. We also find that the magnetic energy of the cancelling fields was more than sufficient to account for the flare's X-ray luminosity.

  4. Magnetic Field Generation and Particle Energization at Relativistic Shear Boundaries in Collisionless Electron-Positron Plasmas

    E-Print Network [OSTI]

    Boettcher, Markus

    1 Magnetic Field Generation and Particle Energization at Relativistic Shear Boundaries. We find efficient magnetic field generation and particle energization at the shear boundary, driven generation (Colgate et al 2001, Medvedev & Loeb 1999) and nonthermal particle energization (Berezhko 1981

  5. NEUTRINO SPIN AND FLAVOUR CONVERSION AND OSCILLATIONS IN MAGNETIC FIELD

    E-Print Network [OSTI]

    A. M. Egorov; G. G. Likhachev; A. I. Studenikin

    1995-06-09

    A review of the neutrino conversion and oscillations among the two neutrino species (active and sterile) induced by strong twisting magnetic field is presented and implications to neutrinos in neutron star, supernova, the Sun and interstellar galactic media are discussed. The ``cross-boundary effect" (CBE) (i.e., a possible conversion of one half of neutrinos of the bunch from active into sterile specie) at the surface of neutron star is also studied for a realistic neutron star structure.

  6. Adiabatic expansion and magnetic fields in AGN jets

    E-Print Network [OSTI]

    A. B. Pushkarev; Y. Y. Kovalev; A. P. Lobanov

    2008-12-25

    Results of high-resolution simultaneous multi-frequency 8.1-15.4 GHz VLBA polarimetric observations of relativistic jets in active galactic nuclei (the MOJAVE-2 project) are analyzed. We compare characteristics of VLBI features with jet model predictions and test if adiabatic expansion is a dominating mechanism for the evolution of relativistic shocks in parsec-scale AGN jets. We also discuss magnetic field configuration, both predicted by the model and deduced from electric vector position angle measurements.

  7. Conference Summary: The Cosmic Agitator - Magnetic Fields in the Galaxy

    E-Print Network [OSTI]

    T. H. Troland; C. Heiles; A. P. Sarma; G. J. Ferland; R. M. Crutcher; C. L. Brogan

    2008-04-21

    We present a summary of the conference "The Cosmic Agitator: Magnetic Fields in the Galaxy" held in Lexington KY in 2008 Mar 26-29. The presentation draws primarily from material in the slides prepared for the Conference Summary by one of us (Carl Heiles). Interested readers may navigate to the conference web site given in the paper to view the posted presentations in detail.

  8. Matter effects on neutrino oscillations in gravitational and magnetic fields

    E-Print Network [OSTI]

    H. Athar; Jose F. Nieves

    2000-01-10

    When neutrinos propagate in a background, their gravitational couplings are modified by their weak interactions with the particles in the background. In a medium that contains electrons but no muons or taons, the matter-induced gravitational couplings of neutrinos are different for the various neutrino flavors, and they must be taken into account in describing the phenomena associated with the neutrino oscillations in the presence of strong gravitational fields. Here we incorporate those couplings in that description, including also the effects of a magnetic field, and consider the implications that they have for the emission of high energy neutrinos in the vicinity of Active Galactic Nuclei.

  9. Magnetic field gradients in solar wind plasma and geophysics periods

    E-Print Network [OSTI]

    A. Bershadskii

    2006-11-16

    Using recent data obtained by Advanced Composition Explorer (ACE) the pumping scale of the magnetic field gradients of the solar wind plasma has been calculated. This pumping scale is found to be equal to 24h $\\pm$ 2h. The ACE spacecraft orbits at the L1 libration point which is a point of Earth-Sun gravitational equilibrium about 1.5 million km from Earth. Since the Earth's magnetosphere extends into the vacuum of space from approximately 80 to 60,000 kilometers on the side toward the Sun the pumping scale cannot be a consequence of the 24h-period of the Earth's rotation. Vise versa, a speculation is suggested that for the very long time of the coexistence of Earth and of the solar wind the weak interaction between the solar wind and Earth could lead to stochastic synchronization between the Earth's rotation and the pumping scale of the solar wind magnetic field gradients. This synchronization could transform an original period of the Earth's rotation to the period close to the pumping scale of the solar wind magnetic field gradients.

  10. Toroidal Magnetic Fields in Type II Superconducting Neutron Stars

    E-Print Network [OSTI]

    Taner Akgun; Ira Wasserman

    2007-11-01

    We determine constraints on the form of axisymmetric toroidal magnetic fields dictated by hydrostatic balance in a type II superconducting neutron star with a barotropic equation of state. Using Lagrangian perturbation theory, we find the quadrupolar distortions due to such fields for various models of neutron stars with type II superconducting and normal regions. We find that the star becomes prolate and can be sufficiently distorted to display precession with a period of the order of years. We also study the stability of such fields using an energy principle, which allows us to extend the stability criteria established by R. J. Tayler for normal conductors to more general media with magnetic free energy that depends on density and magnetic induction, such as type II superconductors. We also derive the growth rate and instability conditions for a specific instability of type II superconductors, first discussed by P. Muzikar, C. J. Pethick and P. H. Roberts, using a local analysis based on perturbations around a uniform background.

  11. How are Forbush decreases related with interplanetary magnetic field enhancements ?

    E-Print Network [OSTI]

    Arunbabu, K P; Dugad, S R; Gupta, S K; Hayashi, Y; Kawakami, S; Mohanty, P K; Oshima, A; Subramanian, P

    2015-01-01

    Aims. Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods. We use muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We select those FD events that have a reasonably clean profile, and magnitude > 0.25%. We use IMF data from ACE/WIND spacecrafts. We look for correlations between the FD profile and that of the one hour averaged IMF. We ask if the diffusion of high energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results. The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably simil...

  12. Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    SciTech Connect (OSTI)

    Wiles, R.H.

    2005-10-07

    In a conventional permanent magnet (PM) machine, the air-gap flux produced by the PM is fixed. It is difficult to enhance the air-gap flux density due to limitations of the PM in a series-magnetic circuit. However, the air-gap flux density can be weakened by using power electronic field weakening to the limit of demagnetization of the PMs. This paper presents the test results of controlling the PM air-gap flux density through the use of a stationary brushless excitation coil in a reluctance interior permanent magnet with brushless field excitation (RIPM-BFE) motor. Through the use of this technology the air-gap flux density can be either enhanced or weakened. There is no concern with demagnetizing the PMs during field weakening. The leakage flux of the excitation coil through the PMs is blocked. The prototype motor built on this principle confirms the concept of flux enhancement and weakening through the use of excitation coils.

  13. Received Signal Strength based Bearing-only Robot Navigation in a sensor network field

    E-Print Network [OSTI]

    Henderson, Thomas C.

    -complexity, novel ap- proach to wireless sensor network (WSN) assisted autonomous mobile robot (AMR) navigation.e., topology of the WSN and received signal strength (RSS) information, while executing an efficient navigation path. Here, the AMR has neither the location information for the WSN, nor any sophisticated ranging

  14. Magnetic field confinement by meridional flow and the solar tachocline

    E-Print Network [OSTI]

    L. L. Kitchatinov; G. Ruediger

    2006-03-16

    We show that the MHD theory that explains the solar tachocline by an effect of the magnetic field can work with the decay modes of a fossil field in the solar interior if the meridional flow of the convection zone penetrates slightly the radiative zone beneath. An equatorward flow of about 10 m/s penetrating to a maximum depth of 1000 km below the convection zone is able to generate almost horizontal field lines in the tachocline region so that the internal field is almost totally confined to the radiative zone. The theory of differential solar rotation indeed provides meridional flows of about 10 m/s and a penetration depth of < 1000 km for viscosity values that are characteristic of a stable tachocline.

  15. Measuring the strong electrostatic and magnetic fields with proton radiography for ultra-high intensity laser channeling on fast ignition

    SciTech Connect (OSTI)

    Uematsu, Y.; Iwawaki, T.; Habara, H., E-mail: habara@eei.eng.osaka-u.ac.jp; Tanaka, K. A. [Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Ivancic, S.; Theobald, W. [Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623-1299 (United States); Lei, A. L. [Shanghai Institute of Laser Plasma, 201800 Shanghai (China)

    2014-11-15

    In order to investigate the intense laser propagation and channel formation in dense plasma, we conducted an experiment with proton deflectometry on the OMEGA EP Laser facility. The proton image was analyzed by tracing the trajectory of mono-energetic protons, which provides understanding the electric and magnetic fields that were generated around the channel. The estimated field strengths (E ? 10{sup 11} V/m and B ? 10{sup 8} G) agree with the predictions from 2D-Particle-in-cell (PIC) simulations, indicating the feasibility of the proton deflectometry technique for over-critical density plasma.

  16. THE FORMATION OF A MAGNETIC CHANNEL BY THE EMERGENCE OF CURRENT-CARRYING MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Lim, Eun-Kyung; Chae, Jongchul; Jing Ju; Wang Haimin; Wiegelmann, Thomas E-mail: jcchae@snu.ac.k

    2010-08-10

    A magnetic channel-a series of polarity reversals separating elongated flux threads with opposite polarities-may be a manifestation of a highly non-potential magnetic configuration in active regions. To understand its formation, we have carried out a detailed analysis of the magnetic channel in AR 10930 using data taken by the Solar Optical Telescope/Hinode. As a result, we found upflows (-0.5 to -1.0 km s{sup -1}) and downflows (+1.5 to +2.0 km s{sup -1}) inside and at both tips of the thread, respectively, and a pair of strong vertical currents of opposite polarity along the channel. Moreover, our analysis of the nonlinear force-free fields constructed from the photospheric magnetic field indicates that the current density in the lower corona may have gradually increased as a result of the continuous emergence of the highly sheared flux along the channel. With these results, we suggest that the magnetic channel originates from the emergence of the twisted flux tube that has formed below the surface before the emergence.

  17. Effect of an external magnetic field on the nematic-isotropic phase transition in mesogenic systems of uniaxial and biaxial molecules

    E-Print Network [OSTI]

    Nababrata Ghoshal; Kisor Mukhopadhyay; Soumen Kumar Roy

    2012-12-17

    Influence of an external magnetic field on the nematic-isotropic ($N-I$) phase transition in a dispersion model of nematic liquid crystals, where the molecules are either perfectly uniaxial or biaxial (board-like), has been studied by Monte Carlo simulation. Using multiple histogram reweighting technique and finite size scaling analysis the order of the phase transition, the transition temperature at the thermodynamic limit and the stability limit of the isotropic phase below the transition temperature for different magnetic field strengths have been determined. The magnetic field dependence of the shift in $N-I$ transition temperature is observed to be more rapid than that predicted by the standard Landau-de Gennes and Maier-Saupe mean field theories. We have shown that for a given field strength the shift in the transition temperature is higher for the biaxial molecules in comparison with the uniaxial case. The study shows that the $N-I$ transition for the biaxial molecules is weaker than the well known weak first order $N-I$ transition for the uniaxial molecules and the presence of the external magnetic field (up to a certain critical value) makes the transition much more weaker for both the systems. The estimate of the critical magnetic field ($\\sim 110 T$) for the common nematics is found to be smaller than the earlier estimates.

  18. Comparison Between Two Models for Interactions Between Electric and Magnetic Fields and Proteins in Cell Membranes

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    of a static magnetic field is required, and biological effects can be expected for frequencies below a few for exposures to low-frequency magnetic fields in the mili-Tesla range. No resonance frequencies or amplitude Lines; Interaction Models; Biological Effects Introduction Static magnetic and electric fields occur

  19. Lightning-Driven Electric and Magnetic Fields Measured in the Stratosphere: Implications for Sprites

    E-Print Network [OSTI]

    Thomas, Jeremy N.

    Lightning-Driven Electric and Magnetic Fields Measured in the Stratosphere: Implications-Driven Electric and Magnetic Fields Measured in the Stratosphere: Implications for Sprites Jeremy Norman Thomas et al., 2004b], in which the lightning-driven electric and magnetic field changes were rare, while

  20. Comparison Between Two Models for Interactions Between Electric and Magnetic Fields and Proteins in Cell Membranes

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    REVIEW Comparison Between Two Models for Interactions Between Electric and Magnetic Fields Lines; Interaction Models; Biological Effects Introduction Static magnetic and electric fields occur, and strong low-frequency electric or magnetic fields will induce electric currents in the body that lead