Sample records for magnetic electrical seismic

  1. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Environmental Management (EM)

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...

  2. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

  3. Forecasting Seismic Signatures of Stellar Magnetic Activity

    E-Print Network [OSTI]

    W. A. Dziembowski

    2007-09-17T23:59:59.000Z

    For the Sun, a tight correlation between various activity measures and oscillation frequencies is well documented. For other stars, we have abundant data on magnetic activity and its changes but not yet on its seismic signature. A prediction of the activity induced frequency changes in stars based on scaling the solar relations is presented. This seismic signature of the activity should be measurable in the data expected within few years.

  4. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Michael Batzle, PI Colorado School of Mines Track Name: Fluid...

  5. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

  6. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  7. Determination of Electric-Field, Magnetic-Field, and Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...

  8. Global Electrical Conductivity Magnetic Satellite Induction Studies

    E-Print Network [OSTI]

    Constable, Steve

    · Geomagnetic depth sounding (GDS) method Measure horizontal and vertical magnetic fields 2nd-varying magnetic field induces electric currents in conductors. × E = - B t Secondary magnetic fields created by these currents appose the primary magnetic field. So, conductors attenuate magnetic fields. 2nd

  9. Electric Dipole Moment of Magnetic Monopole

    E-Print Network [OSTI]

    Makoto Kobayashi

    2007-03-07T23:59:59.000Z

    The electric dipole moment of magnetic monopoles with spin is studied in the N=2 supersymmetric gauge theory. The dipole moments of the electric charge distributions, as well as the dipole moments due to the magnetic currents, are calculated. The contribution of charge distribution of the fermion to the gyroelectric ratio is expressed by using zeta(3).

  10. ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.

    E-Print Network [OSTI]

    Engineering Magnetics, ECE 593 Structure: Three 80-minute lectures per week Instructors: A. Weisshaar (primaryECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields. Credits: 4 Terms Offered: Fall Prerequisites: MTH 255, ENGR 203 (concurrent enrollment

  11. Can (electric-magnetic) duality be gauged?

    SciTech Connect (OSTI)

    Bunster, Claudio [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Muehlenberg 1, D-14476 Potsdam (Germany); Henneaux, Marc [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Universite Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Muehlenberg 1, D-14476 Potsdam (Germany)

    2011-02-15T23:59:59.000Z

    There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.

  12. Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and

    E-Print Network [OSTI]

    Maroncelli, Mark

    Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and electric polarization in a single-phase material. The control of the magnetic of the two interactions. Moderate biaxial compression precipitates local magnetic competition

  13. Electric-Magnetic Duality and Topological Insulators

    E-Print Network [OSTI]

    Andreas Karch

    2009-10-03T23:59:59.000Z

    We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a non-trivial permittivity, permeability and theta-angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the AdS/CFT correspondence.

  14. Electric-Magnetic Duality and Topological Insulators

    SciTech Connect (OSTI)

    Karch, A. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2009-10-23T23:59:59.000Z

    We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a nontrivial permittivity, permeability, and theta angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the gauge/gravity correspondence.

  15. Magnetic response enhancement via electrically induced magnetic moments

    E-Print Network [OSTI]

    B. Jungnitsch; J. Evers

    2008-04-22T23:59:59.000Z

    The realization of negative refraction in atomic gases requires a strong magnetic response of the atoms. Current proposals for such systems achieve an enhancement of the magnetic response by a suitable laser field configuration, but still rely on high gas densities. Thus further progress is desirable, and this requires an understanding of the precise mechanism for the enhancement. Therefore, here we study the magnetic and electric response to a probe field interacting with three-level atoms in ladder configuration. In our first model, the three transitions are driven by a control field and the electric and magnetic component of the probe field, giving rise to a closed interaction loop. In a reference model, the coherent driving is replaced by an incoherent pump field. A time-dependent analysis of the closed-loop system enables us to identify the different contributions to the medium response. A comparison with the reference system then allows one to identify the physical mechanism that leads to the enhancement. It is found that the enhancement occurs at so-called multiphoton resonance by a scattering of the coupling field and the electric probe field mode into the magnetic probe field mode. Based on these results, conditions for the enhancement are discussed.

  16. STRUCTURAL HEALTH MONITORING OF HIGH VOLTAGE ELECTRICAL SWITCH CERAMIC INSULATORS IN SEISMIC AREAS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    STRUCTURAL HEALTH MONITORING OF HIGH VOLTAGE ELECTRICAL SWITCH CERAMIC INSULATORS IN SEISMIC AREAS damage. 7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France European Workshop on Structural Health Monitoring (2014)" #12;(a) (b) Figure 1 : a) Elect

  17. Electric-Magnetic Duality in Massless QED?

    E-Print Network [OSTI]

    Chris Ford

    2009-09-09T23:59:59.000Z

    The possibility that QED and recently developed non-Hermitian, or magnetic, versions of QED are equivalent is considered. Under this duality the Hamiltonians and anomalous axial currents of the two theories are identified. A consequence of such a duality is that particles described by QED carry magnetic as well as electric charges. The proposal requires a vanishing zero bare fermion mass in both theories; Dirac mass terms are incompatible with the conservation of magnetic charge much as Majorana masses spoil the conservation of electric charge. The physical spectrum comprises photons and massless spin-1/2 particles carrying equal or opposite electric and magnetic charges. The four particle states described by the Dirac fermion correspond to the four possible charge assignments of elementary dyons. This scale invariant spectrum indicates that the quantum field theory is finite. The Johnson Baker Willey eigenvalue equation for the fine structure constant in finite spinor QED is interpreted as a Dirac-like charge quantisation condition for dyons.

  18. Electric control of magnetization relaxation in thin film magnetic insulators.

    SciTech Connect (OSTI)

    Wang, Z.; Sun, Y.; Song, Y-Y.; Wu, M.; Schultheiss, H.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Colorado State Univ.)

    2011-10-01T23:59:59.000Z

    Control of magnetization relaxation in magnetic insulators via interfacial spin scattering is demonstrated. The experiments use nanometer-thick yttrium iron garnet (YIG)/Pt layered structures, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt thickness. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or enhance the damping and thereby decrease or increase the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration.

  19. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOE Patents [OSTI]

    Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)

    2002-01-01T23:59:59.000Z

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  20. THE BASE OF THE CONVECTION ZONE AND THE SOLAR MAGNETIC CYCLE: SEISMIC DETECTION OF THEIR CONNECTION

    E-Print Network [OSTI]

    Monteiro, Mário João

    495 THE BASE OF THE CONVECTION ZONE AND THE SOLAR MAGNETIC CYCLE: SEISMIC DETECTION Unit, School of Mathematical Sciences, Queen Mary & Westfield College, Mile End Road, London El 4NS of the transition at the bot- tom of the solar convection zone, as determined from the periodic signal

  1. Electric-magnetic duality implies (global) conformal invariance

    E-Print Network [OSTI]

    Sung-Pil Moon; Sang-Jin Lee; Ji-Hye Lee; Jae-Hyuk Oh

    2014-05-30T23:59:59.000Z

    We have examined quantum theories of electric magnetic duality invariant vector fields enjoying classical conformal invariance in 4-dimensional flat spacetime. We extend Dirac's argument about "the conditions for a quantum field theory to be relativistic" to "those for a quantum theory to be conformal". We realize that electric magnetic duality invariant vector theories together with classical conformal invariance defined in 4-$d$ flat spacetime are still conformally invariant theories when they are quantized in a way that electric magnetic duality is manifest.

  2. Tentative criteria for the design and installation of electrical power systems subject to seismic hazard

    SciTech Connect (OSTI)

    Parise, G.; Ferranti, F. [Univ. of Rome La Sapienza (Italy). Electrical Engineering Dept.; Colozza, R.

    1995-12-31T23:59:59.000Z

    The paper discusses the need to study the criteria for the design and installation of electrical power systems in buildings subject to seismic hazard. Nowadays, all the recommended seismic requirements (according to: Uniform Building Code UBC, Structural Engineers Association of California SEAOC, National Earthquake Hazards Reduction Program NEHRP) do not specifically take into account the electrical or technological power systems. The paper analyzes the problems an earthquake can cause with regard to the functional reliability and continuity of supply of electrical power systems. Therefore, it proposes design and installation requirements, to be graduated according to building occupancy categories. Basically, the criteria relative to the installation of the electrical equipment are an appropriate extension of those general static ones for nonstructural components. Their consideration is essential for the settlement of the design criteria, which, as far as the configuration and the size of the electrical power system are concerned, aim at limiting the same installation problems. Other general design criteria, aimed as a guarantee for the supply continuity and system reliability, have a particular use in these appliances.

  3. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27T23:59:59.000Z

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  4. Calculation Method of Permanent Magnet Pickups for Electric Guitars

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the 1930s, when Rickenbacker fitted out a guitar with a magnet and coils, thus designing the first magnetic to look at the types of magnetic circuit for the guitar pickups. We consider in this paper the most usual1 Calculation Method of Permanent Magnet Pickups for Electric Guitars G. Lemarquand and V

  5. Light scattering by an array of electric and magnetic nanoparticles

    E-Print Network [OSTI]

    Floreano, Dario

    Light scattering by an array of electric and magnetic nanoparticles Braulio García-Cámara1, 2@unican.es Abstract: Light scattering by an array of alternating electric and magnetic nanoparticles is analyzed, "Polarization sensitive silicon photodiodes using nanostructured metallic grids," Appl. Phys. Lett. 94

  6. Electric-Magnetic Duality, Matrices, & Emergent Spacetime

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2005-08-23T23:59:59.000Z

    This is a rough transcript of talks given at the Workshop on Groups & Algebras in M Theory at Rutgers University, May 31--Jun 04, 2005. We review the basic motivation for a pre-geometric formulation of nonperturbative String/M theory, and for an underlying eleven-dimensional electric-magnetic duality, based on our current understanding of the String/M Duality Web. We explain the concept of an emerging spacetime geometry in the large N limit of a U(N) flavor matrix Lagrangian, distinguishing our proposal from generic proposals for quantum geometry, and explaining why it can incorporate curved spacetime backgrounds. We assess the significance of the extended symmetry algebra of the matrix Lagrangian, raising the question of whether our goal should be a duality covariant, or merely duality invariant, Lagrangian. We explain the conjectured isomorphism between the O(1/N) corrections in any given large N scaling limit of the matrix Lagrangian, and the corresponding alpha' corrections in a string effective Lagrangian describing some weak-coupling limit of the String/M Duality Web.

  7. Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators of Electrical Machines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators magnetic materials properties (magnetic behavior law, iron losses) during the manufacturing process pole stator generator. Twenty eight (28) samples of slinky stator (SS) coming from the same production

  8. Biological Effects of Electrical and Magnetic Fields: Is It Real? 

    E-Print Network [OSTI]

    Durham, M. O.

    1993-01-01T23:59:59.000Z

    this conflict. The model is a composite energy approach that identifies the classical, thermal electromagnetic interaction as well as a completely independent electric and independent magnetic component. An overview of the biological investigations is presented...

  9. Magnetic and Electric Black Holes in Arbitrary Dimension

    E-Print Network [OSTI]

    Adil Belhaj; Pablo Diaz; Antonio segui

    2009-06-02T23:59:59.000Z

    In this work, we compare two different objects: electric black holes and magnetic black holes in arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the gravitational solution of these spherically symmetric objects in the presence of a positive cosmological constant. Then, we find the bounded region of the moduli space allowing the existence of black holes. After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out between the horizons at the coalescence points. Although the electric and magnetic cases are both very different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and lead to very similar geometries.

  10. Superconducting magnetic energy storage for asynchronous electrical systems

    DOE Patents [OSTI]

    Boenig, H.J.

    1984-05-16T23:59:59.000Z

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  11. Strong permanent magnets provide a backbone technology required many products, including computers, electric cars, and

    E-Print Network [OSTI]

    McQuade, D. Tyler

    , electric cars, and wind-powered generators. Currently, the strongest permanent magnets contain rare earth

  12. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California. Final report, part II

    SciTech Connect (OSTI)

    Not Available

    1980-06-27T23:59:59.000Z

    This report is the second of a two part study addressing the seismic risk or hazard of the special nuclear materials (SNM) facility of the General Electric Vallecitos Nuclear Center at Pleasanton, California. The Part I companion to this report, dated July 31, 1978, presented the seismic hazard at the site that resulted from exposure to earthquakes on the Calaveras, Hayward, San Andreas and, additionally, from smaller unassociated earthquakes that could not be attributed to these specific faults. However, while this study was in progress, certain additional geologic information became available that could be interpreted in terms of the existance of a nearby fault. Although substantial geologic investigations were subsequently deployed, the existance of this postulated fault, called the Verona Fault, remained very controversial. The purpose of the Part II study was to assume the existance of such a capable fault and, under this assumption, to examine the loads that the fault could impose on the SNM facility. This report first reviews the geologic setting with a focus on specifying sufficient geologic parameters to characterize the postulated fault. The report next presents the methodology used to calculate the vibratory ground motion hazard. Because of the complexity of the fault geometry, a slightly different methodology is used here compared to the Part I report. This section ends with the results of the calculation applied to the SNM facility. Finally, the report presents the methodology and results of the rupture hazard calculation.

  13. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    SciTech Connect (OSTI)

    Seth S. Haines; Bethany L. Burton; Donald S. Sweetkind; Theodore H. Asch

    2009-03-30T23:59:59.000Z

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we inverted, yielding a velocity model that shows lateral heterogeneity similar to the 2006 DC resistivity models. Finally, we collected P-wave data along a second transect in Area 2, located north of the first line and in an area of a very minor fault that was targeted by another 2006 DC resistivity survey. The P-wave refraction velocity model shows generally high velocities, with a zone of somewhat lower velocities in the central part of the transect. The position of the low velocity zone corresponds with the location of a minor fault, though it is unclear whether the two are related. Together, these results demonstrate the value of geophysical data for mapping the subsurface extent of faults. The 2007 DC resistivity data complement the 2006 data and provide important new detail of the overlapping fault splays. The seismic data demonstrate the ability of P-wave refraction methods to identify the damage zones at faults, and they show the difficulties associated with S-wave methods in areas with caliche. Combining all of the geophysical data from the Area 7 studies, we are able to develop a coherent interpretation of the relation between the site geology, the fault, and the observations.

  14. Abstract--Linear electrical loading system (LELS) driven by electrical cylinder with permanent magnet synchronous

    E-Print Network [OSTI]

    Yao, Bin

    magnet synchronous motor (PMSM) offers several advantages of high transmission efficiency and high cylinder driven by permanent magnet synchronous motor (PMSM). Though direct-drive linear motors has some to direct-drive linear motor, the solution of electrical cylinder with PMSM has larger output force

  15. Magnetism Chapter 4 Delmar's/Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, InaprilU .MagneticMagnetic

  16. Anomalous Magnetic and Electric Dipole Moments of the Tau

    E-Print Network [OSTI]

    Lucas Taylor

    1998-10-23T23:59:59.000Z

    This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 \\pm 0.027 \\pm 0.023$ and $\\dtau = (0.0 \\pm 1.5 \\pm 1.3)\\times 10^{-16}{e{\\cdot}\\mathrm{cm}}$.

  17. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect (OSTI)

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M. [Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Rijk, G. de [European Organization for Nuclear Research CERN, 1211 Geneva (Switzerland)

    2014-01-27T23:59:59.000Z

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  18. Longitudinal study of student conceptual understanding in electricity and magnetism S. J. Pollock

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Longitudinal study of student conceptual understanding in electricity and magnetism S. J. Pollock at the freshman level on juniors' performance on a conceptual survey of Electricity and Magnetism E&M . We measured student performance on a research-based conceptual instrument--the Brief Electricity & Magnetism

  19. Electric control of magnetization relaxation in thin film ferromagnetic insulators.

    SciTech Connect (OSTI)

    Wang, Z.; Sun, Y.; Song, Y-Y.; Wu, M.; Schultheib, H.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Colorado State Univ.)

    2011-01-01T23:59:59.000Z

    Control of magnetization relaxation in magnetic insulators via interfacial spin scattering is demonstrated. The experiments use nanometer-thick yttrium iron garnet (YIG)/Pt layered structures, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt thickness. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or enhance the damping and thereby decrease or increase the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration.

  20. The electric and magnetic form factors of the proton

    E-Print Network [OSTI]

    A1 Collaboration; J. C. Bernauer; M. O. Distler; J. Friedrich; Th. Walcher; P. Achenbach C. Ayerbe Gayoso; R. Böhm; L. Debenjak; L. Doria; A. Esser; H. Fonvieille; M. Gómez Rodrígues de la Paz; J. M. Friedrich; M. Makek; H. Merkel; D. G. Middleton; U. Müller; L. Nungesser; J. Pochodzalla; M. Potokar; S. Sánchez Majos; B. S. Schlimme; S. Širca; M. Weinriefer

    2014-07-29T23:59:59.000Z

    The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 \\lesssim Q^2 \\lesssim 1$\\ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $\\sim$ 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.

  1. Polarizable vacuum analysis of electric and magnetic fields

    E-Print Network [OSTI]

    Xing-Hao Ye

    2009-08-22T23:59:59.000Z

    The electric and magnetic fields are investigated on the basis of quantum vacuum. The analysis of the electromagnetic energy and force indicates that an electric field is a polarized distribution of the vacuum virtual dipoles, and that a magnetic field in vacuum is a rearrangement of the vacuum polarization. It means that an electromagnetic wave is a successional changing of the vacuum polarization in space. Also, it is found that the average half length of the virtual dipoles around an elementary charge is a=2.8 *10^(-15)m. The result leads to the step distribution of the field energy around an electron, the relation between the fine structure constant and the vacuum polarization distribution, and an extremely high energy density of the electromagnetic field.

  2. Electrically operated magnetic switch designed to display reduced leakage inductance

    DOE Patents [OSTI]

    Cook, E.G.

    1994-05-10T23:59:59.000Z

    An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.

  3. Electrically operated magnetic switch designed to display reduced leakage inductance

    DOE Patents [OSTI]

    Cook, Edward G. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.

  4. Electric Fields and Chiral Magnetic Effect in Cu + Au Collisions

    E-Print Network [OSTI]

    Wei-Tian Deng; Xu-Guang Huang

    2015-02-16T23:59:59.000Z

    The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator $\\gamma_{q_1q_2}=$ (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if $\\gamma_{q_1q_2}$ is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie $\\gamma_{q_1q_2}$.

  5. Cognitive Issues in Upper-Division Electricity & Magnetism Steven J. Pollock

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    interventions ­at the upper division. Keywords: physics education research, course reform, electricityCognitive Issues in Upper-Division Electricity & Magnetism Steven J. Pollock and Stephanie V. Chasteen* * Science Education Initiative, University of Colorado, Boulder, CO 80309, USA Department

  6. Nonabelian Generalization of Electric-Magnetic Duality - a Brief Review

    E-Print Network [OSTI]

    HM Chan; ST Tsou

    1999-04-14T23:59:59.000Z

    A loop space formulation of Yang-Mills theory high-lighting the significance of monopoles for the existence of gauge potentials is used to derive a generalization of electric-magnetic duality to the nonabelian theory. The result implies that the gauge symmetry is doubled from SU(N) to $SU(N) \\times \\widetilde{SU}(N)$, while the physical degrees of freedom remain the same, so that the theory can be described in terms of either the usual Yang-Mills potential $A_\\mu(x)$ or its dual $\\tilde{A}_\\mu(x)$. Nonabelian `electric' charges appear as sources of $A_\\mu$ but as monopoles of $\\tilde{A}_\\mu$, while their `magnetic' counterparts appear as monopoles of $A_\\mu$ but sources of $\\tilde{A}_\\mu$. Although these results have been derived only for classical fields, it is shown for the quantum theory that the Dirac phase factors (or Wilson loops) constructed out of $A_\\mu$ and $\\tilde{A}_\\mu$ satisfy the 't Hooft commutation relations, so that his results on confinement apply. Hence one concludes, in particular, that since colour SU(3) is confined then dual colour $\\widetilde{SU}(3)$ is broken. Such predictions can lead to many very interesting physical consequences which are explored in a companion paper.

  7. On the Influence of Weak Magnetic and Electric Fields on the Fluctuations of Ionic Electric Currents in Blood Circulation

    E-Print Network [OSTI]

    Zakirjon Kanokov; Juern W. P. Schmelzer; Avazbek K. Nasirov

    2009-04-07T23:59:59.000Z

    An analysis of a variety of existing experimental data leads to the conclusion on the existence of a resonance mechanism allowing weak magnetic fields to affect biological processes. These fields may either be static magnetic fields comparable in magnitude with the magnetic field of the earth or weak ultra-low frequency time-dependent fields. So far, a generally accepted theoretical model allowing one to understand the effect of magnetic and electric fields on biological processes is not available. By this reason, it is not clear which characteristics of the fields, like magnetic and electric field strength, frequency of change of the field, shape of the electromagnetic wave, the duration of the magnetic or electric influence or some particular combination of them, are responsible for the biological effect. In the present analysis it is shown that external time-independent magnetic fields may cause a resonance amplification of ionic electric currents in biological tissues and, in particular, in the vasculature system due to a Brownian motion of charges. These resonance electric currents may cause necrotic changes in the tissues or blood circulation and in this way significantly affect the biological organism. The magnitude of the magnetic fields leading to resonance effects is estimated, it is shown that it depends significantly on the radius of the blood capillaries.

  8. Method Apparatus And System For Detecting Seismic Waves In A Borehole

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID); Sumstine, Roger L. (St. George, UT)

    2006-03-14T23:59:59.000Z

    A method, apparatus and system for detecting seismic waves. A sensing apparatus is deployed within a bore hole and may include a source magnet for inducing a magnetic field within a casing of the borehole. An electrical coil is disposed within the magnetic field to sense a change in the magnetic field due to a displacement of the casing. The electrical coil is configured to remain substantially stationary relative to the well bore and its casing along a specified axis such that displacement of the casing induces a change within the magnetic field which may then be sensed by the electrical coil. Additional electrical coils may be similarly utilized to detect changes in the same or other associated magnetic fields along other specified axes. The additional sensor coils may be oriented substantially orthogonally relative to one another so as to detect seismic waves along multiple orthogonal axes in three dimensional space.

  9. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    E-Print Network [OSTI]

    He, Q.

    2011-01-01T23:59:59.000Z

    Controllable Spontaneous Magnetism in Nanoscale Mixed Phase2001). Chakhalian, J. et al. Magnetism at the interfacelocal nature of this magnetism. We find that the spontaneous

  10. Momentum transfer dependence of the proton's electric and magnetic polarizabilities

    E-Print Network [OSTI]

    Hall, N L; Young, R D

    2014-01-01T23:59:59.000Z

    The Q^2-dependence of the sum of the electric and magnetic polarizabilities of the proton is calculated over the range 0 \\leq Q^2 \\leq 6 GeV^2 using the generalized Baldin sum rule. Employing a parametrization of the F_1 structure function valid down to Q^2 = 0.06 GeV^2, the polarizabilities at the real photon point are found by extrapolating the results of finite Q^2 to Q^2 = 0 GeV^2. We determine the evolution over four-momentum transfer to be consistent with the Baldin sum rule using photoproduction data, obtaining \\alpha + \\beta = 13.7 \\pm 0.7 \\times 10^{-4}\\, \\text{fm}^3.

  11. But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism Stephanie V. Chasteen, Rachel E. Pepper, Steven J. Pollock, Katherine K. Perkins Science Education course approach in junior-level electricity and magnetism (E&M). Almost all developed materials (i

  12. TORSIONAL SHEAR FLOW OF LONG PITCH CHOLESTERIC MESOPHASES IN ELECTRIC AND MAGNETIC FIELDS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TORSIONAL SHEAR FLOW OF LONG PITCH CHOLESTERIC MESOPHASES IN ELECTRIC AND MAGNETIC FIELDS J. WAHL Physikalisches Institut der Universitat, D44 Munster, Germany Abstract. -- Torsional shear [1] and vertical. -- In vertical electric (or magnetic) fields thin cholesteric layers with homeotropic boun- daries and small

  13. INTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM,

    E-Print Network [OSTI]

    Hart, Gus

    , AND MODERN PHYSICS What do we do in Physics 108? Physics 108 is a lab designed to support the Physics 106 of electricity and magnetism, optics, and modern physics. It is not likely that many of you have much experienceINTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM, OPTICS

  14. INTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM,

    E-Print Network [OSTI]

    Hart, Gus

    , AND MODERN PHYSICS What do we do in Physics 108? Physics 108 is a lab designed to support the Physics 106 understanding of electricity and magnetism, optics, and modern physics. It is not likely that many of you haveINTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM, OPTICS

  15. Measurements of electric and magnetic fields in the Waianae, Hawaii area

    SciTech Connect (OSTI)

    Mantiply, E.D.

    1992-07-01T23:59:59.000Z

    During November 27--30, 1990, the US Environmental Protection Agency (EPA) conducted a measurement survey of electric and magnetic field levels along the southwest coast of Oahu, Hawaii. These measurements were requested by the State of Hawaii to determine the levels of radiofrequency (RF) electric and magnetic fields near Naval radio transmitters at Lualualei. The objective was to determine maximum fields in residential areas. This report documents the measurement results. Also, a few measurements were made of extremely-low-frequency (ELF) electric and magnetic fields at 60 hertz, the frequency used for electrical power.

  16. Electric and Magnetic Dipoles in the Lorentz and Einstein-Laub Formulations of Classical Electrodynamics

    E-Print Network [OSTI]

    Mansuripur, Masud

    2015-01-01T23:59:59.000Z

    The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density $\\rho_{free}$, electric current-density $J_{free}$, polarization P, and magnetization M. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media - the seat of...

  17. Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic/ferroelectric layered heterostructures

    E-Print Network [OSTI]

    Chen, Long-Qing

    ). An alternative approach to engineering low electric- field-induced magnetic domain switching at room temperaPhase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic. Phys. Lett. 99, 182510 (2011) Quantum tunneling of the Bloch point in a magnetic film with strong

  18. Irradiation requirements of Nb3Sn based SC magnets electrical insulation

    E-Print Network [OSTI]

    McDonald, Kirk

    Irradiation requirements of Nb3Sn based SC magnets electrical insulation developed within the Eu electrical insulation candidates · EuCARD insulators certification conditions · Post irradiation tests and neutrino factories will be subjected to very high radiation doses. · The electrical insulation employed

  19. Assessing human exposure to power-frequency electric and magnetic fields

    SciTech Connect (OSTI)

    Kaune, W.T. [EM Factors, Richland, WA (United States)

    1993-12-01T23:59:59.000Z

    This paper reviews published literature and current problems relating to the assessment of occupational and residential human exposures to power-frequency electric and magnetic fields. Available occupational exposure data suggest that the class of job titles known as electrical workers may be an effective surrogate for time-weighted-average (TWA) magnetic-field (but not electric-field) exposure. Current research in occupational-exposure assessment is directed to the construction of job-exposure matrices based on electric- and magnetic-field measurements and estimates of worker exposures to chemicals and other factors of interest. Recent work has identified five principal sources of residential magnetic fields: electric power transmission lines, electric power distribution lines, ground currents, home wiring, and home appliances. Existing residential-exposure assessments have used one or more of the following techniques: questionnaires, wiring configuration coding, theoretical field calculations, spot electric- and magnetic-field measurements, fixed-site magnetic-field recordings, personal-exposure measurements, and geomagnetic-field measurements. Available normal-power magnetic-field data for residences differ substantially between studies. It is not known if these differences are due to geographical differences, differences in measurement protocols, or instrumentation differences. Available data suggest, but are far from proving, that spot measurements may be more effective than wire codes as predictors of long-term historical magnetic-field exposure. Two studies find that away-from-home TWA magnetic-field exposures are less variable than at home exposures. The importance of home appliances as contributors to total residential magnetic-field exposure is not known at this time. It also is not known what characteristics (if any) of residential electric and magnetic fields are determinants of human health effects. 41 refs., 9 figs., 10 tabs.

  20. Electric Field Control of Ferromagnetism and Magnetic Devices Using Multiferroics

    E-Print Network [OSTI]

    Heron, John Thomas

    2013-01-01T23:59:59.000Z

    deplete holes from a magnetic semiconductor (InMnAs) using aof holes in the magnetic semiconductor while the black arrowto investigate magnetic semiconductors in his group. I had

  1. The atomic electric dipole moment induced by the nuclear electric dipole moment; the magnetic moment effect

    E-Print Network [OSTI]

    Porsev, S G; Flambaum, V V

    2010-01-01T23:59:59.000Z

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.

  2. The atomic electric dipole moment induced by the nuclear electric dipole moment; the magnetic moment effect

    E-Print Network [OSTI]

    S. G. Porsev; J. S. M. Ginges; V. V. Flambaum

    2011-03-02T23:59:59.000Z

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.

  3. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01T23:59:59.000Z

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  4. Electric and magnetic fields and field derivatives from lightning stepped leaders and first return strokes measured at distances

    E-Print Network [OSTI]

    Florida, University of

    Electric and magnetic fields and field derivatives from lightning stepped leaders and first return; published 5 September 2008. [1] Using electric and magnetic field and field derivative sensors arrayed over-peak width of the stepped-leader/return-stroke electric field waveform; the stepped-leader electric field

  5. 11d Electric-Magnetic Duality and the Dbrane Spectrum

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2005-07-21T23:59:59.000Z

    We consider the gedanken calculation of the pair correlation function of spatially-separated macroscopic string solitons in strongly coupled type IIA string/M theory, with the macroscopic strings wrapping the eleventh dimension. The supergravity limit of this correlation function with well-separated, pointlike macroscopic strings corresponds to having also taken the IIA string coupling constant to zero. Thus, the pointlike limit of the gedanken correlation function can be given a precise worldsheet description in the 10D weakly-coupled type IIA string theory, analysed by us in hep-th/0007056 [Nucl. Phys. B591 (2000) 243]. The requisite type IIA string amplitude is the supersymmetric extension of the worldsheet formulation of an off-shell closed string tree propagator in bosonic string theory, a 1986 analysis due to Cohen, Moore, Nelson, and Polchinski. We point out that the evidence for pointlike sources of the zero-form field strength provided by our worldsheet results clarifies that the electric-magnetic duality in the Dirichlet-brane spectrum of type II string theories is eleven-dimensional.

  6. 3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003

    E-Print Network [OSTI]

    Ross, Caroline A.

    Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...

  7. A two-phase spherical electric machine for generating rotating uniform magnetic fields

    E-Print Network [OSTI]

    Lawler, Clinton T. (Clinton Thomas)

    2007-01-01T23:59:59.000Z

    This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...

  8. Axion electrodynamics and dark matter fingerprints in the terrestrial magnetic and electric fields

    E-Print Network [OSTI]

    A. B. Balakin; L. V. Grunskaya

    2012-09-27T23:59:59.000Z

    We consider mathematical aspects of the axion electrodynamics in application to the problem of evolution of geomagnetic and terrestrial electric fields, which are coupled by relic axions born in the early Universe and (hypothetically) forming now the cold dark matter. We find axionic analogs of the Debye potentials, well-known in the standard Faraday - Maxwell electrodynamics, and discuss exact solutions to the equations of the axion electrodynamics describing the state of axionically coupled electric and magnetic fields in a spherical resonator Earth-Ionosphere. We focus on the properties of the specific electric and magnetic oscillations, which appeared as a result of the axion-photon coupling in the dark matter environment. We indicate such electric and magnetic field configurations as longitudinal electro-magnetic clusters.

  9. Improved Student Performance In Electricity And Magnetism Following Prior MAPS Instruction In Mechanics

    E-Print Network [OSTI]

    Rayyan, Saif

    We examine the performance of a group of students in Introductory Electricity and Magnetism following a ReView course in Introductory Mechanics focusing on problem solving employing the Modeling Applied to Problem Solving ...

  10. Thin magnetic conductor substrate for placement-immune, electrically-small antennas.

    SciTech Connect (OSTI)

    Eubanks, Travis Wayne; McDonald, Jacob J.; Loui, Hung

    2011-09-01T23:59:59.000Z

    An antenna is considered to be placement-immune when the antenna operates effectively regardless of where it is placed. By building antennas on magnetic conductor materials, the radiated fields will be positively reinforced in the desired radiation direction instead of being negatively affected by the environment. Although this idea has been discussed thoroughly in theoretical research, the difficulty in building thin magnetic conductor materials necessary for in-phase field reflections prevents this technology from becoming more widespread. This project's purpose is to build and measure an electrically-small antenna on a new type of non-metallic, thin magnetic conductor. This problem has not been previously addressed because non-metallic, thin magnetic conductor materials have not yet been discovered. This work proposed the creation of an artificial magnetic conductor (AMC) with in-phase field reflections without using internal electric conductors, the placement of an electrically-small antenna on this magnetic conductor, and the development of a transmit-receive system that utilizes the substrate and electrically-small antenna. By not using internal electric conductors to create the AMC, the substrate thickness can be minimized. The electrically-small antenna will demonstrate the substrate's ability to make an antenna placement immune, and the transmit-receive system combines both the antenna and the substrate while adding a third layer of system complexity to demonstrate the complete idea.

  11. Observations on student difficulties with mathematics in upper-division electricity and magnetism

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Observations on student difficulties with mathematics in upper-division electricity and magnetism Rachel E. Pepper, Stephanie V. Chasteen, Steven J. Pollock, and Katherine K. Perkins Science Education 2011; published 27 March 2012) We discuss common difficulties in upper-division electricity

  12. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing

    E-Print Network [OSTI]

    Garmestani, Hamid

    of thermal conductance in a composite material assuming a linear law of mixing, and nanotube­polymerEnhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic and electrical properties of single wall carbon nanotube CNT -polymer composites are significantly enhanced

  13. Magnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan

    E-Print Network [OSTI]

    controlled thermonuclear fusion in the laboratory -- Intermediate between MFE and IFE · Presently only fundedMagnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan G. A. Wurden Fusion Energy Program Office Los Alamos National Laboratory Jan. 14, 2003 #12;Magnetized Target Fusion: Input

  14. Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators

    E-Print Network [OSTI]

    Demokritov, S.O.

    Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave It is demonstrated experimentally that a layered structure consisting of ferrite and ferroelectric thin films can constant , and a bias magnetic field to the ferrite layer. The resonator having central frequency f0 5 GHz

  15. Scattering of Polarized Radiation by Atoms in Magnetic and Electric Fields

    E-Print Network [OSTI]

    Yee Yee Oo; K. N. Nagendra; Sharath Ananthamurthy; G. Ramachandran

    2005-09-26T23:59:59.000Z

    The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Analytic formulae are derived for the scattering phase matrix. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed.

  16. Geophysical inversion using petrophysical constraints with application to lithology differentiation Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines

    E-Print Network [OSTI]

    Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines

  17. PHYSICAL REVIEW B 86, 085310 (2012) Spin-polarized electric currents in diluted magnetic semiconductor heterostructures induced

    E-Print Network [OSTI]

    Ganichev, Sergey

    2012-01-01T23:59:59.000Z

    on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells in diluted magnetic semiconductors (DMS) are currently discussed as a key issue for the developmentPHYSICAL REVIEW B 86, 085310 (2012) Spin-polarized electric currents in diluted magnetic

  18. Method for providing slip energy control in permanent magnet electrical machines

    DOE Patents [OSTI]

    Hsu, John S.

    2006-11-14T23:59:59.000Z

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  19. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation

  20. LFV decays and anomalous magnetic (electric) moments in a lepton mass matrices ansatz induced by SUSY GUT

    E-Print Network [OSTI]

    W. J. Huo

    2003-01-27T23:59:59.000Z

    By using the anomalous magnetic and electric dipole moments of the $\\tau$ lepton in an effective lagrangian approach to the new physics, we investigate the lepton flavor violation (LFV) decays, $l\\to l'\\gamma$, and $\\mu,\\tau$ anomalous magnetic and electric dipole moments in a lepton mass matrices ansatz which induced by SUSY GUT. We put very stringent constraints LFV decays and $\\tau$ anomalous magnetic and electric dipole moments.

  1. Gravitational radiation, vorticity and the electric and magnetic part of Weyl tensor

    E-Print Network [OSTI]

    L. Herrera; N. O. Santos; J. Carot

    2006-05-15T23:59:59.000Z

    The electric and the magnetic part of the Weyl tensor, as well as the invariants obtained from them, are calculated for the Bondi vacuum metric. One of the invariants vanishes identically and the other only exhibits contributions from terms of the Weyl tensor containing the static part of the field. It is shown that the necessary and sufficient condition for the spacetime to be purely electric is that such spacetime be static. It is also shown that the vanishing of the electric part implies Minkowski spacetime. Unlike the electric part, the magnetic part does not contain contributions from the static field. Finally a speculation about the link between the vorticity of world lines of observers at rest in a Bondi frame, and gravitational radiation, is presented.

  2. Electrical detection of microwave assisted magnetization reversal by spin pumping

    SciTech Connect (OSTI)

    Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad; Singh Bhatia, Charanjit; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, Singapore 117576 (Singapore)

    2014-03-24T23:59:59.000Z

    Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.

  3. Superconducting magnetic energy storage for asynchronous electrical systems

    DOE Patents [OSTI]

    Boenig, Heinrich J. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  4. Seismic sources

    DOE Patents [OSTI]

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20T23:59:59.000Z

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  5. Magnetically induced electric polarization in an organometallic magnet V. S. Zapf,1 M. Kenzelmann,2 F. Wolff-Fabris,1,* F. Balakirev,1

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetically induced electric polarization in an organometallic magnet V. S. Zapf,1 M. Kenzelmann,2 F. Wolff-Fabris,1,* F. Balakirev,1 and Y. Chen3,4,5 1 National High Magnetic Field Laboratory (NHMFL and Engineering, University of Maryland, College Park, Maryland 20742, USA Received 30 April 2009; revised

  6. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature

    SciTech Connect (OSTI)

    Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2006-02-06T23:59:59.000Z

    The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.

  7. Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits

    E-Print Network [OSTI]

    Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization for the periodic orbits in a strongly coupled multidimen- sional Hamiltonian system, namely the hydrogen atom.15.Gy, 05.45.-a, 45.20.Jj I. INTRODUCTION The hydrogen atom in crossed electric and magnetic fields

  8. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    SciTech Connect (OSTI)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)] [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)] [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10T23:59:59.000Z

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1?3}Nb{sub 2?3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  9. Learning physics in context: a study of student learning about electricity and magnetism

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    re-centres the discussion of student learning in physics to focus on context. In order to do soLearning physics in context: a study of student learning about electricity and magnetism This paper and inextricable role of context in student learning. This work sits within a broader effort to create and analyze

  10. On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric

    E-Print Network [OSTI]

    Sminchisescu, Cristian

    On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique Jochen Garcke and Michael Griebel Institut f on sparse grids. Here, O(d·(log N)d-1 ) different problems, each of size O(N), have to be solved

  11. On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric

    E-Print Network [OSTI]

    Sminchisescu, Cristian

    On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique Jochen Garcke and Michael Griebel Institut f@iam.uni­bonn.de We introduce the combination technique for the numerical solution of eigenproblems on sparse grids

  12. Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1

    E-Print Network [OSTI]

    Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1 impurities on the surface of three- dimensional topological insulators, mediated by the helical Dirac named topolo- gical insulator (TI) in a number of materials, such as a two-dimensional (2D) HgTe quantum

  13. Magnetic, electric and thermal properties of cobalt ferrite nanoparticles , N. Mlikia

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Magnetic, electric and thermal properties of cobalt ferrite nanoparticles L.Ajroudia , N. Mlikia to occupy tetrahedral sites, contrary to what occurs in bulk ferrites. The nanopowders display a semi constant is significantly higher for these nanoparticles than for bulk ferrites. Co1.8Fe1.2O4 hal-01053683

  14. Effects on chickens of continuous exposure to low level electromagnetic, electric, and magnetic fields

    E-Print Network [OSTI]

    Howell, Robert Sherwood

    1972-01-01T23:59:59.000Z

    13 birds in remainder of experiment. ~fel l. ~Eff o ~* ~st ~et~ass Eeoc~of ' ~o t *l ct o *t' ~*t ', ~o~es tfc~f' lo E e et l Treatments Day 8 Day 15 Day 22 ratio& ~ %( )ratio % ratio Control 260 MHz 915 MHz Electric field-45 Hz Magnetic field...

  15. ANALYTIC CRITERIA FOR THE MECHANICAL AND THERMAL STABILITY OF MAGNETIC STARS WITH FINITE ELECTRICAL CONDUCTIVITY

    E-Print Network [OSTI]

    ANALYTIC CRITERIA FOR THE MECHANICAL AND THERMAL STABILITY OF MAGNETIC STARS WITH FINITE ELECTRICAL in the envelope. This physical complication also affects the interpretation of the RR Lyrae stars and other cool stars, the destabilized envelope is mostly radiative and convection probably plays only a small role

  16. Electrical Detection of Spin Pumping due to the Precessing Magnetization of a Single Ferromagnet

    E-Print Network [OSTI]

    van der Wal, Caspar H.

    Electrical Detection of Spin Pumping due to the Precessing Magnetization of a Single Ferromagnet M of spin pumping, using a lateral normal-metal/ferromagnet/normal- metal device, where a single ferromagnet in ferromagnetic resonance pumps spin-polarized electrons into the normal metal, resulting in spin accumulation

  17. Electric and magnetic properties of fullerenes Dan Jonsson, Patrick Norman, Kenneth Ruud,a)

    E-Print Network [OSTI]

    Helgaker, Trygve

    ¨ping, Sweden Trygve Helgaker Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo of the noble gas shieldings of endohedral fullerenes have been presented,8­10 as well as some studies on the method of calculations used in this work. Due to the different nature of the electric and magnetic

  18. Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis

    SciTech Connect (OSTI)

    Cheng, Hongguang, E-mail: chenghg7932@gmail.com; Deng, Ning [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)] [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2013-12-15T23:59:59.000Z

    We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor ? of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup ?9} can be achieved for the device of thermal stability factor ? of 40. Low damping factor ? material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.

  19. Dynamic frequency tuning of electric and magnetic metamaterial response

    DOE Patents [OSTI]

    O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong

    2014-09-16T23:59:59.000Z

    A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.

  20. Enhanced magnetic and electrical properties in amorphous Ge:Mn thin films by non-magnetic codoping

    SciTech Connect (OSTI)

    Yin Wenjing; Kell, Copeland D.; Duska, Chris; Lu Jiwei; Floro, Jerrold A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); He Li; Hull, Robert [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Dolph, Melissa C. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Wolf, Stuart A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2012-02-01T23:59:59.000Z

    Amorphous Ge{sub 1-x}Mn{sub x} thin films have been prepared by co-depositing Ge and Mn on SiO{sub 2}/Si using an ultrahigh vacuum molecular beam epitaxy system. Across a range of growth temperatures and Mn concentrations (2.8 at. %, 10.9 at. %, and 21.3 at. %), we achieved enhanced magnetic and electrical properties with non-magnetic codopants dispersed in the films. Self-assembled Mn-rich amorphous nanostructures were observed in the amorphous Ge matrix, either as isolated nanoclusters or as nanocolumns, depending on Mn concentration. The ferromagnetic saturation moments were found to increase with Mn concentration and reached a maximum of 0.7 {mu}{sub B}/Mn in the as-grown samples. Two magnetic transition temperatures around 15 K and 200 K were observed in these amorphous MBE-grown samples. Coercivity is considered within the context of local magnetic anisotropy. The anomalous Hall effect confirmed a strong correlation between the magnetization and transport properties, indicating that global ferromagnetic coupling was carrier-mediated rather than through direct exchange. In addition, negative magnetoresistance was detected from 5 K to room temperature.

  1. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17T23:59:59.000Z

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  2. Study of the electric field formation in a multi-cusped magnetic field

    SciTech Connect (OSTI)

    Liu, Hui, E-mail: hlying@gmail.com; Yu, Daren, E-mail: yudaren@hit.edu.cn [Lab of Plasma Propulsion, Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China); Wu, Huan; Zhao, Yinjian; Ma, Chengyu; Wang, Di; Wei, Haoyu [School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001 (China)

    2014-09-15T23:59:59.000Z

    The multi-cusped field thruster is a kind of electric thruster adopting a cusped magnetic field to achieve a potentially longer lifetime. It is observed in some experiments that the main electric potential drop forms near the exhaust plane, but the formation mechanism of the electric field in this kind of thrusters is not fully clear yet. Based on the analysis of the electron movement, a 2D Particle-in-Cell plus Monte Carlo model is built to reveal the difference of the constraint to electrons between the central leak path and the lateral region of the thruster. Electron trajectories from cathode are analyzed furthermore. It is found that the central leak path inside the discharge channel may play a significant role in the formation of the main electric potential drop near the exhaust plane.

  3. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    SciTech Connect (OSTI)

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26T23:59:59.000Z

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.

  4. Spin counting in electrically detected magnetic resonance via low-field defect state mixing

    SciTech Connect (OSTI)

    Cochrane, Corey J.; Lenahan, Patrick M. [The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-03-03T23:59:59.000Z

    The work herein describes a method that allows one to measure paramagnetic defect densities in semiconductor and insulator based devices with electrically detected magnetic resonance (EDMR). The method is based upon the mixing of defect states which results from the dipolar coupling of paramagnetic sites at low magnetic fields. We demonstrate the measurement method with spin dependent tunneling in thin film dielectrics; however, the method should be equally applicable to paramagnetic defect density measurements in semiconductors via the more commonly utilized EDMR technique called spin dependent recombination.

  5. Interaction between a stationary electric charge and a stationary magnetic dipole

    E-Print Network [OSTI]

    W. B. Bonnor

    2002-03-13T23:59:59.000Z

    Using Einstein-Maxwell theory I investigate the gravitational field generated by an electric charge and a magnetic dipole, both held in fixed positions, but spinning with prescribed angular momenta. There is a conical singularity between them representing a strut balancing the gravitational attraction of their masses. However, there is in general another singularity, which I call a torsion singularity. I interpret this as a couple needed to maintain the spins at their prescribed values. It vanishes when the parameters obey a certain formula. A conclusion of the work is that the charge and the magnet must spin relative to one another unless constrained by a couple.

  6. EMF in your environment. Magnetic field measurements of everyday electrical devices

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    The publication compares the strength of 60 hertz magnetic fields produced by common electrical items and shows you how their strength diminishes as you move farther away from them. The information presented here has to do with the strength of the magnetic field; however, the authors aren't certain that the strength of the field is the only important consideration. It may turn out that other factors are also important. Future research is likely to reveal that the information given in the publication is only part of the story.

  7. Electrical resistivity, optical and magnetic properties of the layered oxyselenide SmCuOSe

    SciTech Connect (OSTI)

    Llanos, Jaime [Departamento de Quimica, Facultad de Ciencias, Universidad Catolica del Norte, Casa Central Antofagasta Pab. Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile)]. E-mail: jllanos@ucn.cl; Pena, Octavio [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511-CNRS, Universite Rennes 1-Institut de Chimie de Rennes, 35042 Rennes Cedex (France)

    2005-04-15T23:59:59.000Z

    The electrical and magnetic properties of the tetragonal phase SmCuOSe are reported as a function of the temperature. The optical properties were studied by means of diffuse reflectance spectrum in the UV-Vis range. The electrical resistivity measurements as well as diffuse reflectance spectrum show that SmCuOSe is a semiconductor with an optical band gap (E{sub g}) of 2.6eV. In this phase, Cu is at its monovalent oxidation state and, as such, it does not contribute to the total magnetic moment, whereas Sm is in its 3+ oxidation state, with a large VanVleck contribution due to the admixture of the fundamental state with higher energy levels.

  8. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    SciTech Connect (OSTI)

    CHARLES M. WEBER

    2008-06-24T23:59:59.000Z

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

  9. 30-MJ superconducting magnetic energy storage for electric-transmission stabilization

    SciTech Connect (OSTI)

    Turner, R.D.; Rogers, J.D.

    1981-01-01T23:59:59.000Z

    The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

  10. Exciton-polaron complexes in pulsed electrically-detected magnetic resonance

    E-Print Network [OSTI]

    T. L. Keevers; W. J. Baker; D. R. McCamey

    2015-02-19T23:59:59.000Z

    Several microscopic pathways have been proposed to explain the large magnetic effects observed in organic semiconductors, but identifying and characterising which microscopic process actually influences the overall magnetic field response is challenging. Pulsed electrically-detected magnetic resonance provides an ideal platform for this task as it intrinsically monitors the charge carriers of interest and provides dynamical information which is inaccessible through conventional magnetoconductance measurements. Here we develop a general time domain theory to describe the spin-dependent reaction of exciton-charge complexes following the coherent manipulation of paramagnetic centers through electron spin resonance. A general Hamiltonian is treated, and it is shown that the transition frequencies and resonance positions of the exciton-polaron complex can be used to estimate inter-species coupling. This work also provides a general formalism for analysing multi-pulse experiments which can be used to extract relaxation and transport rates.

  11. Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors

    SciTech Connect (OSTI)

    Henry, Laurence L

    2006-02-27T23:59:59.000Z

    The project investigated superconductivity in non-cuprate materials with critical temperatures, T{sub c}, in excess of 20 K in order to understand the thermodynamics of several of these materials. The project is a cooperative effort between investigators at Southern University (SU), Louisiana State University (LSU), and Los Alamos National Laboratory (LANL). It involved synthesis of high quality samples, and subsequent detailed magnetic, thermal and electrical measurements on them. The project provided a PhD Thesis research experience and training for a graduate student, Ms. Robin Macaluso. High quality, single crystal samples were synthesized by Ms. Macaluso under the direction of one of the CO-PIS, John Sarao, during the summer while she was a visitor at LANL being supported by this grant. On these samples magnetic measurements were performed at SU, thermal and electrical measurements were made in the LSU Physics and Astronomy Department. The crystallographic properties were determined in the LSU Chemistry Department by Ms. Macaluso under the direction of her dissertation advisor, Dr. Julia Chan. Additional high field magnetic measurements on other samples were performed at the National High Magnetic Field Laboratory (NHMFL) both in Tallahassee and at LANL. These measurements involved another graduate student, Umit Alver, who used some of the measurements as part of his PhD dissertation in Physics at LSU.

  12. Seismic sources

    DOE Patents [OSTI]

    Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

    1992-01-01T23:59:59.000Z

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  13. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    SciTech Connect (OSTI)

    Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

    2014-05-07T23:59:59.000Z

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

  14. Electric and Magnetic Screening Masses at Finite Temperature from Generalized Polyakov-Line Correlations in Two-flavor Lattice QCD

    E-Print Network [OSTI]

    Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda

    2010-05-11T23:59:59.000Z

    Screenings of the quark-gluon plasma in electric and magnetic sectors are studied on the basis of generalized Polyakov-line correlation functions in lattice QCD simulations with two flavors of improved Wilson quarks. Using the Euclidean-time reflection ($\\R$) and the charge conjugation ($\\Ca$), electric and magnetic screening masses are extracted in a gauge invariant manner. Long distance behavior of the standard Polyakov-line correlation in the quark-gluon plasma is found to be dictated by the magnetic screening. Also, ratio of the two screening masses agrees with that obtained from the dimensionally-reduced effective field theory and the ${\\cal N}=4$ supersymmetric Yang-Mills theory.

  15. Magnetic and electric contributions to the energy loss in a dynamical QCD medium

    E-Print Network [OSTI]

    Magdalena Djordjevic

    2011-05-21T23:59:59.000Z

    The computation of radiative energy loss in a finite size QCD medium with dynamical constituents is a key ingredient for obtaining reliable predictions for jet quenching in ultra-relativistic heavy ion collisions. It was previously shown that energy loss in dynamical QCD medium is significantly higher compared to static QCD medium. To understand this difference, we here analyze magnetic and electric contributions to energy loss in dynamical QCD medium. We find that the significantly higher energy loss in the dynamical case is entirely due to appearance of magnetic contribution in the dynamical medium. While for asymptotically high energies, the energy loss in static and dynamical medium approach the same value, we find that the physical origin of the energy loss in these two cases is different.

  16. Modeling electron transport in the presence of electric and magnetic fields.

    SciTech Connect (OSTI)

    Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David

    2013-09-01T23:59:59.000Z

    This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.

  17. Generalized Pearson distributions for charged particles interacting with an electric and/or a magnetic field

    E-Print Network [OSTI]

    A. Rossani; A. M. Scarfone

    2009-03-05T23:59:59.000Z

    The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.

  18. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN), Kang; Sukill (Knoxville, TN)

    2012-02-21T23:59:59.000Z

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  19. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  20. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16T23:59:59.000Z

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  1. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    SciTech Connect (OSTI)

    Frischauf, Norbert [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Koudelka, Otto [Institute of Communication Networks and Satellite Communication, Graz University of Technology, Inffeldgasse 12/I, A-8010 Graz (Austria)

    2006-07-01T23:59:59.000Z

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  2. Interaction of biological systems with static and ELF electric and magnetic fields

    SciTech Connect (OSTI)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)

    1987-01-01T23:59:59.000Z

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  3. Dynamics of Electric Currents, Magnetic Field Topology and Helioseismic Response of a Solar Flare

    E-Print Network [OSTI]

    Sharykin, I N

    2015-01-01T23:59:59.000Z

    The solar flare on July 30, 2011 was of a modest X-ray class (M9.3), but it made a strong photospheric impact and produced a "sunquake," observed with the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO). In addition to the helioseismic waves (also observed with the SDO/AIA instrument), the flare caused a large expanding area of white-light emission and was accompanied by substantial restructuring of magnetic fields, leading to the rapid formation of a sunspot structure in the flare region. The flare produced no significant hard X-ray emission and no coronal mass ejection. This indicates that the flare energy release was mostly confined to the lower atmosphere. The absence of significant coronal mass ejection rules out magnetic rope eruption as a mechanism of helioseismic waves. We discuss the connectivity of the flare energy release with the electric currents dynamics and show the potential importance of high-speed plasma flows in the lower solar atmosphere during the flare e...

  4. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20T23:59:59.000Z

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  5. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29T23:59:59.000Z

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  6. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P. (Arlington, VA)

    1988-01-01T23:59:59.000Z

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  7. Electrical characteristics and interface structure of magnetic tunnel junctions with hafnium oxyfluoride barrier

    SciTech Connect (OSTI)

    Yu, Y.Y.; Kim, D.S.; Char, K. [Center for Strongly Correlated Materials Research and School of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2004-12-01T23:59:59.000Z

    We have studied the effects of fluorine inclusion on the electrical transport characteristics and interface structure of the hafnium oxide barrier in a magnetic tunnel junction. The tunneling magnetoresistance (TMR) and resistance-area (RA) as a function of oxidation time show that the TMR ratio of the hafnium oxyfluoride barrier is higher (8.3%) than that of the hafnium oxide barrier (5.7%) at their optimum conditions, and the oxyfluoride barrier junctions maintain a high TMR ratio even when the RA product increases by three orders of magnitude. X-ray photoelectron spectroscopy analysis shows that the fluorine atoms in the oxyfluoride barrier play an important role in the formation of a barrier with uniform composition. We believe that the initial fluoride layer is causing the subsequent oxygen diffusion to slow down, resulting in the formation of a defect-free hafnium oxide layer. These results are consistent with what we have found for aluminum oxyfluoride barriers.

  8. Radiation of an electric charge in the field of a magnetic monopole

    E-Print Network [OSTI]

    Michael Lublinsky; Claudia Ratti; Edward Shuryak

    2009-10-06T23:59:59.000Z

    We consider the radiation of photons from quarks scattering on color-magnetic monopoles in the Quark-Gluon Plasma. We consider a temperature regime $T\\gsim2T_c$, where monopoles can be considered as static, rare objects embedded into matter consisting mostly of the usual "electric" quasiparticles, quarks and gluons. The calculation is performed in the classical, non-relativistic approximation and results are compared to photon emission from Coulomb scattering of quarks, known to provide a significant contribution to the photon emission rates from QGP. The present study is a first step towards understanding whether this scattering process can give a sizeable contribution to dilepton production in heavy-ion collisions. Our results are encouraging: by comparing the magnitudes of the photon emission rate for the two processes, we find a dominance in the case of quark-monopole scattering. Our results display strong sensitivity to finite densities of quarks and monopoles.

  9. Anomalous magnetic and electric moments of $?$ and lepton flavor mixing matrix in effective lagrangian approach

    E-Print Network [OSTI]

    J. Q. Zhang; X. C. Song; W. J. Huo; T. F. Feng

    2002-06-17T23:59:59.000Z

    In an effective lagrangian approach [EM97] to new physics, the authors in ref. [HL99] pushed tau anomalous magnetic and electric dipole moments (AMDM and EDM) down to $10^{-11}$ and $10^{-25} e cm$ by using a Fritzsch-Xing lepton mass matrix ansatz. In this note, we find that, in this approach, there exists the connection between $\\tau$ AMDM and EDM and the lepton flavor mixing matrix. By using the current neutrino oscillation experimental results, we investigate the parameter space of lepton mixing angles to $\\tau$ AMDM and EDM. We can obtain the same or smaller bounds of $\\delta a_\\tau$ and $d_\\tau$ acquired in ref. [HL99] and constrain $\\theta_l$ (the mixing angle obtained by long-baseline neutrino oscillation experiments) from $\\tau$ AMDM and EDM.

  10. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOE Patents [OSTI]

    Welch, Kimo M. (Mountain View, CA)

    1980-01-01T23:59:59.000Z

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  11. Generalized Uhlenbeck-Goudsmit hypothesis 'Magnetic' S^{a} and 'Electric' Z^{a} Spins

    E-Print Network [OSTI]

    Tomislav Ivezic

    2010-03-23T23:59:59.000Z

    In this paper, the connection between the dipole moment tensor D^{ab} and the spin four-tensor S^{ab} is formulated in the form of the generalized Uhlenbeck-Goudsmit hypothesis, D^{ab}=g_{S}S^{ab}. It is also found that the spin four-tensor S^{ab} can be decomposed into two 4-vectors, the usual `space-space' intrinsic angular momentum S^{a}, which will be called `magnetic' spin (mspin), and a new one, the `time-space' intrinsic angular momentum Z^{a}, which will be called `electric' spin (espin). Both spins are equally good physical quantities. Taking into account the generalized Uhlenbeck-Goudsmit hypothesis, the decomposition of S^{ab} and the decomposition of D^{ab} into the dipole moments m^{a} and d^{a}, we find that an electric dipole moment (EDM) of a fundamental particle, as a four-dimensional (4D) geometric quantity, is determined by Z^{a} and not, as generally accepted, by the spin $\\mathbf{S}$ as a 3-vector. Also it is shown that neither the T inversion nor the P inversion are good symmetries in the 4D spacetime. In this geometric approach, only the world parity W, Wx^{a}=-x^{a}, is well defined in the 4D spacetime. Some consequences for elementary particle theories and experiments that search for EDM are briefly discussed.

  12. ASA conference on radiation and health: Health effects of electric and magnetic fields: Statistical support for research strategies. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This report is a collection of papers documenting presentations made at the VIII ASA (American Statistical Association) Conference on Radiation and Health entitled Health Effects of Electric and Magnetic Fields: Statistical Support for Research Strategies. Individual papers are abstracted and indexed for the database.

  13. Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes subjected to permanent ground displacement

    E-Print Network [OSTI]

    Lynch, Jerome P.

    Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes and Environmental Engineering, 2340 G.G. Brown Bldg., Ann Arbor, MI 48109, United States c Civil and Environmental Engineering, University of Rhode Island, Department of Civil and Environmental Engineering, Kingston, RI 02881

  14. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30T23:59:59.000Z

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  15. Seismic Studies

    SciTech Connect (OSTI)

    R. Quittmeyer

    2006-09-25T23:59:59.000Z

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.

  16. Acceleration of electric current-carrying string loop near a Schwarzschild black hole immersed in an asymptotically uniform magnetic field

    E-Print Network [OSTI]

    Arman Tursunov; Martin Kološ; Zden?k Stuchlík; Bobomurat Ahmedov

    2014-09-18T23:59:59.000Z

    We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficient acceleration. The Schwarzschild black hole combined with the strong external magnetic field can accelerate the current-carrying string loop up to the velocities close to the speed of light $v \\sim c$. Therefore, the string loop transmutation effect can potentially well serve as an explanation for acceleration of highly relativistic jets observed in microquasars and active galactic nuclei.

  17. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  18. General Electric-Magnetic decomposition of fields, positivity and Rainich-like conditions

    E-Print Network [OSTI]

    Jose M M Senovilla

    2000-10-29T23:59:59.000Z

    We show how to generalize the classical electric-magnetic decomposition of the Maxwell or the Weyl tensors to arbitrary fields described by tensors of any rank in general $n$-dimensional spacetimes of Lorentzian signature. The properties and applications of this decomposition are reviewed. In particular, the definition of tensors quadratic in the original fields and with important positivity properties is given. These tensors are usually called "super-energy" (s-e) tensors, they include the traditional energy-momentum, Bel and Bel-Robinson tensors, and satisfy the so-called Dominant Property, which is a straightforward generalization of the classical dominant energy condition satisfied by well-behaved energy-momentum tensors. We prove that, in fact, any tensor satisfying the dominant property can be decomposed as a finite sum of the s-e tensors. Some remarks about the conservation laws derivable from s-e tensors, with some explicit examples, are presented. Finally, we will show how our results can be used to provide adequate generalizations of the Rainich conditions in general dimension and for any physical field.

  19. SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources

    SciTech Connect (OSTI)

    Lee, Choonkyu, E-mail: cklee@phya.snu.ac.kr [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of) [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@dirac.uos.ac.kr [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)] [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)

    2013-12-15T23:59:59.000Z

    For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup ?} and B{sup ?} in a judicious way. On the two potentials A{sup ?} and B{sup ?} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulate a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.

  20. Interaction between an electric charge and a magnetic dipole of any kind (permanent, para- or dia- magnetic or superconducting)

    E-Print Network [OSTI]

    Coïsson, R

    2015-01-01T23:59:59.000Z

    The interaction between point charge and magnetic dipole is usually considered only for the case of a rigid ferromagnetic dipole (constant-current): here the analysis of force, momentum and energy (including the energy provided by the internal current generator) is generalised to any magnetic dipole behaviour: rigid, paramagnetic, diamagnetic or superconducting (perfectly diamagnetic).

  1. Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits

    E-Print Network [OSTI]

    Stephan Gekle; Jörg Main; Thomas Bartsch; T. Uzer

    2006-10-02T23:59:59.000Z

    A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations.

  2. Structural, magnetic and electrical properties of the hexagonal ferrites MFeO{sub 3} (M=Y, Yb, In)

    SciTech Connect (OSTI)

    Downie, Lewis J.; Goff, Richard J. [EaStCHEM and School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST (United Kingdom); Kockelmann, Winfried [STFC ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxon, OX11 0QX (United Kingdom); Forder, Sue D. [Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB (United Kingdom); Parker, Julia E. [Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 ODE (United Kingdom); Morrison, Finlay D. [EaStCHEM and School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST (United Kingdom); Lightfoot, Philip, E-mail: pl@st-and.ac.uk [EaStCHEM and School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST (United Kingdom)

    2012-06-15T23:59:59.000Z

    The hexagonal ferrites MFeO{sub 3} (M=Y, Yb, In) have been studied using a combination of neutron and X-ray powder diffraction, magnetic susceptibility, dielectric measurements and {sup 57}Fe Moessbauer spectroscopy. This study confirms the previously reported crystal structure of InFeO{sub 3} (YAlO{sub 3} structure type, space group P6{sub 3}/mmc), but YFeO{sub 3} and YbFeO{sub 3} both show a lowering of symmetry to at most P6{sub 3}cm (ferrielectric YMnO{sub 3} structure type). However, Moessbauer spectroscopy shows at least two distinct Fe sites for both YFeO{sub 3} and YbFeO{sub 3} and we suggest that the best model to rationalise this involves phase separation into more than one similar hexagonal YMnO{sub 3}-like phase. Rietveld analysis of the neutron diffraction data was carried out using two hexagonal phases as a simplest case scenario. In both YFeO{sub 3} and YbFeO{sub 3}, distinct dielectric anomalies are observed near 130 K and 150 K, respectively. These are tentatively correlated with weak anomalies in magnetic susceptibility and lattice parameters, for YFeO{sub 3} and YbFeO{sub 3}, respectively, which may suggest a weak magnetoelectric effect. Comparison of neutron and X-ray powder diffraction shows evidence of long-range magnetic order in both YFeO{sub 3} and YbFeO{sub 3} at low temperatures. Due to poor sample crystallinity, the compositional and structural effects underlying the phase separation and possible magnetoelectric phenomena cannot be ascertained. - Graphical abstract: Hexagonal MFeO{sub 3} (M=Y, Yb) exhibit phase separation into two YMnO{sub 3}-like phases. Variable temperature crystallographic, electrical and magnetic studies suggest weak correlations between electrical and magnetic responses and long-range magnetic order at low temperature. Highlights: Black-Right-Pointing-Pointer Multi-technique study of multiferroic hexagonal MFeO{sub 3}. Black-Right-Pointing-Pointer Phase separation into two similar hexagonal phases. Black-Right-Pointing-Pointer Weak coupling of electrical and magnetic responses. Black-Right-Pointing-Pointer Long-range magnetic order at low T.

  3. Studies of penetration of the magnetic field into electrically imploded loads in the Angara-5-1 facility

    SciTech Connect (OSTI)

    Aleksandrov, V. V.; Barsuk, V. A.; Grabovski, E. V.; Gritsuk, A. N.; Zukakishvili, G. G.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Thermonuclear Fusion Research (Russian Federation); Sasorov, P. V. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2009-03-15T23:59:59.000Z

    Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.

  4. Inversion of surface and borehole gravity with thresholding and density constraints Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Department of Geophysics, Colorado

    E-Print Network [OSTI]

    and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Department of Geophysics, Colorado School of geophysical data has been widely uti- lized in data interpretation in both hydrocarbon and mineral exploration

  5. Discrete Symmetries on the Light Front and a General Relation connecting Nucleon Electric Dipole and Anomalous Magnetic Moments

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; /SLAC; Gardner, Susan; /Kentucky U.; Hwang, Dae Sung; /Sejong U.

    2006-01-11T23:59:59.000Z

    We consider the electric dipole form factor, F{sub 3}(q{sup 2}), as well as the Dirac and Pauli form factors, F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}), of the nucleon in the light-front formalism. We derive an exact formula for F{sub 3}(q{sup 2}) to complement those known for F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F{sub 2}(q{sup 2}) and F{sub 3}(q{sup 2}), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, {kappa}{sup n} {approx} -{kappa}{sup p}.

  6. Discrete symmetries on the light front and a general relation connecting the nucleon electric dipole and anomalous magnetic moments

    SciTech Connect (OSTI)

    Brodsky, Stanley J. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States); Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)

    2006-02-01T23:59:59.000Z

    We consider the electric dipole form factor, F{sub 3}(q{sup 2}), as well as the Dirac and Pauli form factors, F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}), of the nucleon in the light-front formalism. We derive an exact formula for F{sub 3}(q{sup 2}) to complement those known for F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F{sub 2}(q{sup 2}) and F{sub 3}(q{sup 2}), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, {kappa}{sup n}{approx}-{kappa}{sup p}.

  7. Discrete Symmetries on the Light Front and a General Relation Connecting Nucleon Electric Dipole and Anomalous Magnetic Moments

    E-Print Network [OSTI]

    S. J. Brodsky; S. Gardner; D. S. Hwang

    2006-02-27T23:59:59.000Z

    We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, kappa^n ~ - kappa^p.

  8. Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid

    E-Print Network [OSTI]

    Felderhof, B U

    2014-01-01T23:59:59.000Z

    The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates an electrical field which polarizes the fluid. The lag of polarization with respect to the electrical field due to relaxation generates a time-independent electrical torque density acting on the fluid causing it to move. The resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the charge density.

  9. Spontaneous transition of core radial electric field driven by magnetic islands in the H-1NF heliac

    SciTech Connect (OSTI)

    Kumar, S. T. A. [University of Wisconsin, Madison; Blackwell, B. D. [Australian National University, Canberra, Australia; Howard, J. [Australian National University, Canberra, Australia; Harris, J. H. [Oak Ridge National Laboratory (ORNL)

    2011-01-01T23:59:59.000Z

    This paper reports an experimental observation of spontaneous transition of the core radial electric field to a large positive value (E(r) similar to 5 kV m(-1)), with a strong electric-field shear (similar to 700 kV m(-2)) in a low temperature (T(e) similar to 10 eV) radio frequency generated argon plasma in the H-1NF heliac stellarator. The transition, which seems to be driven by a spontaneous excitation of m = 2 magnetic islands near the core, is associated with a localized increase in the plasma density and excitation of coherent low frequency (similar to 3 kHz) oscillations possibly due to unstable E(r) shear driven modes. Evidence suggests development of the core electron-root scenario, which previously has been observed only at high temperature electron cyclotron heated plasmas.

  10. Operation of the 30 MJ superconducting magnetic energy storage system in the Bonneville Power Administration Electrical Grid

    SciTech Connect (OSTI)

    Rogers, J.D.; Boenig, H.J.; Schermer, R.I.; Hauer, J.F.

    1984-01-01T23:59:59.000Z

    The 30 MJ superconducting magnetic energy storage (SMES) system was installed in the Bonneville Power Administration (BPA) Tacoma Substation in 1982 to 1983. Operation of the unit since that time has been for over 1200 hours. Specific tests to explore the SMES system's thermal and electrical characteristics and the control functions were conducted. The coil heat load with current modulation was determined. A converter with two 6-pulse bridges interfaces the superconducting coil to the power bus. Equal bridge voltage amplitude and constant reactive power modes of operation of the system were run with computer control of the SCR bridge firing angles. Coil energy dump tests were performed. Electrical grid system response to SMES modulation was observed, and full power SMES modulation was undertaken.

  11. Phase-controlled pulse propagation in media with cross coupling of electric and magnetic probe field component

    SciTech Connect (OSTI)

    Fleischhaker, Robert; Evers, Joerg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2009-12-15T23:59:59.000Z

    Light propagation is discussed in media with a cross coupling of the electric and magnetic component of an applied probe field. We derive the wave equations for a probe pulse propagating through such a medium and solve them analytically in Fourier space using the slowly varying envelope approximation. Our analysis reveals the influence of the different medium response coefficients on the propagation dynamics. We apply these results to a specific example system in which cross couplings are induced in an atomic medium by additional control fields. We show that the cross couplings render the propagation dynamics sensitive to the relative phase of the additional fields, and this phase dependence enables one to control the pulse during its propagation through the medium. Our results demonstrate that the magnetic field component of a probe beam can crucially influence the system dynamics already at experimentally accessible parameter ranges in dilute vapors.

  12. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect (OSTI)

    Kajimura, Y. [Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency (JST), CREST 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan); Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate school of Engineering Sciences, Kyushu University, Kasugakouen 6-1, Kasuga, Fukuoka 816-580 (Japan)

    2008-12-31T23:59:59.000Z

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  13. MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR

    E-Print Network [OSTI]

    with multi-turn surface windings on a soft magnetic substrate (back iron). The rotor contains an eight consisting of a multi-pole surface- wound stator and PM rotor. The microfabricated windings, with small inter, such as a microscale gas turbine [1,2]. Previous work from this group focused on the use of magnetic induction machines

  14. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields

    SciTech Connect (OSTI)

    Tang, Jing [Institute of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Shuo; Gao, Yunan; Sun, Yue; Jin, Kuijuan; Xu, Xiulai, E-mail: xlxu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Geng, Weidong, E-mail: gengwd@nankai.edu.cn [Institute of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071 (China); Williams, David A. [Hitachi Cambridge Laboratory, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2014-07-28T23:59:59.000Z

    We report a photoluminescence (PL) spectroscopy study of charge state control in single self-assembled InAs/GaAs quantum dots by applying electric and/or magnetic fields at 4.2?K. Neutral and charged exciton complexes were observed under applied bias voltages from ?0.5?V to 0.5?V by controlling the carrier tunneling. The highly negatively charged exciton emission becomes stronger with increasing pumping power, arising from the fact that electrons have a smaller effective mass than holes and are more easily captured by the quantum dots. The integrated PL intensity of negatively charged excitons is affected significantly by a magnetic field applied along the sample growth axis. This observation is explained by a reduction in the electron drift velocity caused by an applied magnetic field, which increases the probability of non-resonantly excited electrons being trapped by localized potentials at the wetting layer interface, and results in fewer electrons distributed in the quantum dots. The hole drift velocity is also affected by the magnetic field, but it is much weaker.

  15. Petroglyphs, Lighting, and Magnetism

    E-Print Network [OSTI]

    Walker, Merle F

    2007-01-01T23:59:59.000Z

    1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL

  16. A Difficult Concept The variation of electric and magnetic fields at large distances from sources.

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    in a relatively general context, let us consider what the three canonical geometries we address in this course Since electric fields must begin and end on charges and, since from Gauss' Law, r r E dS Qencl = , E

  17. Electric and Magnetic Fields (EMF) RAPID Engineering Program, Project 7: Development of Field Exposure Models

    SciTech Connect (OSTI)

    Bracken, T.D.; Rankin, R.F.; Wiley, J.A.

    1999-05-01T23:59:59.000Z

    The purpose of this project was to develop a conceptual model for estimating magnetic field (EMF) personal exposure (PE) of individuals or groups and construct a working model using existing data.

  18. Calculation methods and detection techniques for electric and magnetic fields from power lines with measurement verification

    E-Print Network [OSTI]

    Mamishev, Alexander V

    1994-01-01T23:59:59.000Z

    of extremely low frequency magnetic fields in the direct proximity of the conductors of power lines, situated well above the ground level. Conventional approximation of a sagged wire as a straight horizontal conductor of infinite length has been substituted...

  19. Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics

    SciTech Connect (OSTI)

    Yu, Zejun; Li, Faxin; Pei, Yongmao, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn; Fang, Daining, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Mao, Weiguo [Faculty of Materials and Optoelectronics Physics, Xiangtan University, Hunan 411105 (China); Feng, Xue [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2014-06-15T23:59:59.000Z

    For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10?000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by a voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.

  20. From static to rotating to conformal static solutions: Rotating imperfect fluid wormholes with(out) electric or magnetic field

    E-Print Network [OSTI]

    Mustapha Azreg-Aïnou

    2014-04-16T23:59:59.000Z

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties that are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole emerged in a source-free radial electric or magnetic field, generate its, conjecturally stable, rotating counterpart which turns out to be an exotic imperfect fluid wormhole and determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field.

  1. Hydrogenation-induced edge magnetization in armchair MoS{sub 2} nanoribbon and electric field effects

    SciTech Connect (OSTI)

    Ouyang, Fangping [Powder Metallurgy Research Institute and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Physics and Electronics, Central South University, Changsha 410083 (China); Yang, Zhixiong; Wu, Nannan; Chen, Yu [School of Physics and Electronics, Central South University, Changsha 410083 (China); Ni, Xiang [Physics program at the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016-4309 (United States); Xiong, Xiang, E-mail: xiongx228@sina.com [Powder Metallurgy Research Institute and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-02-17T23:59:59.000Z

    We performed density functional theory study on the electronic and magnetic properties of armchair MoS{sub 2} nanoribbons (AMoS{sub 2}NR) with different edge hydrogenation. Although bare and fully passivated AMoS{sub 2}NRs are nonmagnetic semiconductors, it was found that hydrogenation in certain patterns can induce localized ferromagnetic edge state in AMoS{sub 2}NRs and make AMoS{sub 2}NRs become antiferromagnetic semiconductors or ferromagnetic semiconductors. Electric field effects on the bandgap and magnetic moment of AMoS{sub 2}NRs were investigated. Partial edge hydrogenation can change a small-sized AMoS{sub 2}NR from semiconductor to metal or semimetal under a moderate transverse electric field. Since the rate of edge hydrogenation can be controlled experimentally via the temperature, pressure and concentration of H{sub 2}, our results suggest edge hydrogenation is a useful method to engineer the band structure of AMoS{sub 2}NRs.

  2. Consistent Definitions of Flux and Electric and Magnetic Current in Abelian Projected SU(2) Lattice Gauge Theory

    E-Print Network [OSTI]

    Richard W. Haymaker; Takayuki Matsuki

    2003-10-07T23:59:59.000Z

    Through the use of a lattice U(1) Ward-Takahashi identity, one can find a precise definition of flux and electric four-current that does not rely on the continuum limit. The magnetic four-current defined for example by the DeGrand-Toussaint construction introduces order a^2 errors in the field distributions. We advocate using a single definition of flux in order to be consistent with both the electric and magnetic Maxwell's equations at any lattice spacing. In a U(1) theory the monopoles are slightly smeared by this choice, i.e. are no longer associated with a single lattice cube. In Abelian projected SU(2) the consistent definition suggests further modifications. For simulations in the scaling window, we do not foresee large changes in the standard analysis of the dual Abrikosov vortex in the maximal Abelian gauge because the order a^2 corrections have small fluctuations and tend to cancel out. However in other gauges, the consequences of our definitions could lead to large effects which may help in understanding the choice of gauge. We also examine the effect of truncating all monopoles except for the dominant cluster on the profile of the dual Abrikosov vortex.

  3. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23T23:59:59.000Z

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  4. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

    1993-01-01T23:59:59.000Z

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  5. Discrete Symmetries on the Light Front and a General Relation Connecting Nucleon Electric Dipole and Anomalous Magnetic Moments

    E-Print Network [OSTI]

    Brodsky, S J; Hwang, D S

    2006-01-01T23:59:59.000Z

    We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo ...

  6. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  7. Electron cyclotron resonant multicusp magnetic field microwave plasma source for electric propulsion

    SciTech Connect (OSTI)

    Dahimene, M.; Mahoney, L.; Asmussen, J.

    1987-05-01T23:59:59.000Z

    The development of electrodeless microwave ion and plasma sources has been a recent, very active research project at Michigan State University. The results are efficient, compact microwave discharge configurations that operate at low pressures (0.5 mtorr to 100 mtorr) and efficiently produce low energy ions and free radicals and broad ion beams for oxidation, deposition, and etching experiments. The microwave discharge technology developed for these applications may be useful for application in electric propulsion. This paper reviews this microwave applicator technology and indicates how it may be extended to higher power levels and applied to electric propulsion systems. 12 references.

  8. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  9. Electric field control of magnetism using BiFeO{sub 3}-based heterostructures

    SciTech Connect (OSTI)

    Heron, J. T., E-mail: jth247@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Schlom, D. G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Ramesh, R. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-06-15T23:59:59.000Z

    Conventional CMOS based logic and magnetic based data storage devices require the shuttling of electrons for data processing and storage. As these devices are scaled to increasingly smaller dimensions in the pursuit of speed and storage density, significant energy dissipation in the form of heat has become a center stage issue for the microelectronics industry. By taking advantage of the strong correlations between ferroic orders in multiferroics, specifically the coupling between ferroelectric and magnetic orders (magnetoelectricity), new device functionalities with ultra-low energy consumption can be envisioned. In this article, we review the advances and highlight challenges toward this goal with a particular focus on the room temperature magnetoelectric multiferroic, BiFeO{sub 3}, exchange coupled to a ferromagnet. We summarize our understanding of the nature of exchange coupling and the mechanisms of the voltage control of ferromagnetism observed in these heterostructures.

  10. SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    , and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration

  11. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  12. Physics II Exam 2 -Chs. 18A,19,20 -Electric Current, Magnetic Field Feb. 23, 2009 Name Rec. Instr. Rec. Time

    E-Print Network [OSTI]

    Wysin, Gary

    Physics II Exam 2 - Chs. 18A,19,20 - Electric Current, Magnetic Field Feb. 23, 2009 Name Rec. Instr-hours, the quantity 850 amp-hours must be a. power. b. energy. c. current. d. charge. b) (4) Give 850 amp-hours in SI

  13. Efficient 3D inversion of magnetic data via octree mesh discretization, space-filling curves, and Kristofer Davis and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School of Mines, Golden,

    E-Print Network [OSTI]

    , and wavelets Kristofer Davis and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School transforms on a re-ordered parameter set. The adaptive mesh discretizes the model region by starting transforms by storing only significant coefficients of those functions. This not only increases the speed

  14. Suppression of electric and magnetic fluctuations and improvement of confinement due to current profile modification by biased electrode in Saha Institute of Nuclear Physics tokamak

    SciTech Connect (OSTI)

    Basu, Debjyoti; Pal, Rabindranath [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064 (India); Ghosh, Joydeep; Chattopadhyay, Prabal K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-07-15T23:59:59.000Z

    Improvement of plasma confinement is achieved in normal q{sub a} discharges of SINP-tokamak by introducing a biased electrode inside the last closed flux surface. All the important features of high confinement mode are observed biasing the electrode negatively with respect to the vacuum vessel. Arrays of electric and magnetic probes introduced in the edge plasma region reveal suppression of electric and magnetic fluctuations over distinct frequency ranges as well as modification of the toroidal current profile due to biasing. Further analysis identifies the electrostatic fluctuations to be due to drift mode and the magnetic fluctuations may be of slow compressional Alfven waves. Both get suppressed due to current profile modification during biasing, hence leading to the improvement of plasma confinement.

  15. Abstract-In this study, imaging of electrical current density in conducting objects, which contain nuclear magnetic resonance

    E-Print Network [OSTI]

    Eyüboðlu, Murat

    nuclear magnetic resonance (NMR) active nuclei is planned using 0.15T Magnetic Resonance Imaging (MRI at each cycle within the object. The applied current pulse creates a measurable magnetic flux density. The component of magnetic flux density parallel to the main magnetic field accumulates an additional phase

  16. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28T23:59:59.000Z

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  17. A study of the influence of crystallite size on the electrical and magnetic properties of CuFe{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Yaqub, Nadia [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)] [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Sepiol, Bogdan [Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria)] [Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria); Ismail, Bushra [Nanoscience and Catalysis Division, National Centre for Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)] [Nanoscience and Catalysis Division, National Centre for Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2011-11-15T23:59:59.000Z

    Graphical abstract: A plot of crystallite size against the normalized values of resistivity, dielectric constant and the drift mobility of the CuFe{sub 2}O{sub 4} materials. Highlights: {yields} The CuFe{sub 2}O{sub 4} materials of different crystallite sizes of <100 nm are prepared by sol-gel method and others of the size of >100 nm by combustion method. {yields} The synthesized samples are characterized for different electrical, dielectrical, magnetic and structural properties. {yields} The results show a sudden change in dc-electrical resistivity, Curie temperature, dielectric parameters, etc. when their crystallite size approaches 84 nm. {yields} This study shows transition from bulk to the nano regime takes place at the particle size of 84 nm. -- Abstract: An attempt has been made to clarify the fundamental assumption that the properties of materials change as the crystallite size of the material is reduced below 100 nm. CuFe{sub 2}O{sub 4} samples of different crystallite sizes were prepared by the sol-gel and combustion methods and then analyzed by X-ray diffraction (XRD), thermal analyses (TGA/DTG) and scanning electron microscopy (SEM) techniques. The magnetic properties were studied by measuring the AC magnetic susceptibility ({chi}) and the Moessbauer spectroscopy. The DC electrical resistivity, dielectric constant, dielectric loss tangent, Curie temperature and hyperfine splitting of the samples change with the crystallite size. The change in the electrical properties is attributed to the formation of discrete energy levels instead of the bands. However, the magnetic parameters change due to the existence of non magnetic surface layers. The isomer shift and the hyperfine splitting show gradual increase with the increase in crystallite sizes.

  18. EuCuOSe: Crystal structure refinement, electrical and magnetic properties

    SciTech Connect (OSTI)

    Llanos, Jaime [Departamento de Quimica, Universidad Catolica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile)], E-mail: jllanos@ucn.cl; Cortes, Rodrigo; Sanchez, Victor [Departamento de Quimica, Universidad Catolica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile)

    2008-02-05T23:59:59.000Z

    The europium copper oxyselenide EuCuOSe has been prepared by reacting Eu, CuO and Se in the ratio 1:1:1 at 1123 K for a period of 10 days in sealed quartz ampoule. The structure has been determined by single-crystal X-ray methods. The compound crystallizes tetragonal in the space group P4/nmm (no. 129) with two formula units in the cell with dimensions a = 393.65(8) pm and c = 871.80(17) pm. The structure is composed of {sup 2}{sub {infinity}}{l_brace}[(Eu{sup 3+})(O{sup 2-}){sub 4/4}(Se{sup 2-}){sub 4/4}]{sup -}{r_brace} double layers separated by copper atoms, which are tetrahedrally coordinated to Se{sup 2-} anions. According to the resistivity measurements, EuCuOSe is a semiconductor. The magnetic susceptibility data shows the typical non-Curie-Weiss behavior of the {sup 7}F{sub J} states of Eu in the 4f{sup 6} configuration.

  19. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data

    E-Print Network [OSTI]

    Meju, Max

    multidimensional non- invasive dc resistivity and seismic refraction investigations of the near-surface have and seismic data Luis A. Gallardo1 and Max A. Meju Department of Environmental Science, Lancaster University-gradients of electrical resistivity and seismic velocity as constraints so as to investigate more precisely

  20. Gigahertz Non-Volatile Voltage Tuned Magnetic Film Inductors using a Ni/NiFe Core

    E-Print Network [OSTI]

    Lewis, Mark Dylan

    2012-01-01T23:59:59.000Z

    energy harvesting, magnetic recording devices, and electric and magnetic field tunable microwaveenergy harvesting, magnetic recording devices, and electric and magnetic field tunable microwave

  1. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOE Patents [OSTI]

    Woolley, Robert D. (Belle Mead, NJ)

    1999-01-01T23:59:59.000Z

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  2. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP...

  3. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    Geothermal Field California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

  4. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At...

  5. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration...

  6. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    E-Print Network [OSTI]

    Brown, V.

    2013-01-01T23:59:59.000Z

    the field data to accurately model potential reservoirs andreservoir scale electrical anisotropy from marine CSEM datathe reservoir target can be determined from seismic data or

  7. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  8. Seismic characterization of fractures

    E-Print Network [OSTI]

    JM Carcione

    2014-06-07T23:59:59.000Z

    Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

  9. Double layer electric fields aiding the production of energetic flat-top distributions and superthermal electrons within the exhausts from magnetic reconnection

    E-Print Network [OSTI]

    Egedal, Jan; Le, Ari; Borg, Anette L

    2015-01-01T23:59:59.000Z

    Using a kinetic simulation of magnetic reconnection it was recently shown that magnetic-field-aligned electric fields (E||) can be present over large spatial scales in reconnection exhausts. The largest values of E|| are observed within double layers. The existence of double layers in the Earth's magnetosphere is well documented. In our simulation their formation is triggered by large parallel streaming of electrons into the reconnection region. These parallel electron fluxes are required for maintaining quasi-neutrality of the reconnection region and increase with decreasing values of the normalized electron pressure upstream of the reconnection region. A threshold normalized pressure is derived for strong double layers to develop. We also document how the electron confinement, provided in part by the structure in E||, allows sustained energization by perpendicular electric fields. The energization is a consequence of the confined electrons' chaotic orbital motion that includes drifts aligned with the reconn...

  10. Bound states for a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field

    SciTech Connect (OSTI)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2014-02-15T23:59:59.000Z

    We discuss the arising of bound states solutions of the Schrödinger equation due to the presence of a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field. Furthermore, we study the influence of the Coulomb-type potential on the harmonic oscillator by showing a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system, whose meaning is that not all values of the angular frequency are allowed. -- Highlights: • Interaction between a moving electric quadrupole moment and a magnetic field. • Arising of bound states solutions due to the presence of a Coulomb-type potential. • Influence of the Coulomb-type potential on the harmonic oscillator. • Dependence of the angular frequency on the quantum numbers of the system.

  11. New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,

    E-Print Network [OSTI]

    Greer, Julia R.

    #12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? · ~360 Seismic Stations · ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks · Current broadband seismic network

  12. Noise in the processing and application of magnetic gradients Leon Foks, Kristofer Davis, and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School of Mines,

    E-Print Network [OSTI]

    measurements. Our methods are applied to real airborne magnetic data where by we compare measured of cal- culated gradients. INTRODUCTION Airborne magnetic gradiometry data are becoming common in large-mode noise rejection enhances the signal-to-noise ratio. Gradients in air- borne magnetometry have been used

  13. Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines

    E-Print Network [OSTI]

    Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

  14. Fracture Properties From Seismic Scattering

    E-Print Network [OSTI]

    Burns, Daniel R.

    2007-01-01T23:59:59.000Z

    Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

  15. Interface Magnetism in Multiferroics

    E-Print Network [OSTI]

    He, Qing

    2011-01-01T23:59:59.000Z

    1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3

  16. Method of migrating seismic records

    DOE Patents [OSTI]

    Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

    2000-01-01T23:59:59.000Z

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  17. On geometry influence on the behavior of a quantum mechanical scalar particle with intrinsic structure in external magnetic and electric fields

    E-Print Network [OSTI]

    O. V. Veko; K. V. Kazmerchuk; E. M. Ovsiyuk; V. V. Kisel; V. M. Red'kov

    2014-11-07T23:59:59.000Z

    Relativistic theory of the Cox's scalar not point-like particle with intrinsic structure is developed on the background of arbitrary curved space-time. It is shown that in the most general form, the extended Proca-like tensor first order system of equations contains non minimal interaction terms through electromagnetic tensor F_{\\alpha \\beta} and Ricci tensor R_{\\alpha \\beta}. In relativistic Cox's theory, the limiting procedure to non-relativistic approximation is performed in a special class of curved space-time models. This theory is specified in simple geometrical backgrounds: Euclid's, Lobachevsky's, and Rie\\-mann's. Wave equation for the Cox's particle is solved exactly in presence of external uniform magnetic and electric fields in the case of Minkowski space. Non-trivial additional structure of the particle modifies the frequency of a quantum oscillator arising effectively in presence if external magnetic field. Extension of these problems to the case of the hyperbolic Lobachevsky space is examined. In presence of the magnetic field, the quantum problem in radial variable has been solved exactly; the quantum motion in z-direction is described by 1-dimensional Schr\\"{o}dinger-like equation in an effective potential which turns out to be too difficult for analytical treatment. In the presence of electric field, the situation is similar. The same analysis has been performed for spherical Riemann space model.

  18. Seismic transducer modeling using ABAQUS

    SciTech Connect (OSTI)

    Stephen R. Novascone

    2004-05-01T23:59:59.000Z

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  19. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect (OSTI)

    Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-06-07T23:59:59.000Z

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  20. Magnetic field assisted self-assembly of ferrite-ferroelectric core-shell nanofibers and studies on magneto-electric interactions

    SciTech Connect (OSTI)

    Sreenivasulu, G.; Zhang, Ru; Sharma, K.; Janes, C.; Mukundan, A.; Srinivasan, G., E-mail: srinivas@oakland.edu [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Popov, Maksym [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Radiophysics Department, Taras Shevchenko National University of Kyiv, Kyiv 01601 (Ukraine)

    2014-02-03T23:59:59.000Z

    Core-shell nanofibers of nickel ferrite and lead zirconate titanate have been synthesized by electrospinning, assembled into superstructure in uniform or non-uniform magnetic fields, and have been characterized in terms of ferroic order parameters and strain mediated magneto-electric (ME) coupling. The core-shell structure was confirmed by electron microscopy and scanning probe microscopy. Studies on magnetic field induced polarization P in assembled samples showed a decrease or increase in P, depending on the nature of fibers and strengthening of ME coupling with change in remnant-P as high as 32%. Strong ME interactions were evident from H-induced variation in permittivity at 20–22?GHz.

  1. A new method of measuring the poloidal magnetic and radial electric fields in a tokamak using a laser-accelerated ion-beam trace probe

    SciTech Connect (OSTI)

    Yang, X. Y.; Chen, Y. H.; Lin, C.; Wang, X. G.; Xiao, C. J., E-mail: cjxiao@pku.edu.cn [State Key Labaratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2014-11-15T23:59:59.000Z

    Both the poloidal magnetic field (B{sub p}) and radial electric field (E{sub r}) are significant in magnetic confinement devices. In this paper, a new method was proposed to diagnose both B{sub p} and E{sub r} at the same time, which was named Laser-accelerated Ion-beam Trace Probe (LITP). This method based on the laser-accelerated ion beam, which has three properties: large energy spread, short pulse lengths, and multiple charge states. LITP can provide the 1D profiles, or 2D images of both B{sub p} and E{sub r}. In this paper, we present the basic principle and some preliminary theoretical results.

  2. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOE Patents [OSTI]

    Judkins, Roddie R. (9917 Rainbow Dr., Knoxville, TN 37922); Burchell, Timothy D. (109 Greywood Pl., Oak Ridge, TN 37830)

    1999-01-01T23:59:59.000Z

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  3. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-07-20T23:59:59.000Z

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  4. Reservoir permeability from seismic attribute analysis

    E-Print Network [OSTI]

    Goloshubin, G.

    2008-01-01T23:59:59.000Z

    of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir

  5. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  6. Seismic Structure And Seismicity Of The Cooling Lava Lake Of...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The...

  7. Thermal and electrical stabilities of solid nitrogen (SN2) cooled YBCO coated conductors for HTS magnet applications

    E-Print Network [OSTI]

    Song, J. B.

    Recently, a cooling system using a solid cryogen such as solid nitrogen (SN2), was introduced for high temperature superconducting (HTS) magnet applications. In order to apply the SN2 cooling system successfully to HTS ...

  8. 1050 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008 Noninvasive Fault Monitoring of Electrical Machines by Solving

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    air gap, it is possible to predict the magnetic field outside it, by taking into account the stator. It is based on a 3-D fi- nite element modeling coupled with a post-processing based on a volume integral

  9. Evaluation of a Vector Hypercube for Seismic Modelling Seismic modelling

    E-Print Network [OSTI]

    Renaut, Rosemary

    Evaluation of a Vector Hypercube for Seismic Modelling Abstract Seismic modelling is a computationally to produce realistic seismic traces intensive problem. A 2D syn- Rosemary Renautt and Johnny equation is the first step in the generation of a synthetic seismogram as an aid in the interpretation

  10. Methods for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20T23:59:59.000Z

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  11. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    SciTech Connect (OSTI)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

    2012-09-26T23:59:59.000Z

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  12. Seismic viscoelastic attenuation Submitted to

    E-Print Network [OSTI]

    Cormier, Vernon F.

    Seismic viscoelastic attenuation Submitted to: Encyclopedia of Solid Earth Geophysics Harsh Gupta-3046 USA E-mail: vernon.cormier@uconn.edu Tel: 860-486-3547 Fax: 860-486-3346 #12;SEISMIC VISCOELASTIC ATTENUATION Synonyms Seismic intrinsic attenuation Definitions Linear viscoelastic attenuation. The loss

  13. Theory of elastic interaction between colloidal particles in the nematic cell in the presence of the external electric or magnetic field

    E-Print Network [OSTI]

    S. B. Chernyshuk; O. M. Tovkach; B. I. Lev

    2011-09-14T23:59:59.000Z

    The Green function method developed in Ref.[S. B. Chernyshuk and B. I. Lev, Phys. Rev. E \\textbf{81}, 041707 (2010)] is used to describe elastic interactions between axially symmetric colloidal particles in the nematic cell in the presence of the external electric or magnetic field. General formulas for dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions in the homeotropic and planar nematic cells with parallel and perpendicular field orientations are obtained. A set of new results has been predicted: 1) \\textit{Deconfinement effect} for dipole particles in the homeotropic nematic cell with negative dielectric anisotropy $\\Delta\\epsilonfield, when electric field is approaching it's Frederiks threshold value $E\\Rightarrow E_{c}$. This means cancellation of the confinement effect found in Ref. [M.Vilfan et al. Phys.Rev.Lett. {\\bf 101}, 237801, (2008)] for dipole particles near the Frederiks transition while it remains for quadrupole particles. 2) New effect of \\textit{attraction and stabilization} of the particles along the electric field parallel to the cell planes in the homeotropic nematic cell with $\\Delta\\epsilonfield and can be ordinary for . 3) Attraction and repulsion zones for all elastic interactions are changed dramatically under the action of the external field.

  14. Canadian Seismic Agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lapointe, S.P.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Adams, J.; Cajka, M.G.; McNeil, W.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada))

    1992-05-01T23:59:59.000Z

    This is a progress report of work carried out under the terms of a research agreement entitled the Canadian Seismic Agreement'' between the US Nuclear Regulatory Commission (USNRC), the Canadian Commercial Corporation and the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1989 to June 30, 1990. The Canadian Seismic Agreement'' supports generally the operation of various seismograph stations in eastern Canada and the collection and analysis of earthquake data for the purpose of mitigating seismic hazards in eastern Canada and the northeastern US. The specific activities carried out in this one-year period are summarized below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong-motion network developments and earthquake activity. During this period the first surface fault unequivocably determined to have accompanied a historic earthquake in eastern North America, occurred in northern Quebec.

  15. Canadian Seismic Agreement

    SciTech Connect (OSTI)

    Basham, P.W.; Lyons, J.A.; Drysdale, J.A.; Shannon, W.E.; Andersen, F.; Hayman, R.B.; Wetmiller, R.J.

    1983-11-01T23:59:59.000Z

    The ECTN network has remained stable over the past year; progress on the new concentrator software has been slow. Major developments have taken place in the Ottawa Data Laboratory including the installation of a new VAX system and further development of the Seismic Analysis Monitor software. A new initiative has been the development of hardware and software for the Sudbury Local Telemetered Network, which can be considered a prototype for a smart outstation. The performance of the ECTN over the past year is described along with a summary of eastern Canadian seismicity during the reporting period and a list of EPB research publications on eastern Canadian seismicity during the past year. 4 figures, 3 tables.

  16. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19T23:59:59.000Z

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  17. Investigation of demagnetization in HTS stacked tapes implemented in electric machines as a result of crossed magnetic field

    E-Print Network [OSTI]

    Baghdadi, M.; Ruiz, H. S.; Fagnard, J. F.; Zhang, M.; Wang, W.; Coombs, T. A.

    2014-11-24T23:59:59.000Z

    .e. 600 seconds, was then employed in order to allow the trapped magnetic field to relax due to thermally activated flux creep. Getting ready for applying the crossed field, the sample is turned 90 degrees, thus, the direction of the magnetic field would... testing flux-line cutting physics”, Supercond. Sci. Technol., vol. 24, no. 6, p. 062002, Mar. 2011. [14] G. P. Mikitik and E. H. Brandt, ”Vortex shaking in rectangular super- conducting platelets”, Phys. Rev. B, vol. 69, no. 13, p. 134521, Apr. 2004. [15...

  18. Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities

    E-Print Network [OSTI]

    V. G. Baryshevsky; A. A. Gurinovich

    2005-06-14T23:59:59.000Z

    In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

  19. Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure

    E-Print Network [OSTI]

    to rapidly change the dielectric constant of a ferroelectric material under the application of a dc electric, by incorporating a ferrite material into a device, one gains the ability to change both the dielectric constant, a phase shifter will have changing characteris- tic impedance as it changes its phase. In this work, we em

  20. Advanced Integrated Electric Traction System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...

  1. Canadian seismic agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Plouffe, M.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)

    1990-04-01T23:59:59.000Z

    During the period of this report, the contract resources were spent on operation and maintenance of the Eastern Canada Telemetred Network (ECTN), development of special purpose local network systems, servicing and maintenance of the strong-motion seismograph network in eastern Canada, operation of the Ottawa data lab and earthquake monitoring and reporting. Of special note in this period was the final completion of the Sudbury (SLTN) and Charlevoix (CLTN) local networks and the integration of their data processing and analysis requirements in the regular analysis stream for ECTN data. These networks now acquire high quality digital data for detailed analysis of seismic activity and source properties from these two areas, thus effectively doubling the amount of seismic data being received by the Ottawa data lab. 37 refs., 17 figs., 2 tabs.

  2. Seismic Facies Characterization By Scale Analysis

    E-Print Network [OSTI]

    Herrmann, Felix J.

    2000-01-01T23:59:59.000Z

    Over the years, there has been an ongoing struggle to relate well-log and seismic data due to the inherent bandwidth limitation of seismic data, the problem of seismic amplitudes, and the apparent inability to delineate ...

  3. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01T23:59:59.000Z

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  4. Frequent-Interval Seismic CPTu

    Office of Environmental Management (EM)

    PE NPH Engineering Manager, DOE-SR Motivation The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization....

  5. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

  6. High resolution seismic and paleomagnetic study of the structure and sedimentation of Sweet and Phleger Banks, northern Gulf of Mexico

    E-Print Network [OSTI]

    Singleton, Scott Wayne

    1988-01-01T23:59:59.000Z

    Core Analysis Geologic Descriptions Magnetic Analysis CHAPTER IV DISCUSSION 70 70 73 77 Stratigraphy . Unit 1 . 77 77 Unit 2 79 Unit 3 81 Structure 83 Phleger Bank Dome Development Sweet Bank Dome Development Radial Faults Magnetic... of resolution. The bathymetry data was then plotted and contoured at a 10 m interval. This interva! was fine enough to reveal the details of dome shape, but broad enough to allow for navigation errors. Seismic Stratigraphy The seismic stratigraphic analysis...

  7. Background Material Important Questions about Magnetism

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

  8. Overview of seismic panel activities

    SciTech Connect (OSTI)

    Bandyopadhyay, K.K.

    1991-01-01T23:59:59.000Z

    In January 1991, the DOE-EM appointed a Seismic Panel to develop seismic criteria that can be used for evaluation of underground storage tanks containing high level radioactive wastes. The Panel expects to issue the first draft of the criteria report in January 1992. This paper provides an overview of the Panel's activities and briefly discusses the criteria. 3 refs.

  9. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01T23:59:59.000Z

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  10. Seismic Design Expectations Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer to FundPreparedContinuingHearings »Seismic Design

  11. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  12. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  13. Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993

    SciTech Connect (OSTI)

    Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

    1993-08-01T23:59:59.000Z

    Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

  14. Temporal Integration of Seismic Traveltime Tomography

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan B.

    2005-06-01T23:59:59.000Z

    Time-lapse geophysical measurements and seismic imaging methods in particular are powerful techniques

  15. SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING Norimitsu Nakata

    E-Print Network [OSTI]

    Snieder, Roel

    SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING by Norimitsu Nakata #12;c Copyright by Norimitsu Seismic interferometry, where one computes coherency of waves between two or more receivers and averages from the first study related to seismic interferometry (although the name of seismic interferometry has

  16. Reservoir Characterization Using Intelligent Seismic Inversion

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    reservoir performance. Field Development #12;- Issues about the data and problems regarding data analysis characterization studies. - Inverse modeling of reservoir properties from the seismic data is known as seismic inversion. SEISMIC LOGS #12;1. Does a relationship exist between seismic data and reservoir characteristics

  17. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)

    1994-01-01T23:59:59.000Z

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  18. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13T23:59:59.000Z

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  19. Magnetic monopole and the nature of the static magnetic field

    E-Print Network [OSTI]

    Xiuqing Huang

    2008-12-10T23:59:59.000Z

    We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

  20. Integrated system for seismic evaluations

    SciTech Connect (OSTI)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01T23:59:59.000Z

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs.

  1. Thermionic electric converter

    SciTech Connect (OSTI)

    Davis, E.D.

    1981-12-01T23:59:59.000Z

    A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.

  2. annual hanford seismic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the resulting distributions 5. Include the seismic hazard 64 Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity Physics...

  3. alternate seismic support: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the resulting distributions 5. Include the seismic hazard 76 Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity Physics...

  4. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

  5. Assessing Beyond Design Basis Seismic Events and Implications...

    Office of Environmental Management (EM)

    on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist)...

  6. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03T23:59:59.000Z

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).

  7. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30T23:59:59.000Z

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  9. Investigating the point seismic array concept with seismic rotation measurements.

    SciTech Connect (OSTI)

    Abbott, Robert E.; Aldridge, David Franklin

    2009-02-01T23:59:59.000Z

    Spatially-distributed arrays of seismometers are often utilized to infer the speed and direction of incident seismic waves. Conventionally, individual seismometers of the array measure one or more orthogonal components of rectilinear particle motion (displacement, velocity, or acceleration). The present work demonstrates that measure of both the particle velocity vector and the particle rotation vector at a single point receiver yields sufficient information to discern the type (compressional or shear), speed, and direction of an incident plane seismic wave. Hence, the approach offers the intriguing possibility of dispensing with spatially-extended received arrays, with their many problematic deployment, maintenance, relocation, and post-acquisition data processing issues. This study outlines straightforward mathematical theory underlying the point seismic array concept, and implements a simple cross-correlation scanning algorithm for determining the azimuth of incident seismic waves from measured acceleration and rotation rate data. The algorithm is successfully applied to synthetic seismic data generated by an advanced finite-difference seismic wave propagation modeling algorithm. Application of the same azimuth scanning approach to data acquired at a site near Yucca Mountain, Nevada yields ambiguous, albeit encouraging, results. Practical issues associated with rotational seismometry are recognized as important, but are not addressed in this investigation.

  10. Canadian seismic agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C., Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)

    1990-04-01T23:59:59.000Z

    This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs.

  11. Seismic anisotropy of fractured rock

    E-Print Network [OSTI]

    M. Schoenberg, C. M. Sayers

    2000-02-18T23:59:59.000Z

    of seismic anisotropy to determine the orientation of fracture sets is of ... this assumption of noninteraction does not imply that the ... conventional (2-subscript) condensed 6 x 6 matrix notation,. 11. 6, while ... have simple physical interpretations.

  12. IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 8, AUGUST 2008 2021 Modeling of Eddy-Current Loss of Electrical Machines and Transformers

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    of Electrical Machines and Transformers Operated by Pulsewidth-Modulated Inverters Ruifang Liu1;2, Chris

  13. Review of public comments on proposed seismic design criteria

    SciTech Connect (OSTI)

    Philippacopoulos, A.J.; Shaukat, S.K.; Chokshi, N.C.; Bagchi, G.

    1989-01-01T23:59:59.000Z

    During the first quarter of 1988, the Nuclear Regulatory Commission (NRC) prepared a proposed Revision 2 to the NUREG-0800 Standard Review Plan (SRP) Sections 2.5.2 (Vibratory Ground Motion), 3.7.1 (Seismic Design Parameters), 3.7.2 (Seismic Systems Analysis) and 3.7.3 (Seismic Subsystem Analysis). The proposed Revision 2 to the SRP was a result of many years' work carried out by the NRC and the nuclear industry on the Unresolved Safety Issue (USI) A-40: ''Seismic Design Criteria.'' The background material related to NRC's efforts for resolving the A-40 issue is described in NUREG-1233. In June 1988, the proposed Revision 2 of the SRP was issued by NRC for public review and comments. Comments were received from Sargent and Lundy Engineers, Westinghouse Electric Corporation, Stevenson and Associates, Duke Power Company, General Electric Company and Electric Power Research Institute. In September 1988, Brookhaven National Laboratory (BNL) and its consultants (C.J. Costantino, R.P. Kennedy, J. Stevenson, M. Shinozuka and A.S. Veletsos) were requested to carry out a review of the comments received from the above six organizations. The objective of this review was to assist the NRC staff with the evaluation and resolution of the public comments. This review was initiated during October 1988 and it was completed on January 1989. As a result of this review, a set of modifications to the above mentioned sections of the SRP were recommended by BNL and its consultants. This paper summarizes the recommended modifications. 4 refs.

  14. Newberry Seismic Deployment Fieldwork Report

    SciTech Connect (OSTI)

    Wang, J; Templeton, D C

    2012-03-21T23:59:59.000Z

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

  15. Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir

    E-Print Network [OSTI]

    Feighner, Mark A.

    2010-01-01T23:59:59.000Z

    support in the interpretation of the seismic and tomographicinterpretation is partially supported by the re- h s flection seismic

  16. Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)

    E-Print Network [OSTI]

    Boschi, Lapo

    Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive; that is to say, solve the seismological inverse problem. Seismic data and their interpretation Seismic stationsSeismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic

  17. Superconducting magnetic energy storage for BPA transmission-line stabilization

    SciTech Connect (OSTI)

    Rogers, J.D.; Barron, M.H.; Boenig, H.J.; Criscuolo, A.L.; Dean, J.W.; Schermer, R.I.

    1982-01-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) operates the electrical transmission system that joins the Pacific Northwest with southern California. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter is being installed at the Tacoma Substation to provide system damping for low frequency oscillations of 0.35 Hz. The integrated system status is described and reviewed. Components included in the system are the superconducting coil, seismically mounted in an epoxy fiberglass nonconducting dewar; a helium refrigerator; a heat rejection subsystem; a high pressure gas recovery subsystem; a liquid nitrogen trailer; the converter with power transformers and switchgear; and a computer system for remote microwave link operation of the SMES unit.

  18. Electric and Magnetic Fields Facts

    SciTech Connect (OSTI)

    none,

    2006-08-01T23:59:59.000Z

    This discussion outlines the EMF issue, summarizes the research conducted to date, and describes what Western Area Power Administration is doing to address concerns about EMF.

  19. Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold

    E-Print Network [OSTI]

    Meyer, Francois

    Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold Juan--In this research, we consider the supervised learning problem of seismic phase classification. In seismology, knowledge of the seismic activity arrival time and phase leads to epicenter localization and surface

  20. Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity C to apply an approach based on risk for the seismic assessment of existing buildings. In this innovative analytical seismic assessment methods, as the ratio between the capacity and the requirement of the current

  1. Seismic vulnerability analysis of moderate seismicity areas using in situ experimental

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Seismic vulnerability analysis of moderate seismicity areas using in situ experimental techniques (LGIT), LCPC, CNRS, Université Joseph Fourier Grenoble Abstract Seismic vulnerability analysis. This curve is particularly interesting in moderate seismic areas. This methodology is applied to the Grenoble

  2. Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment

    E-Print Network [OSTI]

    Prieto, Germán A.

    Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic March 2010; accepted 9 April 2010; published 31 August 2010. [1] The seismic coda consists of scattered of radiated wave energy. We apply an empirical Green's function (EGF) method to the seismic coda in order

  3. Methods and apparatus for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23T23:59:59.000Z

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  4. Seismic Attribute Analysis Using Higher Order Statistics

    E-Print Network [OSTI]

    Greenidge, Janelle Candice

    2009-05-15T23:59:59.000Z

    Seismic data processing depends on mathematical and statistical tools such as convolution, crosscorrelation and stack that employ second-order statistics (SOS). Seismic signals are non-Gaussian and therefore contain information beyond SOS. One...

  5. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Pennington, Wayne D.

    2002-05-29T23:59:59.000Z

    This project is intended to enhance the ability to use seismic data for the determination of rock and fluid properties through an improved understanding of the physics underlying the relationships between seismic attributes and formation.

  6. Evaluation of strategies for seismic design

    E-Print Network [OSTI]

    Tsertikidou, Despoina

    2012-01-01T23:59:59.000Z

    Current trends in seismic design require a new approach, oriented in satisfying motion related design requirements and limiting both structural and non-structural damage. Seismic isolation and damping devices are currently ...

  7. Seismic imaging using higher order statistics

    E-Print Network [OSTI]

    Srinivasan, Karthik

    1999-01-01T23:59:59.000Z

    Improvements in seismic resolution beyond typical seismic wavelength will have significant implications for hydrocarbon exploration and production. Conventional imaging algorithms can be derived as a least squared optimization problem in which...

  8. Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki [University of Alabama] [University of Alabama; Haskew, Timothy [University of Alabama] [University of Alabama; Myryasov, Oleg [University of Alabama] [University of Alabama; Jin, Sungho [University of California San Diego] [University of California San Diego; Berkowitz, Ami [University of California San Diego] [University of California San Diego

    2014-06-05T23:59:59.000Z

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  9. SEISMIC IMAGING WITH THE GENERALIZED RADON ...

    E-Print Network [OSTI]

    2008-07-29T23:59:59.000Z

    SEISMIC IMAGING WITH THE GENERALIZED RADON. TRANSFORM AND DOUBLE BEAMFORMING: A CURVELET. TRANSFORM PERSPECTIVE. M V DE ...

  10. Development of a HT Seismic Tool

    Broader source: Energy.gov [DOE]

    The program objective is to design; fabricate and field test two high temperature (HT) seismic tools in an EGS application.

  11. Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)

    SciTech Connect (OSTI)

    Commonwealth Associates, Inc.; IIT Research Institute

    1997-08-01T23:59:59.000Z

    This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

  12. Piezotube borehole seismic source

    DOE Patents [OSTI]

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06T23:59:59.000Z

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  13. Impact of seismic resolution on geostatistical techniques

    SciTech Connect (OSTI)

    Mukerji, T.; Rio, P.; Mavko, G.M.

    1995-12-31T23:59:59.000Z

    Seismic measurements are often incorporated in geostatistical techniques for estimation and simulation of petrophysical properties such as porosity. The good correlation between seismic and rock properties provides a basis for these techniques. Seismic data have a wide spatial coverage not available in log or core data. However, each seismic measurement has a characteristic response function determined by the source-receiver geometry and signal bandwidth. The image response of the seismic measurement gives a filtered version of the true velocity image. Therefore the seismic image we obtain cannot reflect exactly the true seismic velocity at all scales of spatial heterogeneities present in the earth. The seismic response function can be conveniently approximated in the spatial spectral domain using a Born approximation. Our goal is to study how the seismic image response affects the estimation of variograms and spatial scales, and its impact on geostatistical results. Limitations of view angles and signal bandwidth not only smoothes the seismic image, increasing the variogram range, but can also introduce anisotropic spatial structures in the image. We can add value to the seismic data by better characterizing an quantifying these attributes. As an exercise we present example of seismically assisted cosimulation of porosity between wells.

  14. April 22, 2010 Seismic Reflection VI

    E-Print Network [OSTI]

    Ito, Garrett

    4/21/2010 1 GG450 April 22, 2010 Seismic Reflection VI Data Interpretation II Today's material section Chrono- stratigraphic section Relations of strata to boundaries of a depositional sequence Seismic stratigraphic reflection terminations within an idealized seismic sequence Reflection configurations #12

  15. Seismic, shock, and vibration isolation - 1988

    SciTech Connect (OSTI)

    Chung, H. (Argonne National Lab., Argonne, IL (US)); Mostaghel, N. (Univ. of Utah, Salt Lake City, UT (US))

    1988-01-01T23:59:59.000Z

    This book contains papers presented at a conference on pressure vessels and piping. Topics covered include: Design of R-FBI bearings for seismic isolation; Benefits of vertical and horizontal seismic isolation for LMR nuclear reactor units; and Some remarks on the use and perspectives of seismic isolation for fast reactors.

  16. BOOK REVIEW Seismic Communication and Adventure

    E-Print Network [OSTI]

    Munshi-South, Jason

    BOOK REVIEW Seismic Communication and Adventure Among African Elephants The Elephant's Secret Sense in Namibia as she first develops the hypothesis that elephants can communicate using seismic signals. Science documenting the elephants' listening behavior and responses to seismic cues. However, these scientific

  17. SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS: METHOD AND VALIDATION Clotaire Michel, France cmichel@obs.ujf-grenoble.fr Abstract Seismic vulnerability in wide areas is usually assessed like USA or Italy. France is a country with moderate seismicity so that it requires lower-cost methods

  18. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  19. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01T23:59:59.000Z

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  20. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28T23:59:59.000Z

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  1. Seismic Performance Requirements for WETF

    SciTech Connect (OSTI)

    Hans Jordan

    2001-01-01T23:59:59.000Z

    This report develops recommendations for requirements on the Weapons Engineering Tritium Facility (WETF) performance during seismic events. These recommendations are based on fragility estimates of WETF structures, systems, and components that were developed by LANL experts during facility walkdowns. They follow DOE guidance as set forth in standards DOE-STD-1021-93, ''Natural Phenomena Hazards Performance Categorization Guidelines for Structures, Systems, and Components'' and DOE-STD-1020-94, ''Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities''. Major recommendations are that WETF institute a stringent combustible loading control program and that additional seismic bracing and anchoring be provided for gloveboxes and heavy equipment.

  2. advanced permanent magnet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic poles, so of generation of magnetic elds in astrophysical objects (or in electrically conducting uids) constitutes Khesin, Boris A. 68 Radiation hardness of permanent...

  3. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect (OSTI)

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01T23:59:59.000Z

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  4. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOE Patents [OSTI]

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02T23:59:59.000Z

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  5. Test Series 2: seismic-fragility tests of naturally-aged Class 1E Exide FHC-19 battery cells

    SciTech Connect (OSTI)

    Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J.; Tulk, J. D.; Janis, W. J.; Black, D. A.; Paulsen, G. D.; Aucoin, B. D.

    1985-03-01T23:59:59.000Z

    The seismic-fragility of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and their thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the ''end-of-life'' of a battery if subjected to a seismic event. This report, the second in a test series of an extensive seismic research program, covers the testing of 10-year old lead-calcium Exide FHC-19 cells from the Calvert Cliffs Nuclear Power Station operated by the Baltimore Gas and Electric Company. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, both rigidly and loosely mounted; and multicell (three-cell) tests, mounted in a typical battery rack. A total of six electrically active cells was used in the two different cell configurations.

  6. Fuel storage basin seismic analysis

    SciTech Connect (OSTI)

    Kanjilal, S.K.; Winkel, B.V.

    1991-08-01T23:59:59.000Z

    The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01T23:59:59.000Z

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  8. Seismic Volume Visualization for Horizon Extraction Daniel Patel

    E-Print Network [OSTI]

    present a novel system for rapidly interpret- ing and visualizing seismic volumetric data. First we to seismic data interpretation. Keywords: Seismic interpretation, Seismic horizons, Volume ren- dering hydrocarbons are trapped. In this paper we present a system for rapid interpretation of seismic reflection

  9. Seismic Isolation Working Meeting Gap Analysis Report

    SciTech Connect (OSTI)

    Justin Coleman; Piyush Sabharwall

    2014-09-01T23:59:59.000Z

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  10. Part 1, Use of seismic experience and test data to show ruggedness of equipment in nuclear power plants; Part 2, Review procedure to assess seismic ruggedness of cantilever bracket cable tray supports

    SciTech Connect (OSTI)

    Kennedy, R.P. (Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States)); von Riesemann, W.A. (Sandia National Labs., Albuquerque, NM (United States)); Wyllie, L.A. Jr. (Degenkolb (H.J.) Associates, San Francisco, CA (United States)); Schiff, A.J. (Stanford Univ., CA (United States)); Ibanez, P. (Anco Engineers, Inc., Culver City, CA (United States))

    1992-06-01T23:59:59.000Z

    In December 1980, the US Nuclear Regulatory Commission (NRC) designated Seismic Qualification of Equipment in Operating Plants'' as an Unresolved Safety Issue (USI), A-46. The objective of USI A-46 is to develop alternative seismic qualification methods and acceptance criteria that can be used to assess the capability of mechanical and electrical equipment in operating nuclear power plants to perform the intended safety functions. A group of affected utilities formed the Seismic Qualification Utility Group (SQUG) to work with the NRC in developing a program methodology to enable resolution of the A-46 issue. To assist in developing a program methodology, SQUG and the NRC jointly selected and supported a five-member Senior Seismic Review and Advisory Panel (SSRAP) in June 1983 to make an independent assessment of whether certain classes of equipment in operating nuclear power plants in the United States have demonstrated sufficient ruggedness in past earthquakes so as to render an explicit seismic qualification unnecessary. SSRAP operated as an independent review body with all of its findings submitted concurrently to both SQUG and the NRC. During their period of involvement, SSRAP issued several draft reports on their conclusions. This document contains the final versions of these reports; namely, Use of Seismic Experience and Test Data to Show Ruggedness of Equipment in Nuclear Power Plants,'' dated February 1991 and Review Procedure to Assess Seismic Ruggedness of Cantilever Bracket Cable Tray Supports,'' dated March 1, 1991.

  11. Part 1, Use of seismic experience and test data to show ruggedness of equipment in nuclear power plants; Part 2, Review procedure to assess seismic ruggedness of cantilever bracket cable tray supports

    SciTech Connect (OSTI)

    Kennedy, R.P. [Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States); von Riesemann, W.A. [Sandia National Labs., Albuquerque, NM (United States); Wyllie, L.A. Jr. [Degenkolb (H.J.) Associates, San Francisco, CA (United States); Schiff, A.J. [Stanford Univ., CA (United States); Ibanez, P. [Anco Engineers, Inc., Culver City, CA (United States)

    1992-06-01T23:59:59.000Z

    In December 1980, the US Nuclear Regulatory Commission (NRC) designated ``Seismic Qualification of Equipment in Operating Plants`` as an Unresolved Safety Issue (USI), A-46. The objective of USI A-46 is to develop alternative seismic qualification methods and acceptance criteria that can be used to assess the capability of mechanical and electrical equipment in operating nuclear power plants to perform the intended safety functions. A group of affected utilities formed the Seismic Qualification Utility Group (SQUG) to work with the NRC in developing a program methodology to enable resolution of the A-46 issue. To assist in developing a program methodology, SQUG and the NRC jointly selected and supported a five-member Senior Seismic Review and Advisory Panel (SSRAP) in June 1983 to make an independent assessment of whether certain classes of equipment in operating nuclear power plants in the United States have demonstrated sufficient ruggedness in past earthquakes so as to render an explicit seismic qualification unnecessary. SSRAP operated as an independent review body with all of its findings submitted concurrently to both SQUG and the NRC. During their period of involvement, SSRAP issued several draft reports on their conclusions. This document contains the final versions of these reports; namely, ``Use of Seismic Experience and Test Data to Show Ruggedness of Equipment in Nuclear Power Plants,`` dated February 1991 and ``Review Procedure to Assess Seismic Ruggedness of Cantilever Bracket Cable Tray Supports,`` dated March 1, 1991.

  12. The electric field manipulation of magnetization in La{sub 1?x}Sr{sub x}CoO{sub 3}/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} heterostructures

    SciTech Connect (OSTI)

    Zhang, Q. M.; Li, Q.; Zhou, W. P.; Wang, L. Y.; Yang, Y. T.; Wang, D. H., E-mail: wangdh@nju.edu.cn; Lv, L. Y.; Du, Y. W. [Jiangsu Key Laboratory for Nano Technology and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Gao, R. L. [School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China)

    2014-04-07T23:59:59.000Z

    La{sub 1?x}Sr{sub x}CoO{sub 3} (x?=?0.18, 0.33, and 0.5) films were grown epitaxially on piezoelectric Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} substrates by pulsed laser deposition. The magnetization of these films varies with the external electric field, showing the magnetoelectric effect. With different doping content of Sr{sup 2+} ions, the change of magnetization for these films show different behaviors with increasing temperature, which can be attributed to the competition between electric-field-induced changes of spin state and double exchange interaction. This work presents an alternative mechanism to investigate the electric field control of magnetism in magnetoelectric heterostructure by tuning the spin state.

  13. ACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet D4L102

    E-Print Network [OSTI]

    Ohta, Shigemi

    the magnet's field quality. Engineering: Escallier reported via email that the magnet met the electricalACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet D4L102 Date of this summary: September 2 on September 2, 2004 and approved the magnet for shipment to CERN. On July 28, R. Ostojic reported that CERN

  14. ACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet: D2L105

    E-Print Network [OSTI]

    Ohta, Shigemi

    of this magnet to be satisfactory [1]. Engineering: Escallier reviewed the electrical tests of the magnetACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet: D2L105 Date of this summary: 20 August 2003 of the minutes, or as footnotes]. Acceptance Status: The BNL committee has approved the magnet for shipment

  15. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  16. Analysis of seismic anisotropy in 3D multi-component seismic data 

    E-Print Network [OSTI]

    Qian, Zhongping

    2010-01-01T23:59:59.000Z

    The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...

  17. DISPLACEMENT BASED SEISMIC DESIGN CRITERIA

    SciTech Connect (OSTI)

    HOFMAYER,C.H.

    1999-03-29T23:59:59.000Z

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.

  18. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01T23:59:59.000Z

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  19. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

    2009-10-13T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  20. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  1. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J. (Lynchburg, VA)

    1988-01-01T23:59:59.000Z

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  2. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION platform for distributed hybrid testing #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN? Celestina Overview Implementation Validation Next steps #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  3. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) · METU Ragueneau · SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  4. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION Database: Architecture and implementation #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN Conclusions #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 3 SERIES Concluding

  5. Oklahoma seismic network. Final report

    SciTech Connect (OSTI)

    Luza, K.V.; Lawson, J.E. Jr. [Oklahoma Geological Survey, Norman, OK (United States)]|[Univ. of Oklahoma, Norman, OK (United States). Energy Center

    1993-07-01T23:59:59.000Z

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.

  6. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-10-01T23:59:59.000Z

    In this report we will show the fundamental concepts of two different methods to compute seismic energy absorption. The first methods gives and absolute value of Q and is based on computation with minimum phase operators. The second method gives a relative energy loss compared to a background trend. This method is a rapid, qualitative indicator of anomalous absorption and can be combined with other attributes such as band limited acoustic impedance to indicate areas of likely gas saturation.

  7. DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy AllNNSAAugust 2010 |

  8. DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated GroundDOE National

  9. DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated GroundDOE NationalAugust 2010

  10. INVERSE SCATTERING OF SEISMIC DATA WITH THE ...

    E-Print Network [OSTI]

    1910-61-22T23:59:59.000Z

    We discuss the inverse scattering of seismic reflection data making use of the generalized Radon transform. Through an extension, the relevant transform attains ...

  11. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  12. Optimization Online - Constrained optimization in seismic reflection ...

    E-Print Network [OSTI]

    F. Delbos

    2004-07-07T23:59:59.000Z

    Jul 7, 2004 ... Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach. F. Delbos (Frederic.Delbos ***at*** ifp.fr)

  13. Finite element approximation of coupled seismic and ...

    E-Print Network [OSTI]

    zyserman

    layer, having a thickness of about 10 nm. Finite element approximation of coupled seismic and electromagnetic waves in gas hydrate-bearing sediments – p.

  14. Hanford site seismic monitoring instrumentation plan

    SciTech Connect (OSTI)

    Reidel, S.P.

    1996-02-29T23:59:59.000Z

    This document provides a plan to comply with the seismic monitoring provisions of US DOE Order 5480.28, Natural Phenomena Hazards.

  15. Infrasound Generation from the HH Seismic Hammer.

    SciTech Connect (OSTI)

    Jones, Kyle Richard

    2014-10-01T23:59:59.000Z

    The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  16. Opportunities for improving regulations governing the seismic...

    Office of Environmental Management (EM)

    Support DOE NPH Design AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...

  17. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01T23:59:59.000Z

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  18. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

  19. Plated lamination structures for integrated magnetic devices

    SciTech Connect (OSTI)

    Webb, Bucknell C.

    2014-06-17T23:59:59.000Z

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  20. Characteristics of Graphitic Films for Carbon Based Magnetism and Electronics

    E-Print Network [OSTI]

    Hong, Jeongmin

    2009-01-01T23:59:59.000Z

    A. Rangwala, “Electricity and Magnetism,” 419 (1989) 81. S.L. Helm, “Defect-Induced Magnetism in Graphene,” Phys Rev. BGraphitic Films for Carbon Based Magnetism and Electronics A

  1. Seismic Emissions from a Highly Impulsive M6.7 Solar Flare

    E-Print Network [OSTI]

    J. C. Martinez-Oliveros; H. Moradi; A-C. Donea

    2008-01-09T23:59:59.000Z

    On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond with previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-ray, visible continuum, and radio emission. Time-distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential--field extrapolations in the flaring region suggests that there is a significant inverse correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.

  2. Constrained optimization in seismic reflection tomography: an SQP ...

    E-Print Network [OSTI]

    2004-07-06T23:59:59.000Z

    Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces.

  3. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region...

  4. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Environmental Management (EM)

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This...

  5. Application of the Computer Program SASSI for Seismic SSI Analysis...

    Office of Environmental Management (EM)

    the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the...

  6. Effects of Seismic Motion Incoherency on SSI and SSSI Responses...

    Office of Environmental Management (EM)

    Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions Effects of Seismic Motion Incoherency on SSI and SSSI...

  7. An Asymptotic Model of Seismic Reflection from a Permeable Layer

    E-Print Network [OSTI]

    Silin, Dmitriy; Goloshubin, Gennady

    2010-01-01T23:59:59.000Z

    Hilterman, F.J. : Seismic Amplitude Interpretation. Number 4interpretations of some poroelasticity coef?cients. For instance, we demonstrate that the An Asymptotic Model of Seismic

  8. The INL Seismic Risk Assessment Project: Requirements for Addressing...

    Office of Environmental Management (EM)

    Seismic Hazard Analysis AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...

  9. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East...

  10. Compound and Elemental Analysis At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental...

  11. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Seismic Technology Adapted to Analyzing and Developing...

  12. Application of Random Vibration Theory Methodology for Seismic...

    Office of Environmental Management (EM)

    Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Application of Random Vibration Theory Methodology for Seismic Soil-Structure...

  13. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07T23:59:59.000Z

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  14. On the Dynamics of Magnetic Fluids in Magnetic Resonance Padraig J. Cantillon-Murphy

    E-Print Network [OSTI]

    in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy B.E., Electrical and Electronic EngineeringOn the Dynamics of Magnetic Fluids in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

  15. Magnetic domains were not found in tetrataenite.

    E-Print Network [OSTI]

    Mountziaris, T. J.

    collaboration with electrical engineers to produce the proper magnetic tape to view domains in. Observing and Industrial Engineering, University of Massachusetts, Amherst, MA 01003 Future Work While the magnetism· Magnetic domains were not found in tetrataenite. · Figure 4 shows magnetic domains found

  16. Electricity Reliability

    E-Print Network [OSTI]

    electric power equipment with more energy efficiency and higher capacity than today's systems of modernizing the electric grid to meet the nations's need for reliable, electric power, enhancing security continues to increase within the electricity infrastructure. DOE is conducting research, development

  17. Evaluation of electric and magnetic fields distribution and SAR induced in 3D models of water containers by radiofrequency radiation using FDTD and FEM simulation techniques

    E-Print Network [OSTI]

    Abdelsamie, Maher A A; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2014-01-01T23:59:59.000Z

    In this study, two software packages using different numerical techniques FEKO 6.3 with Finite-Element Method (FEM) and XFDTD 7 with Finite Difference Time Domain Method (FDTD) were used to assess exposure of 3D models of square, rectangular, and pyramidal shaped water containers to electromagnetic waves at 300, 900, and 2400 MHz frequencies. Using the FEM simulation technique, the peak electric field of 25, 4.5, and 2 V/m at 300 MHz and 15.75, 1.5, and 1.75 V/m at 900 MHz were observed in pyramidal, rectangular, and square shaped 3D container models, respectively. The FDTD simulation method confirmed a peak electric field of 12.782, 10.907, and 10.625 V/m at 2400 MHz in the pyramidal, square, and rectangular shaped 3D models, respectively. The study demonstrated an exceptionally high level of electric field in the water in the two identical pyramid shaped 3D models analyzed using the two different simulation techniques. Both FEM and FDTD simulation techniques indicated variations in the distribution of elect...

  18. ResearchM I C H I G A N T E C H N O L O G I C A L U N I V E R S I T Y | 2 0 0 8 Exploring the

    E-Print Network [OSTI]

    and interpretation of electrical, magnetic, and seismic data. But it hardly prepared them for the glacier, where

  19. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  20. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  1. Seismic of the territory Toktogul reservoir, Kyrgyzstan

    SciTech Connect (OSTI)

    Kamchybekov, Murataly; Yegemberdiyeva, Kuliya [Institute of Seismology of National Academy Science Kyrgyz Republic (Kyrgyzstan)

    2008-07-08T23:59:59.000Z

    In connection with that this seismic in the territory of Naryn cascade maybe has its peculiarity in cludding in the territory Toktogul reservoir before of the building of the Toktogul dam, during of the building and after accordingly was decided to consider the seismic in this space of times. The arm of the present paper is estimation seismic of the territory Toktogul reservoir for different times: before of the building of the Toktogul dam (1960-1973), during its filling (1974-1980) and since start it's of the uninterruptedly exploitation to present time (1981-2006). The territory in that located the cascade of Naryn River is considered that seismic active in the Central part of the Tien Shan. The tectonic motions are become here intensity. The presence of the large faults is complicating significantly the seismic situation of the study region.

  2. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01T23:59:59.000Z

    In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.

  3. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  4. Newberry EGS Seismic Velocity Model

    SciTech Connect (OSTI)

    Templeton, Dennise

    2013-10-01T23:59:59.000Z

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  5. Multi-winding homopolar electric machine

    DOE Patents [OSTI]

    Van Neste, Charles W

    2012-10-16T23:59:59.000Z

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  6. Method and apparatus for coupling seismic sensors to a borehole wall

    DOE Patents [OSTI]

    West, Phillip B.

    2005-03-15T23:59:59.000Z

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  7. Fault properties from seismic Q M. H. Worthington1

    E-Print Network [OSTI]

    Cambridge, University of

    ®cally concerned with the analysis and interpretation of some vertical seismic pro®ling (VSP) data from a holeFault properties from seismic Q M. H. Worthington1 and J. A. Hudson2 1 T. H. Huxley School of seismic Q from a North Sea vertical seismic pro®ling data set has revealed an abrupt increase

  8. Interactive Seismic Interpretation with Piecewise Global Energy Minimization

    E-Print Network [OSTI]

    Interactive Seismic Interpretation with Piecewise Global Energy Minimization Thomas H¨ollt King and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often starts with creating a model of the subsurface structures, the seismic interpretation. A seismic

  9. SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian

    E-Print Network [OSTI]

    Yegian, Mishac

    1 SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian 1 , F. ASCE ABSTRACT Seismic and impedance calculations; assessment of foundation performance under the design seismic loads; and in the case of existing bridges, if deemed necessary, design of seismic retrofit measures. The outcomes of each

  10. Seismic response of fractures and induced anisotropy in poroelastic media

    E-Print Network [OSTI]

    Santos, Juan

    Seismic response of fractures and induced anisotropy in poroelastic media Juan E. Santos stituto) and R. Mart´inez Corredor (UNLP) Department of Mathematics, University of Calgary, October 2014 Seismic variations of velocity and attenuation of seismic waves. Seismic response of fractures and induced anisotropy

  11. SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabi

    E-Print Network [OSTI]

    SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitation Istanbul, 8Istanbul, 8--9 February 20129

  12. Dynamic control of spin states in interacting magnetic elements

    DOE Patents [OSTI]

    Jain, Shikha; Novosad, Valentyn

    2014-10-07T23:59:59.000Z

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  13. Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic

  14. Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction Seismic Wave Propagation in Alluvial Basins

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures

  15. Seismic margins and calibration of piping systems

    SciTech Connect (OSTI)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.

  16. Electric Field Control of Local Ferromagnetism with a Magnetoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Magnetoelectric multiferroics-materials that simultaneously show some form of magnetic and...

  17. Seismicity parameters preceding moderate to major earthquakes

    SciTech Connect (OSTI)

    von Seggern, D.; Alexander, S.S.; Baag, C.

    1981-10-10T23:59:59.000Z

    Seismic events reported in the bulletins of the two large arrays, LASA and NORSAR, were merged with those from the NEIS bulletin for the period 1970-1977. Using a lower cutoff of m/sub b/ = 5.8, 510 'main shocks' within the P range of LASA or NORSAR were selected for this period; and various seismicity trends prior to them were investigated. A search for definite foreshocks, based on a significantly short time delay to the main shock, revealed that the true rate of foreshock occurrence was less than 20%. Foreshocks are almost exclusively associated with shallow (h<100 km) main shocks. Averaging shows that the seismicity level around the main shock increases somewhat for 10 days before main shocks; this feature peaks in the last 3--4 hours prior to the main shocks. Again by averaging, the seismicity about main shocks is shown to tend with time toward the main shock as its origin time is approached, but the average effect is small (approx.10% change).Using a new variable to track the departures from both spatial and temporal randomness, the Poisson-like behavior of deeper seismicity (>100 km) was demonstrated. For shallow events (<100 km) this variable reveals numerous instances of clustering and spatial-temporal seismic gaps, with little tendency toward a uniformity of behavior prior to main shocks. A statistical test of the validity of seismic precursors was performed for approximately 90 main shock regions which had sufficient seismicity. Using a five-variable vector, (interevent time, interevent distance, magnitude, epicentral distance to main shock, and depth difference relative to main shock) for each event in a 'precursory' time window of 500 days before the main shock and for each event in a 'normal' time window of 500 days before that, the null hypothesis of equal vector means between the two groups was tested. At 90% confidence levels, less than 30% of the main shock regions were thus found to exhibit precursory seismicity changes.

  18. A SUPERCONDUCTING MAGNET SYSTEM FOR THE SPIRIT COSMIC RAY SPACE TELESCOPE

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01T23:59:59.000Z

    secondary circuit*® NbVSh superconducting coils ElectricalAugust 21-24, 1979 A SUPERCONDUCTING MAGNET SYSTEM FOR THETELESCOPE MASTER A SUPERCONDUCTING MAGNET SYSTEM FOR THE

  19. Seismic Pulses Derivation from the Study of Source Signature Characteristics

    SciTech Connect (OSTI)

    Rahman, Syed Mustafizur; Nawawi, M. N. Mohd.; Saad, Rosli [School of Physics, Univeristi Sains Malaysia, 11800 USM, Pulau Pinang (Malaysia)

    2010-07-07T23:59:59.000Z

    This paper deals with a deterministic technique for the derivation of seismic pulses by the study of source characteristics. The spectral characteristics of the directly or the nearest detected seismic signal is analyzed and considered as the principle source signature. Using this signature seismic pulses are derived with accurate time position in the seismic traces. The technique is applied on both synthetic and field refraction seismic traces. In both cases it has estimated that the accurate time shifts along with amplitude coefficients.

  20. Seismic Structure of Shallow Lithosphere at Locations of Distinctive Seafloor Spreading /

    E-Print Network [OSTI]

    Henig, Ashlee Shae

    2013-01-01T23:59:59.000Z

    Lithologic interpretations of our seismic results are guidedx and z. Interpretation of the 2D seismic velocity models (to aid in interpretation of rock type from seismic velocity.

  1. Assessment of seismic margin calculation methods

    SciTech Connect (OSTI)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01T23:59:59.000Z

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.

  2. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  3. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20T23:59:59.000Z

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  4. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  5. SMACS. Probabilistic Seismic Analysis System

    SciTech Connect (OSTI)

    Johnson, J.J.; Maslenikov, O.R.; Tiong, L.W.; Mraz, M.J. [EQE Incorporated, San Ramon, CA (United States); Bumpus, S.; Gerhard, M.A. [Lawrence Livermore National Lab., CA (United States)

    1992-01-14T23:59:59.000Z

    The SMACS (Seismic Methodology Analysis Chain with Statistics) system of computer programs is one of the major computational tools of the U.S. NRC Seismic Safety Margins Research Program (SSMRP). SMACS is comprised of the core program SMAX, which performs the SSI response analyses, five preprocessing programs, and two postprocessors. The preprocessing programs include: GLAY and CLAN, which generate the nominal impedance matrices and wave scattering vectors for surface-founded structures; INSSIN, which projects the dynamic properties of structures to the foundation in the form of modal participation factors and mass matrices; SAPPAC, which projects the dynamic and pseudostatic properties of multiply-supported piping systems to the support locations, and LNGEN, which can be used to generate the multiplication factors to be applied to the nominal soil, structural, and subsystem properties for each of the response calculations in accounting for random variations of these properties. The postprocessors are: PRESTO, which performs statistical operations on the raw data from the response vectors that SMAX produces to calculate best fit lognormal distributions for each response location, and CHANGO, which manipulates the data produced by PRESTO to produce other results of interest to the user. Also included is the computer program SAP4 (a modified version of the University of California, Berkeley SAPIV program), a general linear structural analysis program used for eigenvalue extractions and pseudostatic mode calculations of the models of major structures and subsystems. SAP4 is used to prepare input to the INSSIN and SAPPAC preprocessing programs. The GLAY and CLAN programs were originally developed by J.E. Luco (UCSD) and H.L. Wong (USC).

  6. Nanolithographically defined magnetic structures and quantum magnetic disk (invited)

    E-Print Network [OSTI]

    - creasing demands for magnetic storage devices with higher density, faster speed, lower power consumption, smaller size, and lower weight than the current state-of-the-art devices. Presently, most magnetic storage. Chou, Peter R. Krauss, and Linshu Kong NanoStructure Laboratory, Department of Electrical Engineering

  7. 4-D seismic technologies: intersurvey calibration

    E-Print Network [OSTI]

    Kelley, Jeffrey Paul

    1998-01-01T23:59:59.000Z

    seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) analysis is typically...

  8. 4-D seismic technologies: intersurvey calibration 

    E-Print Network [OSTI]

    Kelley, Jeffrey Paul

    1998-01-01T23:59:59.000Z

    seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) ...

  9. Non-physical energy in seismic interferometry 

    E-Print Network [OSTI]

    King, Simon James

    2012-06-25T23:59:59.000Z

    Non-physical arrivals produced by seismic interferometry, the process whereby Green’s functions are synthesized between two points by cross-correlation, crossconvolution or deconvolution, are often considered to provide ...

  10. Study of induced seismicity for reservoir characterization

    E-Print Network [OSTI]

    Li, Junlun, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

  11. Seismic assessment strategies for masonry structures

    E-Print Network [OSTI]

    DeJong, Matthew J. (Matthew Justin)

    2009-01-01T23:59:59.000Z

    Masonry structures are vulnerable to earthquakes, but their seismic assessment remains a challenge. This dissertation develops and improves several strategies to better understand the behavior of masonry structures under ...

  12. Seismic retrofitting of deficient Canadian buildings

    E-Print Network [OSTI]

    Gemme, Marie-Claude

    2009-01-01T23:59:59.000Z

    Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As ...

  13. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  14. Bayesian estimation of resistivities from seismic velocities 

    E-Print Network [OSTI]

    Werthmüller, Dieter

    2014-06-30T23:59:59.000Z

    I address the problem of finding a background model for the estimation of resistivities in the earth from controlled-source electromagnetic (CSEM) data by using seismic data and well logs as constraints. Estimation of ...

  15. Decision analysis for seismic retrofit of structures

    E-Print Network [OSTI]

    Williams, Ryan J.

    2009-05-15T23:59:59.000Z

    of earthquakes as deterministic statements that will not occur for a long time rather than as probabilistic statements about the events (May 2004). Due to the aforementioned concerns regarding the decreased likelihood of building damage from seismic activity...-05, American Society of Civil Engineers, Reston, VA. Bai, J.-W., Hueste, M. B., and Gardoni, P. (2007). ?A probabilistic framework for the assessment of structural losses due to seismic events.? J. Struct. Engrg., submitted for review. Bracci, J. M...

  16. Seismic interpretation of the Wind River Mountains

    E-Print Network [OSTI]

    Van Voorhis, David

    1982-01-01T23:59:59.000Z

    SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

  17. Fluid driven torsional dipole seismic source

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  18. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect (OSTI)

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31T23:59:59.000Z

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  19. Seismic behavior of structural silicone glazing

    SciTech Connect (OSTI)

    Zarghamee, M.S.; Schwartz, T.A. [Simpson Gumpertz and Heger Inc., Arlington, MA (United States); Gladstone, M. [Dow Corning Corp., Fremont, CA (United States)

    1996-12-31T23:59:59.000Z

    In seismic events, glass curtain walls undergo racking deformation, while the flat glass lites do not rack due to their high shear stiffness. If the glass curtain wall is not isolated from the building frame by specifically designed connections that accommodate relative motion, seismic racking motion of the building frame will demand significant resiliency of the sealant that secures the glass to the curtain wall framing. In typical four-sided structural silicone glazing systems used in buildings with unbraced moment frames, the magnitude of seismic racking is likely to stress the sealants significantly beyond the sealant design strength. In this paper, the extent of the expected seismic racking motion, the behavior of the structural silicone glazing when subjected to the expected racking motion, and the field performance of a building with four-sided structural silicone glazing during the Northridge earthquake are discussed. The details of a curtain wall design concept consisting of shop-glazed subframes connected to the building frame and the connections that accommodate seismic motion of the subframe relative to the building frame is developed. Specific recommendations are made for the design of the four-sided structural silicone glazing systems for seismic loads.

  20. Localized Magnetic Fields in Arbitrary Directions Using Patterned Nanomagnets

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    with the option of applying electric fields, for example, to move a quantum dot between regions where the magnetic magnetic films have a long history, for example, in bubble memory,6 but on scales required for spintronic electric fields, for example, to move a quantum dot between regions where the magnetic-field direction

  1. Crustal structure beneath the gravity lineations in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition

    E-Print Network [OSTI]

    Webb, Spahr C.

    , Petrologic and Seismic Expedition (GLIMPSE) study area from seismic refraction data R. Chadwick Holmes,1, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) experiment investigated the velocity in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) study area from

  2. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    SciTech Connect (OSTI)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-02-01T23:59:59.000Z

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.

  3. Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform

    E-Print Network [OSTI]

    Donahue, Michael J.

    1 Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform Elizabeth Mirowski, John Moreland, Arthur Zhang and Stephen E. Russek Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Boulder, CO 80305 Michael

  4. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry,

    E-Print Network [OSTI]

    Krishnan, Kannan M.

    Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy Frank Ludwig a , Hilke. Krishnan b,n a Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig

  5. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  6. Electrical Engineer

    Broader source: Energy.gov [DOE]

    The incumbent in this position will serve as an Electrical Engineer in the Strategy and Program Management organization of Transmission Services. The Strategy and Program Management organization is...

  7. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  8. Electrical hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

  9. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  10. Electrical stator

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01T23:59:59.000Z

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  11. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  12. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    SciTech Connect (OSTI)

    Lane, Michael

    2012-01-01T23:59:59.000Z

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  13. Magnetic moment versus tensor charge

    E-Print Network [OSTI]

    M. Mekhfi

    2005-05-10T23:59:59.000Z

    We express the baryon magnetic moments in terms of the baryon tensor charges, considering the quarks as relativistic interacting objects. Once tensor charges get measured accurately, the formula for the baryon magnetic moment will serve to extract precise information on the quark anomalous magnetic moment, the quark effective mass and the ratio of the quark constituent mass to the quark effective mass. The analogous formula for the baryon electric dipole moment is of no great use as it gets eventually sizable contributions from various CP- violating sources not necessary associated to the quark electric dipole moment.

  14. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    SciTech Connect (OSTI)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  15. A sampling-based Bayesian model for gas saturation estimationusing seismic AVA and marine CSEM data

    SciTech Connect (OSTI)

    Chen, Jinsong; Hoversten, Michael; Vasco, Don; Rubin, Yoram; Hou,Zhangshuan

    2006-04-04T23:59:59.000Z

    We develop a sampling-based Bayesian model to jointly invertseismic amplitude versus angles (AVA) and marine controlled-sourceelectromagnetic (CSEM) data for layered reservoir models. The porosityand fluid saturation in each layer of the reservoir, the seismic P- andS-wave velocity and density in the layers below and above the reservoir,and the electrical conductivity of the overburden are considered asrandom variables. Pre-stack seismic AVA data in a selected time windowand real and quadrature components of the recorded electrical field areconsidered as data. We use Markov chain Monte Carlo (MCMC) samplingmethods to obtain a large number of samples from the joint posteriordistribution function. Using those samples, we obtain not only estimatesof each unknown variable, but also its uncertainty information. Thedeveloped method is applied to both synthetic and field data to explorethe combined use of seismic AVA and EM data for gas saturationestimation. Results show that the developed method is effective for jointinversion, and the incorporation of CSEM data reduces uncertainty influid saturation estimation, when compared to results from inversion ofAVA data only.

  16. Seismic hazard evaluation for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The study presents the results of an investigation of seismic hazard at the site of the Paducah Gaseous Diffusion Plant. Paducah is located near the northern end of the Reelfoot Rift -- a large feature of the earth's crust that is believed to be associated with the New Madrid earthquakes of 1811 and 1812. Results from three separate seismic hazard analyses are presented here. The EPRI/SOG analysis uses the input data and methodology developed by the Electric Power Research Institute, under the sponsorship of several electric utilities, for the evaluation of seismic hazard in the central and eastern United States. Section 2 of this report documents the application of the EPRI/SOG methodology to the Paducah site (for both rock and soil conditions). The LLNL analysis uses the input data and methodology developed by the Lawrence Livermore National Laboratory for the Nuclear Regulatory Commission. This analysis was performed by LLNL and results were transmitted to us. Section 3 of this report contains a summary of LLNL inputs and results (for both rock and soil conditions, and considering 4 and 5 LLNL ground motion experts). 29 refs., 118 figs., 24 tabs.

  17. Test Series 4: seismic-fragility tests of naturally-aged Exide EMP-13 battery cells

    SciTech Connect (OSTI)

    Bonzon, L.L.; Hente, D.B.; Kukreti, B.M.; Schendel, J.; Tulk, J.D.; Janis, W.J.; Black, D.A.; Paulsen, G.D.; Aucoin, B.D.

    1985-03-01T23:59:59.000Z

    This report, the fourth in a test series of an extensive seismic research program, covers the testing of a 27-year old lead-antimony Exide EMP-13 cells from the recently decommissioned Shippingport Atomic Power Station. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, rigidly mounted; and multicell (five-cell) tests, mounted in a typical battery rack. A total of nine electrically active cells was used in the two different cell configurations. None of the nine cells failed during the actual seismic tests when a range of ZPAs up to 1.5 g was imposed. Subsequent discharge capacity tests of five of the cells showed, however, that none of the cells could deliver the accepted standard of 80% of their rated electrical capacity for 3 hours. In fact, none of the 5 cells could deliver more than a 33% capacity. Two of the seismically tested cells and one untested, low capacity cell were disassembled for examination and metallurgical analyses. The inspection showed the cells to be in poor condition. The negative plates in the vicinity of the bus connections were extremely weak, the positive buses were corroded and brittle, negative and positive active material utilization was extremely uneven, and corrosion products littered the cells.

  18. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01T23:59:59.000Z

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  19. International Electric Propulsion Conference IEPC-2007-153

    E-Print Network [OSTI]

    King, Lyon B.

    30th International Electric Propulsion Conference IEPC-2007-153 1 Confinement time in an electron and magnetic fields of a Hall-effect thruster with the goal of understanding the mechanism(s) responsible for anomalous cross-field mobility. A low-density electron plasma is confined using vacuum electric and magnetic

  20. Annual Hanford Seismic Report for Fiscal Year 2004

    SciTech Connect (OSTI)

    Hartshorn, Donald C.; Reidel, Steve P.; Rohay, Alan C.

    2004-12-07T23:59:59.000Z

    This report describes seismic activity at and around the Hanford Site during Fiscal Year 2004. It is also the first description of seismic activity during the fourth quarter of FY04.

  1. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10T23:59:59.000Z

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface ...

  2. Seismic Facies Classification And Identification By Competitive Neural Networks

    E-Print Network [OSTI]

    Saggaf, Muhammad M.

    2000-01-01T23:59:59.000Z

    We present an approach based on competitive networks for the classification and identification of reservoir facies from seismic data. This approach can be adapted to perform either classification of the seismic facies based ...

  3. A Study of SSI Effects Incorporating Seismic Wave Incoherence...

    Office of Environmental Management (EM)

    A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of...

  4. Time-lapse seismic monitoring of subsurface fluid flow

    E-Print Network [OSTI]

    Yuh, Sung H.

    2004-09-30T23:59:59.000Z

    Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

  5. Motion based seismic design and loss estimation of diagrid structures

    E-Print Network [OSTI]

    Liptack, Robert J. (Robert Jeffrey)

    2013-01-01T23:59:59.000Z

    Diagrids are becoming an increasingly popular structural system in high rise design and construction. Little research has been performed on the seismic performance of Diagrids and how it integrates with seismic loss ...

  6. Electrical and Computer Engineering

    E-Print Network [OSTI]

    Weber, Rodney

    COE 1000 Electrical and Computer Engineering Jennifer Michaels Professor and Interim Associate Chair for Undergraduate Affairs School of Electrical and Computer Engineering Fall 2011 #12;Defining Electrical and Computer Engineering Electrical Engineering: Electrical engineers explore electrical phenomena

  7. Characterization of the Virgo Seismic Environment

    E-Print Network [OSTI]

    The Virgo Collaboration; T. Accadia; F. Acernese; P. Astone; G. Ballardin; F. Barone; M. Barsuglia; A. Basti; Th. S. Bauer; M. Bebronne; M. G. Beker; A. Belletoile; M. Bitossi; M. A. Bizouard; M. Blom; F. Bondu; L. Bonelli; R. Bonnand; V. Boschi; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; M. Branchesi; T. Briant; A. Brillet; V. Brisson; T. Bulik; H. J. Bulten; D. Buskulic; C. Buy; G. Cagnoli; E. Calloni; B. Canuel; F. Carbognani; F. Cavalier; R. Cavalieri; G. Cella; E. Cesarini; O. Chaibi; E. Chassande-Mottin; A. Chincarini; A. Chiummo; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; M. Coughlin; J. -P. Coulon; E. Cuoco; S. DAntonio; V. Dattilo; M. Davier; R. Day; R. De Rosa; G. Debreczeni; W. Del Pozzo; M. del Prete; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; A. Dietz; M. Drago; G. Endroczi; V. Fafone; I. Ferrante; F. Fidecaro; I. Fiori; R. Flaminio; L. A. Forte; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Galimberti; L. Gammaitoni; F. Garufi; M. E. Gaspar; G. Gemme; E. Genin; A. Gennai; A. Giazotto; R. Gouaty; M. Granata; C. Greverie; G. M. Guidi; J. -F. Hayau; A. Heidmann; H. Heitmann; P. Hello; P. Jaranowski; I. Kowalska; A. Krolak; N. Leroy; N. Letendre; T. G. F. Li; N. Liguori; M. Lorenzini; V. Loriette; G. Losurdo; E. Majorana; I. Maksimovic; N. Man; M. Mantovani; F. Marchesoni; F. Marion; J. Marque; F. Martelli; A. Masserot; C. Michel; L. Milano; Y. Minenkov; M. Mohan; N. Morgado; A. Morgia; S. Mosca; B. Mours; L. Naticchioni; F. Nocera; G. Pagliaroli; L. Palladino; C. Palomba; F. Paoletti; M. Parisi; A. Pasqualetti; R. Passaquieti; D. Passuello; G. Persichetti; F. Piergiovanni; M. Pietka; L. Pinard; R. Poggiani; M. Prato; G. A. Prodi; M. Punturo; P. Puppo; D. S. Rabeling; I. Racz; P. Rapagnani; V. Re; T. Regimbau; F. Ricci; F. Robinet; A. Rocchi; L. Rolland; R. Romano; D. Rosinska; P. Ruggi; B. Sassolas; D. Sentenac; L. Sperandio; R. Sturani; B. Swinkels; M. Tacca; L. Taffarello; A. Toncelli; M. Tonelli; O. Torre; E. Tournefier; F. Travasso; G. Vajente; J. F. J. van den Brand; C. Van Den Broeck; S. van der Putten; M. Vasuth; M. Vavoulidis; G. Vedovato; D. Verkindt; F. Vetrano; A. Vicere; J. -Y. Vinet; S. Vitale; H. Vocca; R. L. Ward; M. Was; M. Yvert; A. Zadrozny; J. -P. Zendri

    2011-08-08T23:59:59.000Z

    The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.

  8. Salvo: Seismic imaging software for complex geologies

    SciTech Connect (OSTI)

    OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

    2000-03-01T23:59:59.000Z

    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  9. Liquid soap film generates electricity

    E-Print Network [OSTI]

    Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

    2014-04-24T23:59:59.000Z

    We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

  10. First Quarter Seismic Report for Fiscal Year 2006

    SciTech Connect (OSTI)

    Rohay, Alan C.; Reidel, Stephen P.; Hartshorn, Donald C.; Sweeney, Mark D.; Clayton, Ray E.

    2006-09-01T23:59:59.000Z

    This report describes the earthquake data collected from October 2005 to December 2005 from the Hanford Seismic Network

  11. Seismic velocity and Q anisotropy in fractured poroelastic media

    E-Print Network [OSTI]

    Introduction. Seismic wave propagation through fractures is an important subject in hydrocarbon exploration geophysics, mining and reservoir characterization ...

  12. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Additional References Retrieved from "http:...

  13. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Microearthquake Technology for EGS Fracture Characterization...

  14. Method for processing seismic data to identify anomalous absorption zones

    DOE Patents [OSTI]

    Taner, M. Turhan

    2006-01-03T23:59:59.000Z

    A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

  15. Geothermometry At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location...

  16. Geographic Information System At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada...

  17. Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee, Et Al., 1985) Exploration Activity...

  18. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data Daniel Patel, Christopher Giertsen, John Thurmond, John Gjelberg, and M. Eduard Groller, Member, IEEE

    E-Print Network [OSTI]

    The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data Daniel Patel, Christopher for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel

  19. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun (Oak Ridge, TN)

    2007-09-18T23:59:59.000Z

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  20. Axion Induced Oscillating Electric Dipole Moments

    E-Print Network [OSTI]

    Hill, Christopher T

    2015-01-01T23:59:59.000Z

    The axion electromagnetic anomaly induces an oscillating electric dipole for any static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.

  1. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21T23:59:59.000Z

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  2. Expressive Visualization and Rapid Interpretation of Seismic Volumes

    E-Print Network [OSTI]

    Expressive Visualization and Rapid Interpretation of Seismic Volumes Daniel Patel Thesis, Christopher Giertsen, John Thurmond, Eduard Gr¨oller The Seismic Analyzer: Interpreting and Illustrating 2D of Seismic Data Published in: Vision, Modelling and Visualization (VMV) 2007 Authors: Daniel Patel

  3. Knowledge Assisted Visualization Knowledge-assisted visualization of seismic data

    E-Print Network [OSTI]

    for knowledge-assisted annotation and computer-assisted interpretation of seismic data for oil and gas, using seismic interpretation, is performed that makes it fit very naturally into the paradigmKnowledge Assisted Visualization Knowledge-assisted visualization of seismic data Daniel Patel a

  4. Staged Hybrid Genetic Search for Seismic Data Imaging

    E-Print Network [OSTI]

    Whitley, Darrell

    Christof Stork yy and Tony Kusuma yy Abstract --- Seismic data interpretation problems are typ­ icallyStaged Hybrid Genetic Search for Seismic Data Imaging Keith E. Mathias, y L. Darrell Whitley, y. Geological exploration em­ ploys seismic reflection surveys to obtain subsurface im­ ages of geologic beds

  5. Finding hydrocarbons in the classroom using "free" seismic interpretation software

    E-Print Network [OSTI]

    Finding hydrocarbons in the classroom using "free" seismic interpretation software WAYNE D Technological Univer- sity, we recently introduced a new course in seismic processing and interpretation of this paper is to pro- vide details of the class assignment in seismic interpretation, and to encourage

  6. STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN

    E-Print Network [OSTI]

    Braun, Douglas C.

    STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN A.-C. DONEA1, C. LINDSEY2 and D; accepted 8 January 2000) Abstract. Helioseismic images of multipolar active regions show enhanced seismic'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar

  7. Tutorial on seismic interferometry: Part 1 --Basic principles and applications

    E-Print Network [OSTI]

    Snieder, Roel

    Tutorial on seismic interferometry: Part 1 -- Basic principles and applications Kees Wapenaar1 , Deyan Draganov1 , Roel Snieder2 , Xander Campman3 , and Arie Verdel3 ABSTRACT Seismic interferometry is the retrieval of seismic surface-wave responses from ambient noise and the subsequent tomographic determination

  8. Seismic Retrofitting of RC Frames with RC Infilling

    E-Print Network [OSTI]

    Seismic Retrofitting of RC Frames with RC Infilling SERIES Workshop: "Role of research infrastructures in seismic rehabilitation" 8 - 9 February 2012, Istanbul, Turkey C. Z. Chrysostomou, N. Kyriakides, P. Kotronis, P. Roussis, M. Poljansek, F. Taucer RC Infilling of Existing RC Structures for Seismic

  9. Global seismic monitoring as probabilistic inference Nimar S. Arora

    E-Print Network [OSTI]

    Russell, Stuart

    Global seismic monitoring as probabilistic inference Nimar S. Arora Department of Computer Science of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), primarily through detection and localization of seismic events. We nuclear explosions. A global network of seismic, radionuclide, hydroacoustic, and infrasound sensors

  10. Seismic Observation Systems in Nagoya University and Publication of Data

    E-Print Network [OSTI]

    Southern California, University of

    Seismic Observation Systems in Nagoya University and Publication of Data Nobuo Fukuwa,a) Jun Tobita,b) and Hiroaki Kojimac) This paper reports the current situation of the seismic monitoring program conducted by Nagoya University. First, the system for observing seismic ground motion in the Tokai Region is described

  11. Seismic Engineering Research Infrastructures for European Synergies (SERIES)

    E-Print Network [OSTI]

    Seismic Engineering Research Infrastructures for European Synergies (SERIES) M.N. Fardis University of Patras, Greece SUMMARY: Through the 4-year project SERIES (Seismic Engineering Research Infrastructures of their research. It also helps them to enhance their potential, by jointly developing novel seismic testing

  12. Seismic shape parameters estimation and ground-roll suppression using

    E-Print Network [OSTI]

    Spagnolini, Umberto

    Seismic shape parameters estimation and ground-roll suppression using vector-sensor beamforming the problem of estimating the shape parameters of seismic wavefields in linear arrays. The purpose of the subsurface layers from the seismic wavefields registered by surface sensors. However, only the waves

  13. Seismic Velocity Estimation from Time Migration Maria Kourkina Cameron

    E-Print Network [OSTI]

    Cameron, Maria Kourkina

    Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron Diplom (Moscow Institute Dung-Hai Lee Spring 2007 #12;Seismic Velocity Estimation from Time Migration Copyright c 2007 by Maria Kourkina Cameron #12;Abstract Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron

  14. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION General Committee Final workshop Ispra (IT), May 30 th, 2013 MAID project : Seismic behavior of L- and T-shaped unreinforced Masonry shear walls including Acoustic Isolation Devices #12;SEISMIC ENGINEERING RESEARCH

  15. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION, In memory of Prof. Roy Severn #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES · Project Framework · Experimental Campaign · Outcome Outline #12;SEISMIC ENGINEERING RESEARCH

  16. Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting

    E-Print Network [OSTI]

    Steidl, Gabriele

    Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting S¨oren H¨auser and Jianwei Ma May 15, 2012 We propose a new method for seismic data reconstruction by directional weighted of thousands of meters with a good resolution, the seismic method has become the most commonly used geophysical

  17. Parallel Seismic Ray Tracing in a Global Earth Model

    E-Print Network [OSTI]

    Genaud, Stéphane

    1 Parallel Seismic Ray Tracing in a Global Earth Model Marc Grunberg * , Stéphane Genaud of the Earth interior, and seismic tomogra- phy is a means to improve knowledge in this #28;eld. In order present in this paper the de- sign of a software program implement- ing a fast seismic ray

  18. LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA

    E-Print Network [OSTI]

    Eidsvik, Jo

    LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA MARIT ULVMOEN Department of Mathematical of the study is on lithology-fluid inversion from prestack seismic data in a 3D reservoir. The inversion relates the lithology-fluid classes to elastic variables and the seismic data, and it follows the lines

  19. Lithology-Fluid Inversion based on Prestack Seismic Data

    E-Print Network [OSTI]

    Eidsvik, Jo

    Lithology-Fluid Inversion based on Prestack Seismic Data Marit Ulvmoen Summary The focus of the study is on lithology-fluid inversion from prestack seismic data. The target zone is a 3D reservoir model. The likelihood model relates the lithology-fluid classes to elastic variables and the seismic

  20. Seismic petrophysics: An applied science for reservoir geophysics

    E-Print Network [OSTI]

    Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic

  1. New events discovered in the Apollo lunar seismic data

    E-Print Network [OSTI]

    Shearer, Peter

    New events discovered in the Apollo lunar seismic data R. C. Bulow, C. L. Johnson,1 and P. M processing tools to revisit the Apollo lunar seismic data set with the goal of extending and further), New events discovered in the Apollo lunar seismic data, J. Geophys. Res., 110, E10003, doi:10

  2. Seismic response of steel suspension bridge

    SciTech Connect (OSTI)

    McCallen, D.B. [Lawrence Livermore National Lab., CA (United States); Astaneh-Asl, A. [California Univ., Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    1996-11-01T23:59:59.000Z

    Performing accurate, realistic numerical simulations of the seismic response of long-span bridges presents a significant challenge to the fields of earthquake engineering and seismology. Suspension bridges in particular represent some of the largest and most important man-made structures and ensuring the seismic integrity of these mega-structures is contingent on accurate estimations of earthquake ground motions and accurate computational simulations of the structure/foundation system response. A cooperative, multi-year research project between the Univ. of California and LLNL was recently initiated to study engineering and seismological issues essential for simulating the response of major structures. Part of this research project is focused on the response of the long-span bridges with the San Francisco-Oakland Bay Bridge serving as a case study. This paper reports on the status of this multi-disciplinary research project with emphasis on the numerical simulation of the transient seismic response of the Bay Bridge.

  3. Development of the seismic input for use in the seismic safety margins research program

    SciTech Connect (OSTI)

    Bernreuter, D.L.; Chung, D.H.

    1980-01-29T23:59:59.000Z

    This paper briefly outlines the overall systems approach being developed for the Seismic Safety Margins Research Program. The unique features of the approach being taken to reduce the uncertainty in the seismic input for this program are discussed. These unique features will include extensive use of expert opinion, earthquake rupture simulation studies and the way in which the seismic hazard is incorporated into the overall systems analysis. Some very preliminary results are also given for the Zion site which is the power plant chosen for analysis in Phase I of the program.

  4. Evaluation of the Deployable Seismic Verification System at the Pinedale Seismic Research Facility

    SciTech Connect (OSTI)

    Carr, D.B.

    1993-08-01T23:59:59.000Z

    The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.

  5. DEMONSTRATION OF NONLINEAR SEISMIC SOIL STRUCTURE INTERACTION AND APPLICABILITY TO NEW SYSTEM FRAGILITY CURVES SEISMIC

    SciTech Connect (OSTI)

    Coleman, Justin [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it wasn’t the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  6. Generic seismic ruggedness of power plant equipment

    SciTech Connect (OSTI)

    Merz, K.L. (Anco Engineers, Inc., Culver City, CA (United States))

    1991-08-01T23:59:59.000Z

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  7. Ultrafast Magnetic Light

    E-Print Network [OSTI]

    Makarov, Sergey V; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01T23:59:59.000Z

    We propose a novel concept for efficient dynamic tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser radiation. This concept is based on ultrafast generation of electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows to manipulate by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its extinction cross section and scattering diagram. Specifically, we demonstrate the effect of ultrafast switching-on a Huygens source in the vicinity of the magnetic dipole resonance. This approach enables to design ultrafast and compact optical switchers and modulators based on the "ultrafast magnetic light" concept.

  8. Saturable inductor and transformer structures for magnetic pulse compression

    DOE Patents [OSTI]

    Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

    1990-01-01T23:59:59.000Z

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  9. active magnetic regenerative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position...

  10. Argonne National Laboratory Partners with Advanced Magnet Lab...

    Energy Savers [EERE]

    next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States. ANL will work with Magnet Lab, Emerson Electric...

  11. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  12. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  13. Nonlinear Seismic Response Of Single Piles

    SciTech Connect (OSTI)

    Cairo, R.; Conte, E.; Dente, G. [University of Calabria, Dipartimento di Difesa del Suolo, Rende (Italy)

    2008-07-08T23:59:59.000Z

    In this paper, a method is proposed to analyse the seismic response of single piles under nonlinear soil condition. It is based on the Winkler foundation model formulated in the time domain, which makes use of p-y curves described by the Ramberg-Osgood relationship. The analyses are performed referring to a pile embedded in two-layer soil profiles with different sharp stiffness contrast. Italian seismic records are used as input motion. The calculated bending moments in the pile are compared to those obtained using other theoretical solutions.

  14. Microstructural Changes in Elastomers Seismic Devices

    SciTech Connect (OSTI)

    Buonsanti, Michele [Dipartimento Meccanica e Materiali, Facolta di Ingegneria, Universita Mediterranea, loc. Feo di Vito 89060 Reggio Calabria (Italy)

    2008-07-08T23:59:59.000Z

    Today elastomers or rubber materials are present in many seismic devices since they are fundamental tools for energy dissipation. The ground motion effects on the elastomers seismic isolator produces, in addition to horizontal displacements, even rotation respect to the vertical axis. These last effects make torsion action on the devices plane other in all components. We focus our attention on the circular elastomers sheet under warping actions. We observe some material volume fraction in a different phase and the analysis shows the evolution phases linked with inhomogeneous deformation field. Finally it appears, under cyclic loading conditions, a stress-softening phenomenon (i.e. Mullins effects) as correlation to continuum damage mechanism.

  15. Seismic Search for Strange Quark Nuggets

    E-Print Network [OSTI]

    Eugene T. Herrin; Doris C. Rosenbaum; Vigdor L. Teplitz

    2005-12-30T23:59:59.000Z

    Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to one ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.

  16. Seismic Crystals And Earthquake Shield Application

    E-Print Network [OSTI]

    B. Baykant Alagoz; Serkan Alagoz

    2009-05-15T23:59:59.000Z

    We theoretically demonstrate that earthquake shield made of seismic crystal can damp down surface waves, which are the most destructive type for constructions. In the paper, seismic crystal is introduced in aspect of band gaps (Stop band) and some design concepts for earthquake and tsunami shielding were discussed in theoretical manner. We observed in our FDTD based 2D elastic wave simulations that proposed earthquake shield could provide about 0.5 reductions in magnitude of surface wave on the Richter scale. This reduction rate in magnitude can considerably reduce destructions in the case of earthquake.

  17. Seismic search for strange quark nuggets

    SciTech Connect (OSTI)

    Herrin, Eugene T.; Rosenbaum, Doris C.; Teplitz, Vigdor L. [Geology Department, Southern Methodist University, Dallas, Texas 75275 (United States); Physics Department, Southern Methodist University, Dallas, Texas 75275 (United States); NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2006-02-15T23:59:59.000Z

    Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to 1 ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.

  18. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14T23:59:59.000Z

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  19. Electrical Engineering Minor 2014-2015 Curriculum Chart

    E-Print Network [OSTI]

    Stuart, Josh

    Electrical Engineering Minor 2014-2015 Curriculum Chart EE 101/L EE 171/L Electronics EE 101/L/12/2014 #12;Electrical Engineering Minor 2014-2015 Curriculum Chart Fall _______ Winter _______ Spring to Physics III Electricity & Magnetism Phys 5C/N or 6C/N & Math 24 or AMS 20A or 20 EE 101/L Electronic

  20. School of Electrical, Computer and Energy Engineering M.S. Final Oral Defense

    E-Print Network [OSTI]

    Zhang, Junshan

    -Phase Transmission Line for Increasing Power Transfer With Limited Right Of Way by Xianda Deng September 5th 10:00 AM. In this thesis, the line parameters, electric and magnetic fields, and right of way are the criteria magnetic field. Based on the electric and magnetic field results, right of way requirements for the six

  1. Test series 1: seismic-fragility tests of naturally-aged Class 1E Gould NCX-2250 battery cells

    SciTech Connect (OSTI)

    Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J. S.; Tulk, J. D.; Janis, W. J.; Black, D A; Paulsen, G. D.; Aucoin, B. D.

    1984-09-01T23:59:59.000Z

    The seismic-fragility response of naturally-aged, nuclear station, safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds; and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the end-of-life of a battery, given a seismic event. This report covers the first test series of an extensive program using 12-year old, lead-calcium, Gould NCX-2250 cells, from the James A. Fitzpatrick Nuclear Power Station operated by the New York Power Authority. Seismic tests with three cell configurations were performed using a triaxial shake table: single-cell tests, rigidly mounted; multi-cell (three) tests, mounted in a typical battery rack; and single-cell tests specifically aimed towards examining propagation of pre-existing case cracks. In general the test philosophy was to monitor the electrical properties including discharge capacity of cells through a graduated series of g-level step increases until either the shake-table limits were reached or until electrical failure of the cells occurred. Of nine electrically active cells, six failed during seismic testing over a range of imposed g-level loads in excess of a 1-g ZPA. Post-test examination revealed a common failure mode, the cracking at the abnormally brittle, positive lead bus-bar/post interface; further examination showed that the failure zone was extremely coarse grained and extensively corroded. Presently accepted accelerated-aging methods for qualifying batteries, per IEEE Std. 535-1979, are based on plate growth, but these naturally-aged 12-year old cells showed no significant plate growth.

  2. Thermodynamic properties of a magnetically modulated graphene

    E-Print Network [OSTI]

    SK Firoz Islam; Naveen K. Singh; Tarun Kanti Ghosh

    2011-09-12T23:59:59.000Z

    The effect of magnetic modulation on thermodynamic properties of a graphene monolayer in presence of a constant perpendicular magnetic field is reported here. One-dimensional spatial electric or magnetic modulation lifts the degeneracy of the Landau levels and converts into bands and their band width oscillates with magnetic field leading to Weiss-type oscillation in the thermodynamic properties. The effect of magnetic modulation on thermodynamic properties of a graphene sheet is studied and then compared with electrically modulated graphene and magnetically modulated conventional two-dimensional electron gas (2DEG). We observe Weiss-type and de Haas-van Alphen (dHvA) oscillations at low and high magnetic field, respectively. There is a definite phase difference in Weiss-type oscillations in thermodynamic quantities of magnetically modulated graphene in compare to electrically modulated graphene. On the other hand, the phase remains same and amplitude of the oscillation is large when compared with the magnetically modulated 2DEG. Explicit asymptotic expressions of density of states and the Helmholtz free energy are provided to understand the phase and amplitude of the Weiss-type oscillations qualitatively. We also study thermodynamic properties when both electric and magnetic modulations are present. The Weiss-type oscillations still exist when the modulations are out-of-phase.

  3. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    SciTech Connect (OSTI)

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02T23:59:59.000Z

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with less charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.

  4. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16T23:59:59.000Z

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  5. CONSTRAINTS ON SUBDUCTION GEODYNAMICS FROM SEISMIC ANISOTROPY

    E-Print Network [OSTI]

    , as downwelling limbs of the mantle's convective system, drive the secular cooling of the Earth. Subduction zones 2012; revised 4 March 2013; accepted 6 March 2013; published 12 April 2013. [1] Much progress has been for probing mantle dynamics in subduction systems. Here I review the observational con- straints on seismic

  6. Distributed computing of Seismic Imaging Algorithms

    E-Print Network [OSTI]

    Emami, Masnida; Jaberi, Nasrin

    2012-01-01T23:59:59.000Z

    The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

  7. Seismic isolation of two dimensional periodic foundations

    SciTech Connect (OSTI)

    Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-28T23:59:59.000Z

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5?Hz to 50?Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  8. Electrically tunable transverse magnetic focusing in graphene

    E-Print Network [OSTI]

    Taychatanapat, Thiti

    Electrons in a periodic lattice can propagate without scattering for macroscopic distances despite the presence of the non-uniform Coulomb potential due to the nuclei. Such ballistic motion of electrons allows the use of ...

  9. Chapter 8 Electric and Magnetic Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCeriumfor theChapter 3 -4-16-18-1

  10. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29T23:59:59.000Z

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  11. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01T23:59:59.000Z

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  12. Potential for Induced Seismicity Related to the Northern California CO2 Reduction Project Pilot Test, Solano County, California

    E-Print Network [OSTI]

    Myer, L.

    2010-01-01T23:59:59.000Z

    discussed in the Seismic Data Interpretation section below,stations. Seismic Data Interpretation Shell developed anan internal interpretation of twenty 2D seismic lines. LBNL

  13. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

    2011-01-01T23:59:59.000Z

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  14. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26T23:59:59.000Z

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

  15. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    SciTech Connect (OSTI)

    Chen, J.; Hoversten, G.M.

    2011-09-15T23:59:59.000Z

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.

  16. Electrical machine

    DOE Patents [OSTI]

    Van Dam, Jeremy Daniel; Alexander, James Pellegrino; Lokhandwalla, Murtuza Yusuf

    2013-12-31T23:59:59.000Z

    In one embodiment, an apparatus includes a rotor shaft, at least one pole segment, at least one pole tip segment and at least one permanent magnet pair. The at least one pole segment is mechanically coupled to the rotor shaft. Each permanent magnet pair is disposed between the at least one pole segment and respective pole tip segment. The apparatus further includes at least one mechanical member that mechically restrains the at least one pole tip segment to at least one of the rotor shaft or the at least one pole segment.

  17. Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner core—coupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

  18. Simulation of production and elastic properties of reservoirs to validate time-lapse seismics.

    E-Print Network [OSTI]

    Guerin, Gilles

    , including the 3D seismic processing and inversion, and the preliminary time- lapse interpretation. We-lapse seismics. 3.1 Introduction Time-lapse, or 4-D, seismic monitoring is an integrated reservoir exploitation technique based on the analysis of successive 3-D seismic surveys. Differences over time in seismic

  19. Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

  20. Power-Invariant Magnetic System Modeling 

    E-Print Network [OSTI]

    Gonzalez Dominguez, Guadalupe Giselle

    2012-10-19T23:59:59.000Z

    : the reluctance, as analogous to the electric resistance, should be a dissipative element instead it is an energy storage element. Furthermore, the two other elements are not defined. This difference has initiated a reevaluation of the conventional magnetic model...

  1. ELECTRICAL & INFORMATION

    E-Print Network [OSTI]

    Wagner, Stephan

    focuses on. · Smart Grids: Electricity networks are designed to transport energy from where of energy and smarter management of the system. These are called Smart Grids. A number of research projects in medical informatics, smart cities, mining, energy, financial systems, etc. · Bioinformatics

  2. ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control of

    E-Print Network [OSTI]

    Boyer, Edmond

    1 ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control-concrete composite structures; Material properties variability; Seismic design; capacity design. 1 GENERAL CONTEXT

  3. Magnetic behaviour and magnetocaloric effect of neodymium-based amorphous alloy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    magnetic refrigerant materials. a) Corresponding author ­ gorsse@icmcb-bordeaux.cnrs.fr hal-00267718 magnetization and demagnetization of the magnetic refrigerant. Families of magnetic materials which exhibit properties for a suitable magnetic refrigerants, e.g. a high electric resistivity that decreases eddy current

  4. Transient magnetic field and temperature modeling in large magnet applications

    SciTech Connect (OSTI)

    Gurol, H.; Hardy, G.E.; Peck, S.D.; Leung, E. (General Dynamics Corp., San Diego, CA (USA). Space Systems Div.)

    1989-07-01T23:59:59.000Z

    This paper discusses a coupled magnetic/thermal model developed to study heat and magnetic field diffusion in conducting materials subject to time-varying external fields. There are numerous applications, both military and commercial. These include: energy storage devices, pulsed power transformers, and electromagnetic launchers. The time scales of interest may range from a magnetic field pulse of a microsecond in an electromagnetic launcher, to hundreds of seconds in an energy storage magnet. The problem can be dominated by either the magnetic field or heat diffusion, depending on the temperature and the material properties of the conductor. In general, heat diffuses much more rapidly in high electrical conductivity materials of cryogenic temperatures. The magnetic field takes longer to diffuse, since screening currents can be rapidly set up which shield the interior of the material from further magnetic field penetration. Conversely, in high resistivity materials, the magnetic field diffuses much more rapidly. A coupled two-dimensional thermal/magnetic model has been developed. The results of this model, showing the time and spatial variation of the magnetic field and temperature, are discussed for the projectile of an electromagnetic launcher.

  5. Electrical and Computer Engineering Electrical Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

  6. Parametric electric motor study

    SciTech Connect (OSTI)

    Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

    1995-04-30T23:59:59.000Z

    Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

  7. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect (OSTI)

    Bellan, P. M. [Applied Physics, Caltech, Pasadena California 91125 (United States)] [Applied Physics, Caltech, Pasadena California 91125 (United States)

    2013-08-15T23:59:59.000Z

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  8. Studies on the structural, electrical and magnetic properties of LaCrO{sub 3}, LaCr{sub 0.5}Cu{sub 0.5}O{sub 3} and LaCr{sub 0.5}Fe{sub 0.5}O{sub 3} by sol–gel method

    SciTech Connect (OSTI)

    Nithya, V.D.; Jacob Immanuel, R.; Senthilkumar, S.T. [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India)] [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Sanjeeviraja, C. [School of Physics, Alagappa University, Karaikudi 630 003 (India)] [School of Physics, Alagappa University, Karaikudi 630 003 (India); Perelshtein, I.; Zitoun, D. [Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)] [Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Kalai Selvan, R., E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India)

    2012-08-15T23:59:59.000Z

    Highlights: ? LaCr{sub 0.5}M{sub 0.5}O{sub 3} (M = Cr{sup 3+}, Cu{sup 2+} and Fe{sup 3+}) was synthesized by simple sol–gel technique with subsequent heat treatment. ? The compound formation temperature was optimized through XRD analysis. ? The effects of Cu{sup 2+} and Fe{sup 3+} on the electrical properties of LaCrO{sub 3} were studied using impedance spectroscopy. ? The temperature dependence of electrical conductivity was discussed for LaCr{sub 0.5}Cu{sub 0.5}O{sub 3}. ? The magnetization was found to be enhanced in the LaCr{sub 0.5}Fe{sub 0.5}O{sub 3}. -- Abstract: The structural, electrical and magnetic properties of LaCr{sub 0.5}M{sub 0.5}O{sub 3} (M = Cr{sup 3+}, Cu{sup 2+} and Fe{sup 3+}) synthesized by a sol–gel technique were studied. The X-ray diffraction pattern shows the structure to be orthorhombic and the size of the particles is around 100 nm as seen from the TEM images. The effects of Cu{sup 2+} and Fe{sup 3+} on the electrical properties of LaCrO{sub 3} were studied using impedance spectroscopy at room temperature (RT). The properties of LaCr{sub 0.5}Cu{sub 0.5}O{sub 3} were studied over a wide range of temperature from RT to 533 K. A maximum conductivity of 1.7 × 10{sup ?3} S cm{sup ?1} was observed for LaCr{sub 0.5}Cu{sub 0.5}O{sub 3} at a measured temperature of 533 K. The impedance spectra indicate a negative temperature coefficient of resistance (NTCR) and also imply the conduction is through bulk of the material. The magnetic studies performed using a SQUID magnetometer interpret the antiferromagnetically ordered LaCrO{sub 3} to behave ferromagnetically on the addition of Cu{sup 2+} and Fe{sup 3+}, and the magnetization was found to be enhanced in the LaCr{sub 0.5}Fe{sub 0.5}O{sub 3}.

  9. Short-Period Seismic Noise in Vorkuta (Russia)

    SciTech Connect (OSTI)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    2008-05-15T23:59:59.000Z

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.

  10. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

  11. Retail Electricity Competition

    E-Print Network [OSTI]

    Joskow, Paul; Tirole, Jean

    2004-01-01T23:59:59.000Z

    Reliability and Competitive Electricity Markets” mimeo, MITCSEM WP 130 Retail Electricity Competition * Paul Joskow andwww.ucei.org Retail Electricity Competition ? Paul Joskow †

  12. Designing Electricity Auctions

    E-Print Network [OSTI]

    Fabra, Natalia; von der Fehr, Nils-Henrik; Harbord, David

    2004-01-01T23:59:59.000Z

    market performance in electricity auctions, it appears thatMcSorely (2001) “Regulating Electricity Markets: Experiencethe United Kingdom,” The Electricity Journal, December, 81-

  13. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  14. Characterization of the Virgo Seismic Environment

    E-Print Network [OSTI]

    Accadia, T; Astone, P; Ballardin, G; Barone, F; Barsuglia, M; Basti, A; Bauer, Th S; Bebronne, M; Beker, M G; Belletoile, A; Bitossi, M; Bizouard, M A; Blom, M; Bondu, F; Bonelli, L; Bonnand, R; Boschi, V; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Branchesi, M; Briant, T; Brillet, A; Brisson, V; Bulik, T; Bulten, H J; Buskulic, D; Buy, C; Cagnoli, G; Calloni, E; Canuel, B; Carbognani, F; Cavalier, F; Cavalieri, R; Cella, G; Cesarini, E; Chaibi, O; Chassande-Mottin, E; Chincarini, A; Chiummo, A; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Coughlin, M; Coulon, J -P; Cuoco, E; DAntonio, S; Dattilo, V; Davier, M; Day, R; De Rosa, R; Debreczeni, G; Del Pozzo, W; del Prete, M; Di Fiore, L; Di Lieto, A; Emilio, M Di Paolo; Di Virgilio, A; Dietz, A; Drago, M; Endroczi, G; Fafone, V; Ferrante, I; Fidecaro, F; Fiori, I; Flaminio, R; Forte, L A; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Galimberti, M; Gammaitoni, L; Garufi, F; Gaspar, M E; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Gouaty, R; Granata, M; Greverie, C; Guidi, G M; Hayau, J -F; Heidmann, A; Heitmann, H; Hello, P; Jaranowski, P; Kowalska, I; Krolak, A; Leroy, N; Letendre, N; Li, T G F; Liguori, N; Lorenzini, M; Loriette, V; Losurdo, G; Majorana, E; Maksimovic, I; Man, N; Mantovani, M; Marchesoni, F; Marion, F; Marque, J; Martelli, F; Masserot, A; Michel, C; Milano, L; Minenkov, Y; Mohan, M; Morgado, N; Morgia, A; Mosca, S; Mours, B; Naticchioni, L; Nocera, F; Pagliaroli, G; Palladino, L; Palomba, C; Paoletti, F; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Persichetti, G; Piergiovanni, F; Pietka, M; Pinard, L; Poggiani, R; Prato, M; Prodi, G A; Punturo, M; Puppo, P; Rabeling, D S; Racz, I; Rapagnani, P; Re, V; Regimbau, T; Ricci, F; Robinet, F; Rocchi, A; Rolland, L; Romano, R; Rosinska, D; Ruggi, P; Sassolas, B; Sentenac, D; Sperandio, L; Sturani, R; Swinkels, B; Tacca, M; Taffarello, L; Toncelli, A; Tonelli, M; Torre, O; Tournefier, E; Travasso, F; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; Vasuth, M; Vavoulidis, M; Vedovato, G; Verkindt, D; Vetrano, F; Vicere, A; Vinet, J -Y; Vitale, S; Vocca, H; Ward, R L; Was, M; Yvert, M; Zadrozny, A; Zendri, J -P

    2011-01-01T23:59:59.000Z

    The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence ana...

  15. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)

    1995-01-01T23:59:59.000Z

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  16. On seismic signatures of rapid variation

    E-Print Network [OSTI]

    G. Houdek; D. O. Gough

    2006-12-01T23:59:59.000Z

    We present an improved model for an asteroseismic diagnostic contained in the frequency spacing of low-degree acoustic modes. By modelling in a realistic manner regions of rapid variation of dynamically relevant quantities, which we call acoustic glitches, we can derive signatures of the gross properties of those glitches. In particular, we are interested in measuring properties that are related to the helium ionization zones and to the rapid variation in the background state associated with the lower boundary of the convective envelope. The formula for the seismic diagnostic is tested against a sequence of theoretical models of the Sun, and is compared with seismic diagnostics published previously by Monteiro & Thompson (1998, 2005) and by Basu et al. (2004).

  17. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30T23:59:59.000Z

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  18. 6.061 / 6.979 Introduction to Electric Power Systems, Spring 2003

    E-Print Network [OSTI]

    Kirtley, James L.

    Fundamentals of energy-handling electric circuits and electromechanical apparatus. Modeling of magnetic field devices and description of their behavior using appropriate models. Simplification of problems using transformation ...

  19. Exploring the Earth’s subsurface with virtual seismic sources and receivers 

    E-Print Network [OSTI]

    Nicolson, Heather Johan

    2011-11-24T23:59:59.000Z

    Traditional methods of imaging the Earth’s subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever...

  20. Seismic fragility estimates for corroded reinforced concrete bridge structures with two-column bents

    E-Print Network [OSTI]

    Zhong, Jinquan

    2009-05-15T23:59:59.000Z

    To assess the losses associated with future earthquakes, seismic vulnerability functions are commonly used to correlate the damage or loss of a structure to the level of seismic intensity. A common procedure in seismic vulnerability assessment...