National Library of Energy BETA

Sample records for magnesium aluminum silicon

  1. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    SciTech Connect (OSTI)

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  2. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  3. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  4. Lithium-aluminum-magnesium electrode composition

    DOE Patents [OSTI]

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  5. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 ...

  6. Method for removing magnesium from aluminum-magnesium alloys with engineered scavenger compound

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.

    1994-12-31

    The invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using an engineered scanvenger compound. In particular, the invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using the engineered scanvenger compound (ESC) lithium titanate (Li2O3TiO2). The removal of magnesium from the aluminum-magnesium alloys is performed at about 600-750 C in a molten salt bath of KCl or KCl-MgCl2 using lithium titanate (Li2O3TiO2) as the engineered scavenger compound (ESC). Electrode deposition of magnesium from the loaded ESC onto a stainless steel electrode is accomplished in a second step, and provides a clean magnesium electrode deposit for recycling. The second step also prepares the ESC for reuse.

  7. Ames Lab 101: BAM (Boron-Aluminum-Magnesium)

    ScienceCinema (OSTI)

    Bruce Cook

    2013-06-05

    Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

  8. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; Nuzzo, Ralph G.; Gewirth, Andrew A.

    2014-12-04

    We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC andmore » under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.« less

  9. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

    SciTech Connect (OSTI)

    Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; Nuzzo, Ralph G.; Gewirth, Andrew A.

    2014-12-04

    We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC and under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.

  10. Impurity control and corrosion resistance of magnesium-aluminum alloy

    SciTech Connect (OSTI)

    Liu, M. [GM China Lab] [GM China Lab; Song, GuangLing [ORNL] [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  11. Copper-silicon-magnesium alloys for latent heat storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  12. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOE Patents [OSTI]

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  13. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  14. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  15. Dynamic consolidation of aluminum-silicon carbide composites

    SciTech Connect (OSTI)

    Rabin, B.H.; Korth, G.E.; Williamson, R.L.

    1990-01-01

    Dynamic consolidation was investigated as a potential method for producing P/M metal matrix composites. In this study, 2124 aluminum powders were mixed with silicon carbide particulate and consolidated using explosives. Numerical simulations were performed to provide insight into the consolidation process and to aid in the selection of experimental conditions. The microstructure of the as-consolidated product was dependent upon processing variables. Careful control of the shock parameters allowed full density, crack free composites to be achieved in cylindrical geometries. Although full density was obtained, low fracture strengths suggested a lack of interparticle bonding, probably resulting from the limited ability to redistribute surface oxides during consolidation. 10 refs., 9 figs.

  16. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

    SciTech Connect (OSTI)

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

  17. Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum

    SciTech Connect (OSTI)

    Yeon Soo Kim; G. L. Hofman; A. B. Robinson; D. M. Wachs

    2013-10-01

    Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to [approximately]5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.

  18. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    SciTech Connect (OSTI)

    Cudzinovic, M.; Sopori, B.

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  19. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  20. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect (OSTI)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  1. Method of making highly porous, stable aluminum oxides doped with silicon

    DOE Patents [OSTI]

    Khosravi-Mardkhe, Maryam; Woodfield, Brian F.; Bartholomew, Calvin H.; Huang, Baiyu

    2016-03-22

    The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.

  2. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect (OSTI)

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  3. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect (OSTI)

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  4. Aluminum Target Dissolution in Support of the Pu-238 Program

    SciTech Connect (OSTI)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W; Felker, Leslie Kevin; Mattus, Catherine H

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  5. BONDING ALUMINUM METALS

    DOE Patents [OSTI]

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  6. Phosphorus and aluminum gettering - investigation of synergistic effects in single-crystal and multicrystalline silicon

    SciTech Connect (OSTI)

    Schubert, W.K.; Gee, J.M.

    1996-06-01

    Synergistic effects from simultaneous phosphorus-diffusion/aluminium alloy gettering are investigated in three different crystalline- silicon substrates. The silicon materials, experimental design, characterization, and analysis are presented. Some evidence for synergism is observed in the finished cells on all three substrates types. These results are combined with complementary observations of the effects of oxidation on bulk properties of previously gettered substrates to suggest a high volume, low cost, process implementation which could give up to 9% relative increase in efficiency.

  7. Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wire

    DOE Patents [OSTI]

    Suplinskas, Raymond J.; Finnemore, Douglas; Bud'ko, Serquei; Canfield, Paul

    2007-11-13

    A chemically doped boron coating is applied by chemical vapor deposition to a silicon carbide fiber and the coated fiber then is exposed to magnesium vapor to convert the doped boron to doped magnesium diboride and a resultant superconductor.

  8. Welding the four most popular aluminum alloys

    SciTech Connect (OSTI)

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  9. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    SciTech Connect (OSTI)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  10. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  11. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  12. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. [Harriman, TN; Anovitz, Lawrence M. [Knoxville, TN; Palmer, Donald A. [Oliver Springs, TN; Beard, James S. [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  13. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  14. Thermodynamics of copper-nickel alloys containing aluminum, silicon, titanium, and chromium relative to their use in ceramic brazing

    SciTech Connect (OSTI)

    Williams, R.O.

    1984-11-01

    By varying the copper-to-nickel ratio the activity coefficients of Al, Si, Ti, and Cr can be varied over a wide range. Thus to a degree one can tailor the behavior of such alloys for usefulness in brazing ceramics. Further, considerable amounts of these active elements can be present while the ability of carbon to reduce the surface oxide film in a high-vacuum system is retained. The critical aluminum concentrations required to prevent the formation of SiO/sub 2/, TiO, or Cr/sub 2/O/sub 3/ by reaction with Al/sub 2/O/sub 3/ are calculated. The simultaneous presence of the four active additions will presumably promote wetting without making the surface deoxidation more difficult.

  15. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    SciTech Connect (OSTI)

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

  16. Fluorescent lighting with aluminum nitride phosphors

    DOE Patents [OSTI]

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  17. Process for strengthening aluminum based ceramics and material

    DOE Patents [OSTI]

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

  18. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf (938.86 KB) ...

  19. National solar technology roadmap: Film-silicon PV

    SciTech Connect (OSTI)

    Keyes, Brian

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  20. Method for production of magnesium

    DOE Patents [OSTI]

    Diaz, Alexander F. (Cambridge, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Peters, William A. (Lexington, MA)

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  1. Method for production of magnesium

    DOE Patents [OSTI]

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  2. Aluminum for bonding Si-Ge alloys to graphite

    DOE Patents [OSTI]

    Eggemann, Robert V.

    1976-01-13

    Improved thermoelectric device and process, comprising the high-temperature, vacuum bonding of a graphite contact and silicon-germanium thermoelectric element by the use of a low void, aluminum, metallurgical shim with low electrical resistance sandwiched therebetween.

  3. Aluminum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision (2001) Technical Working Group on Inert Anode Technologies (1999) Aluminum Industry Roadmap for the Automotive Market (1999) Inert Anode Roadmap (1998) ...

  4. Boron-doped back-surface fields using an aluminum-alloy process

    SciTech Connect (OSTI)

    Gee, J.M.; Bode, M.D.; Silva, B.L.

    1997-10-01

    Boron-doped back-surface fields (BSF`s) have potentially superior performance compared to aluminum-doped BSF`s due to the higher solid solubility of boron compared to aluminum. However, conventional boron diffusions require a long, high temperature step that is both costly and incompatible with many photovoltaic-grade crystalline-silicon materials. We examined a process that uses a relatively low-temperature aluminum-alloy process to obtain a boron-doped BSF by doping the aluminum with boron. In agreement with theoretical expectations, we found that thicker aluminum layers and higher boron doping levels improved the performance of aluminum-alloyed BSF`s.

  5. Magnesium fluoride recovery method

    DOE Patents [OSTI]

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  6. Method to decrease loss of aluminum and magnesium melts

    DOE Patents [OSTI]

    Hryn, John N.; Pellin, Michael J.; Calaway, Jr., Wallis F.; Moore, Jerry F.; Krumdick, Gregory K.

    2002-01-01

    A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.

  7. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  8. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf (481.39 KB) More ...

  9. Metal electrode for amorphous silicon solar cells

    DOE Patents [OSTI]

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  10. MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-01-05

    The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH{sub 2}PO{sub 4} and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

  11. Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiMn₂O₄ Cathode - Joint Center for Energy Storage Research July 11, 2016, Research Highlights Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel LiMn₂O₄ Cathode Two Mg-Li dual salt hybrid electrolytes were successfully developed and can enable rechargeable Mg-LiMn2O4 batteries Scientific Achievement Two Mg-Li dual salt hybrid electrolytes were developed with excellent oxidative stability up to around 3.8 V (vs Mg/Mg2+) on a aluminum current collector, enabling the

  12. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  13. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  14. Synthesis of magnesium diboride by magnesium vapor infiltration process (MVIP)

    DOE Patents [OSTI]

    Serquis, Adriana C.; Zhu, Yuntian T.; Mueller, Frederick M.; Peterson, Dean E.; Liao, Xiao Zhou

    2003-01-01

    A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB.sub.2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB.sub.2 matrix, which can act as flux pinning centers.

  15. ITP Aluminum: Aluminum Industry Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Roadmap ITP Aluminum: Aluminum Industry Technology Roadmap al_roadmap.pdf (1.02 MB) More Documents & Publications ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Overview of Recycling Technology R&D

  16. Composition, process, and apparatus, for removal of water and silicon mu-oxides from chlorosilanes

    DOE Patents [OSTI]

    Tom, Glenn M.; McManus, James V.

    1991-10-15

    A scavenger composition having utility for removal of water and silicon mu-oxide impurities from chlorosilanes, such scavenger composition comprising: (a) a support; and (b) associated with the support, one or more compound(s) selected from the group consisting of compounds of the formula: R.sub.a-x MCl.sub.x wherein: M is a metal selected from the group consisting of the monovalent metals lithium, sodium, and potassium; the divalent metals magnesium, strontium, barium, and calcium; and the trivalent metal aluminum; R is alkyl; a is a number equal to the valency of metal M; and x is a number having a value from 0 to a, inclusive; and wherein said compound(s) of the formula R.sub.a-x MCl.sub.x have been activated for impurity-removal service by a reaction scheme selected from those of the group consisting of: (i) reaction of such compound(s) with hydrogen chloride to form a first reaction product therefrom, followed by reaction of the first reaction product with a chlorosilane of the formula: SiH.sub.4"y Cl.sub.y, wherein y is a number having a value of from 1 to 3, inclusive; and (ii) reaction of such compound(s) with a chlorosilane of the formula: SiH.sub.4-y Cl.sub.y wherein y is a number having a value of 1 to 3, inclusive. A corresponding method of making the scavenger composition, and of purifying a chlorosilane which contains oxygen and silicon mu-oxide impurities, likewise are disclosed, together with a purifier apparatus, in which a bed of the scavenger composition is disposed. The composition, purification process, and purifier apparatus of the invention have utility in purifying gaseous chlorosilanes which are employed in the semiconductor industry as silicon source reagents for forming epitaxial silicon layers.

  17. Process for removal of water and silicon mu-oxides from chlorosilanes

    DOE Patents [OSTI]

    Tom, Glenn M.; McManus, James V.

    1992-03-10

    A scavenger composition having utility for removal of water and silicon mu-oxide impurities from chlorosilanes, such scavenger composition comprising: (a) a support; and (b) associated with the support, one or more compound(s) selected from the group consisting of compounds of the formula: R.sub.a-x MCl.sub.x wherein: M is a metal selected from the group consisting of the monovalent metals lithium, sodium, and potassium; the divalent metals magnesium, strontium, barium, and calcium; and the trivalent metal aluminum; R is alkyl; a is a number equal to the valency of metal M; and x is a number having a value of from 0 to a, inclusive; and wherein said compound(s) of the formula R.sub.a-x MCl.sub.x have been activated for impurity-removal service by a reaction scheme selected from those of the group consisting of: (i) reaction of such compound(s) with hydrogen chloride to form a first reaction product therefrom, followed by reaction of the first reaction product with a chlorosilane of the formula: SiH.sub.4-y Cl.sub.y, wherein y is a number having a value of from 1 to 3, inclusive; and (ii) reaction of such compound(s) with a chlorosilane of the formula: SiH.sub.4-y Cl.sub.y wherein y is a number having a value of 1 to 3, inclusive. A corresponding method of making the scavenger composition, and of purifying a chlorosilane which contains oxygen and silicon mu-oxide impurities, likewise are disclosed, together with a purifier apparatus, in which a bed of the scavenger composition is disposed. The composition, purification process, and purifier apparatus of the invention have utility in purifying gaseous chlorosilanes which are employed in the semiconductor industry as silicon source reagents for forming epitaxial silicon layers.

  18. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  19. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  20. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ ...

  1. Synthesis of superconducting magnesium diboride objects

    DOE Patents [OSTI]

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-08-15

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  2. Synthesis Of Superconducting Magnesium Diboride Objects.

    DOE Patents [OSTI]

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-07-08

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  3. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOE Patents [OSTI]

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  4. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    SciTech Connect (OSTI)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  5. ALUMINUM CLADDING DISSOLUTION

    DOE Patents [OSTI]

    Schulz, W.W.

    1964-01-28

    This patent shows a method of moderating the chemical reaction when aluminum is dissolved in 2 to 7 molar nitric acid with a mercury catalyst. Nickelous nitrate is added as a negative promoter. (AEC)

  6. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect (OSTI)

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  7. Method for magnesium sulfate recovery

    DOE Patents [OSTI]

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  8. Method for magnesium sulfate recovery

    DOE Patents [OSTI]

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  9. CORROSION PROTECTION OF ALUMINUM

    DOE Patents [OSTI]

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  10. Corrosion Protection of Aluminum

    DOE Patents [OSTI]

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  11. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOE Patents [OSTI]

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  12. Coordination Chemistry in Magnesium Battery Electrolytes: How...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2014, Research Highlights Coordination Chemistry in Magnesium Battery Electrolytes: How Ligands Affect Their Performance (Top) Schematic illustration of the solution ...

  13. Amorphous silicon passivated contacts for diffused junction silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J. Yan, D.; Wan, Y.; Cuevas, A.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-04-28

    Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopyenergy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

  14. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf (1.12 MB) ...

  15. Stable magnesium peroxide at high pressure (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Stable magnesium peroxide at high pressure Citation Details In-Document Search Title: Stable magnesium peroxide at high pressure Authors: Lobanov, Sergey S. ; Zhu, Qiang ; ...

  16. New Electrode Materials for Magnesium Batteries and Metal Anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search New Electrode Materials for Magnesium Batteries and Metal Anodes Beyond ... Technology Marketing Summary Magnesium ion batteries present a viable alternative to ...

  17. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  18. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  19. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect (OSTI)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    .8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work

  20. Synthesis and structural characterization of Al{sub 7}C{sub 3}N{sub 3}-homeotypic aluminum silicon oxycarbonitride, (Al{sub 7-x}Si{sub x})(O{sub y}C{sub z}N{sub 6-y-z}) (x{approx}1.2, y{approx}1.0 and z{approx}3.5)

    SciTech Connect (OSTI)

    Urushihara, Daisuke; Kaga, Motoaki; Asaka, Toru; Nakano, Hiromi; Fukuda, Koichiro

    2011-08-15

    A new aluminum silicon oxycarbonitride, (Al{sub 5.8}Si{sub 1.2})(O{sub 1.0}C{sub 3.5}N{sub 1.5}), has been synthesized and characterized by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS). The title compound is hexagonal with space group P6{sub 3}/mmc and unit-cell dimensions a=0.322508(4) nm, c=3.17193(4) nm and V=0.285717(6) nm{sup 3}. The atom ratios of Al:Si and those of O:C:N were, respectively, determined by EDX and EELS. The initial structural model was successfully derived from the XRPD data by the direct methods and further refined by the Rietveld method. The crystal is most probably composed of four types of domains with nearly the same fraction, each of which is isotypic to Al{sub 7}C{sub 3}N{sub 3} with space group P6{sub 3}mc. The existence of another new oxycarbonitride (Al{sub 6.6}Si{sub 1.4})(O{sub 0.7}C{sub 4.3}N{sub 2.0}), which must be homeotypic to Al{sub 8}C{sub 3}N{sub 4}, has been also demonstrated by XRPD and TEM. - Graphical abstract: A new oxycarbonitride discovered in the Al-Si-O-C-N system, (Al{sub 7-x}Si{sub x})(O{sub y}C{sub z}N{sub 6-y-z}) (x{approx}1.2, y{approx}1.0 and z{approx}3.5). The crystal is composed of four types of domains (I, II, III and IV), and hence the structure is represented by a split-atom model. Individual crystal structures can be regarded as layered structures, which consist of A-type [(Al, Si){sub 4}(O, C, N){sub 4}] unit layers and B-type [(Al, Si)(O, C, N){sub 2}] single layers. Highlights: > (Al{sub 5.8}Si{sub 1.2})(O{sub 1.0}C{sub 3.5}N{sub 1.5}) as a new aluminum silicon oxycarbonitride. > Crystal structure is determined and represented by a split-atom model. > Existence of another new oxycarbonitride (Al{sub 6.6}Si{sub 1.4})(O{sub 0.7}C{sub 4.3}N{sub 2.0}) is demonstrated. > Both new materials are formed by oxidation and nitridation of (Al, Si){sub 6}(O, C){sub 5}.

  1. MECS 2006- Alumina and Aluminum

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) with Total Energy Input, October 2012 (MECS 2006)

  2. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOE Patents [OSTI]

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  3. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  4. ITP Aluminum: Inert Anodes Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

  5. Tape casting of magnesium oxide.

    SciTech Connect (OSTI)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  6. Fluxless aluminum brazing

    DOE Patents [OSTI]

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  7. Silicon nitride/silicon carbide composite powders

    DOE Patents [OSTI]

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  8. Liquid phase sintering of silicon carbide

    DOE Patents [OSTI]

    Cutler, R.A.; Virkar, A.V.; Hurford, A.C.

    1989-05-09

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.

  9. Liquid phase sintering of silicon carbide

    DOE Patents [OSTI]

    Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.

    1989-01-01

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.

  10. SOLDERING OF ALUMINUM BASE METALS

    DOE Patents [OSTI]

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  11. Magnesium doping of boron nitride nanotubes

    SciTech Connect (OSTI)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  12. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  13. Magnesium phosphate glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  14. Magnesium-phosphate-glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    SciTech Connect (OSTI)

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-04

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  16. Synthesis and structural characterization of Al{sub 4}Si{sub 2}C{sub 5}-homeotypic aluminum silicon oxycarbide, (Al{sub 6-x}Si{sub x})(O{sub y}C{sub 5-y}) (x{approx}0.8 and y{approx}1.6)

    SciTech Connect (OSTI)

    Kaga, Motoaki; Urushihara, Daisuke; Iwata, Tomoyuki; Sugiura, Keita [Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Nakano, Hiromi [Cooperative Research Facility Center, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.j [Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2010-09-15

    We have prepared a new layered oxycarbide, [Al{sub 5.25(5)}Si{sub 0.75(5)}][O{sub 1.60(7)}C{sub 3.40(7)}], by isothermal heating of (Al{sub 4.4}Si{sub 0.6})(O{sub 1.0}C{sub 3.0}) at 2273 K near the carbon-carbon monoxide buffer. The crystal structure was characterized using X-ray powder diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX). The title compound is trigonal with space group R3m (centrosymmetric), Z=3, and hexagonal cell dimensions a=0.32464(2) nm, c=4.00527(14) nm and V=0.36556(3) nm{sup 3}. The atom ratios Al:Si were determined by EDX, and the initial structural model was derived by the direct methods. The final structural model showed the positional disordering of one of the three types of Al/Si sites. The reliability indices were R{sub wp}=4.45% (S=1.30), R{sub p}=3.48%, R{sub B}=2.27% and R{sub F}=1.25%. The crystal is composed of three types of domains with nearly the same fraction, one of which has the crystal structure of space group R3-bar m. The crystal structure of the remaining two domains, which are related by pseudo-symmetry inversion, is noncentrosymmetric with space group R3m. - Graphical Abstract: A new aluminum silicon oxycarbide, (Al{sub 6-x}Si{sub x})(O{sub y}C{sub 5-y}) (x{approx}0.8 and y{approx}1.6). The crystal is composed of three types of domains (I, II and III), and hence the structure is represented by a split-atom model. Individual crystal structures can be regarded as layered structures, which consist of A-type [(Al,Si){sub 4}(O,C){sub 4}] unit layers and B-type [(Al,Si)(O,C){sub 2}] single layers.

  17. Aluminum processing energy benchmark report

    SciTech Connect (OSTI)

    None, None

    2007-02-01

    Substantial energy efficiency gains have been made in the aluminum industry over the past forty years, resulting in a 58 percent decrease in energy utilization.

  18. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a chemical reaction - is a primary function in determining nanoaluminum combustion burn rates. "It's been long understood that nanoscale aluminum particles, 110 nanometers and...

  19. Alumina and Aluminum (2010 MECS)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  20. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  1. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  2. Oxide Film and Porosity Defects in Magnesium Alloy AZ91

    SciTech Connect (OSTI)

    Wang, Liang [Mississippi State University (MSU); Rhee, Hongjoo [Mississippi State University (MSU); Felicelli, Sergio D. [Mississippi State University (MSU); Sabau, Adrian S [ORNL; Berry, John T. [Mississippi State University (MSU)

    2009-01-01

    Porosity is a major concern in the production of light metal parts. This work aims to identify some of the mechanisms of microporosity formation in magnesium alloy AZ91. Microstructure analysis was performed on several samples obtained from gravity-poured ingots in graphite plate molds. Temperature data during cooling was acquired with type K thermocouples at 60 Hz at three locations of each casting. The microstructure of samples extracted from the regions of measured temperature was then characterized with optical metallography. Tensile tests and conventional four point bend tests were also conducted on specimens cut from the cast plates. Scanning electron microscopy was then used to observe the microstructure on the fracture surface of the specimens. The results of this study revealed the existence of abundant oxide film defects, similar to those observed in aluminum alloys. Remnants of oxide films were detected on some pore surfaces, and folded oxides were observed in fracture surfaces indicating the presence of double oxides entrained during pouring.

  3. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ... Title: Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ...

  4. A Programmable Bandwidth Aluminum Nitride Microresonator Filter...

    Office of Scientific and Technical Information (OSTI)

    A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Citation Details In-Document Search Title: A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Abstract ...

  5. Devices capable of removing silicon and aluminum from gaseous atmospheres

    DOE Patents [OSTI]

    Spengler, Charles J.; Singh, Prabhakar

    1989-01-01

    An electrochemical device is made of a containment vessel (30) optional ceramic material within the containment vessel and including one or more electrochemical cells (10), the cells containing a porous exposed electrode (11) in contact with a solid electrolyte, where at least one of the exposed electrode, the containment vessel, and the optional ceramic material contains a deposit selected from metal oxide and metal salt capable of forming a metal oxide upon heating, where the metal is selected from the group consisting of Ce, Sm, Mg, Be, Ca, Sr, Ti, Zr, Hf, Y, La, Pr, Nb, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, and their mixtures.

  6. Surface modification of silicon nitride powder with aluminum

    SciTech Connect (OSTI)

    Han, K.R.; Lim, C.S.; Hong, M.J.; Choi, S.K.; Kwon, S.H.

    1996-02-01

    Surface modification of Si{sub 3}N{sub 4} with alumina was tried. It was achieved by simply mixing Si{sub 3}N{sub 4} powder with an alumina sol up to {approximately}2 wt% as alumina in an aqueous medium, dried, and followed by calcination at 400 C for 1 h. A TEM micrograph showed a coating layer of {approximately} 15 nm thickness. The isoelectric point of the modified Si{sub 3}N{sub 4} powder with porous alumina was at 0H 7.8, which is different from 5.8 and 8.6 for Si{sub 3}N{sub 4} and amorphous alumina, respectively.

  7. Friction Stir and Ultrasonic Solid State Joining of Magnesium...

    Broader source: Energy.gov (indexed) [DOE]

    FSW & USW Solid State Joining of Magnesium to Steel Formability of Direct Cast Mg Sheet and Friction Stir and Ultrasonic Joining of Magnesium to Steel FY 2009 Progress Report for ...

  8. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect (OSTI)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  9. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find

  10. Spray Rolling Aluminum Strip

    SciTech Connect (OSTI)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  11. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  12. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOE Patents [OSTI]

    Gilbert, M.; Kaun, T.

    1984-01-20

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical c

  13. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  14. Process for fabricating device structures for real-time process control of silicon doping

    DOE Patents [OSTI]

    Weiner, Kurt H.

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  15. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    SciTech Connect (OSTI)

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja; Chen, Ning; Hadzic, Admir; Williams, Paul; Leivo, Jarkko; Karkkainen, Ari; Schmidt, Jan

    2015-02-02

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies of up to 19.8% on p-type Czochralski silicon.

  16. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  17. Electrolyte treatment for aluminum reduction

    DOE Patents [OSTI]

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  18. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

  19. A new Silicon Detector called Tiara is being installed in one of the cyclotrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon Detector called Tiara is being installed in one of the cyclotrons at Texas A&M. Tiara will be used to study nuclear pairing. The specific reaction that will be studied is the 26Mg (18O, 16O) 28Mg reaction. That is a Magnesium-26 beam impingent on an Oxygen-18 target resulting in a recoiling Oxygen-16 and Magnesium-28. The purpose of this is to find information about nuclear pairing. Nucleons have similar properties to electrons in that they obey the Pauli exclusion principle. This

  20. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect (OSTI)

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  1. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  2. Analysis of the potential for new automotive uses of wrought magnesium

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.; Wu, S.; Stodolsky, F.

    1996-02-01

    The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

  3. Buried oxide layer in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  4. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    SciTech Connect (OSTI)

    Wing, Waylin J.; Sadeghi, Seyed M. Gutha, Rithvik R.; Campbell, Quinn; Mao, Chuanbin

    2015-09-28

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.

  5. Transmissive metallic contact for amorphous silicon solar cells

    DOE Patents [OSTI]

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  6. Lead magnesium niobate actuator for micropositioning

    DOE Patents [OSTI]

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  7. Lead magnesium niobate actuator for micropositioning

    SciTech Connect (OSTI)

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  8. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, Peisi; Fratini, Emiliano; Ito, Kanae; Wang, Zhe; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

    2016-01-28

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less

  9. Purified silicon production system

    DOE Patents [OSTI]

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  10. Aluminum industry applications for OTEC

    SciTech Connect (OSTI)

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  11. Energy and Technolgy Assessment of Zinc and Magnesium Casting Plants, Technical Report Close-out, August 25,2006

    SciTech Connect (OSTI)

    Twin City Die Castings Company; Tom Heider; North American Die Castings Association

    2006-08-25

    Twin City Die Castings Company of Minneapolis, Minnesota, Twin City Die Castings Company was awarded project No. DE-FG36-05GO15097 to perform plant wide assessments of ten (10) die casting facilities that produce zinc and magnesium alloy castings in order to determine improvements and potential cost savings in energy use. Mr. Heider filled the role of team leader for the project and utilized the North American Die Casting Association (NADCA) to conduct audits at team participant plants so as to hold findings specific to each plant proprietary. The intended benefits of the project were to improve energy use through higher operational and process efficiency for the plants assessed. An improvement in energy efficiency of 5 15% was targeted. The primary objectives of the project was to: 1) Expand an energy and technology tool developed by the NADCA under a previous DOE project titled, Energy and Technology Assessment for Die Casting Plants for assessing aluminum die casting plants to be more specifically applicable to zinc and magnesium die casting facilities. 2) Conduct ten (10) assessments of zinc and magnesium die casting plants, within eight (8) companies, utilizing the assessment tool to identify, evaluate and recommend opportunities to enhance energy efficiency, minimize waste, and improve productivity. 3) Transfer the assessment tool to the die casting industry at large.

  12. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  13. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOE Patents [OSTI]

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  14. Titanium Matrix Composite Tooling Material for Aluminum Die Castings

    Broader source: Energy.gov [DOE]

    In aluminum die-casting, molten aluminum is forced under high pressure into a die cavity. First a "shot" of molten aluminum is ladled into a shot sleeve and the shot of molten aluminum is forced by...

  15. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L.; Wu, Chung P.

    1988-11-01

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  16. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Aberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; et al

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  17. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  18. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  19. MAGNESIUM-BASED METHODS, SYSTEMS, AND DEVICES - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for Magnesium Batteries and Metal Anodes Abstract: An aspect of the present invention is an electrical device, where the device includes a current collector and a porous...

  20. Shear Rolling of Magnesium Sheet for Automotive, Defense, and...

    Office of Scientific and Technical Information (OSTI)

    Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  1. Shear Rolling of Magnesium Sheet for Automotive, Defense, and...

    Office of Scientific and Technical Information (OSTI)

    Title: Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Authors: Muralidharan, Govindarajan 1 ; Muth, Thomas R 1 ; Peter, William H 1 ; ...

  2. Scale-Up of Magnesium Production by Fully Stabilized Zirconia...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Vehicle Technologies Office Merit ...

  3. Demonstration of Magnesium Intercalation into a High-Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2015, Research Highlights Demonstration of Magnesium Intercalation into a High-Voltage ... Scientific Achievement First demonstration of reversible insertion of multivalent ...

  4. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  5. Electrolytic Cell For Production Of Aluminum From Alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2004-11-02

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  6. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOE Patents [OSTI]

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  7. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  8. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  9. Silicon solar cell assembly

    DOE Patents [OSTI]

    Burgess, Edward L.; Nasby, Robert D.; Schueler, Donald G.

    1979-01-01

    A silicon solar cell assembly comprising a large, thin silicon solar cell bonded to a metal mount for use when there exists a mismatch in the thermal expansivities of the device and the mount.

  10. Solar Silicon Wafers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features Hao-Chih Yuan, a scientist at the National Renewable Energy Laboratory (NREL). He is reflected in a highly reflective untreated silicone wafer (left) compared to a silicone...

  11. Process for producing silicon

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Carleton, Karen L. (Boulder, CO)

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  12. Process for producing silicon

    DOE Patents [OSTI]

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  13. Flow and fracture of aluminum alloys and of iron and steel within and outside the range of inhomogeneous flow

    SciTech Connect (OSTI)

    Pink, E.; Bernt, W.; Fellner, M. )

    1993-05-01

    It is well known that aluminum alloys exhibit shear fractures when they are deformed at conventional strain rates in tensile tests at room temperature. Most of the common aluminum alloys deform inhomogeneously under these testing conditions due to an effect arising from the substitutionally dissolved alloying atoms; their load-extension curves are serrated in constant-strain-rate tests. This coincidence of fracture by shear and serrated flow has supported the conception that both are interrelated. An investigation of materials with strong tendencies to serrated flow, obtained for temperature ranges exceeding those where serrations exist, sheds new light on this question. The materials tested were aluminum alloys with 5 wt.% zinc and 1 wt.% magnesium (AlZn5Mg1), and with 4.8 wt.% magnesium (AlMg5). AlMg5 exhibits shearing within part of the serrated-flow range. AlZn5Mg1 which is deformed at temperatures below and within the range of serrated flow breaks by shearing. During the deformation the cross section of the specimen becomes oval. At the highest test temperatures where serrated flow has ceased to occur, a tendency to normal' isotropic reduction of the cross section and cup-and-cone fractures were observed in both aluminium alloys. Armco iron and steel deform and break normally'.

  14. Electrodeposition of molten silicon

    DOE Patents [OSTI]

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  15. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOE Patents [OSTI]

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  16. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOE Patents [OSTI]

    Sarin, Vinod K. (Lexington, MA)

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  17. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    SciTech Connect (OSTI)

    Hosch, Timothy

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  18. Casting Porosity-Free Grain Refined Magnesium Alloys

    SciTech Connect (OSTI)

    Schwam, David

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  19. Decarbonization process for carbothermically produced aluminum

    DOE Patents [OSTI]

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  20. Glass-silicon column

    DOE Patents [OSTI]

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  1. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  2. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  3. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  4. Synthesis of nanoscale magnesium diboride powder

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nmmore » to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.« less

  5. Synthesis of nanoscale magnesium diboride powder

    SciTech Connect (OSTI)

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.

  6. Chloride-free processing of aluminum scrap to recover by-product materials

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.

    1995-12-31

    The US Bureau of Mines has developed technology to recover by-product materials from aluminum scrap using engineered scavenger compounds (ESC). ESCs are structural oxides with a channel or tunnel structure that allows them to hold ions of a specific sizes and charges. The scavenging reaction is easily reversible allowing the ESC to be recharged for continued use and the ion is recovered as an electrodeposit. Key features of this novel technology are: (a) ESC systems are designed to have a high degree of selectivity for a desired ionic species. (b) The recovered material requires little or no additional reprocessing prior to reuse. Two current uses for the ESC technology that are described in this paper are the removal and recycle of lithium (Li) from lithium aluminum (Li-Al) alloys; and, using ESCs as a replacement for the conventional demaging (magnesium removal) technology used by the secondary casting industry. Research indicates that the ESC technology proposed for both these applications has either distinct economic and/or environmental advantages over previously employed methods of recovering metal values from aluminum scrap.

  7. Silicon micro-mold

    DOE Patents [OSTI]

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  8. Production of anhydrous aluminum chloride composition

    DOE Patents [OSTI]

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  9. Ultrahigh-Efficiency Aluminum Production Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-eff_aluminum.pdf (512.14 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production WA_98_001_REYNOLDS_METALS_COMPANY_Waiver_of_Domestic_and_For.pdf ITP Aluminum: Inert Anodes Roadmap

  10. Process for converting magnesium fluoride to calcium fluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  11. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  12. Could Aluminum Nitride Produce Quantum Bits?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » News & Publications » News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and

  13. Thermally Oxidized Silicon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the

  14. Micromachined silicon electrostatic chuck

    DOE Patents [OSTI]

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  15. Micromachined silicon electrostatic chuck

    DOE Patents [OSTI]

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  16. Activated aluminum hydride hydrogen storage compositions and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal ... Return to Search Activated aluminum hydride hydrogen storage compositions and uses thereof ...

  17. Aluminum-stabilized NB3SN superconductor

    DOE Patents [OSTI]

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  18. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2007-12-18

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  19. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  20. Ultrahigh-Efficiency Aluminum Production Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum is an indispensable metal in modern manufactur- ing. Its lightweight, low density, corrosion resistance, and easy processing possibilities, coupled with its suitability ...

  1. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum ...

  2. Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research December 18, 2015, Research Highlights Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode Powder diffraction of oxyfluoridecathode with intercalated Mg and capacities of oxyfluorideand oxide cathodes Scientific Achievement Magnesium was reversibly intercalated at room temperature into an oxyfluoride cathode without the co-intercalation of electrolytes or protons and without the formation of unwanted side-products that commonly

  3. BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS

    Office of Legacy Management (LM)

    BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO October 27, 1989 Prepared for: U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Prepared by: R.F. Weston/Office of Technical Services BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO INTRODUCTION The Department of Energy (DOE) is conducting a program to identify and examine the radiological conditions at sites used in the early years of nuclear

  4. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research February 17, 2016, Research Highlights Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries Renormalization of solvent HOMO (green lines) and LUMO (red lines) levels due to interactions with Mg (0001) and MgO (001). The shaded region in the center of the figure represents the electrochemical window of a hypothetical 4V magnesium battery Scientific Achievement Interface-induced changes to the stability of

  5. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  6. Silicone-containing composition

    DOE Patents [OSTI]

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  7. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOE Patents [OSTI]

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  8. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOE Patents [OSTI]

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  9. Aluminum low temperature smelting cell metal collection

    DOE Patents [OSTI]

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  10. Composite-Reinforced Aluminum Conductor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    annealed trapezoidal-shaped conductive aluminum wires. Compared with a conventional steel core cable, the new core allows for up to 28% more conductive aluminum to be wrapped...

  11. Rechargeable Aluminum Batteries with Conducting Polymers as Positive...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Rechargeable Aluminum Batteries with Conducting Polymers as Positive Electrodes. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  12. Rechargeable aluminum batteries with conducting polymers as positive...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rechargeable aluminum batteries with conducting polymers as positive electrodes. Citation Details In-Document Search Title: Rechargeable aluminum batteries with ...

  13. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  14. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy ...

  15. Friction Stir Welding Aluminum for Lightweight Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific ...

  16. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  17. ITP Aluminum: Technical Working Group on Inert Anode Technologies...

    Energy Savers [EERE]

    ITP Aluminum: Technical Working Group on Inert Anode Technologies ITP Aluminum: Technical Working Group on Inert Anode Technologies inertech.pdf (8.16 MB) More Documents & ...

  18. ITP Aluminum: Alumina Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alumina Technology Roadmap ITP Aluminum: Alumina Technology Roadmap alumina.pdf (223.3 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production ITP ...

  19. Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt...

    Office of Scientific and Technical Information (OSTI)

    Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces Prev Next Title: Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces ...

  20. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded...

    Energy Savers [EERE]

    High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program ...

  1. Method for producing silicon nitride/silicon carbide composite

    DOE Patents [OSTI]

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  2. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect (OSTI)

    Kova?evi?, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  3. U.S. Energy Requirements for Aluminum Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Requirements for Aluminum Production U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits, and Current Practices. U.S. Energy Requirements for Aluminum Production (February 2007) (3.04 MB) More Documents & Publications Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

  4. Aluminum-based metal-air batteries

    DOE Patents [OSTI]

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  5. Antifuse with a single silicon-rich silicon nitride insulating layer

    DOE Patents [OSTI]

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0aluminum and silicon. Arrays of antifuses can also be formed.

  6. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Patents [OSTI]

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher; Lane, George H.; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin A.; Eaglesham, David

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  7. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Patents [OSTI]

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Cedar, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-11-05

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  8. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Patents [OSTI]

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  9. Porous silicon gettering

    SciTech Connect (OSTI)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  10. Pulsed DC magnetron sputtered piezoelectric thin film aluminum nitride – Technology and piezoelectric properties

    SciTech Connect (OSTI)

    Stoeckel, C. Kaufmann, C.; Hahn, R.; Schulze, R.; Billep, D.; Gessner, T.

    2014-07-21

    Pulsed DC magnetron sputtered aluminum nitride (AlN) thin films are prepared on several seed layers and at different sputtering conditions. The piezoelectric c-axis (002) orientation of the AlN is analyzed with X-ray diffraction method. The transverse piezoelectric coefficient d{sub 31} is determined with a Laser-Doppler-Vibrometer at cantilevers and membranes by analytical calculations and finite element method. Additionally, thin film AlN on bulk silicon is used to characterize the longitudinal piezoelectric charge coefficient d{sub 33}.

  11. The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte for Rechargeable Magnesium Batteries - Joint Center for Energy Storage Research February 2, 2015, Research Highlights The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium Electrolyte for Rechargeable Magnesium Batteries NMR confirms formation of new species Scientific Achievement A simple mixture of magnesium compounds: magnesium hexamethyldisilazide (Mg(HMDS)2) and magnesium chloride (MgCl2) was prepared to achieve reversible Mg deposition/dissolution, a wide

  12. Structural properties of a-Si films and their effect on aluminum induced crystallization

    SciTech Connect (OSTI)

    Tankut, Aydin; Ozkol, Engin; Karaman, Mehmet; Turan, Rasit; Canli, Sedat

    2015-10-15

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AIC is diminished, leading larger poly-Si grain size.

  13. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  14. Polycrystalline silicon passivated tunneling contacts for high...

    Office of Scientific and Technical Information (OSTI)

    efficiency silicon solar cells Citation Details In-Document Search Title: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Authors: ...

  15. Enabling Thin Silicon Solar Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45, -45, and ...

  16. Photovoltaic Crystalline Silicon Cell Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Cell Basics Photovoltaic Crystalline Silicon Cell Basics August 20, 2013 - 2:00pm Addthis To separate electrical charges, crystalline silicon cells must have a ...

  17. Longi Silicon Materials Corp | Open Energy Information

    Open Energy Info (EERE)

    Longi Silicon Materials Corp Jump to: navigation, search Name: Longi Silicon Materials Corp Place: Xi'an, Shaanxi Province, China Zip: 710065 Product: A monocrystalline silicon...

  18. Tangshan Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    search Name: Tangshan Silicon Co Ltd Place: Tangshan, Hebei Province, China Product: Chinese silicon producer developing a 1000t silicon plant in Tangshan, Hebei Province. It has...

  19. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  20. Electrically conductive containment vessel for molten aluminum

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  1. Electrically conductive containment vessel for molten aluminum

    DOE Patents [OSTI]

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  2. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOE Patents [OSTI]

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  3. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    SciTech Connect (OSTI)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  4. Phase Diagram and Equation of State of Magnesium to High Pressures...

    Office of Scientific and Technical Information (OSTI)

    Phase Diagram and Equation of State of Magnesium to High Pressures and High Temperatures Citation Details In-Document Search Title: Phase Diagram and Equation of State of Magnesium ...

  5. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  6. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen ...

  7. A scanning Kelvin probe analysis of aluminum and aluminum alloys

    SciTech Connect (OSTI)

    Hansen, D.C.; Grecsek, G.E.; Roberts, R.O.

    1999-07-01

    A scanning Kelvin probe was used to determine a correlation between work function measurements in air and corrosion potential measurements in solution of pure metals. Test panels of AA2024-T3 treated with various surface preparations and primer/coatings were also analyzed using this technique. Filiform corrosion was observed on a scribed panel that had been exposed to a humid environment, whereas on a non-scribed and non-exposed test panel, holidays in the coating were observed and clearly defined. Work function (wf) analysis yielded more noble values for areas within the scribe mark and more active values were observed for areas adjacent to the scribe mark where delamination of the coating and filiform corrosion was observed. The tips of corrosion filaments were found to be anodic in relation to the body of the filament, with areas of activity extending away from the filaments themselves. Measurements made on an aircraft access panel resulted in the detection of a potential gradient within the repair area. These results indicate that the scanning Kelvin probe is a useful non-destructive technique for the detection of delamination and disbanding of coatings, coating anomalies and corrosion susceptibility of coatings on aluminum aircraft alloys.

  8. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

    Broader source: Energy.gov [DOE]

    The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

  9. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry

    Broader source: Energy.gov [DOE]

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  10. ITP Aluminum: Energy Requirements for the U.S. Aluminum Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits and Current Practices Prepared for Industrial Technologies Program Energy Efficiency and ...

  11. Study of constitution diagram aluminum-tantalum

    SciTech Connect (OSTI)

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in the construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.

  12. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOE Patents [OSTI]

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  13. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect (OSTI)

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  14. Electrometallurgical treatment of aluminum-based fuels.

    SciTech Connect (OSTI)

    Willit, J. L.

    1998-07-29

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

  15. A Lewis Acid-free and Phenolate-based Magnesium Electrolyte for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Magnesium Batteries - Joint Center for Energy Storage Research March 2, 2015, Research Highlights A Lewis Acid-free and Phenolate-based Magnesium Electrolyte for Rechargeable Magnesium Batteries X-ray single crystal isolated from the electrolyte containing the prototype [Mg2Cl3(THF)6]+ cation Scientific Achievement A novel Lewis acid-free all magnesium electrolyte containing 2,6-di-tert-butylphenoxidemagnesium chloride ((DTBP)MgCl + MgCl2) has been deliberately developed. The

  16. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  17. Aluminum electroplating on steel from a fused bromide electrolyte - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumina and Aluminum (2010 MECS) Alumina and Aluminum (2010 MECS) Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Alumina and Aluminum (122.75 KB) More Documents & Publications MECS 2006 - Alumina and Aluminum Cement (2010 MECS) Glass and Glass Products Innovation Portal

  18. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  19. Regeneration of Aluminum Hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regeneration of Aluminum Hydride Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Regeneration of Lithium Aluminum Hydride (919 KB) Technology Marketing Summary Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult problem of economically preparing the material. Description Describes methods and materials required for the

  20. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOE Patents [OSTI]

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  1. Monolithic Composite Electrodes Comprising Silicon Nanoparticles...

    Office of Scientific and Technical Information (OSTI)

    Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in ... Title: Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in ...

  2. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect (OSTI)

    Keefer, M.T.; Hamm, B.A.; Pike, J.A. [Washington Savannah River Company, Aiken, SC (United States)

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  3. Silicon Cells | Open Energy Information

    Open Energy Info (EERE)

    a low cost method of processing silicon to produce a new generation of high energy density batteries. References: Silicon Cells1 This article is a stub. You can help OpenEI...

  4. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  5. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  6. Floating Silicon Method

    SciTech Connect (OSTI)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  7. Atomic Sandblasters Could Replace Silicon

    Broader source: Energy.gov [DOE]

    Scientists at the National Labs may have found a cheaper, lighter more efficient replacement for silicon in computer chips.

  8. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  9. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  10. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOE Patents [OSTI]

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and