Powered by Deep Web Technologies
Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic In Situ 13C and 23Na Magic Angle Spinning NMR...

2

[superscript 15]N-[superscript 15]N Proton Assisted Recoupling in Magic Angle Spinning NMR  

E-Print Network [OSTI]

We describe a new magic angle spinning (MAS) NMR experiment for obtaining [superscript 15]N?[superscript 15]N correlation spectra. The approach yields direct information about the secondary and tertiary structure of proteins, ...

Lewandowski, Jozef R.

3

Devices and process for high-pressure magic angle spinning nuclear magnetic resonance  

DOE Patents [OSTI]

A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

2014-04-08T23:59:59.000Z

4

High-pressure Magic Angle Spinning Nuclear Magnetic Resonance . | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in theinPlastics - EnergyBiofuelfieldpressure Magic

5

Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy  

DOE Patents [OSTI]

The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

2006-01-24T23:59:59.000Z

6

Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance  

SciTech Connect (OSTI)

High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

Turcu, Romulus V.F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Z.

2013-01-01T23:59:59.000Z

7

High Resolution 1H NMR Spectroscopy of Metabolically Active Microorganisms Using Non-Destructive Magic Angle Spinning  

SciTech Connect (OSTI)

It is shown that the resolution of the 1H NMR metabolite spectra of densely packed microbial cells or biofilms attached to solid surfaces can be significantly enhanced with the so-called PASS R.F pulse sequence combined with slow (40-100 Hz) magic angle spinning of the sample. Hence this technique can be used to study biofilm metabolism under environmentally relevant conditions in a minimally invasive way.

Hu, Jian Z.; Wind, Robert A.; Mclean, Jeffrey S.; Gorby, Yuri A.; Resch, Charles T.; Fredrickson, Jim K.

2004-12-01T23:59:59.000Z

8

Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning  

SciTech Connect (OSTI)

The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-{gamma} nuclei (e.g., {sup 13}C and {sup 15}N) via the sensitive high-{gamma} nuclei (e.g., {sup 1}H and {sup 19}F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for {sup 1}H-{sup 1}H homonuclear decoupling. Also presented is a simple new strategy for optimization of {sup 1}H-{sup 1}H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in {sup 1}H detected 2D {sup 1}H{l_brace}{sup 13}C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional {sup 13}C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear {sup 1}H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5{sub m}{sup {bar x}}, PMLG5{sub mm}{sup {bar x}x} and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG{sub m}{sup {bar x}} during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the {sup 1}H resolution during t{sub 1} evolution in the traditional, {sup 13}C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of {sup 1}H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected {sup 1}H{l_brace}{sup 13}C{r_brace} and {sup 19}F{l_brace}{sup 13}C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted {sup 29}Si direct polarization and {sup 29}Si{sup 19}F 2D experiments, 2D double-quantum (DQ) {sup 19}F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside th

Mao, Kanmi

2011-08-15T23:59:59.000Z

9

/sup 13/C magic angle spinning NMR study of CO adsorption on Ru-exchanged zeolite Y  

SciTech Connect (OSTI)

Three types of adsorbed carbon monoxide are observed on Ru-Y zeolite by /sup 13/C magic angle spinning NMR: linear, bridged, and dicarbonyl CO. Samples exposed to CO at room temperature exhibit only linear and dicarbonyl species. At higher adsorption temperature bridged species are formed and a relative increase in dicarbonyl adsorption is observed. A smaller percentage of linear species is produced at high temperature. The electronic environments of linearly bonded CO are more diverse than those of bridging and dicarbonyl moieties. CO/sub 2/ is formed over Ru-Y zeolite upon initial exposure of the catalyst to CO at room temperature, apparently through reaction with unreduced metal oxide. 20 references, 2 figures, 1 table.

Shoemaker, R.K.; Apple, T.M.

1985-07-18T23:59:59.000Z

10

Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves  

SciTech Connect (OSTI)

We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

Thurber, Kent R., E-mail: thurberk@niddk.nih.gov; Tycko, Robert [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)] [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

2014-05-14T23:59:59.000Z

11

Magic angles and cross-hatching instability in hydrogel fracture  

E-Print Network [OSTI]

The full 2D analysis of roughness profiles of fracture surfaces resulting from quasi-static crack propagation in gelatin gels reveals an original behavior characterized by (i) strong anisotropy with maximum roughness at $V$-independent symmetry-preserving angles, (ii) a sub-critical instability leading, below a critical velocity, to a cross-hatched regime due to straight macrosteps drifting at the same magic angles and nucleated on crack-pinning network inhomogeneities. Step height values are determined by the width of the strain-hardened zone, governed by the elastic crack blunting characteristic of soft solids with breaking stresses much larger that low strain moduli.

Tristan Baumberger; Christiane Caroli; David Martina; Olivier Ronsin

2008-02-29T23:59:59.000Z

12

Methods for magnetic resonance analysis using magic angle technique  

DOE Patents [OSTI]

Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

Hu, Jian Zhi (Richland, WA); Wind, Robert A. (Kennewick, WA); Minard, Kevin R. (Kennewick, WA); Majors, Paul D. (Kennewick, WA)

2011-11-22T23:59:59.000Z

13

MagLab - Magic Angle Spinning Probe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

how far apart the atoms are and how they fit together. When the atoms respond to specific radio waves transmitted inside the magnet, they convey data about themselves that is...

14

Method for high resolution magnetic resonance analysis using magic angle technique  

DOE Patents [OSTI]

A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

Wind, Robert A.; Hu, Jian Zhi

2003-11-25T23:59:59.000Z

15

Method for high resolution magnetic resonance analysis using magic angle technique  

DOE Patents [OSTI]

A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

Wind, Robert A.; Hu, Jian Zhi

2003-12-30T23:59:59.000Z

16

Method for high resolution magnetic resonance analysis using magic angle technique  

DOE Patents [OSTI]

A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

Wind, Robert A.; Hu, Jian Zhi

2004-12-28T23:59:59.000Z

17

Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging  

DOE Patents [OSTI]

Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

Hu, Jian Zhi (Richland, WA); Sears, Jr., Jesse A. (Kennewick, WA); Hoyt, David W. (Richland, WA); Wind, Robert A. (Kennewick, WA)

2009-05-19T23:59:59.000Z

18

High-pressure Magic Angle Spinning Nuclear Magnetic Resonance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms...

19

Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L.FallU . S . DMagellan ReportDynamics,

20

The spin Hall angle and spin diffusion length of Pd measured by spin pumping and microwave photoresistance  

SciTech Connect (OSTI)

We present the experimental study of the spin Hall angle (SHA) and spin diffusion length of Pd with the spin pumping and microwave photoresistance effects. The Py/Pd bilayer stripes are excited with an out-of-plane microwave magnetic field. The pure spin current is thus pumped and transforms into charge current via the inverse spin Hall effect (ISHE) in Pd layer, yielding an ISHE voltage. The ISHE voltage can be distinguished from the unwanted signal caused by the anisotropic magnetoresistance according to their different symmetries. Together with Pd thickness dependent measurements of in and out-of-plane precessing angles and effective spin mixing conductance, the SHA and spin-diffusion length of Pd are quantified as 0.0056?±?0.0007 and 7.3?±?0.7?nm, respectively.

Tao, X. D.; Feng, Z.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Ding, H. F., E-mail: hfding@nju.edu.cn [Department of Physics, National Laboratory of Solid State Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

2014-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - angle spinning solid-state Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spinning solid-state Search Powered by Explorit Topic List Advanced Search Sample search results for: angle spinning solid-state Page: << < 1 2 3 4 5 > >> 1 Book Review Melinda J....

22

High Temperature, Large Sample Volume, Constant Flow Magic Angle Spinning NMR Probe for a 11  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministrationHigh SchoolHigh SchoolHigh

23

High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the MadisonPortal Hydrogen and FuelNanoliter

24

High-temperature in situ magic-angle spinning NMR studies of chemical reactions on catalysts  

E-Print Network [OSTI]

onto the coil support (2) which fits into the variable-temperature chamber housing (3). The latter two components are machined from boron nitride ceramic (HP grade, Carborundum Corp. ). It is important to note that some grades of boron nitride...

Oliver, F. Gregory

1992-01-01T23:59:59.000Z

25

A Large Sample Volume Magic Angle Spinning Nuclear Magnetic Resonance Probe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A First Look at YeastMES- Helping theStructurefor

26

In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219ImprovementsImprovingIn

27

angle field spinning: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Glitches Astrophysics (arXiv) Summary: In the core of a canonical spinning magnetized neutron star(NS) a nearly uniform superfluid neutron vortex-array interacts strongly with...

28

angle spinning dynamic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantization of this model is briefly discussed. S. A. Pol'shin 2011-10-24 87 Dynamics of artificial spin ice: a continuous honeycomb network MIT - DSpace Summary: We model the...

29

angle spinning proton: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is...

30

Comparative study of high-spin isomers in semi-magic $Z$=50 isotopic and $N$=82 isotonic chains  

E-Print Network [OSTI]

A comparative study of high spin nuclear isomers observed in the semi-magic $Z$=50 isotopic and $N$=82 isotonic chains has been carried out. The ${11/2}^-$, ${10}^+$ and ${27/2}^-$ isomers, which occur commonly in both the chains, display nearly identical systematics in excitation energy and half-life. An energy gap of ${\\sim 4}$ MeV between the ${0^+}$ ground states and ${10}^+$ isomers and, the ${11/2}^-$ and ${27/2}^-$ isomers exists before the mid-shell, which becomes a constant ${\\sim 3}$ MeV after the mid-shell region. The large scale shell model calculations are able to reproduce the observed energy systematics for both the chains reasonably well. The shell model occupancies and the basic seniority rules have been used to fix the seniority quantum number. The seniority of all the isomeric states as well as those involved in the decay from$/$to the isomers have been assigned and the alignment properties are also discussed. The seniorities of the ${10}^+$ and ${27/2}^-$ isomeric states before the mid-shell are higher, which become lower after the mid-shell, due to the dominant role played by the $h_{11/2}$ orbital. The empirical systematics and the calculated results suggest that the change in the energy gap around the mid-shell, may be interpreted in terms of a change in the seniority of the isomeric states. However, the seniority of the ${11/2}^-$ state remains conserved throughout both the chains. The systematics of the half-lives in both the chains have been understood on the basis of seniority and decay modes. Predictions for new isomers have also been made based on these systematics.

Bhoomika Maheshwari; Ashok Kumar Jain; P. C. Srivastava

2014-08-08T23:59:59.000Z

31

Structure and function of the Influenza membrane protein M2 by magic angle spinning NMR and dynamic nuclear polarization  

E-Print Network [OSTI]

Determination of the 3D structure of membrane proteins is a frontier that is rapidly being explored due to the importance of membrane proteins in regulating cellular processes and because they are the target of many drugs. ...

Andreas, Loren B

2014-01-01T23:59:59.000Z

32

Electronic Structure of the Topological Insulator Bi[subscript 2]Se[subscript 3] Using Angle-Resolved Photoemission Spectroscopy: Evidence for a Nearly Full Surface Spin Polarization  

E-Print Network [OSTI]

We performed high-resolution spin- and angle-resolved photoemission spectroscopy studies of the electronic structure and the spin texture on the surface of Bi[subscript 2]Se[subscript 3], a model TI. By tuning the photon ...

Pan, Z.-H.

33

Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}  

SciTech Connect (OSTI)

We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9?T over 2–20?K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78758 (United States); Colombo, Luigi [Texas Instruments, Dallas, Texas 75243 (United States)

2014-06-02T23:59:59.000Z

34

Distinguishing spin pumping from spin rectification in a Pt/Py bilayer through angle dependent line shape analysis  

SciTech Connect (OSTI)

A pure spin current driven by spin pumping is converted to a DC voltage and detected electrically in a Py/Pt bilayer sample. This DC voltage mixes with a DC voltage produced through spin rectification. The ferromagnetic resonance line shape strongly depends on the microwave magnetic h field distribution. We have systematically studied the line shapes by changing the external magnetic field orientation in plane of a Pt/Py bilayer. A method is demonstrated which allows us to calculate the microwave h field vector distribution, and distinguish spin pumping from spin rectification.

Bai, Lihui; Hyde, P.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2 (Canada)] [Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2 (Canada); Feng, Z.; Ding, H. F. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)] [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

2013-06-17T23:59:59.000Z

35

E-Print Network 3.0 - angle spinning hr-mas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Ecology 72 Origin and Control of Spin Currents in a Magnetic Triplet Josephson Junction Philip M. R. BRYDON Summary: Origin and Control of Spin Currents in a Magnetic...

36

E-Print Network 3.0 - angle spinning nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spin contrast variation J. ZHAO and H.B. STUHRMANN Abt. WS,GUS-Research Cente2054 Geesthacht... with a deuterated matrix and even more if their nuclear spins are polarized. This...

37

E-Print Network 3.0 - angle spinning 1h Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry 9 2380 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001 General Spin Wave Instability Theory Summary: normal, as indicated. The spin wave linewidth 1H was set at...

38

Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering  

E-Print Network [OSTI]

We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory.

The G0 Collaboration; D. Androi?; D. S. Armstrong; J. Arvieux; S. L. Bailey; D. H. Beck; E. J. Beise; J. Benesch; F. Benmokhtar; L. Bimbot; J. Birchall; P. Bosted; H. Breuer; C. L. Capuano; Y. -C. Chao; A. Coppens; C. A. Davis; C. Ellis; G. Flores; G. Franklin; C. Furget; D. Gaskell; M. T. W. Gericke; J. Grames; G. Guillard; J. Hansknecht; T. Horn; M. K. Jones; P. M. King; W. Korsch; S. Kox; L. Lee; J. Liu; A. Lung; J. Mammei; J. W. Martin; R. D. McKeown; A. Micherdzinska; M. Mihovilovic; H. Mkrtchyan; M. Muether; S. A. Page; V. Papavassiliou; S. F. Pate; 10 S. K. Phillips; P. Pillot; M. L. Pitt; M. Poelker; B. Quinn; W. D. Ramsay; J. -S. Real; J. Roche; P. Roos; J. Schaub; T. Seva; N. Simicevic; G. R. Smith; D. T. Spayde; M. Stutzman; R. Suleiman; V. Tadevosyan; W. T. H. van Oers; M. Versteegen; E. Voutier; W. Vulcan; S. P. Wells; S. E. Williamson; S. A. Wood; B. Pasquini; M. Vanderhaeghen

2011-06-16T23:59:59.000Z

39

Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle  

SciTech Connect (OSTI)

The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11?±?0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spin Hall effect.

Ganguly, A.; Haldar, A.; Sinha, J.; Barman, A., E-mail: abarman@bose.res.in, E-mail: del.atkinson@durham.ac.uk [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India); Rowan-Robinson, R. M.; Jaiswal, S.; Hindmarch, A. T.; Atkinson, D. A., E-mail: abarman@bose.res.in, E-mail: del.atkinson@durham.ac.uk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

2014-09-15T23:59:59.000Z

40

Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering  

SciTech Connect (OSTI)

We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q{sup 2}=0.15, 0.25 (GeV/c){sup 2}. The results are inconsistent with calculations solely using the elastic nucleon intermediate state and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A{sub n} provides a direct probe of the imaginary component of the 2{gamma} exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

Armstrong, D. S.; Averett, T.; Bailey, S. L.; Finn, J. M.; Griffioen, K. A.; Moffit, B.; Phillips, S. K.; Secrest, J.; Sulkosky, V. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States); Arvieux, J.; Bimbot, L.; Guler, H.; Lenoble, J.; Marchand, D.; Morlet, M.; Ong, S.; Van de Wiele, J. [Institut de Physique Nucleaire d'Orsay, CNRS/IN2P3, Universite Paris Sud, Orsay (France); Asaturyan, R.; Mkrtchyan, H.; Stepanyan, S. [Yerevan Physics Institute, Yerevan 375036 (Armenia)] (and others)

2007-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering  

SciTech Connect (OSTI)

We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

2007-08-01T23:59:59.000Z

42

Electronic Structure of the Topological Insulator Bi2Se3 Using Angle-Resolved Photoemission Spectroscopy: Evidence for a Nearly Full Surface Spin Polarization  

SciTech Connect (OSTI)

We performed high-resolution spin- and angle-resolved photoemission spectroscopy studies of the electronic structure and the spin texture on the surface of Bi{sub 2}Se{sub 3}, a model TI. By tuning the photon energy, we found that the topological surface state is well separated from the bulk states in the vicinity of k{sub z} = Z plane of the bulk Brillouin zone. The spin-resolved measurements in that region indicate a very high degree of spin polarization of the surface state, {approx}0.75, much higher than previously reported. Our results demonstrate that the topological surface state on Bi{sub 2}Se{sub 3} is highly spin polarized and that the dominant factors limiting the polarization are mainly extrinsic.

Pan, Z.H.; Vescovo, E.; Fedorov, A.V.; Gardner, D.; Lee, Y.S.; Chu, S.; Gu, G.D.; Valla, T.

2011-06-22T23:59:59.000Z

43

Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field  

SciTech Connect (OSTI)

Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

2008-07-15T23:59:59.000Z

44

"Optical" Spin Rotation Phenomenon and Spin Filtering of Antiproton (Proton, Deuteron) Beams in a Pseudomagnetic Field of a Polarized Target: the Possibility of Measuring the Real Part of the Coherent Zero-angle Scattering Amplitude  

E-Print Network [OSTI]

It is shown that in the experiments dedicated for producing of polarized beams of antiprotons during their passage through a polarized gas target placed in a storage ring it is possible to measure not only spin-dependent total cross-sections of antiproton scattering by the proton (deuteron), but also the spin-dependent real part of the coherent zero-angle scattering amplitude in the process of production of a polarized beam of antiprotons.

V. G. Baryshevsky

2011-01-17T23:59:59.000Z

45

Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities  

E-Print Network [OSTI]

In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

V. G. Baryshevsky; A. A. Gurinovich

2005-06-14T23:59:59.000Z

46

Nuclear magic numbers: new features far from stability  

E-Print Network [OSTI]

The main purpose of the present manuscript is to review the structural evolution along the isotonic and isotopic chains around the "traditional" magic numbers 8; 20; 28; 50; 82 and 126. The exotic regions of the chart of nuclides have been explored during the three last decades. Then the postulate of permanent magic numbers was de nitely abandoned and the reason for these structural mutations has been in turn searched for. General trends in the evolution of shell closures are discussed using complementary experimental information, such as the binding energies of the orbits bounding the shell gaps, the trends of the rst collective states of the even-even semi-magic nuclei, and the behavior of certain single-nucleon states. Each section is devoted to a particular magic number. It describes the underlying physics of the shell evolution which is not yet fully understood and indicates future experimental and theoretical challenges. The nuclear mean eld embodies various facets of the Nucleon- Nucleon interaction, among which the spin-orbit and tensor terms play decisive roles in the shell evolutions. The present review intends to provide experimental constraints to be used for the re nement of theoretical models aiming at a good description of the existing atomic nuclei and at more accurate predictions of hitherto unreachable systems.

O. Sorlin; M. -G. Porquet

2008-05-16T23:59:59.000Z

47

Malcolm Guite The Magic Apple Tree  

E-Print Network [OSTI]

Malcolm Guite The Magic Apple Tree Someday make a journey through the rain Through sodden streets in darkening December A journey to the magic apple tree. And journey also, darkling, through your past Journey records. You glimpsed it once within the garden wall, The image of an ancient apple tree, The fall

Robertson, Stephen

48

Phenomena of spin rotation and oscillation of particles (atoms, molecules) containing in a trap blowing on by wind of high energy particles in storage ring - new method of measuring of spin-dependent part of zero-angle coherent scattering amplitude  

E-Print Network [OSTI]

New experiment arrangement to study spin rotation and oscillation of particles of gas target through which beam of high energy particles passes is discussed. Such experiment arrangement make it realizable for storage ring and allows to study zero-angle scattering amplitude at highest possible energies. Life-time of particle beam in storage ring can reach several hours and even days. Life-time of particle in gas target (gas trap) is long too. Particles circulate in storage ring with frequency $\

Vladimir Baryshevsky

2002-12-09T23:59:59.000Z

49

Magic Words: How Language Augments Human Computation   

E-Print Network [OSTI]

Of course, words aren’t magic. Neither are sextants, compasses, maps, slide rules and all the other paraphenelia which have accreted around the basic biological brains of homo sapiens. In the case of these other tools and ...

Clark, Andy

1998-01-01T23:59:59.000Z

50

A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup  

SciTech Connect (OSTI)

The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

Waidyawansa, Dinayadura Buddhini [OHIO U.

2013-08-01T23:59:59.000Z

51

Magic State Distillation and Gate Compilation in Quantum Algorithms for Quantum Chemistry  

E-Print Network [OSTI]

Quantum algorithms for quantum chemistry map the dynamics of electrons in a molecule to the dynamics of a coupled spin system. To reach chemical accuracy for interesting molecules, a large number of quantum gates must be applied which implies the need for quantum error correction and fault-tolerant quantum computation. Arbitrary fault-tolerant operations can be constructed from a small, universal set of fault-tolerant operations by gate compilation. Quantum chemistry algorithms are compiled by decomposing the dynamics of the coupled spin-system using a Trotter formula, synthesizing the decomposed dynamics using Clifford operations and single-qubit rotations, and finally approximating the single-qubit rotations by a sequence of fault-tolerant single-qubit gates. Certain fault-tolerant gates rely on the preparation of specific single-qubit states referred to as magic states. As a result, gate compilation and magic state distillation are critical for solving quantum chemistry problems on a quantum computer. We review recent progress that has improved the efficiency of gate compilation and magic state distillation by orders of magnitude.

Colin J. Trout; Kenneth R. Brown

2015-01-29T23:59:59.000Z

52

Magic State Distillation and Gate Compilation in Quantum Algorithms for Quantum Chemistry  

E-Print Network [OSTI]

Quantum algorithms for quantum chemistry map the dynamics of electrons in a molecule to the dynamics of a coupled spin system. To reach chemical accuracy for interesting molecules, a large number of quantum gates must be applied which implies the need for quantum error correction and fault-tolerant quantum computation. Arbitrary fault-tolerant operations can be constructed from a small, universal set of fault-tolerant operations by gate compilation. Quantum chemistry algorithms are compiled by decomposing the dynamics of the coupled spin-system using a Trotter formula, synthesizing the decomposed dynamics using Clifford operations and single-qubit rotations, and finally approximating the single-qubit rotations by a sequence of fault-tolerant single-qubit gates. Certain fault-tolerant gates rely on the preparation of specific single-qubit states referred to as magic states. As a result, gate compilation and magic state distillation are critical for solving quantum chemistry problems on a quantum computer. We review recent progress that has improved the efficiency of gate compilation and magic state distillation by orders of magnitude.

Colin J. Trout; Kenneth R. Brown

2015-01-07T23:59:59.000Z

53

The Magic and Mysteries of Water  

E-Print Network [OSTI]

The Magic and Mysteries of Water Speaker: Prof. Geri Richmond University of Oregon Water is ubiquitous in our lives. Covering more than two thirds of this planet, water surfaces provide a unique role in controlling our climate. In our bodies, water is the `canal of life', transporting and passing

Richmond, Geraldine L.

54

Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls  

SciTech Connect (OSTI)

The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

2012-02-15T23:59:59.000Z

55

Help:Magic words | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form.GuizhouCategoriesMagic words (Redirected

56

Status of the second phase of the MAGIC telescope  

E-Print Network [OSTI]

The MAGIC 17m diameter Cherenkov telescope will be upgraded with a second telescope with advanced photon detectors and ultra fast readout within the year 2007. The sensitivity of MAGIC-II, the two telescope system, will be improved by a factor of 2. In addition the energy threshold will be reduced and the energy and angular resolution will be improved. The design, status and expected performance of MAGIC-II is presented here.

Florian Goebel; for the MAGIC collaboration

2007-09-17T23:59:59.000Z

57

Magic Valley Electric Cooperative- ENERGY STAR Builders Program (Texas)  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes within MVEC service territory. Incentives are provided...

58

Magic Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's Value Incentive Program (VIP) offers consumers incentives for the installation of new central heat pump systems, dual fuel heating systems, central air...

59

E-Print Network 3.0 - accelerating electromagnetic magic Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerating electromagnetic magic Page: << < 1 2 3 4 5 > >> 1 Very High Energy Gamma Ray Observations with the MAGIC Summary: Very High Energy Gamma Ray Observations with the...

60

Lab scientists track Santa's magical journey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space control NewsUWFiveMarch »Santa's magical

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Angle and Volume Studies in Quantized Space  

E-Print Network [OSTI]

The search for a quantum theory of gravity is one of the major challenges facing theoretical physics today. While no complete theory exists, a promising avenue of research is the loop quantum gravity approach. In this approach, quantum states are represented by spin networks, essentially graphs with weighted edges. Since general relativity predicts the structure of space, any quantum theory of gravity must do so as well; thus, "spatial observables" such as area, volume, and angle are given by the eigenvalues of Hermitian operators on the spin network states. We present results obtained in our investigations of the angle and volume operators, two operators which act on the vertices of spin networks. We find that the minimum observable angle is inversely proportional to the square root of the total spin of the vertex, a fairly slow decrease to zero. We also present numerical results indicating that the angle operator can reproduce the classical angle distribution. The volume operator is significantly harder to investigate analytically; however, we present analytical and numerical results indicating that the volume of a region scales as the 3/2 power of its bounding surface, which corresponds to the classical model of space.

M. Seifert

2001-08-19T23:59:59.000Z

62

MAGIC: Marine ARM GPCI Investigation of Clouds  

SciTech Connect (OSTI)

The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

2012-10-03T23:59:59.000Z

63

Passed on traditions: Reclaiming ethnic heritage through magical realism  

E-Print Network [OSTI]

literature, I examine how ghosts, magic, and spiritualism convey knowledge of, and endorse reintroduction to, these formerly widespread practices. Gabriel Garcia Marquez's One Hundred Years of Solitude is examined as the novel which originated the genre...

Rouse, Linda Anne

1995-01-01T23:59:59.000Z

64

The wonder of magic : eliciting wonder and amazing its expression  

E-Print Network [OSTI]

The wonder that occurs while watching a good magic trick or admiring a gorgeous natural vista is a strong emotion that has not been well studied. Educators, media producers, entertainers, scientists and magicians could all ...

Raphael, Seth

2007-01-01T23:59:59.000Z

65

Self-consistent description of single-particle levels of magic nuclei  

E-Print Network [OSTI]

Single-particle levels of seven magic nuclei are calculated within the Energy Density Functional (EDF) method by Fayans et al. Three versions of the EDF are used, the initial Fayans functional DF3 and its two variations, DF3-a and DF3-b, with different values of spin-orbit parameters. Comparison is made with predictions of the Skyrme-Hartree-Fock method with the HFB-17 functional. For the DF3-a functional, phonon coupling (PC) corrections to single-particle energies are found self-consistently with an approximate account for the tadpole diagram. Account for the PC corrections improves agreement with the data for heavy nuclei, e.g. for 208 Pb. On the other hand, for lighter nuclei, e.g. 40,48 Ca, PC corrections make the agreement a little worse. As estimations show, the main reason is that the approximation we use for the tadpole term is less accurate for the light nuclei.

N. V. Gnezdilov; I. N. Borzov; E. E. Saperstein; S. V. Tolokonnikov

2014-04-04T23:59:59.000Z

66

Day 1 -September 10 Green Event and `Starling magic'  

E-Print Network [OSTI]

Day 1 - September 10 Green Event and `Starling magic' 12:00 ­ 18:30 Welcome and check Venue: Fællessalen, Christiansborg Palace, Rigs- dagsgården 08:00 Registration and coffee/tea 09 and Sweden Lari Pitkä-Kangas, Deputy Mayor, Urban Ecology (Green Party) City of Malmö, Sweden 09:40 Children

Edinburgh, University of

67

assessing field-scale migration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de 6 Assessment of magic angle spinning spectroscopy for studying migration in solid milk chocolate MIT - DSpace Summary: In the confectionery industry, there is...

68

Magicity of the $^{52}$Ca and $^{54}$Ca isotopes and tensor contribution within a mean--field approach  

E-Print Network [OSTI]

We investigate the magicity of the isotopes $^{52}$Ca and $^{54}$Ca, that was recently confirmed by two experimental measurements, and relate it to like--particle and neutron--proton tensor effects within a mean--field description. By analyzing Ca isotopes, we show that the like--particle tensor contribution induces shell effects that render these nuclei more magic than they would be predicted by neglecting it. In particular, such induced shell effects are stronger in the nucleus $^{52}$Ca and the single--particle gaps are increased in both isotopes due to the tensor force. By studying $N=32$ and $N=34$ isotones, neutron--proton tensor effects may be isolated and their role analyzed. It is shown that neutron--proton tensor effects lead to increasing $N=32$ and $N=34$ gaps, when going along isotonic chains, from $^{58}$Fe to $^{52}$Ca, and from $^{60}$Fe to $^{54}$Ca, respectively. The mean--field calculations are perfomed by employing one Skyrme parameter set, that was introduced in a previous work by fitting the tensor parameters together with the spin--orbit strength. The signs and the values of the tensor strengths are thus checked within this specific application. The obtained results indicate that the employed parameter set, even if generated with a partial adjustment of the parameters of the force, leads to the correct shell behavior and provides, in particular, a description of the magicity of $^{52}$Ca and $^{54}$Ca within a pure mean--field picture with the effective two--body Skyrme interaction.

Marcella Grasso

2014-03-03T23:59:59.000Z

69

Effects of the tensor force on the ground and first $2^{+}$ states of the magic $^{54}$Ca nucleus  

E-Print Network [OSTI]

The magic nature of the $^{54}$Ca nucleus is investigated in the light of the recent experimental results. We employ both HFB and HF+BCS methods using Skyrme-type SLy5, SLy5+T and T44 interactions. The evolution of the single-particle spectra is studied for the N=34 isotones: $^{60}$Fe, $^{58}$Cr, $^{56}$Ti and $^{54}$Ca. An increase is obtained in the neutron spin-orbit splittings of $p$ and $f$ states due to the effect of the tensor force which also makes $^{54}$Ca a magic nucleus candidate. QRPA calculations on top of HF+BCS are performed to investigate the first $J^{\\pi}$=$2^{+}$ states of the calcium isotopic chain. A good agreement for excitation energies is obtained when we include the tensor force in the mean-field part of the calculations. The first $2^{+}$ states indicate a subshell closure for both $^{52}$Ca and $^{54}$Ca nuclei. We confirm that the tensor part of the interaction is quite essential in explaining the neutron subshell closure in $^{52}$Ca and $^{54}$Ca nuclei.

E. Yüksel; N. Van Giai; E. Khan; K. Bozkurt

2014-04-02T23:59:59.000Z

70

Planned Dark Matter searches with the MAGIC Telescope  

E-Print Network [OSTI]

The MAGIC 17m-diameter Imaging Air Cherenkov Telescope (IACT) has been commissioned beginning of 2005. The telescope has been designed to achieve the lower detection energy threshold ever obtained with an IACT, about 50 GeV. A new window in gamma-ray astronomy is being opened with great impact for exciting new physics and new discoveries. Among the targets of MAGIC is the indirect detection of Dark Matter (DM). We have considered different DM halo models of high DM density objects like the center of the Milky Way, its closest satellites and nearby galaxies (M31,M87). For each object, detection limits are computed for different DM halo models in a mSUGRA scenario for supersymmetric neutralino annihilation $\\gamma$-ray production. Advantages and drawbacks of these objects and plans for future observations are discussed.

J. Flix

2005-05-15T23:59:59.000Z

71

On spectroscopic factors of magic and semimagic nuclei  

SciTech Connect (OSTI)

Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator ? is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic {sup 208}Pb nucleus and semimagic lead isotopes are presented.

Saperstein, E. E. [Kurchatov Institute, 123182 Moscow (Russian Federation); Gnezdilov, N. V. [Kurchatov Institute, 123182 Moscow, Russia and National Research Nuclear University MEPhI, 115409 Moscow (Russian Federation); Tolokonnikov, S. V. [Kurchatov Institute, 123182 Moscow, Russia and Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation)

2014-10-15T23:59:59.000Z

72

Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures  

SciTech Connect (OSTI)

From spin pumping measurements in Ta/Py devices for different thicknesses of Ta, we determine the spin Hall angle to be 0.021–0.033 and spin diffusion length to be 8?nm in Ta. We have also studied the effect of changing the properties of non-magnet/ferromagnet interface by adding a Cu interlayer. The experimental results show that the effective spin mixing conductance increases in the presence of Cu interlayer for Ta/Cu/Py devices whereas it decreases in Pt/Cu/Py devices. Our findings allow the tunability of the spin pumping efficiency by adding a thin interlayer at the non-magnet/ferromagnet interface.

Deorani, Praveen; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

2013-12-02T23:59:59.000Z

73

Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations  

E-Print Network [OSTI]

A new strategy of fitting the coupling constants of the nuclear energy density functional is proposed, which shifts attention from ground-state bulk to single-particle properties. The latter are analyzed in terms of the bare single-particle energies and mass, shape, and spin core-polarization effects. Fit of the isoscalar spin-orbit and both isoscalar and isovector tensor coupling constants directly to the f5/2-f7/2 spin-orbit splittings in 40Ca, 56Ni, and 48Ca is proposed as a practical realization of this new programme. It is shown that this fit requires drastic changes in the isoscalar spin-orbit strength and the tensor coupling constants as compared to the commonly accepted values but it considerably and systematically improves basic single-particle properties including spin-orbit splittings and magic-gap energies. Impact of these changes on nuclear binding energies is also discussed.

M. Zalewski; J. Dobaczewski; W. Satula; T. R. Werner

2008-01-07T23:59:59.000Z

74

Photonic spin Hall effect in topological insulators  

E-Print Network [OSTI]

In this paper we theoretically investigate the photonic spin Hall effect (SHE) of a Gaussian beam reflected from the interface between air and topological insulators (TIs). The photonic SHE is attributed to spin-orbit coupling and manifests itself as in-plane and transverse spin-dependent splitting. We reveal that the spin-orbit coupling effect in TIs can be routed by adjusting the axion angle variations. Unlike the transverse spin-dependent splitting, we find that the in-plane one is sensitive to the axion angle. It is shown that the polarization structure in magneto-optical Kerr effect is significantly altered due to the spin-dependent splitting in photonic SHE. We theoretically propose a weak measurement method to determine the strength of axion coupling by probing the in-plane splitting of photonic SHE.

Zhou, Xinxing; Ling, Xiaohui; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun

2013-01-01T23:59:59.000Z

75

On the road to doubly-magic {sup 48}Ni  

SciTech Connect (OSTI)

A relativistic primary beam of {sup 58}Ni from the SIS synchrotron at GSI was used to produce proton-rich isotopes in the titanium-to-nickel region by projectile fragmention at the FRS. We report here on the first observation of the T{sub z}=-7/2 nuclei {sup 45}Fe and {sup 49}Ni. In addition, the new isotope {sup 42}Cr (T{sub z}=-3) was identified. This opens the route to the yet unobserved doubly-magic nucleus {sup 48}Ni.

Blank, B.; Czajkowski, S.; Davi, F.; Del Moral, R.; Dufour, J. P.; Fleury, A.; Marchand, C.; Pravikoff, M. S. [Centre d'Etudes Nucleaires de Bordeaux-Gradignan, F-33175 Gradignan Cedex (France); Benlliure, J.; Boue, F.; Collatz, R.; Heinz, A.; Hellstroem, M.; Hu, Z.; Roeckl, E.; Shibata, M.; Suemmerer, K. [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt (Germany); Lewitowicz, M. [Grand Accelerateur National des Ions Lourds, B.P. 5027, F-14021 Caen Cedex (France); Janas, Z.; Karny, M. [Institute of Experimental Physics, University of Warsaw, PL-00-681 Warsaw, Hoza 69 (Poland)] (and others)

1998-12-21T23:59:59.000Z

76

Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements  

SciTech Connect (OSTI)

We study the temperature dependence of the spin Hall magnetoresistance (SMR) in yttrium iron garnet/platinum hybrid structures via magnetization orientation dependent magnetoresistance measurements. Our experiments show a decrease of the SMR magnitude with decreasing temperature. Using the sensitivity of the SMR to the spin transport properties of the normal metal, we interpret our data in terms of a decrease of the spin Hall angle in platinum from 0.11 at room temperature to 0.075 at 10?K, while the spin diffusion length and the spin mixing conductance of the ferrimagnetic insulator/normal metal interface remain almost constant.

Meyer, Sibylle, E-mail: sibylle.meyer@wmi.badw-muenchen.de; Althammer, Matthias; Geprägs, Stephan; Opel, Matthias; Goennenwein, Sebastian T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Gross, Rudolf [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany)

2014-06-16T23:59:59.000Z

77

Spin transport and spin polarization properties in double-stranded DNA  

SciTech Connect (OSTI)

We study the spin-dependent electron transport through a double-stranded DNA (dsDNA) using the Bogoliubov-de Gennes equations and non-equilibrium Green's function method. We calculate the spin-dependent electron conductance and spin-polarization for different lengths, helix angles, twist angles of dsDNA, the environment-induced dephasing factors, and hopping integral. It is shown that the conductance decreases by increasing the length and dephasing factor. Also, we show that the spin-polarization depends on the helical symmetry and the length of DNA. It is shown that the double-stranded DNA can act as a perfect spin filter. Finally, we show that the sign of spin polarization can be inverted from +1 (?1) to ?1 (+1) for some values of hopping integral.

Simchi, Hamidreza, E-mail: simchi@iust.ac.ir [Department of Physics, Iran University of Science and Technology, Narrmak, Tehran 16844 (Iran, Islamic Republic of); Semiconductor Technology Center, Tehran (Iran, Islamic Republic of); Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir; Mazidabadi, Hossein [Department of Physics, Iran University of Science and Technology, Narrmak, Tehran 16844 (Iran, Islamic Republic of)

2013-11-21T23:59:59.000Z

78

Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponses toInvestigating ExtremeInvestigation ofAngle Spinning

79

Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin-pumping  

SciTech Connect (OSTI)

We measured spin-transport in nonferromagnetic (NM) metallic multilayers from the contribution to damping due to spin pumping from a ferromagnetic Co{sub 90}Fe{sub 10} thin film. The multilayer stack consisted of NM{sub 1}/NM{sub 2}/Co{sub 90}Fe{sub 10}(2 nm)/NM{sub 2}/NM{sub 3} with varying NM materials and thicknesses. Using conventional theory for one-dimensional diffusive spin transport in metals, we show that the effective damping due to spin pumping can be strongly affected by the spin transport properties of each NM in the multilayer, which permits the use of damping measurements to accurately determine the spin transport properties of the various NM layers in the full five-layer stack. We find that due to its high electrical resistivity, amorphous Ta is a poor spin conductor, in spite of a short spin-diffusion length of 1.0 nm, and that Pt is an excellent spin conductor by virtue of its low electrical resistivity and a spin diffusion length of only 0.5 nm. Spin Hall effect measurements may have underestimated the spin Hall angle in Pt by assuming a much longer spin diffusion length.

Boone, C. T.; Nembach, Hans T.; Shaw, Justin M.; Silva, T. J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

2013-04-21T23:59:59.000Z

80

An Examination of Magical Beliefs as Predictors of Obsessive-Compulsive Symptom Dimensions  

E-Print Network [OSTI]

study improved on methodological limitations of previous studies and used the Dimensional Obsessive-Compulsive Scale (DOCS) to conceptualize OCD as a dimensional construct. Relationships between magical belief constructs and four OCD symptom dimensions...

Spears, Lauren

2014-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Widespread spin polarization effects in photoemission from topological insulators  

SciTech Connect (OSTI)

High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

2011-06-22T23:59:59.000Z

82

A Review of "Magic and Masculinity in Early Modern English Drama" by Ian McAdam  

E-Print Network [OSTI]

that forces readers to reconsider women?s mobility in traversing both physical and culturally sanctioned boundaries. Ian McAdam. Magic and Masculinity in Early Modern English Drama. Pittsburgh: Duquesne University Press, 2009. v + 466 pp. $60. Review... by grace tiffany, western michigan university. Ambitiously, Ian McAdam surveys over half a century?s worth of selected plays by seven major authors to advance his thesis regarding the changing significance of magic and magicians to the early modern...

Tiffany, Grace

2011-01-01T23:59:59.000Z

83

A New Spin on Photoemission Spectroscopy  

SciTech Connect (OSTI)

The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered bycontinual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today?s condensed matter physics.

Advanced Light Source; Jozwiak, Chris

2008-12-18T23:59:59.000Z

84

Emergent spin  

SciTech Connect (OSTI)

Quantum mechanics and relativity in the continuum imply the well known spin–statistics connection. However for particles hopping on a lattice, there is no such constraint. If a lattice model yields a relativistic field theory in a continuum limit, this constraint must “emerge” for physical excitations. We discuss a few models where a spin-less fermion hopping on a lattice gives excitations which satisfy the continuum Dirac equation. This includes such well known systems such as graphene and staggered fermions. -- Highlights: •The spin–statistics theorem is not required for particles on a lattice. •Spin emerges dynamically when spinless fermions have a relativistic continuum limit. •Graphene and staggered fermions are examples of this phenomenon. •The phenomenon is intimately tied to chiral symmetry and fermion doubling. •Anomaly cancellation is a crucial feature of any valid lattice fermion action.

Creutz, Michael, E-mail: creutz@bnl.gov

2014-03-15T23:59:59.000Z

85

Nuclear spin circular dichroism  

SciTech Connect (OSTI)

Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

Vaara, Juha, E-mail: juha.vaara@iki.fi [NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland)] [NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Rizzo, Antonio [Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa (Italy)] [Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa (Italy); Kauczor, Joanna; Norman, Patrick [Department of Physics, Chemistry and Biology, Linköping University, S-58183 Linköping (Sweden)] [Department of Physics, Chemistry and Biology, Linköping University, S-58183 Linköping (Sweden); Coriani, Sonia, E-mail: coriani@units.it [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy)] [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy)

2014-04-07T23:59:59.000Z

86

Classical gravitational spin-spin interaction  

E-Print Network [OSTI]

I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.

W. B. Bonnor

2002-01-30T23:59:59.000Z

87

Experimental evidences of a large extrinsic spin Hall effect in AuW alloy  

SciTech Connect (OSTI)

We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2?nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

Laczkowski, P.; Rojas-Sánchez, J.-C. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France); INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Savero-Torres, W.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L. [INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Jaffrès, H.; Reyren, N.; Deranlot, C.; George, J.-M.; Fert, A. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France)

2014-04-07T23:59:59.000Z

88

Discovery of TeV gamma-ray emission from the Pulsar Wind Nebula 3C 58 by MAGIC  

E-Print Network [OSTI]

The Pulsar Wind Nebula (PWN) 3C 58 is energized by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. The differential energy spectrum between 400 GeV and 10 TeV is well described by a power-law function $d\\Phi/dE=f_{o}(E/1TeV)^{-\\Gamma}$ with $f_{o}=(2.0\\pm0.4stat\\pm0.6sys) 10^{-13}cm^{-2}s^{-1}TeV^{-1}$ and $\\Gamma=2.4\\pm0.2sta\\pm0.2sys$. This leads 3C 58 to be the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. According to time-dependent models in which electrons up-scatter photon fields, the best representation favors a distance to the PWN of 2 kpc and FIR comparable...

Bigas, O Blanch; Carmona, E; Pérez-Torres, M A

2015-01-01T23:59:59.000Z

89

Spin current and inverse spin Hall effect in ferromagnetic metals probed by Y{sub 3}Fe{sub 5}O{sub 12}-based spin pumping  

SciTech Connect (OSTI)

Using ferromagnetic (FM) resonance spin pumping, we observe injection of spin currents from Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films to FM metals, including Ni{sub 81}Fe{sub 19} (Py), Fe, Co, and Ni, and detection of spin currents by inverse spin Hall effect (ISHE) in the FM metals. We obtain a high effective spin mixing conductance of 6.3?×?10{sup 18}?m{sup ?2} in a YIG/Cu/Py trilayer and a spin Hall angle of 0.020 for Py. The spin pumping signals in Fe, Co, and Ni confirm the mechanism of ISHE in FMs is the inverse process of the anomalous Hall effect.

Wang, Hailong; Du, Chunhui; Chris Hammel, P., E-mail: hammel@physics.osu.edu; Yang, Fengyuan, E-mail: fyyang@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

2014-05-19T23:59:59.000Z

90

Screaming, flying, and laughing: magical feminism's witches in contemporary film, television, and novels  

E-Print Network [OSTI]

differences from the already well known social-protest genre of Magical Realism. The texts examined include Nalo Hopkinson’s Brown Girl in the Ring (1998), Alice Hoffman’s Practical Magic (1996), Chitra Divakaruni’s Mistress of Spices (1997), 5 Sean Stewart.... These witches are women who make their own rules, frequently in opposition to patriarchal ones that say a woman should endure abuse, suppress her own desires and choices in favor of those of her husband, or father, or accept her fate as powerless victim...

Wells, Kimberly Ann

2007-09-17T23:59:59.000Z

91

"The Magic of Words": the writer as curandero in the works of Rudolfo A. Anaya  

E-Print Network [OSTI]

"THE MAGIC OF WORDS:" THE WRITER AS CURANDERO IN THE WORKS OF RUDOLFO A. ANAYA A Thesis by KATHERINE JEANINE CECIL SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF ARTS December 1995 Major Subject: English "THE MAGIC OF WORDS:" THE WRITER AS CURANDERO IN THE WORKS OF RUDOLFO A. ANAYA A Thesis by KATHERINE JEANINE CECIL SANCHEZ Submitted to Texas AkM University in partial fulfillment...

Sanchez, Katherine Jeanine Cecil

1995-01-01T23:59:59.000Z

92

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

93

Spin rotation of polarized beams in high energy storage ring  

E-Print Network [OSTI]

The equations for spin evolution of a particle in a storage ring are obtained considering contributions from the tensor electric and magnetic polarizabilities of the particle along with the contributions from spin rotation and birefringence effect in polarized matter of an internal target. % Study of the spin rotation and birefringence effects for a particle in a high energy storage ring provides for measurement both the spin-dependent real part of the coherent elastic zero-angle scattering amplitude and tensor electric (magnetic) polarizabilities.

V. G. Baryshevsky

2006-03-23T23:59:59.000Z

94

Magical Thinking in Data Mining: Lessons From CoIL Challenge 2000  

E-Print Network [OSTI]

by participants in a data mining contest organized in the spring of 2000. This contest, known as CoIL ChallengeMagical Thinking in Data Mining: Lessons From CoIL Challenge 2000 Charles Elkan Department-0114 elkan@cs.ucsd.edu ABSTRACT CoIL challenge 2000 was a supervised learning contest that at- tracted 43

Wang, Deli

95

Magical Thinking in Data Mining: Lessons From CoIL Challenge 2000  

E-Print Network [OSTI]

by participants in a data mining contest organized in the spring of 2000. This contest, known as CoIL ChallengeMagical Thinking in Data Mining: Lessons From CoIL Challenge 2000 Charles Elkan Department­0114 elkan@cs.ucsd.edu ABSTRACT CoIL challenge 2000 was a supervised learning contest that at­ tracted 43

Wang, Deli

96

Complex instruction set computing architecture for performing accurate quantum $Z$ rotations with less magic  

E-Print Network [OSTI]

We present quantum protocols for executing arbitrarily accurate $\\pi/2^k$ rotations of a qubit about its $Z$ axis. Reduced instruction set computing (\\textsc{risc}) architectures typically restrict the instruction set to stabilizer operations and a single non-stabilizer operation, such as preparation of a "magic" state from which $T = Z(\\pi/4)$ gates can be teleported. Although the overhead required to distill high-fidelity copies of this magic state is high, the subsequent quantum compiling overhead to realize $Z$ rotations in a \\textsc{risc} architecture can be much greater. We develop a complex instruction set computing (\\textsc{cisc}) architecture whose instruction set includes stabilizer operations and preparation of magic states from which $Z(\\pi/2^k)$ gates can be teleported, for $2 \\leq k \\leq k_{\\text{max}}$. This results in a substantial overall reduction in the number of gates required to achieve a desired gate accuracy for $Z$ rotations. The key to our construction is a family of shortened quantum Reed-Muller codes of length $2^{k+2}-1$, whose magic-state distillation threshold shrinks with $k$ but is greater than 0.85% for $k \\leq 6$.

Andrew J. Landahl; Chris Cesare

2013-10-15T23:59:59.000Z

97

MAGIC A YEAR-LONG INVESTIGATION OF MARINE CLOUDS IN THE PACIFIC  

E-Print Network [OSTI]

of Washington, Seattle, WA For presentation at the SOLAS Open Science Conference, Cle Elum, WA May 7-10, 2012 of Energy Office of Science Managed by Brookhaven Science Associates, LLC for the United States Department of Energy under Contract No. DE-AC02-98CH10886 ABSTRACT The MAGIC project will deploy the Second ARM

Homes, Christopher C.

98

The Universe Viewed in Gamma-Rays 1 The Control System of the MAGIC telescope  

E-Print Network [OSTI]

will be commissioned during this year. The control system of the telescope is distributed over a number of functional on the Central Control and Camera Control systems. 1. Introduction MAGIC[1] is a new generation Imaging Air Cherenkov Telescope (IACT) allocated at the IAC site in the Canary island of La Palma. The aim of the tele

Enomoto, Ryoji

99

Spin Stability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I. Tudosa, H. C. SiegmannSpin Stability

100

Slow motions detection in polybutadiene through novel analyses of MSE refocusing efficiency and spin-lattice relaxation  

E-Print Network [OSTI]

Novel methods to analyze NMR signals dominated by dipolar interaction are applied to the study of slow relaxation motions in polybutadiene approaching its glass transition temperature. The analysis is based on a recently developed model where the time dependence in an ensemble of dipolar interacting spin pairs is described without resorting to the Anderson-Weiss approximation. The ability to catch relevant features of the $\\alpha$ relaxation process is emphasized. In particular, it is shown that the temperature profile of the Magic Sandwich Echo efficiency carries information on the frequency profile of the $\\alpha$-process. The analysis is corroborated by the temperature dependence of the spin-lattice relaxation time.

Simone Sturniolo; Marco Pieruccini; Maurizio Corti; Attilio Rigamonti

2014-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conversion of pure spin current to charge current in amorphous bismuth  

SciTech Connect (OSTI)

Spin Hall angle and spin diffusion length in amorphous bismuth (Bi) are investigated by using conversion of a pure spin current to a charge current in a spin pumping technique. In Bi/Ni{sub 80}Fe{sub 20}/Si(100) sample, a clear direct current (DC) electromotive force due to the inverse spin Hall effect of the Bi layer is observed at room temperature under a ferromagnetic resonance condition of the Ni{sub 80}Fe{sub 20} layer. From the Bi thickness dependence of the DC electromotive force, the spin Hall angle and the spin diffusion length of the amorphous Bi film are estimated to be 0.02 and 8?nm, respectively.

Emoto, H.; Ando, Y.; Shinjo, T.; Shiraishi, M., E-mail: shiraishi@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Shikoh, E. [Graduate School of Engineering, Osaka City University, Osaka 558-8585 (Japan); Fuseya, Y. [Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo 182-8585 (Japan)

2014-05-07T23:59:59.000Z

102

Spin Resolution of Glueballs in 2+1 Dimensional Lattice Gauge Theory  

E-Print Network [OSTI]

Conventional lattice gauge theory assigns the lowest spin compatible with the symmetry channel of a given operator to the state coupling to that operator. Operators on a cubic lattice, however, are only defined on angles of pi/2, hence states with spin equal modulo 4 may overlap significantly. This paper explores a new technique for generating lattice operators that may be placed onto the lattice at angles other than pi/2, thereby resolving this modulo 4 ambiguity. Calculations of the mass of states with spin equal t o 0, 2, and 4 are performed in the positive parity and charge conjugation channe l and compared to the spectrum from previous lattice calculations. These masses compare well for spin 0 and 2, and for spin 4 the mass agrees with a state conv entionally assigned spin 0, raising the possibility of mis-identification of the spin of states coupling to some traditional operators.

Robert W. Johnson

2002-09-03T23:59:59.000Z

103

[superscript 2]H-DNP-enhanced [superscript 2]H-[superscript 13]C solid-state NMR correlation spectroscopy  

E-Print Network [OSTI]

Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution [superscript 2]H–[superscript 13]C correlation spectra and the method is therefore of great interest ...

Maly, Thorsten

104

Lipid Dynamics and Protein–Lipid Interactions in 2D Crystals Formed with the ?-Barrel Integral Membrane Protein VDAC1  

E-Print Network [OSTI]

We employ a combination of [superscript 13]C/[superscript 15]N magic angle spinning (MAS) NMR and [superscript 2]H NMR to study the structural and functional consequences of different membrane environments on VDAC1 and, ...

Ong, Ta-Chung

105

Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy  

E-Print Network [OSTI]

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary ...

Debelouchina, Galia T.

106

Dynamic Nuclear Polarization Study of Inhibitor Binding to the M2[subscript 18–60] Proton Transporter from Influenza A  

E-Print Network [OSTI]

We demonstrate the use of dynamic nuclear polarization (DNP) to elucidate ligand binding to a membrane protein using dipolar recoupling magic angle spinning (MAS) NMR. In particular, we detect drug binding in the proton ...

Andreas, Loren B.

107

Investigation of Mechanical Activation on Li-N-H Systems Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Investigation of Mechanical Activation on Li-N-H Systems Using 6Li...

108

Kinetics of Yttrium-Ligand Complexation Monitored Using Hyperpolarized 89 as a Model for Gadolinium in Contrast Agents  

E-Print Network [OSTI]

(a model for uranium and other actinide storage materials) by 89 Y magic-angle spinning (MAS) NMR.8 The radioisotope 90 Y can be used for cancer therapy.9 Golman et al.10 demonstrated that the metabolic conversion

109

NMR Studies of Heat-Induced Transitions in Structure and Cation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Structure and Cation Binding Environments of a Strontium-Saturated Swelling Mica. Abstract: In this work we combined Al, Si, F, and Na magic-angle spinning (MAS) nuclear...

110

Protein MAS NMR methodology and structural analysis of protein assemblies  

E-Print Network [OSTI]

Methodological developments and applications of solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, with particular emphasis on the analysis of protein structure, are described in this thesis. ...

Bayro, Marvin J

2010-01-01T23:59:59.000Z

111

OPENING ANGLES OF COLLAPSAR JETS  

SciTech Connect (OSTI)

We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by ?{sub j} ? 1/5?{sub 0} and infer the initial Lorentz factor of the jet at the central engine, ?{sub 0}, is a few for existing observations of ?{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this new picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle ?{sub j,{sub max}} ? 1/5 ? 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.

Mizuta, Akira; Ioka, Kunihito [Theory Center, Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801 (Japan)

2013-11-10T23:59:59.000Z

112

Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers.  

SciTech Connect (OSTI)

Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in nonmagnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance and inverse spin Hall effect. The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au, and Mo were determined with high precision to be 0.013 {+-} 0.002, 0.0064 {+-} 0.001, 0.0035 {+-} 0.0003, and -0.0005 {+-} 0.0001, respectively.

Mosendz, O.; Vlaminck, V.; Pearson, J. E.; Fradin, F. Y.; Bauer, G. E. W.; Bader, S. D.; Hoffmann, A.; Delft Univ. of Technology

2010-12-01T23:59:59.000Z

113

The MAGIC Telescope Project for Gamma Astronomy above 10 GeV  

E-Print Network [OSTI]

A project to construct a 17 m diameter imaging air Cherenkov telescope, called the MAGIC Telescope, is described. The aim of the project is to close the observation gap in the gamma-ray sky extending from 10 GeV as the highest energy measurable by space-borne experiments to 300 GeV, the lowest energy measurable by the current generation of ground-based Cherenkov telescopes. The MAGIC Telescope will incorporate several new features in order to reach the very low energy threshold. At the same time the new technology will yield an improvement in sensitivity in the energy region where current Cherenkov telescopes are measuring by about an order of magnitude.

N. Magnussen

1998-05-14T23:59:59.000Z

114

MAGIC observations of MWC 656, the only known Be/BH system  

E-Print Network [OSTI]

Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for $\\sim$23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of $\\sim$5\\% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persis...

,

2015-01-01T23:59:59.000Z

115

Hybrid magic state distillation for universal fault-tolerant quantum computation  

E-Print Network [OSTI]

A set of stabilizer operations augmented by some special initial states known as 'magic states', gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introduce noise. The most common method to eliminate the noise is magic state distillation (MSD) by stabilizer operations. Here we propose a hybrid MSD protocol by connecting a four-qubit H-type MSD with a five-qubit T-type MSD, in order to overcome some disadvantages of the previous MSD protocols. The hybrid MSD protocol further integrates distillable ranges of different existing MSD protocols and extends the T-type distillable range to the stabilizer octahedron edges. And it provides considerable improvement in qubit cost for almost all of the distillable range. Moreover, we experimentally demonstrate the four-qubit H-type MSD protocol using nuclear magnetic resonance technology, together with the previous five-qubit MSD experiment, to show the feasibility of the hybrid MSD protocol.

Wenqiang Zheng; Yafei Yu; Jian Pan; Jingfu Zhang; Jun Li; Zhaokai Li; Dieter Suter; Xianyi Zhou; Xinhua Peng; Jiangfeng Du

2014-12-11T23:59:59.000Z

116

Geek-Up[09.24.10]-- Magical BEANs, Combating Bacteria's Resistance to Antibiotics and the ChemCam's Journey to Mars  

Broader source: Energy.gov [DOE]

Magical BEANs that mean mega-sized data storage, a new camera that will detect elements on Mars and new treatments to stop antibiotic resistance.

117

All-electric and all-semiconductor spin field effect transistors  

E-Print Network [OSTI]

which suffers from low signal levels as a result of the limited spin-injection efficiency, the short spin lifetime, and the spread of spin precession angles. The voltage oscillation disappears when the lateral inversion asymmetry is removed from the QPCs... to showing the realization of spin FETs, provide the first direct evidence of spin polarization of QPCs at zero external magnetic field. Figure 3a shows the oscillating voltages when the injector and detector QPCs are set at various conductance values. In a...

Chuang, Pojen; Ho, Sheng-Chin; Smith, L. W.; Sfigakis, F.; Pepper, M.; Chen, Chin-Hung; Fan, Ju-Chun; Griffiths, J. P.; Farrer, I.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Chen, T.-M.

2015-01-01T23:59:59.000Z

118

Spin Rotation of Formalism for Spin Tracking  

SciTech Connect (OSTI)

The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

Luccio,A.

2008-02-01T23:59:59.000Z

119

Optically detected coherent spin dynamics of a single electron in a quantum dot  

E-Print Network [OSTI]

dynamics provide a sensitive probe of the local nuclear spin environment. The magneto-optical Kerr effect the sample, analogous to the Faraday effect for transmitted light. For a probe laser energy E, the KR angle,y are momentum operators. For a single conduction band energy level in a QD containing a spin-up electron

Loss, Daniel

120

Analyzing Power Measurement for Forward Angle N-P Scattering at 790 Mev  

E-Print Network [OSTI]

nature of one of the experiments. The present measure- M=a+c(o', n+o2 n)+m(tr& n)(oz n), in which e& and o2 are the neutron and proton spin operators, respectively, and n is the unit vector normal to the scattering plane. The analyzing power A (or... (Received 20 November 1989) A measurement of the analyzing power for n-p scattering has been made at center-of-mass angles, 8.8, 15.0', and 20.7' with a nearly monoenergetic polarized neutron beam peaked at 790 MeV. These angles represent an acceptance...

Glass, G.; Bhatia, T. S.; Hiebert, John C.; Kenefick, R. A.; Nath, S.; Northcliffe, L. C.; Johnson, K. F.; Spinka, H.; Stanek, R.; Rawool, M. W.; Faucett, J. A.; Jeppersen, R. H.; Tripard, G. E.; Newsom, C. R.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ETEAPOT: symplectic orbit/spin tracking code for all-electric storage rings  

E-Print Network [OSTI]

Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap". At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen", for example always parallel to the instantaneous particle momentum. This paper describes an accelerator simulation code, ETEAPOT, a new component of the Unified Accelerator Libraries (UAL), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the non-constant particle velocity in electric rings give them significantly different properties, especially in weak focusing rings. Like the earlier code TEAPOT (for magnetic ring simulation) this code performs \\emph{exact tracking in an idealized (approximate) lattice} rather than the more conventional approach, which is \\emph{approximate tracking in a more nearly exact lattice.} The BMT equation des...

Talman, Richard M

2015-01-01T23:59:59.000Z

122

Precessional magnetization induced spin current from CoFeB into Ta  

SciTech Connect (OSTI)

The spin dynamics at the interface between the CoFeB and Ta layer has been studied using spin pumping and spin wave characterizations. The spin pumping driven by the ferromagnetic resonance in the CoFeB layer injects a spin current into Ta layer which results in an electromotive force across the Ta layer due to the inverse spin Hall effect. Upon changing the polarity of the bias magnetic field, the polarity of the output voltage inverts and the output voltage increases linearly in respect to the microwave signal power which are consistent with the spin pumping characteristics. The effect of the in-plane magnetization angle on the output voltage has been studied. Furthermore, it is found that the frequency spectrum of the spin Hall voltage is modified by the annealing temperature and the full width at half maximum of the spin pumping increases by more than 40% with the increase of the annealing temperature from 200?°C to 300?°C. The spin Hall angle at the Ta-CoFeB interface is determined to be 0.014, and the damping constant of the CoFeB increases from 0.006 in pure CoFeB to 0.015 in Ta/CoFeB film.

Jamali, Mahdi; Klemm, Angeline; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, 4-174 200 Union Street SE, Minneapolis, Minnesota 55455 (United States)] [Department of Electrical and Computer Engineering, University of Minnesota, 4-174 200 Union Street SE, Minneapolis, Minnesota 55455 (United States)

2013-12-16T23:59:59.000Z

123

Spinning particles and higher spin field equations  

E-Print Network [OSTI]

Relativistic particles with higher spin can be described in first quantization using actions with local supersymmetry on the worldline. First, we present a brief review of these actions and their use in first quantization. In a Dirac quantization scheme the field equations emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we describe how these actions can be extended so that the propagating particle is allowed to take different values of the spin, i.e. carry a reducible representation of the Poincar\\'e group. This way one may identify a four dimensional model that carries the same degrees of freedom of the minimal Vasiliev's interacting higher spin field theory. Extensions to massive particles and to propagation on (A)dS spaces are also briefly commented upon.

Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele

2015-01-01T23:59:59.000Z

124

Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov radiation, and spin relaxation boom  

E-Print Network [OSTI]

We study relaxation of a moving spin qubit caused by phonon noise. As we vary the speed of the qubit, we observe several interesting features in spin relaxation and the associated phonon emission, induced by Doppler effect. In particular, in the supersonic regime, the phonons emitted by the relaxing qubit is concentrated along certain directions, similar to the shock waves produced in classical Cherenkov effect. As the speed of the moving qubit increases from the subsonic regime to the supersonic regime, the qubit experiences a peak in the spin relaxation rate near the speed of sound, which we term a spin relaxation boom in analogy to the classical sonic boom. We also find that the moving spin qubit may have a lower relaxation rate than a static qubit, which hints at the possibility of coherence-preserving transportation for a spin qubit. While the physics we have studied here has strong classical analogies, we do find that quantum confinement for the spin qubit plays an important role in all the phenomena we observe. Specifically, it produces a correction on the Cherenkov angle, and removes the divergence in relaxation rate at the sonic barrier. It is our hope that our results would encourage further research into approaches for transferring and preserving quantum information in spin qubit architectures.

Xinyu Zhao; Peihao Huang; Xuedong Hu

2015-02-27T23:59:59.000Z

125

Giant Nernst Effect and Lock-In Currents at Magic Angles in TMTSF2PF6 W. Wu,* I. J. Lee,  

E-Print Network [OSTI]

February 2003; published 28 July 2003) We have measured the thermoelectric signal along the a axis in TMTSF TMTSF2PF6, the first organic superconductor [1], is quite an unusual material. It is metallic in the thermoelectric power (TEP). Therefore, we carried out a thermoelectric study of TMTSF2PF6 under 10 kbar

Wu, Weida

126

Practical evaluation of action-angle variables  

SciTech Connect (OSTI)

A practical method is described for establishing action-angle variables for a Hamiltonian system. That is, a given nearly integrable Hamiltonian is divided into an exactly integrable system plus a perturbation in action-angle form. The transformation of variables, which is carried out using a few short trajectory integrations, permits a rapid determination of trajectory properties throughout a phase space volume.

Boozer, A.H.

1984-02-01T23:59:59.000Z

127

Limited View Angle Iterative CT Reconstruction  

E-Print Network [OSTI]

;Some Prior Literature in Limited View Tomography CT with limited-angle data and few views IRR algorithm Iterative Reconstruction-Reprojection (IRR) : An Algorithm for Limited Data Cardiac- Computed-views and limited-angle data in divergent-beam CT by E. Y. Sidky, CM Kao, and X. Pan (2006) Few-View Projection

128

Anomalous Cherenkov spin-orbit sound  

SciTech Connect (OSTI)

The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

Smirnov, Sergey [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

2011-02-15T23:59:59.000Z

129

Tetrade Spin Foam Model  

E-Print Network [OSTI]

We propose a spin foam model of four-dimensional quantum gravity which is based on the integration of the tetrads in the path integral for the Palatini action of General Relativity. In the Euclidian gravity case we show that the model can be understood as a modification of the Barrett-Crane spin foam model. Fermionic matter can be coupled by using the path integral with sources for the tetrads and the spin connection, and the corresponding state sum is based on a spin foam where both the edges and the faces are colored independently with the irreducible representations of the spacetime rotations group.

A. Mikovic

2005-04-26T23:59:59.000Z

130

Comparison of MAGIC and Diatom paleolimnological model hindcasts of lakewater acidification in the Adirondack region of New York  

SciTech Connect (OSTI)

Thirty-three lakes that had been statistically selected as part of the US Environmental Protection Agency's Eastern Lake Survey and Direct Delayed Response Project (DDRP) were used to compare the MAGIC (watershed) and Diatom (paleolimnological) models. The study lakes represented a well-defined group of Adirondack lakes, each larger than 4 ha in area and having acid-neutralizing capacity (ANC) <400 {mu}eq L{sup {minus}1}. The study first compared current and pre-industrial (before 1850) pH and ANC estimates from Diatom and MAGIC as they were calibrated in the preceding Paleocological Investigation of Recent Lake Acidification (PIRLA) and DDRP studies, respectively. Initially, the comparison of hindcasts of pre-industrial chemistry was confounded by seasonal and methodological differences in lake chemistry data used in calibration of the model. Although certain differences proved to be of little significance for comparison, MAGIC did predict significantly higher pre-industrial ANC and pH values than did Diatom, using calibrations in the preceding studies. Both models suggest acidification of low ANC Adirondack region lakes since preindustrial times, but differ primarily in that MAGIC inferred greater acidification and that acidification has occurred in all lakes in the comparison, whereas Diatom inferred that acidification has been restricted to low ANC lakes (

Sullivan, T.J.; Bernert, J.A.; Eliers, J.M. (E and S Environmental Chemistry, Corvallis, OR (USA)); Jenne, E.A. (Pacific Northwest Lab., Richland, WA (USA)); Cosby, B.J. (Duke Univ., Durham, NC (USA). School of Forestry and Environmental Studies); Charles, D.F.; Selle, A.R. (Environmental Protection Agency, Corvallis, OR (USA). Environmental Research Lab.)

1991-03-01T23:59:59.000Z

131

Effect of spin rotation coupling on spin transport  

SciTech Connect (OSTI)

We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup ?}?p{sup ?} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup ?}?p{sup ?} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

2013-12-15T23:59:59.000Z

132

Spin coating of electrolytes  

DOE Patents [OSTI]

Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-01-01T23:59:59.000Z

133

Detection of VHE Bridge emission from the Crab pulsar with the MAGIC Telescopes  

E-Print Network [OSTI]

The Crab pulsar is the only astronomical pulsed source detected above 100 GeV. The emission mechanism of very high energy gamma-ray pulsation is not yet fully understood, although several theoretical models have been proposed. In order to test the new models, we measured the light curve and the spectra of the Crab pulsar with high precision by means of deep observations. We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in stereoscopic mode. In order to discuss the spectral shape in connection with lower energies, 4.6 years of Fermi-LAT data were also analyzed. The known two pulses per period were detected with a significance of 8.0 sigma and 12.6 sigma. In addition, significant bridge emission was found between the two pulses with 6.2 sigma. This emission can not be explained with the existing theories. These data can be used for testing new theoretical models.

Saito, T Y; Hirotani, K

2015-01-01T23:59:59.000Z

134

Particle-vibration coupling effect on the $\\beta$-decay of magic nuclei  

E-Print Network [OSTI]

Nuclear $\\beta$-decay in magic nuclei is investigated, taking into account the coupling between particle and collective vibrations,on top of self-consistent random phase approximation calculations based on Skyrme density functionals. The low-lying Gamow-Teller strength is shifted downwards and at times becomes fragmented; as a consequence, the $\\beta$-decay half-lives are reduced due to the increase of the phase space available for the decay. In some cases, this leads to a very good agreement between theoretical and experimental lifetimes: this happens, in particular, in the case of the Skyrme force SkM*, that can also reproduce the line shape of the high energy Gamow-Teller resonance as it was previously shown.

Niu, Yifei; Colo, Gianluca; Vigezzi, Enrico

2015-01-01T23:59:59.000Z

135

Performance improvement study of a relativistic magnetron using MAGIC-3D  

SciTech Connect (OSTI)

A three dimensional particle-in-cell (PlC) code, MAGIC3D, is used to examine the performance improvement in a relativistic magnetron by perturbing technique. Asymmetrical metal rods of different length have been used to perturb the magnetic field in the annular sector of the resonant system. Enhancement up to 45% in the radiated output power has been obtained in the perturbed magnetic field case over the unperturbed one. It has also been found in the simulation that oscillation start up time is reduced by 16 %, and the amplitude of the nearest competing mode goes down 9dB compared to unperturbed case. Perturbed magnetic field also reduces the end caps current improving the efficiency. (author)

Maurya, S.; Singh, V.V.P., E-mail: smaurya@ceeri.ernet.in [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Jain, P.K. [Center of Research in Microwave Tubes, Institute of Technology, Banaras Hindu University, Varanasi (India)

2011-07-01T23:59:59.000Z

136

Inertial effect on spin–orbit coupling and spin transport  

SciTech Connect (OSTI)

We theoretically study the renormalization of inertial effects on the spin dependent transport of conduction electrons in a semiconductor by taking into account the interband mixing on the basis of k{sup ?}?p{sup ?} perturbation theory. In our analysis, for the generation of spin current we have used the extended Drude model where the spin–orbit coupling plays an important role. We predict enhancement of the spin current resulting from the renormalized spin–orbit coupling effective in our model in cubic and non-cubic crystals. Attention has been paid to clarify the importance of gauge fields in the spin transport of this inertial system. A theoretical proposition of a perfect spin filter has been done through the Aharonov–Casher like phase corresponding to this inertial system. For a time dependent acceleration, effect of k{sup ?}?p{sup ?} perturbation on the spin current and spin polarization has also been addressed. Furthermore, achievement of a tunable source of polarized spin current through the non uniformity of the inertial spin–orbit coupling strength has also been discussed. -- Highlights: •Study of the renormalization of inertial spin dependent transport of electrons. •Enhancement of the spin current due to the renormalized spin–orbit coupling. •A theoretical proposition of a perfect spin filter. •For a time dependent acceleration, spin current, spin polarization is addressed.

Basu, B., E-mail: sribbasu@gmail.com; Chowdhury, Debashree, E-mail: debashreephys@gmail.com

2013-08-15T23:59:59.000Z

137

Results from the spin programme at COSY-ANKE  

E-Print Network [OSTI]

Some of the important results from the COSY-Juelich spin programme are summarised. These include the measurement of the deuteron beam momentum through the excitation of a depolarising resonance, which allowed the mass of the eta-meson to be determined to high precision. The charge exchange of polarised deuterons on hydrogen gave rise to a detailed study of the spin dependence of large angle neutron-proton elastic scattering amplitudes. The measurements of the cross section and analysing powers for pion production in both pp and pn collisions at 353 MeV could be described very successfully in terms of a partial wave decomposition.

A. Kacharava; C. Wilkin

2012-12-12T23:59:59.000Z

138

Correlation Functions and Spin  

E-Print Network [OSTI]

The k-electron correlation function of a free chaotic electron beam is derived with the spin degree of freedom taken into account. It is shown that it can be expressed with the help of correlation functions for a polarized electron beam of all orders up to k and the degree of spin polarization. The form of the correlation function suggests that if the electron beam is not highly polarized, observing multi-particle correlations should be difficult. The result can be applied also to chaotic photon beams, the degree of spin polarization being replaced by the degree of polarization.

T. Tyc

2000-06-30T23:59:59.000Z

139

International Spin Physics 2014 Summary  

E-Print Network [OSTI]

The Stern-Gerlach experiment and the origin of electron spin are described in historical context. SPIN 2014 occurs on the fortieth anniversary of the first International High Energy Spin Physics Symposium at Argonne in 1974. A brief history of the international spin conference series is presented.

Milner, Richard G

2015-01-01T23:59:59.000Z

140

International Spin Physics 2014 Summary  

E-Print Network [OSTI]

The Stern-Gerlach experiment and the origin of electron spin are described in historical context. SPIN 2014 occurs on the fortieth anniversary of the first International High Energy Spin Physics Symposium at Argonne in 1974. A brief history of the international spin conference series is presented.

Richard G. Milner

2015-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The spin deep within  

SciTech Connect (OSTI)

The electronic configuration of iron impurities in lower-mantle minerals influences their physical properties, but it is not well constrained. New studies suggest that ferrous iron in silicate phases exists mainly in an intermediate spin state.

Stackhouse, S. (Michigan)

2008-10-08T23:59:59.000Z

142

Small Angle X-Ray Scattering Detector  

DOE Patents [OSTI]

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

143

Measurements of $t\\bar{t}$ spin correlations in CMS  

E-Print Network [OSTI]

We present an overview of the measurements of $t\\bar{t}$ spin correlations in the CMS Collaboration. We present two analyses both in the dilepton channel using proton-proton collisions at $\\sqrt{s}\\, =\\, 7$ TeV based on an integrated luminosity of 5.0 fb$^{-1}$. The spin correlations and polarization are measured using angular asymmetries. The results are consistent with unpolarized top quarks and Standard Model spin correlation. The second analysis sets a limit on the real part of the top-quark chromo-magnetic dipole moment of $-0.043\\, <\\, Re({\\hat{\\mu}}_{t})\\, <\\, 0.117$ at $95\\,%$ confidence level through the measured azimuthal angle difference between the two charged leptons from $t\\bar{t}$ production.

Kelly Beernaert

2014-11-26T23:59:59.000Z

144

Negative nonlocal resistance in mesoscopic gold Hall bars : absence of giant spin Hall effect.  

SciTech Connect (OSTI)

We report the observation of negative nonlocal resistances in multiterminal mesoscopic gold Hall bar structures whose characteristic dimensions are larger than the electron mean-free path. Our results can only be partially explained by a classical diffusive model of the nonlocal transport, and are not consistent with a recently proposed model based on spin Hall effects. Instead, our analysis suggests that a quasiballistic transport mechanism is responsible for the observed negative nonlocal resistance. Based on the sensitivity of our measurements and the spin Hall effect model, we find an upper limit for the spin Hall angle in gold of 0.023 at 4.5 K.

Mihajlovic, G.; Pearson, J. E.; Garcia, M. A.; Bader, S. D.; Hoffmann, A.; Univ. Complutense de Madrid

2009-01-01T23:59:59.000Z

145

Geometric phase for collinear conical intersections. I. Geometric phase angle and vector potentials  

SciTech Connect (OSTI)

We present a method for properly treating collinear conical intersections in triatomic systems. The general vector potential (gauge theory) approach for including the geometric phase effects associated with collinear conical intersections in hyperspherical coordinates is presented. The current study develops an introductory method in the treatment of collinear conical intersections by using the phase angle method. The geometric phase angle, {eta}, in terms of purely internal coordinates is derived using the example of a spin-aligned quartet lithium triatomic system. A numerical fit and thus an analytical form for the associated vector potentials are explicitly derived for this triatomic A{sub 3} system. The application of this methodology to AB{sub 2} and ABC systems is also discussed.

Li Xuan [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Brue, Daniel A.; Blandon, Juan D.; Parker, Gregory A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); Kendrick, Brian K. [Theoretical Division (T-1, MS B268), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2011-02-14T23:59:59.000Z

146

Electron Spin Decoherence in Silicon Carbide Nuclear Spin Bath  

E-Print Network [OSTI]

In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of $^{29}\\rm{Si}$ ($p_{\\rm{Si}}=4.7\\%$) is about 4 times larger than that of $^{13}{\\rm C}$ ($p_{\\rm{C}}=1.1\\%$), the electron spin coherence time of defect centers in SiC nuclear spin bath in strong magnetic field ($B>300~\\rm{Gauss}$) is longer than that of nitrogen-vacancy (NV) centers in $^{13}{\\rm C}$ nuclear spin bath in diamond. The reason for this counter-intuitive result is the suppression of heteronuclear-spin flip-flop process in finite magnetic field. Our results show that electron spin of defect centers in SiC are excellent candidates for solid state spin qubit in quantum information processing.

Li-Ping Yang; Christian Burk; Mattias Widmann; Sang-Yun Lee; Jörg Wrachtrup; Nan Zhao

2014-09-16T23:59:59.000Z

147

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments  

E-Print Network [OSTI]

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments Mikhail. Simulations of solid-state magic angle spinning (MAS) experiments can be particularly demanding both with complex pulse sequences and multi-spin systems in solids, SPINEVO- LUTION is a versatile and easy to use

Griffin, Robert G.

148

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments  

E-Print Network [OSTI]

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments Mikhail and dynamic information from the spectra. Simulations of solid-state magic angle spinning (MAS) experiments for the simulation of experiments with complex pulse sequences and multi-spin systems in solids, SPINEVO- LUTION

Griffin, Robert G.

149

E-Print Network 3.0 - angle spinning probe Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and limits the useful Faraday measurement... Faraday effect to probe the ... Source: Deutsch, Ivan H. - Department of Physics and Astronomy, University of New Mexico; Jessen,...

150

Spinning fluids reactor  

DOE Patents [OSTI]

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

151

Spinning superconducting electrovacuum soliton  

E-Print Network [OSTI]

In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the G\\"urses-G\\"ursey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. This behavior found for an arbitrary nonlinear lagrangian ${\\cal L}(F)$, is generic for the class of regular spinning electrovacuum solutions describing both black holes and particle-like structures.

Irina Dymnikova

2006-07-24T23:59:59.000Z

152

Analytical formula for numerical evaluations of the Wigner rotation matrices at high spins  

E-Print Network [OSTI]

The Wigner d function, which is the essential part of an irreducible representation of SU(2) and SO(3) parameterized with Euler angles, has been know to suffer from a serious numerical errors at high spins, if it is calculated by means of the Wigner formula as a polynomial of cos and sin of half of the second Euler angle. This paper shows a way to avoid this problem by expressing the d functions as the Fourier series of the half angle. A precise numerical table of the coefficients of the series is obtainable from a web site.

Naoki Tajima

2015-01-26T23:59:59.000Z

153

Analytical formula for numerical evaluations of the Wigner rotation matrices at high spins  

E-Print Network [OSTI]

The Wigner d function, which is the essential part of an irreducible representation of SU(2) and SO(3) parameterized with Euler angles, has been know to suffer from a serious numerical errors at high spins, if it is calculated by means of the Wigner formula as a polynomial of cos and sin of half of the second Euler angle. This paper shows a way to avoid this problem by expressing the d functions as the Fourier series of the half angle. A precise numerical table of the coefficients of the series is obtainable from a web site.

Tajima, Naoki

2015-01-01T23:59:59.000Z

154

Quantum spin dynamics  

E-Print Network [OSTI]

The classical Landau-Lifshitz equation has been derived from quantum mechanics. Starting point is the assumption of a non-Hermitian Hamilton operator to take the energy dissipation into account. The corresponding quantum mechanical time dependent Schr\\"odinger, Liouville and Heisenberg equation have been described and the similarities and differences between classical and quantum mechanical spin dynamics have been discussed. Furthermore, a time dependent Schr\\"odinger equation corresponding to the classical Landau-Lifshitz-Gilbert equation and two ways to include temperature into the quantum mechanical spin dynamics have been proposed.

Robert Wieser

2014-10-23T23:59:59.000Z

155

Coherent spin mixing dynamics in thermal $^{87}$Rb spin-1 and spin-2 gases  

E-Print Network [OSTI]

We study the non-equilibrium coherent spin mixing dynamics in ferromagnetic spin-1 and antiferromagnetic spin-2 thermal gases of ultracold $^{87}$Rb atoms. Long lasting spin population oscillations with magnetic field dependent resonances are observed in both cases. Our observations are well reproduced by Boltzmann equations of the Wigner distribution function. Compared to the equation of motion of spinor Bose-Einstein condensates, the only difference here is a factor of two increase in the spin-dependent interaction, which is confirmed directly in the spin-2 case by measuring the relation between the oscillation amplitude and the sample's density.

He, Xiaodong; Li, Xiaoke; Wang, Fudong; Xu, Zhifang; Wang, Dajun

2015-01-01T23:59:59.000Z

156

E-Print Network 3.0 - angles extended molecular Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

angles... such as a right angle, an obtuse angle, an angle ... Source: Watanabe, Tad - Department of Mathematics and Statistics, Kennesaw State University Collection:...

157

The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)  

SciTech Connect (OSTI)

A project for the US Department of Energy, entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

Sullivan, T.J.; Eilers, J.M. (E and S Environmental Chemistry, Inc., Corvallis, OR (United States)); Cosby, B.J. (Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences); Driscoll, C.T. (Syracuse Univ., NY (United States). Dept. of Civil Engineering); Hemond, H.F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Charles, D.F.

1993-03-05T23:59:59.000Z

158

MSW effect for large mixing angles  

E-Print Network [OSTI]

The traditional physical description of neutrino flavor conversion in the Sun focuses on the notion of resonance. However, the resonance picture is valid only in the limit of small mixing angles theta. For large values of theta, the resonance picture leads to seemingly paradoxical results. This observation is important for understanding the physics of neutrino flavor conversion in the Sun, since the latest solar neutrino data seems to prefer large mixing angles. Here we review the basic arguments and in particular show that the resonance does not in general coincide with either the point of maximal violation of adiabaticity in the nonadiabatic case or the point of maximal flavor conversion in the adiabatic case. We also discuss a modified adiabaticity criterion.

Alexander Friedland

2001-06-04T23:59:59.000Z

159

The contact angle in inviscid fluid mechanics  

E-Print Network [OSTI]

We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived; however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions' in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions'; they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

P N Shankar; R Kidambi

2005-08-17T23:59:59.000Z

160

Model of Large Mixing Angle MSW Solution  

E-Print Network [OSTI]

We have obtained the neutrino mass matrix with the large mixing angle (LMA) MSW solution, $\\sin^2 2\\th_\\odot=0.65\\sim 0.97$ and $\\Delta m_{\\odot}^2= 10^{-5}\\sim 10^{-4}\\eV^2$, in the $S_{3L}\\times S_{3R}$ flavor symmetry. The structure of our neutrino mass matrix is found to be stable against radiative corrections.

Morimitsu Tanimoto

2000-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Small Angle X-Ray Scattering Detector  

DOE Patents [OSTI]

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

Hessler, Jan P. (Downers Grove, IL)

2004-06-15T23:59:59.000Z

162

Synthesis, Structure, and Properties of Low-Spin Manganese(III)-Poly(pyrazolyl)borate Complexes  

E-Print Network [OSTI]

.g., catalase, peroxidase, superoxide dismutase),2,3 in the oxygen-evolving center (OEC) of photosystem II,4, indicates absence of the characteristic Jahn-Teller distortion of a high-spin d4 center. N-Mn-N bite angles

Baik, Mu-Hyun

163

Spin Transport in Semiconductor heterostructures  

SciTech Connect (OSTI)

The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

Domnita Catalina Marinescu

2011-02-22T23:59:59.000Z

164

Gluonic Spin Contribution to Proton Spin at NLO  

SciTech Connect (OSTI)

In 1988, when the EMC results showed that the quarks had a much smaller contribution to the spin of the proton than previously thought, the 'Proton Spin Crisis' began. Since then, considerable effort has been directed into discovering the main contributors to proton spin and how much each contributes. One such contributor is the gluonic spin component. QCD NLO evolution equations are combined with boundary conditions obtained from heavy quark decoupling expressions to evolve the equations from infinity to the mass of the charm quark in order to determine the gluonic spin contribution.

Casey, Andrew [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide SA 5005 (Australia)

2011-05-24T23:59:59.000Z

165

ACCELERATION INDUCED SPIN AND  

E-Print Network [OSTI]

spin at each event. A unique and natural law of parallel transport of quantum states between different mechanical line of reasoning leads to the heuristic con* *clusion that gravitation is to be identified AND ITS GAUGE GEOMETRY The line of reasoning which lies at the base of Einstein's gravitation the

Gerlach, Ulrich

166

Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporated before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)

Zhou, Xiaoli [McGill Univ., Montreal, Quebec (Canada); Dept. of Atmospheric and Oceanic Sciences; Kollias, Pavlos [McGill Univ., Montreal, Quebec (Canada); Dept. of Atmospheric and Oceanic Sciences; Lewis, Ernie R. [Brookhaven National Lab., Upton, NY (United States). Biological, Environmental, and Climate Sciences Dept.

2015-03-01T23:59:59.000Z

167

Tensor analyzing powers in forward angle exclusive $\\pi$-meson photoproduction on deuteron  

E-Print Network [OSTI]

The target tensor analyzing powers of the process $\\gamma d -> \\pi^{-}pp$ had been studied in the plane wave impulse approximation, if both ejected protons are detected in coincidence and in the directions, symmetrical respect to the incoming photon momentum, being in the proton plane. The matrix elements of the studied reaction become essentially simple, if the magnitudes of the proton momenta p1 = p2 = p are equal. That proton kinematics keeps the ejected pion angle near zero, therefore the one body pion production operator does not include the spin-non-flip term. Moreover, the transition to the triplet, spatially antisymmetric final pp- state is strongly suppressed from the symmetrical deuteron S - state as well as matrix elements have a large dependence from the orientation of the deuteron spin. The values of the $T_{22}(\\vec p)$ component, calculated with three realistic deuteron wave functions in the proton momentum region p >= 350 MeV/c and proton polar angle theta >= 40 deg., differ one from another n...

Loginov, A Y; Sidorov, A A; Stibunov, V N

2004-01-01T23:59:59.000Z

168

RHIC spin flipper commissioning results  

SciTech Connect (OSTI)

The five AC dipole RHIC spin flipper design in the RHIC Blue ring was first tested during the RHIC 2012 polarized proton operation. The advantage of this design is to eliminate the vertical coherent betatron oscillations outside the spin flipper. The closure of each ac dipole vertical bump was measured with orbital response as well as spin. The effect of the rotating field on the spin motion by the spin flipper was also confirmed by measuring the suppressed resonance at Q{sub s} = 1 - Q{sub osc}.

Bai M.; Roser, T.; Dawson, C.; Kewisch, J.; Makdisi, Y.; Oddo, P.; Pai, C.; Pile, P.

2012-05-20T23:59:59.000Z

169

Discovery of Very High Energy Gamma-Rays from the Distant Flat Spectrum Radio Quasar 3C 279 with the MAGIC Telescope  

E-Print Network [OSTI]

The quasar 3C 279 is one of the best-studied flat spectrum radio quasars. It is located at a comparatively large redshift of z=0.536: E>100 GeV observations of such distant sources were until recently impossible both due to the expected steep energy spectrum and the expected attenuation of the gamma-rays by the extragalactic background light. Here we present results on the observation of 3C 279 with the MAGIC telescope in early 2006. We report the detection of a significant very high energy gamma-ray signal in the MAGIC energy range on the observation night of 2006 February 23.

Masahiro Teshima; Elisa Prandini; Rudolf Bock; Manel Errando; Daniel Kranich; Pratik Majumdar; Daniel Mazin; Elina Lindfors; Eckart Lorenz; Mose Mariotti; Villi Scalzotto; Robert Wagner

2007-09-10T23:59:59.000Z

170

Quantum Geometry Phenomenology: Angle and Semiclassical States  

E-Print Network [OSTI]

The phenomenology for the deep spatial geometry of loop quantum gravity is discussed. In the context of a simple model of an atom of space, it is shown how purely combinatorial structures can affect observations. The angle operator is used to develop a model of angular corrections to local, continuum flat-space 3-geometries. The physical effects involve neither breaking of local Lorentz invariance nor Planck scale suppression, but rather reply on only the combinatorics of SU(2) recouping theory. Bhabha scattering is discussed as an example of how the effects might be observationally accessible.

Seth A. Major

2011-12-19T23:59:59.000Z

171

SMB, Small Angle X-Ray Scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446Small Angle X-Ray Scattering

172

Spin and Madelung fluid  

E-Print Network [OSTI]

Starting from the Pauli current we obtain the decomposition of the non-relativistic local velocity in two parts: one parallel and the other orthogonal to the momentum. The former is recognized to be the ``classical'' part, that is the velocity of the center-of-mass, and the latter the ``quantum'' one, that is the velocity of the motion in the center-of-mass frame (namely, the internal ``spin motion'' or {\\em Zitterbewegung}). Inserting the complete expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e., Newtonian) Lagrangian, we straightforwardly derive the so-called ``quantum potential'' associated to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung.

G. Salesi

2009-06-23T23:59:59.000Z

173

Spin-bus concept of spin quantum computing  

SciTech Connect (OSTI)

We present a spin-bus concept of quantum computing where an electron spin S=1/2 acts as a bus qubit connected to a finite number N of nuclear spins I=1/2 serving as client qubits. Spin-bus clusters are considered as local processing units and may be interconnected with other spin-bus clusters via electron-electron coupling in a scaled up version. Here we lay the ground for the basic functional unit with long qubit registers, provide the theory and experimental verification of correlated qubit states, and demonstrate the Deutsch algorithm. Experiments were performed on a qubyte plus one nuclear spin in a solid state system.

Mehring, Michael; Mende, Jens [2. Physikalisches Institut, University of Stuttgart (Germany)

2006-05-15T23:59:59.000Z

174

Discovery of Very High Energy Gamma-Ray Emission from 1FGL J2001.1 4351 by MAGIC  

SciTech Connect (OSTI)

We report the discovery of Very High Energy (VHE; >100 GeV) gamma-ray emission from the source 1FGL J2001.1+4351, (RA 20 01 13.5, dec 43 53 02.8, J2000), which is positionally consistent with the location of the flat spectrum radio source MG4 J200112+4352 (RA 20 01 12.9, dec 43 52 52.8, J2000). The VHE detection is based on a 1.5 hour-long observation performed on July 16th in stereoscopic mode with the two 17m diameter imaging Cherenkov telescopes on La Palma, Canary Islands, Spain. The preliminary analysis of the MAGIC data using the standard cuts optimized for soft energy spectra sources yields a detection of 125 gamma-rays above 90 GeV, corresponding to a pre-trail statistical significance of 7.6 standard deviations. The observed flux is estimated to be {approx}20% of the Crab nebula flux above 100 GeV. Earlier MAGIC observations indicated a substantially lower flux; hence indicating that the source is variable on a few days timescale.

Berger, Karsten; /IAC, La Laguna /Laguna U., Tenerife; Paneque, David; /Munich, Max Planck Inst. /SLAC; Giavitto, Gianluca; /Barcelona, IFAE

2012-05-07T23:59:59.000Z

175

Directional dark matter by polar angle direct detection and application of columnar recombination  

E-Print Network [OSTI]

We report a systematic study on the directional sensitivity of a direct dark matter detector that detects the polar angle of a recoiling nucleus. A WIMP-mass independent method is used to obtain the sensitivity of a general detector in an isothermal galactic dark matter halo. By using two-dimensional distributions of energy and polar angle, a detector without head-tail information with 6.3 times the statistics is found to achieve the same performance level as a full three-dimensional tracking dark matter detector. Optimum operation orientations are obtained for various experimental configurations, with detectors that are space- or Earth-fixed, have head-tail capability or not, and use energy information or not. Earth-fixed detectors are found to have best sensitivity when the polar axis is oriented at a 45 degree angle from the Earth's pole. The WIMP-mass dependence of the performance of a detector with a 3 keV energy threshold that uses xenon as target material is reported. We apply realistic experimental resolutions and thresholds for a columnar recombination detector that detects two channel recombination and ionization processes from gaseous xenon. We find that with a $5\\times 10^{-46} \\mathrm{cm}^2$ spin-independent WIMP-nucleon cross-section and a 30 GeV WIMP, a $636$ kg$\\cdot$year's exposure with a columnar recombination detector can make a three sigma discovery of directional WIMPs in the isothermal galactic dark matter halo.

Jin Li

2015-03-25T23:59:59.000Z

176

Classification of two dimensional fixed sun angle solar sail trajectories  

E-Print Network [OSTI]

Classification of two dimensional fixed sun angle solar sail trajectories Stephen Wokes, Phil heliocentric trajectories for fixed sun angle solar sails are examined. The objective of this work (lightness factor) and Sun angle this phase space shows all possible solar sail trajectories. This phase

Roberts, Mark

177

Putting the Spin on Graphite: Observing the Spins of Impurity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Spins of Impurity Atoms Align Friday, February 28, 2014 The existence of magnetism in graphite is a very intriguing subject. The possibility to exploit the magnetic...

178

Asymptotics of Relativistic Spin Networks  

E-Print Network [OSTI]

The stationary phase technique is used to calculate asymptotic formulae for SO(4) Relativistic Spin Networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the Spin Network evaluation. Finally we discuss the asymptotics of the SO(3,1) 10j-symbol.

John W Barrett; Christopher M Steele

2003-01-31T23:59:59.000Z

179

Feedback control of spin systems  

E-Print Network [OSTI]

The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.

Claudio Altafini

2006-01-03T23:59:59.000Z

180

Molecular spinning by a chiral train of short laser pulses  

E-Print Network [OSTI]

We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train -- a sequence of linearly polarised pulses with the polarisation direction rotating from pulse to pulse by a controllable angle. Molecular rotation with a preferential rotational sense (clockwise or counter-clockwise) can be excited by this scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation pathways. The chiral pulse train is capable of selective excitation of molecular isotopologues and nuclear spin isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologues, and para- and ortho-nitrogen as examples for nuclear spin isomers.

Johannes Floß; Ilya Sh. Averbukh

2012-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heterostructure unipolar spin transistors M. E. Flatta  

E-Print Network [OSTI]

carriers on one side of the device are spin-down spin-up electrons and on the other side of the device semiconductor electronics and spin-based unipolar electronics by considering unipolar spin transistors electrons to the collector limits the performance of "homojunction" unipolar spin transistors, in which

Flatte, Michael E.

182

Future recovery of acidified lakes in southern Norway predicted by the MAGIC model Hydrology and Earth System Sciences, 7(4), 467483 (2003) EGU  

E-Print Network [OSTI]

Future recovery of acidified lakes in southern Norway predicted by the MAGIC model 467 Hydrology and Earth System Sciences, 7(4), 467483 (2003) © EGU Future recovery of acidified lakes in southern Norway.O. Box 173 Kjelsås, N-0411 Oslo, Norway 2 Department of Environmental Sciences, University of Virginia

Paris-Sud XI, Université de

183

Studies of spin-orbit correlations at JLAB  

SciTech Connect (OSTI)

Studies of single spin asymmetries for pion electroproduction in semi-inclusive deep-inelastic scattering are presented using the polarized \\sim6 GeV electrons from at the Thomas Jefferson National Accelerator Facility (JLab) and the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) with the Inner Calorimeter. The cross section versus the azimuthal angle {\\phi}_h of the produced neutral pion has a substantial sin {\\phi}_h amplitude. The dependence of this amplitude on Bjorken x_B and on the pion transverse momentum is extracted and compared with published data.

Mher Aghasyan, Harut Avakian

2011-05-01T23:59:59.000Z

184

Ballistic spin-dependent transport of Rashba rings with multi-leads  

SciTech Connect (OSTI)

Research Highlights: > Transmission coefficients of each outgoing lead in multi-lead mesoscopic Rashba rings. > Spin polarizations of each outgoing lead in multi-lead mesoscopic Rashba rings. > Resonant and antiresonant conditions of spin polarization in multi-lead Rashba rings. > Symmetries of conductance and spin polarization of symmetric multi-lead Rashba rings. - Abstract: Using the Landauer-Buettiker formula with the transfer matrix technique, we develop a formalism of the ballistic spin-dependent electron transport in the multi-lead Rashba rings. We give analytic formulas of the total conductance G{sub j}, spin-{sigma} conductance g{sub j}{sup {sigma}} and spin polarization P{sub j} of each outgoing lead j, and their resonant and antiresonant conditions. Analytic studying with numerical investigating Rashba rings with several symmetric and asymmetric leads, we find that G{sub j}, g{sub j}{sup {sigma}} and P{sub j} oscillate with the incoming electron energy and the spin-orbit interaction (SOI) strength, and their antiresonances depend on the incoming electron energy, the SOI strength and the outgoing-lead angle with the incoming lead. For the symmetric-lead rings, G{sub j}, g{sub j}{sup {sigma}} and P{sub j} have some symmetries, G{sub j}=G{sub N-j},g{sub j}{sup {sigma}}=g{sub N-j}{sup -{sigma}}, and P{sub j} = -P{sub N-j} for symmetric leads, j and N - j, where the angles between the symmetric outgoing leads j and N - j and the incoming lead are {gamma}{sub N-j} = 2{pi} - {gamma}{sub j}. The spin polarization of the outgoing lead with {gamma}{sub j} = {pi} is exactly zero for even-N-symmetric-lead rings. These symmetries originate from the lead symmetry and time reversal invariance. For asymmetry-lead rings these symmetries vanish.

Huang Guangyao [State Key Laboratory of Optoelectronic Material and Technology and School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Liang Shidong, E-mail: stslsd@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Material and Technology and School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

2011-05-15T23:59:59.000Z

185

Heat generation by electronic current in a quantum dot spin-valve  

SciTech Connect (OSTI)

Electric-current-induced heat generation in an interacting single-level quantum dot connected to ferromagnetic leads with noncollinear magnetizations is theoretically investigated. We find that when the two leads' spin polarization rates are identical and much smaller than unit, the magnitude of the heat generation is almost monotonously enhanced as the angle between the leads' magnetic moments is varied from zero to ?, while the magnitude of the electric current is continuously suppressed. Moreover, the properties of the heat generation depend on the lead's spin polarization rate in different ways when the angle is varied. If at least one of the leads' spin polarization rate approaches to unit, the spin-valve effect of the heat generation is identical to that of the electric current. Now the previously found negative differential of the heat generation disappears when the angle approaches to ?. As compared to the current, the heat generation is more sensitive to the system's asymmetry when one of the electrodes is half-metallic in noncollinear configurations.

Chi, Feng [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China); College of Engineering, Bohai University, Jinzhou 121013 (China); Sun, Lian-Liang [College of Science, North China University of Technology, Beijing 100041 (China); Guo, Yu [College of Engineering, Bohai University, Jinzhou 121013 (China)

2014-10-28T23:59:59.000Z

186

Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect  

SciTech Connect (OSTI)

The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ?1.2 nm at room temperature and ?1.6 nm at 8 K.

Zhang, Wei; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Vlaminck, Vincent [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito (Ecuador); Divan, Ralu [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)] [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)

2013-12-09T23:59:59.000Z

187

Spin waves in the (  

SciTech Connect (OSTI)

We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

Lipscombe, O. J. [University of Tennessee, Knoxville (UTK); Chen, G. F. [The Institute of Physics, Chinese Academy of Sciences; Fang, Chen [Purdue University; Perring, T. G. [ISIS Facility, Rutherford Appleton Laboratory; Abernathy, Douglas L [ORNL; Christianson, Andrew D [ORNL; Egami, Takeshi [ORNL; Wang, Nanlin [The Institute of Physics, Chinese Academy of Sciences; Hu, Jiangping [Purdue University and Chinese Academy of Sciences; Dai, Pengcheng [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

188

RHIC | Spin Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 MediaBrookhavenBlackATheSpin

189

Spin-dependent Hall effect in a parabolic well with a quasi-three-dimensional electron gas G. M. Gusev, C. A. Duarte, A. A. Quivy, T. E. Lamas, and J. R. Leite*  

E-Print Network [OSTI]

dependent coefficient, and is the angle between the magnetic field and the normal to the well plane valve tran- sistor or other spintronic devices, however, the existence of such a spin-dependent property has not been studied yet in transport coefficients. Only the recently spin-related quantum Hall

Gusev, Guennady

190

Spin-rotation coupling in compound spin objects  

E-Print Network [OSTI]

We generalize spin-rotation coupling to compound spin systems. In the case of muons bound to nuclei in a storage ring the decay process acquires a modulation. Typical frequencies for $Z/A\\sim 1/2$ are $\\sim 3\\times 10^6$Hz, a factor 10 higher than the modulation observed in $g-2$ experiments.

G. Lambiase; G. Papini

2013-01-31T23:59:59.000Z

191

Hidden pseudospin and spin symmetries and their origins in atomic nuclei  

E-Print Network [OSTI]

Symmetry plays a fundamental role in physics. The quasi-degeneracy between single-particle orbitals $(n, l, j = l + 1/2)$ and $(n-1, l + 2, j = l + 3/2)$ indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry (PSS). Since the introduction of the concept of PSS in atomic nuclei, there have been comprehensive efforts to understand its origin. Both splittings of spin doublets and pseudospin doublets play critical roles in the evolution of magic numbers in exotic nuclei discovered by modern spectroscopic studies with radioactive ion beam facilities. Since the PSS was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry (SS) for anti-nucleon, and many new concepts have been introduced. In the present Review, we focus on the recent progress on the PSS and SS in various systems and potentials, including extensions of the PSS study from stable to exotic nuclei, from non-confining to confining potentials, from local to non-local potentials, from central to tensor potentials, from bound to resonant states, from nucleon to anti-nucleon spectra, from nucleon to hyperon spectra, and from spherical to deformed nuclei. Open issues in this field are also discussed in detail, including the perturbative nature, the supersymmetric representation with similarity renormalization group, and the puzzle of intruder states.

Haozhao Liang; Jie Meng; Shan-Gui Zhou

2014-11-25T23:59:59.000Z

192

Spin noise spectroscopy of ZnO  

SciTech Connect (OSTI)

We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

Horn, H.; Berski, F.; Hübner, J.; Oestreich, M. [Institute for Solid State Physics, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Balocchi, A.; Marie, X. [INSA-CNRS-UPS, LPCNO, Université de Toulouse, 135 Av. de Rangueil, 31077 Toulouse (France); Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig (Germany)

2013-12-04T23:59:59.000Z

193

QCD Spin Physics: Theoretical Overview  

SciTech Connect (OSTI)

We give an overview of some of the current activities and results in QCD spin physics. We focus on the helicity structure of the nucleon, where we highlight the results of a recent first global analysis of the helicity parton distributions, and on single-transverse spin asymmetries.

Vogelsang,W.

2008-11-09T23:59:59.000Z

194

Spin Hall Effect For Anyons  

E-Print Network [OSTI]

We explain the intrinsic spin Hall effect from generic anyon dynamics in the presence of external electromagnetic field. The free anyon is represented as a spinning particle with an underlying non-commutative configuration space. The Berry curvature plays a major role in the analysis.

S. Dhar; B. Basu; Subir Ghosh

2007-06-27T23:59:59.000Z

195

An effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins  

E-Print Network [OSTI]

We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (non-precessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semi-analytical computation of a metric in the parameter space. We demonstrate that for "low-mass" ($m_1 + m_2 \\lesssim 12\\,M_\\odot$) binaries, this template bank achieves effective fitting factors $\\sim0.92$--$0.99$ towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black hole-neutron star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black-holes [neutron-stars] are uniformly distributed between 0--0.98 [0 -- 0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is $\\sim20-52\\%$, as compared to a search using a non-spinning bank.

P. Ajith; N. Fotopoulos; S. Privitera; A. Neunzert; N. Mazumder; A. J. Weinstein

2014-05-21T23:59:59.000Z

196

Flipping Photoelectron Spins in Topological Insulators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline...

197

Very high energy gamma-ray follow-up observations of novae and dwarf novae with the MAGIC telescopes  

E-Print Network [OSTI]

In the last few years the Fermi -LAT instrument has detected GeV gamma-ray emission from a few novae. Such GeV emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. It is expected that hadrons can be accelerated in the same conditions, but reaching much higher energies. They can produce a second component in the gamma-ray spectrum at TeV energies. We performed follow-up observations of selected novae and dwarf novae in a search of the second component in the gamma-ray spectrum. This can shed light on the acceleration process of leptons and hadrons in nova explosions. We have performed observations with the MAGIC telescopes of 3 sources, a symbiotic nova YY Her, a dwarf nova ASASSN-13ax and a classical nova V339 Del shortly after their outbursts.

Sitarek, J; Lopez-Coto, R; Wilhelmi, E de Ona; Desiante, R; Longo, F; Hays, E

2015-01-01T23:59:59.000Z

198

H-2(p,n)2p Spin Transfer from 305 to 788 Mev  

E-Print Network [OSTI]

PHYSICAL REVIEW C VOLUME 45, NUMBER 6 JUNE 1992 ARTICLES 2H(y, n)2p spin transfer from $05 to 7'88 Mev M. W. McNaughton, K. Koch, ' I. Supek, and N. Tanakat Los Alamos National Laboratory, Ios Alarnos, ?wMexico 876/6 D. A. Ambrose, P. Coff... the primary polarized-proton beam onto a liquid-deuterium (LD2) target and collimating the neutrons at a laboratory scat- tering angle of 0 (180' c.m. ). The neutron beam is po- larized via the L-to-L spin-transfer observable A'L, l. for the ~H(p, n...

McNaughton, M. W.; Koch, K.; Supek, I.; Tanaka, N.; Ambrose, DA; Coffey, P.; Johnston, K.; McNaughton, K. H.; Riley, P. J.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Simon, A. J.; Mercer, D. J.; Adams, D. L.; Spinka, H.; Jeppersen, R. H.; Tripard, G. E.; Woolverton, H.

1992-01-01T23:59:59.000Z

199

Emission angle distribution and flavor transformation of supernova neutrinos  

E-Print Network [OSTI]

Using moment equations we analyze collective flavor transformation of supernova neutrinos. We study the convergence of moment equations and find that numerical results using a few moment converge quite fast. We study effects of emission angle distribution of neutrinos on neutrino sphere. We study scaling law of the amplitude of neutrino self-interaction Hamiltonian and find that it depends on model of emission angle distribution of neutrinos. Dependence of neutrino oscillation on different models of emission angle distribution is studied.

Wei Liao

2009-06-28T23:59:59.000Z

200

Coarse graining methods for spin net and spin foam models  

E-Print Network [OSTI]

We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.

Bianca Dittrich; Frank C. Eckert; Mercedes Martin-Benito

2011-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The new small-angle diffractometer SAND at IPNS  

SciTech Connect (OSTI)

A new small-angle neutron diffractometer SAND is undergoing commissioning at IPNS pulsed source. This paper provides details of the design and expected performance of this instrument.

Crawford, R.K.; Thiyagarajan, P.; Epperson, J.E.; Trouw, F.; Kleb, R.; Wozniak, D.; Leach, D.

1995-12-31T23:59:59.000Z

202

Local Uniqueness for the Fixed Energy Fixed Angle Inverse Problem ...  

E-Print Network [OSTI]

Abstract. We prove local uniqueness for the inverse problem in obstacle scattering at a fixed energy and fixed incident angle. We consider the inverse problem of ...

203

angle light scattering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological tissues tend Kim, Arnold D. 11 Static light scattering and small-angle neutron scattering study on aggregated recombinant gelatin in aqueous solution University...

204

{gamma} spectroscopy around doubly magic {sup 48}Ca by heavy-ion transfer reactions  

SciTech Connect (OSTI)

{gamma} spectroscopy of neutron-rich nuclei around {sup 48}Ca is performed by the heavy-ion transfer reaction {sup 48}Ca on {sup 64}Ni at 282 MeV, with the PRISMA-CLARA setup at Legnaro Laboratory. Angular distributions, polarizations and lifetimes analysis probe spin and parities of several excited states, shading lights on their configuration. In the one neutron transfer channels, {sup 49}Ca and {sup 47}Ca, states arising by coupling a single particle to the 3{sup -} phonon of {sup 48}Ca are observed, showing the robustness of nuclear collectivity in rather light systems. The work demonstrates the feasibility of complete in-beam {gamma}-spectroscopy with heavy-ion transfer reactions and provides a method that can be further exploited in the future with heavy targets and radioactive beams.

Leoni, Silvia [Department of Physics, University of Milano and INFN, Milano (Italy)

2012-10-20T23:59:59.000Z

205

Superconducting magnetic Wollaston prism for neutron spin encoding  

SciTech Connect (OSTI)

A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ?30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ?98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 ?m. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States)] [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)] [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany)] [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States)] [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States) [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

2014-05-15T23:59:59.000Z

206

Experimental characterization of spin motor nozzle flow.  

SciTech Connect (OSTI)

The Mach number in the inviscid core of the flow exiting scarfed supersonic nozzles was measured using pitot probes. Nozzle characterization experiments were conducted in a modified section of an obsolete M = 7.3 test section/nozzle assembly on Sandia's Hypersonic Wind Tunnel. By capitalizing on existing hardware, the cost and time required for tunnel modifications were significantly reduced. Repeatability of pitot pressure measurements was excellent, and instrumentation errors were reduced by optimizing the pressure range of the transducers used for each test run. Bias errors in probe position prevented us from performing a successful in situ calibration of probe angle effects using pitot probes placed at an angle to the nozzle centerline. The abrupt throat geometry used in the Baseline and Configuration A and B nozzles modeled the throat geometry of the flight vehicle's spin motor nozzles. Survey data indicates that small (''unmeasurable'') differences in the nozzle throat geometries produced measurable flow asymmetries and differences in the flow fields generated by supposedly identical nozzles. Therefore, data from the Baseline and Configuration A and B nozzles cannot be used for computational fluid dynamics (CFD) code validation. Configuration C and D nozzles replaced the abrupt throat geometry of Baseline and Configuration A and B nozzles with a 0.500-inch streamwise radius of curvature in the throat region. This throat geometry eliminated the flow asymmetries, flow separation in the nozzle throat, and measurable differences between the flow fields from identical nozzles that were observed in Baseline/A/B nozzles. Data from Configuration C and D nozzles can be used for CFD code validation.

Erven, Rocky J.; Peterson, Carl Williams; Henfling, John Francis

2006-11-01T23:59:59.000Z

207

Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: spin-electron acoustic wave appearance  

E-Print Network [OSTI]

Quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different population of states with different spin direction is included in the spin density (magnetization). In this paper we derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence we consider electrons with different projection of spin on the preferable direction as two different species of particles. We show that numbers of particles with different spin direction do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of spins with magnetic field. Terms of similar nature arise in the Euler equation. We have that z-projection of the spin density is no longer an independent variable. It is proportional to difference between concentrations of electrons with spin-up and electrons with spin-down. In terms of new model we consider propagation of waves in magnetized plasmas of degenerate electrons and motionless ions. We show that new form of QHD equations gives all solutions obtained from traditional form of QHD equations with no distinguish of spin-up and spin-down states. But it also reveals a sound-like solution we call the spin-electron acoustic wave. Coincidence of most solutions is expected since we started derivation with the same basic equation.

Pavel A. Andreev

2014-05-04T23:59:59.000Z

208

SPIN-UP/SPIN-DOWN MODELS FOR TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

In the single-degenerate scenario for Type Ia supernovae (SNe Ia), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, M{sub crit}, needed for explosion. When M{sub crit} is higher than the maximum mass achieved by the WD, the central regions of the WD must spin down before it can explode. This introduces super-Chandrasekhar single-degenerate explosions, and a delay between the completion of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WD's mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-M{sub Ch} WDs in either wide binaries with WD companions or cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post-explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNe Ia.

Stefano, R. Di [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Voss, R. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Claeys, J. S. W. [Sterrekundig Instituut, Universiteit Utrecht, P.O. Box 800000, 3508 TA Utrecht (Netherlands)

2011-09-01T23:59:59.000Z

209

Update: pipes of different half bend angles Feb. 21, 2013  

E-Print Network [OSTI]

Update: pipes of different half bend angles Feb. 21, 2013 Yan Zhan 1 #12;Outline · Mercury Supply Pipe · Re-mesh for Pipes without weld of different half bend angles · Turbulence Intensity At Pipe Exits · Discussion on Bend Effects and Nozzle Effects 2 #12;Mercury Supply Pipe 3 Item 2 Item 3 Whole

McDonald, Kirk

210

Momentum Map and Action-Angle Variables for Nambu Dynamics  

E-Print Network [OSTI]

Momentum map is a reduction procedure that reduces the dimension of a Hamiltonian system to the lower ones. It is shown that behavior of the action-angle variables under the momentum map generates the new action-angle variables for the reduced system considered as a Nambu structure. The symmetrical top is given as an illustration.

A. Tegmen

2005-08-29T23:59:59.000Z

211

Steiner Minimal Trees, Twist Angles, and the Protein Folding Problem  

E-Print Network [OSTI]

Steiner Minimal Trees, Twist Angles, and the Protein Folding Problem J. MacGregor Smith, Yunho Jang. These properties should be ultimately useful in the ab ini- tio protein folding prediction. Proteins 2007;66:889­ 902. VVC 2006 Wiley-Liss, Inc. Key words: Steiner trees; twist angles; protein fold- ing; side chain

Smith, J. MacGregor

212

Constrained sinogram restoration for limited-angle Jerry L. Prince  

E-Print Network [OSTI]

for further re- search. Subject terms: image reconstruction; computed tomography; regularization; limitedConstrained sinogram restoration for limited-angle tomography Jerry L. Prince The Johns Hopkins-437 Cambridge, Massachusetts 02139 CONTENTS 1. Introduction 2. Limited-angle tomography 3. Sinogram restoration

Willsky, Alan S.

213

Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels  

E-Print Network [OSTI]

We report on a theoretical study of spin dynamics of an ensemble of spin-polarized electrons injected in a diffusive microchannel with linear Rashba and Dresselhaus spin-orbit coupling. We explore the dependence of the spin-precession and spin...

Zarbo, Liviu P.; Sinova, Jairo; Knezevic, I.; Wunderlich, J.; Jungwirth, T.

2010-01-01T23:59:59.000Z

214

Time evolution of a single spin inhomogeneously coupled to an interacting spin environment  

E-Print Network [OSTI]

Time evolution of a single spin inhomogeneously coupled to an interacting spin environment Zhen to an environment of interacting spin bath modeled by the XY Hamiltonian. By evaluating the spin correlator the spins in the environment J. The decoherence time varies significantly based on the relative coupling

Kais, Sabre

215

Quantum correlations in spin models  

SciTech Connect (OSTI)

Bell nonlocality, entanglement and nonclassical correlations are different aspects of quantum correlations for a given state. There are many methods to measure nonclassical correlations. In this paper, nonclassical correlations in two-qubit spin models are measured by the use of measurement-induced disturbance (MID) [S. Luo, Phys. Rev. A 77 (2008) 022301] and geometric measure of quantum discord (GQD) [B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105 (2010) 190502]. Their dependences on external magnetic field, spin-spin coupling, and the Dzyaloshinskii-Moriya (DM) interaction are presented in detail. We also compare Bell nonlocality, entanglement measured by concurrence, MID and GQD and illustrate their different characteristics. - Highlights: > Various quantum correlations in spin models are investigated. > Nonclassical correlations are measured by measurement-induced disturbance and Geometric measure of quantum discord. > Also, we investigate Bell nonlocality and concurrence. > We compare these quantum quantities and illustrate their different characteristics.

Zhang Guofeng, E-mail: gf1978zhang@buaa.edu.cn [Department of Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fan Heng; Ji Ailing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang Zhaotan [Department of Physics, Beijing Institute of Technology, Beijing 100081 (China); Abliz, Ahmad [School of Mathematics, Physics and Informatics, Xinjiang Normal University, Urumchi 830054 (China); Liu Wuming [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2011-10-15T23:59:59.000Z

216

Spin-Asymmetric Josephson Effect  

SciTech Connect (OSTI)

We propose that with ultracold Fermi gases one can realize a spin-asymmetric Josephson effect in which the two spin components of a Cooper pair are driven asymmetrically - corresponding to driving a Josephson junction of two superconductors with different voltages V{sub {up_arrow}} and V{sub {down_arrow}} for spin up and down electrons, respectively. We predict that the spin up and down components oscillate at the same frequency but with different amplitudes. Furthermore our results reveal that the standard interpretation of the Josephson supercurrent in terms of coherent bosonic pair tunneling is insufficient. We provide an intuitive interpretation of the Josephson supercurrent as interference in Rabi oscillations of pairs and single particles, the latter causing the asymmetry.

Heikkinen, M. O. J.; Massel, F.; Kajala, J.; Leskinen, M. J.; Toermae, P. [Department of Applied Physics, Aalto University School of Science and Technology, P.O.Box 15100, FI-00076 Aalto (Finland); Paraoanu, G. S. [Low Temperature Laboratory, Aalto University School of Science and Technology, P.O.Box 15100, FI-00076 Aalto (Finland)

2010-11-26T23:59:59.000Z

217

Two Wien Filter Spin Flipper  

SciTech Connect (OSTI)

A new 4pi spin manipulator composed of two Wien filters oriented orthogonally and separated by two solenoids has been installed at the CEBAF/Jefferson Lab photoinjector. The new spin manipulator is used to precisely set the electron spin direction at an experiment in any direction (in or out of plane of the accelerator) and provides the means to reverse, or flip, the helicity of the electron beam on a daily basis. This reversal is being employed to suppress systematic false asymmetries that can jeopardize challenging parity violation experiments that strive to measure increasingly small physics asymmetries [*,**,***]. The spin manipulator is part of the ultra-high vacuum polarized electron source beam line and has been successfully operated with 100keV and 130keV electron beam at high current (>100 microAmps). A unique feature of the device is that spin-flipping requires only the polarity of one solenoid magnet be changed. Performance characteristics of the Two Wien Filter Spin Flipper will be summarized.

Grames, J M; Benesch, J F; Clark, J; Hansknecht, J; Kazimi, R; Machie, D; Poelker, M; Stutzman, M L; Suleiman, R

2011-03-01T23:59:59.000Z

218

The Waste Prevention War-- Small Arms Fire Now, but the Heavy Artillery is Coming (and the Search is on for Magic Bullets)  

E-Print Network [OSTI]

The Waste Prevention War Small Arms Fire Now, but the Heavy Artillery is Coming (and the Search Is on for Magic Bullets) Dan Steinmeyer Monsanto Company 51. louis, Missouri 'Wa.te Prevention' is unambiguous, as con trasted with 'waste... minimization' or 'waste elimination'. It means preventing the produc tion of waste. It isn't easy to do. Typically it requires major modification to the process: * to minimize byproduct formation to recover product and byproducts * to recycle wastes...

Steinmeyer, D.

219

doi:10.1016/S0016-7037(02)00026-7 The distribution of sodium ions in aluminosilicate glasses: A high-field Na-23 MAS and 3Q  

E-Print Network [OSTI]

of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA (Received May 22-SiO2 join) and its distribution using 23 Na magic-angle spinning (MAS) nuclear magnetic resonance) because of the reduced effect of second-order quadrupolar interaction, and 23 Na MAS NMR spectra thus

Puglisi, Joseph

220

Spin transport in lateral spin valves and across a metal- insulator transition in V?O? /  

E-Print Network [OSTI]

J. Ansermet, Spin-dependent Peltier effect of perpendicularB. van Wees, Interplay of Peltier and Seebeck Effects inspin Seebeck coefficient. Peltier or spin blockade effects

Erekhinsky, Mikhail

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Spin transport in benzofurane bithiophene based organic spin valves  

SciTech Connect (OSTI)

In this paper we present spin transport in organic spin-valves using benzofurane bithiophene (BF3) as spacer layer between NiFe and Co ferromagnetic electrodes. The use of an AlO{sub x} buffer layer between the top electrode and the organic layer is discussed in terms of improvements of stacking topology, electrical transport and oxygen contamination of the BF3 layer. A study of magnetic hysteresis cycles evidences spin-valve behaviour. Transport properties are indicative of unshorted devices with non-linear I-V characteristics. Finally we report a magnetoresistance of 3% at 40 K and 10 mV in a sample with a 50 nm thick spacer layer, using an AlO{sub x} buffer layer.

Palosse, Mathieu; Séguy, Isabelle; Bedel-Pereira, Élena [CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse (France) [CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse (France); Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France)] [France; Villeneuve-Faure, Christina [Université de Toulouse (France) [Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France) [France; LAPLACE, Université Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9 (France); Mallet, Charlotte; Frère, Pierre [MOLTECH-Anjou, UMR CNRS 6200, Université d’Angers, 2 Bd Lavoisier 49045 ANGERS Cedex (France)] [MOLTECH-Anjou, UMR CNRS 6200, Université d’Angers, 2 Bd Lavoisier 49045 ANGERS Cedex (France); Warot-Fonrose, Bénédicte; Biziere, Nicolas [Université de Toulouse (France) [Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France) [France; CNRS, CEMES-CNRS UPR 8011, 29 rue Jeanne Marvig, BP 94347, FR-31055 Toulouse Cedex 4 (France); Bobo, Jean-François, E-mail: jfbobo@cemes.fr [Université de Toulouse (France) [Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France) [France; CNRS, CEMES-ONERA, NMH, 2 avenue Edouard Belin, FR-31055 Toulouse Cedex 4 (France)

2014-01-15T23:59:59.000Z

222

Controllable spin entanglement production in a quantum spin Hall ring  

E-Print Network [OSTI]

We study the entanglement production in a quantum spin Hall ring geometry where electrons of opposite spins are emitted in pairs from a source and collected in two different detectors. Postselection of coincidence detector events gives rise to entanglement in the system, measurable through correlations between the outcomes in the detectors. We have chosen a geometry such that the entanglement depends on the dynamical phases picked up by the edge states as they move around the ring. In turn, the dependence of the phases on gate potential and Rashba interaction allows for a precise electrical control of the entanglement production in the ring.

Anders Ström; Henrik Johannesson; Patrik Recher

2015-03-13T23:59:59.000Z

223

Spin dynamics in the strong spin-orbit coupling regime  

E-Print Network [OSTI]

PHYSICAL REVIEW B 84, 035318 (2011) Spin dynamics in the strong spin-orbit coupling regime Xin Liu,1 Xiong-Jun Liu,1 and Jairo Sinova1,2 1Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA 2Institute of Physics... frequency #2;so take the form: H so = (?1 ? 2?3 cos 2? )kx?y + (?2 + 2?3 cos 2? )ky?x, (5) where ?1 = ? + ?1 and ?2 = ?1 ? ?. 035318-11098-0121/2011/84(3)/035318(8) 2011 American Physical Society XIN LIU, XIONG-JUN LIU, AND JAIRO SINOVA PHYSICAL REVIEW B...

Liu, Xin; Liu, Xiong-Jun; Sinova, Jairo.

2011-01-01T23:59:59.000Z

224

Sum rules for spin-$1/2$ quantum gases in well-defined-spin states: spin-independent interactions and spin-dependent external fields  

E-Print Network [OSTI]

Many-body eigenstates of spin-$1/2$ particles with defined total spins contain spin and spatial wavefunctions belonging to multidimensional irreducible representations of the symmetric group, unless the total spin has the maximal allowed value. Matrix elements in the basis of such eigenstates are analyzed for spin-dependent interactions with external fields and spin-independent ones between the particles. Analytical expressions are obtained for sums of the matrix elements and sums of their squared modules. The sum rules are applied to perturbative analysis of energy spectra.

Yurovsky, Vladimir A

2015-01-01T23:59:59.000Z

225

THE MAGELLANIC INTER-CLOUD PROJECT (MAGIC). I. EVIDENCE FOR INTERMEDIATE-AGE STELLAR POPULATIONS IN BETWEEN THE MAGELLANIC CLOUDS  

SciTech Connect (OSTI)

The origin of the gas in between the Magellanic Clouds (MCs)-known as the ''Magellanic Bridge'' (MB)-is puzzling. Numerical simulations suggest that the MB formed from tidally stripped gas and stars in a recent interaction between the MCs. However, the apparent lack of stripped intermediate- or old-age stars associated with the MB is at odds with this picture. In this paper, we present the first results from the MAGellanic Inter-Cloud program (MAGIC) aimed at probing the stellar populations in the inter-Cloud region. We present observations of the stellar populations in two large fields located in between the Large and Small Magellanic Clouds (LMC/SMC), secured using the WFI camera on the 2.2 m telescope in La Silla. Using a synthetic color-magnitude diagram technique, we present the first quantitative evidence for the presence of intermediate-age and old stars in the inter-Cloud region. The intermediate-age stars-which make up {approx}28% of all stars in the region-are not present in fields at a similar distance from the SMC in a direction pointing away from the LMC. This provides potential evidence that these intermediate-age stars could have been tidally stripped from the SMC. However, spectroscopic studies will be needed to confirm or rule out the tidal origin for the inter-Cloud gas and stars.

Noeel, N. E. D.; Read, J. I. [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland); Conn, B. C.; Rix, H.-W. [Max Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany); Carrera, R. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain); Dolphin, A., E-mail: noelia@phys.ethz.ch [Raytheon Company, P.O. Box 11337, Tucson, AZ 85734-1337 (United States)

2013-05-10T23:59:59.000Z

226

A bulk-flow model of angled injection Lomakin bearings  

E-Print Network [OSTI]

A bulk-flow model for determination of the leakage and dynamic force characteristics of angled injection Lomakin bearings is presented. Zeroth- and first-order equations describe the equilibrium flow for a centered bearing and the perturbed flow...

Soulas, Thomas Antoine Theo

2001-01-01T23:59:59.000Z

227

Measurements of the CKM Angle Gamma at BaBar  

SciTech Connect (OSTI)

We present a short review of the measurements of the CKM angle {gamma} performed by the BABAR experiment. We focus on methods using charged B decays, which give a direct access to {gamma} and provide the best constraints so far.

Latour, Emmanuel; /Ecole Polytechnique

2007-10-02T23:59:59.000Z

228

Measurement of the CKM angle phi2 (alpha)  

E-Print Network [OSTI]

We present recent measurements of the unitarity triangle angle phi2(alpha) using B -> pi pi, B -> rho rho, and B -> rho pi decays. The measurements are based on data samples collected with the Belle and BaBar detectors at the KEKB and PEP-II e+e- colliders, respectively. We also report on a new measurement of a CP-violating asymmetry in B -> a_1+ pi- decay which will allow to constrain further the angle phi2.

A. Somov

2007-08-29T23:59:59.000Z

229

Spin Hall and spin-diagonal conductivity in the presence of Rashba and Dresselhaus spin-orbit coupling  

E-Print Network [OSTI]

We investigate the spin-current linear response conductivity tensor to an electric field in a paramagnetic two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit coupling in the weak scattering regime within the Born approximation...

Sinitsyn, NA; Hankiewicz, EM; Teizer, Winfried; Sinova, Jairo.

2004-01-01T23:59:59.000Z

230

Contact angles in the pseudopotential lattice Boltzmann modeling of wetting  

E-Print Network [OSTI]

In this paper, we aim to investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model, the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions: the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper, are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles, however, is unable to reproduce static contact angles close to 180 degrees. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles as compared with the other two types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.

Q. Li; K. H. Luo; Q. J. Kang; Q. Chen

2014-10-21T23:59:59.000Z

231

Chimera order in spin systems  

E-Print Network [OSTI]

Homogeneous populations of oscillators have recently been shown to exhibit stable coexistence of coherent and incoherent regions. Generalizing the concept of chimera states to the context of order-disorder transition in systems at thermal equilibrium, we show analytically that such complex ordering can appear in a system of Ising spins, possibly the simplest physical system exhibiting this phenomenon. We also show numerically the existence of chimera ordering in 3-dimensional spin systems that model layered magnetic materials, suggesting possible means of experimentally observing such states.

Rajeev Singh; Subinay Dasgupta; Sitabhra Sinha

2010-11-23T23:59:59.000Z

232

Chaotic spin correlations in frustrated Ising hierarchical lattices  

E-Print Network [OSTI]

Spin-spin correlations are calculated in frustrated hierarchical Ising models that exhibit chaotic renormalization-group behavior. The spin-spin correlations, as a function of distance, behave chaotically. The far correlations, ...

Aral, Nese

233

Control of single spin in Markovian environment  

E-Print Network [OSTI]

In this article we study the control of single spin in Markovian environment. Given an initial state, we compute all the possible states to which the spin can be driven at arbitrary time, under the assumption that fast ...

Yuan, Haidong

234

Maps for Lorentz transformations of spin  

E-Print Network [OSTI]

Lorentz transformations of spin density matrices for a particle with positive mass and spin 1/2 are described by maps of the kind used in open quantum dynamics. They show how the Lorentz transformations of the spin depend on the momentum. Since the spin and momentum generally are entangled, the maps generally are not completely positive and act in limited domains. States with two momentum values are considered, so the maps are for the spin qubit entangled with the qubit made from the two momentum values, and results from the open quantum dynamics of two coupled qubits can be applied. Inverse maps are used to show that every Lorentz transformation completely removes the spin polarization, and so completely removes the information, from a number of spin density matrices. The size of the spin polarization that is removed is calculated for particular cases.

Thomas F. Jordan; Anil Shaji; E. C. G. Sudarshan

2005-11-08T23:59:59.000Z

235

The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC). Summary of research conducted during year 1  

SciTech Connect (OSTI)

A project for the US Department of Energy, entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources`` was initiated by E&S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

Sullivan, T.J.; Eilers, J.M. [E and S Environmental Chemistry, Inc., Corvallis, OR (United States)] [E and S Environmental Chemistry, Inc., Corvallis, OR (United States); Cosby, B.J. [Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences] [Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences; Driscoll, C.T. [Syracuse Univ., NY (United States). Dept. of Civil Engineering] [Syracuse Univ., NY (United States). Dept. of Civil Engineering; Hemond, H.F. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering] [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering; Charles, D.F. [Academy of Natural Sciences of Philadelphia, PA (United States). Patrick Center for Environmental Research] [Academy of Natural Sciences of Philadelphia, PA (United States). Patrick Center for Environmental Research; Norton, S.A. [Maine Univ., Orono, ME (United States). Dept. of Geological Sciences] [Maine Univ., Orono, ME (United States). Dept. of Geological Sciences

1993-03-05T23:59:59.000Z

236

Spin Network Wavefunction and the Graviton Propagator  

E-Print Network [OSTI]

We show that if the flat-spacetime wavefunction in the spin network basis of Loop Quantum Gravity has a large-spin asymptotics given by Rovelli's ansatz then the corresponding graviton propagator has the correct large-distance asymptotics nonperturbatively and independently of the spin foam model used to describe the evolution operator. We also argue that even in the Rovelli approach the wavefunction should satisfy the Hamiltonian constraint and we give an explanation for the spin parameter appearing in Rovelli's ansatz.

A. Mikovic

2007-06-04T23:59:59.000Z

237

Single electron spin qubits in electrostatically defined  

E-Print Network [OSTI]

· Read-out: spin-to-charge conversion · Manipulation: exchange interaction, spin-orbit interaction etc-out · Spin to charge conversion x y + Universal 1-qubit gate · Electron spin resonance z x y z Influence;Dilution refrigerator ~ 1m sample @ 25 mK 25 mK 1 K 4 K 300 K #12;Counting electrons onebyone electron

Duisburg-Essen, Universität

238

An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films  

SciTech Connect (OSTI)

An array of antidots has been used as an edge to create the phenomenon of total non-reflection of spin waves in yttrium iron garnet films. At the critical angle between the line of antidots and the magnetic field, we observe a high-intensity beam of spin waves moving along the line of antidots. The properties of these waves are investigated experimentally by Brillouin light scattering spectroscopy. The conditions required for the occurrence of this phenomenon based on an analysis of the properties of the isofrequency dependencies are presented. The numerical simulations are in good agreement with those of the experimental measurements.

Gieniusz, R., E-mail: gieniusz@uwb.edu.pl; Guzowska, U.; Maziewski, A. [Faculty of Physics, University of Bia?ystok, Lipowa 41, 15-424 Bia?ystok (Poland); Bessonov, V. D. [Faculty of Physics, University of Bia?ystok, Lipowa 41, 15-424 Bia?ystok (Poland); Institute of Metal Physics, Ural Division of RAS, Yekaterinburg 620041 (Russian Federation); Stognii, A. I. [Scientific-Practical Materials Research Center at National Academy of Sciences of Belarus, ul. P. Brovki 19, Minsk 220072 (Belarus)

2014-02-24T23:59:59.000Z

239

Phenomena of spin rotation and oscillation of particles (atoms, molecules) containing in a trap blowing on by wind of high energy particles in storage ring  

E-Print Network [OSTI]

Spin rotation and oscillation phenomena of particles captured in a gas target through which beam of high energy particles passes is discussed. Such experiment arrangement make it realizable for storage ring and allows to study zero-angle scattering amplitude at highest possible energies.

Vladimir Baryshevsky

2002-02-14T23:59:59.000Z

240

Inverse spin Hall effect induced by spin pumping into semiconducting ZnO  

SciTech Connect (OSTI)

The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.

Lee, Jung-Chuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Huang, Leng-Wei [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China); Hung, Dung-Shing, E-mail: dshung@mail.mcu.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan (China); Chiang, Tung-Han [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liang, Jun-Zhi [Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan (China); Lee, Shang-Fan, E-mail: leesf@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China)

2014-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Quantum superintegrable system for arbitrary spin  

E-Print Network [OSTI]

In [1] was considered the superintegrable system which describes the magnetic dipole with spin 1/2 (neutron) in the field of linear current. Here we present its generalization for any spin which preserves superintegrability. The dynamical symmetry stays the same as it is for spin 1/2.

G. Pronko

2007-09-20T23:59:59.000Z

242

Imaging mesoscopic spin Hall flow: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures  

E-Print Network [OSTI]

symmetry and strong crystalline potential.3,4 Furthermore, harnessing of spin currents induced by the spin even in equilibrium when all leads are at the same potential , the total spin currents obtained SO coupling effects are tiny relativistic cor- rections for particles moving through electric fields

Nikolic, Branislav K.

243

The XY Spin Chain Random Block Operators  

E-Print Network [OSTI]

The XY Spin Chain Random Block Operators Proof of Main Result Open Questions Localization for Random Block Operators Related to the XY Spin Chain Jacob W. Chapman Division of Science Southern Wesleyan University Central, SC Joint work with G¨unter Stolz UAB NSF-CBMS Conference on Quantum Spin

Jung, Paul

244

SPINNING THE SEMANTIC WEB INTRODUCTION  

E-Print Network [OSTI]

SPINNING THE SEMANTIC WEB INTRODUCTION Dieter Fensel, Jim Hendler, Henry Lieberman, and Wolfgang Wahlster The World Wide Web (WWW) has drastically changed the availability of electronically accessible (http://www.w3c.org) expects around a billion Web users and an even higher number of available documents

Wahlster, Wolfgang - Deutsche Forschungszentrum für Künstliche Intelligenz & FR 6.2

245

Spin-forming Project Report  

SciTech Connect (OSTI)

In a second development order, spin-forming equipment was again evaluated using the test shape, a hemispherical shell. In this second development order, pure vanadium and alloy titanium (Ti-6Al-4V) were spin-formed, as well as additional copper and 21-6-9 stainless. In the first development order the following materials had been spin-formed: copper (alloy C11000 ETP), 6061 aluminum, 304L stainless steel, 21-6-9 stainless steel, and tantalum-2.5% tungsten. Significant challenges included properly adjusting the rotations-per-minute (RPM), cracking at un-beveled edges and laser marks, redressing of notches, surface cracking, non-uniform temperature evolution in the titanium, and cracking of the tailstock. Lessons learned were that 300 RPM worked better than 600 RPM for most materials (at the feed rate of 800 mm/min); beveling the edges to lower the stress reduces edge cracking; notches, laser marks, or edge defects in the preform doom the process to cracking and failure; coolant is required for vanadium spin-forming; increasing the number of passes to nine or more eliminates surface cracking for vanadium; titanium develops a hot zone in front of the rollers; and the tailstock should be redesigned to eliminate the cylindrical stress concentrator in the center.

Switzner, Nathan; Henry, Dick

2009-03-20T23:59:59.000Z

246

BIOTOOLOMICS Ni SuperSpin \\ Cu SuperSpin \\ Co SuperSpin \\ Zn SuperSpin  

E-Print Network [OSTI]

target protein. It is a particularly powerful tool in applications such as small-scale purification, high disposable device that allows rapid purification and screening of histidine- tagged proteins at much less cost. The spin tube is filled with novel metal immobilised chromatography resin of small particles (20

Lebendiker, Mario

247

Large magnetoresistance in oxide based ferromagnet/superconductor spin switches.  

SciTech Connect (OSTI)

We report large magnetoresistance (in excess of 1000%) in ferromagnet / superconductor / ferromagnet structures made of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and YBa{sub 2}Cu{sub 3}O{sub 7} in the current in plane (CIP) geometry. This magnetoresistance has many of the ingredients of the giant magnetoresistance of metallic superlattices: it is independent on the angle between current and magnetic field, depends on the relative orientation of the magnetization in the ferromagnetic layers, and takes very large values. The origin is enhanced scattering at the F/S interface in the anti parallel configuration of the magnetizations. Furthermore, we examine the dependence of the magnetoresistance effect on the thickness of the superconducting layer, and show that the magnetoresistance dies out for thickness in excess of 30 nm, setting a length scale for the diffusion of spin polarized quasiparticles.

Pena, V.; Nemes, N.; Visani, C.; Garcia-Barriocanal, J.; Bruno, F.; Arias, D.; Sefrioui, Z.; Leon, C.; te Velthuis, S. G. E.; Hoffmann, A.; Garcia-Hernandez, M.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid; Inst. de Ciencia de Materiales de Madrid

2006-01-01T23:59:59.000Z

248

Spinning Reserve From Responsive Loads  

SciTech Connect (OSTI)

Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial reward for supplying spinning reserve than for supplying the other reserve services as a result of the higher spinning reserve prices. The LIPAedge program (LIPA's demand reduction program using Carrier ComfortChoice thermostats) provides an opportunity to test the use of responsive load for spinning reserve. With potentially 75 MW of spinning reserve capability already installed, this test program can also make an important contribution to the capacity needs of Long Island during the summer of 2003. Testing could also be done at ConEd ({approx}30 MW), SCE ({approx}15 MW), and/or SDG&E ({approx}15 MW). This paper is divided into six chapters. Chapter 2 discusses the contingency reserve ancillary services, their functions in supporting power system reliability, and their technical requirements. It also discusses the policy and tariff requirements and attempts to distinguish between ones that are genuinely necessary and ones that are artifacts of the technologies that were historically used to provide the services. Chapter 3 discusses how responsive load could provide contingency reserves (especially spinning reserve) for the power system. Chapter 4 specifically discusses the Carrier ComfortChoice responsive thermostat technology, the LIPAedge experience with that technology, and how the technology could be used to supply spinning reserve. Chapter 5 discusses a number of unresolved issues and suggests areas for further research. Chapter 6 offers conclusions and recommendations.

Kirby, B.J.

2003-04-08T23:59:59.000Z

249

New Spin Foam Models of Quantum Gravity  

E-Print Network [OSTI]

We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.

A. Mikovic

2005-01-28T23:59:59.000Z

250

E-Print Network 3.0 - angle scattering studies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: angle scattering studies Page: << < 1 2 3 4 5 > >> 1 Neutron Scattering in Polymer Micelle Characterization Summary: scattering Small Angle...

251

E-Print Network 3.0 - angle-resolved ultraviolet photoelectron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph.D. March, 1994. Thesis: "Angle-Resolved Photoemission Study of Several Transition Metal... .D. 2003. Thesis: "Angle-Resolved Photoemission Study of the Elelctronic Structure...

252

Demonstration of Angle Dependent Casimir Force Between Corrugations  

E-Print Network [OSTI]

The normal Casimir force between a sinusoidally corrugated gold coated plate and a sphere was measured at various angles between the corrugations using an atomic force microscope. A strong dependence on the orientation angle of the corrugation is found. The measured forces were found to deviate from the proximity force approximation and are in agreement with the theory based on the gradient expansion including correlation effects of geometry and material properties. We analyze the role of temperature. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems.

A. A. Banishev; J. Wagner; T. Emig; R. Zandi; U. Mohideen

2012-12-26T23:59:59.000Z

253

Angle of Arrival Detection with Fifth Order Phase Operators  

E-Print Network [OSTI]

In this paper, a fifth order propagator operators are proposed for estimating the Angles Of Arrival (AOA) of narrowband electromagnetic waves impinging on antenna array when its number of sensors is larger than the number of radiating sources. The array response matrix is partitioned into five linearly dependent phases to construct the noise projector using five different propagators from non diagonal blocks of the spectral matrice of the received data; hence, five different estimators are proposed to estimate the angles of the sources. The simulation results proved the performance of the proposed estimators in the presence of white noise comparatively to high resolution eigen based spectra.

Khmou, Youssef

2015-01-01T23:59:59.000Z

254

Off-Angle Iris Correction using a Biological Model  

SciTech Connect (OSTI)

This work implements an eye model to simulate corneal refraction effects. Using this model, ray tracing is performed to calculate transforms to remove refractive effects in off-angle iris images when reprojected to a frontal view. The correction process is used as a preprocessing step for off-angle iris images for input to a commercial matcher. With this method, a match score distribution mean improvement of 11.65% for 30 degree images, 44.94% for 40 degree images, and 146.1% improvement for 50 degree images is observed versus match score distributions with unmodi ed images.

Thompson, Joseph T [ORNL] [ORNL; Santos-Villalobos, Hector J [ORNL] [ORNL; Karakaya, Mahmut [ORNL] [ORNL; Barstow, Del R [ORNL] [ORNL; Bolme, David S [ORNL] [ORNL; Boehnen, Chris Bensing [ORNL] [ORNL

2013-01-01T23:59:59.000Z

255

Top quark spin correlations and polarization at the LHC: standard model predictions and effects of anomalous top chromo moments  

E-Print Network [OSTI]

A number of top-spin observables are computed within the Standard Model (SM), at next-to-leading order in the strong and weak gauge couplings for hadronic top-quark anti-quark (ttbar) production and decay at the LHC for center-of-mass energies 7 and 8 TeV. For dileptonic final states we consider the azimuthal angle correlation, the helicity correlation, and the opening angle distribution; for lepton plus jets final states we determine distributions and asymmetries that trace a longitudinal and transverse polarization, respectively, of the t and t-bar samples. In addition, we investigate the effects of a non-zero chromo-magnetic and chromo-electric dipole moment of the top quark on these and other top-spin observables and associated asymmetries. These observables allow to disentangle the contributions from the real and imaginary parts of these moments.

Werner Bernreuther; Zong-Guo Si

2015-03-16T23:59:59.000Z

256

State Transfer and Spin Measurement  

E-Print Network [OSTI]

We present a Hamiltonian that can be used for amplifying the signal from a quantum state, enabling the measurement of a macroscopic observable to determine the state of a single spin. We prove a general mapping between this Hamiltonian and an exchange Hamiltonian for arbitrary coupling strengths and local magnetic fields. This facilitates the use of existing schemes for perfect state transfer to give perfect amplification. We further prove a link between the evolution of this fixed Hamiltonian and classical Cellular Automata, thereby unifying previous approaches to this amplification task. Finally, we show how to use the new Hamiltonian for perfect state transfer in the, to date, unique scenario where total spin is not conserved during the evolution, and demonstrate that this yields a significantly different response in the presence of decoherence.

A. Kay

2006-04-21T23:59:59.000Z

257

Spin Asymmetries at Jurgen Wendland  

E-Print Network [OSTI]

{ Semi-Inclusive DIS #15; High p t hadron pairs #15; The HERMES RICH detector #15; Conclusion and Outlook; Inclusive DIS allows for the determination of the sum of the quark spins. (With QCD #12;ts to world data #15; HERA is an ep collider with a proton energy of 920GeV and electron energy of 27.5 GeV #15; HERMES

258

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

259

Measurements of the angle alpha (phi2) at B factories  

E-Print Network [OSTI]

The measurements of the angle alpha (phi2) of the unitarity triangle at the B factories are reviewed. The value of alpha determined by combining the results obtained in the B to pi pi, B to rho pi, and B to rho rho modes by both the BABAR and Belle experiments is (87.5 +6.2 -5.3) degrees.

G. Vasseur

2008-10-02T23:59:59.000Z

260

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation  

E-Print Network [OSTI]

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation Clemens Jauch Risø National Laboratory Wind Energy Department P.O. Box 49 DK-4000 Roskilde, Denmark clemens.jauch@risoe.dk Abstract: In this paper it is investigated how active-stall wind turbines can contribute to the stabilisation of the power

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SANS -Small Angle Neutron Scattering Tcnica de difrao  

E-Print Network [OSTI]

SANS - Small Angle Neutron Scattering Técnica de difração informações sobre tamanho e forma de- Neutrons are created in the centre of the target station when the beam of high energy protons collides by evaporating nuclear particles, mainly neutrons, in all directions. Each proton produces approximately 15

Loh, Watson

262

3D discrete rotations using hinge angles Yohan Thibaulta,  

E-Print Network [OSTI]

3D discrete rotations using hinge angles Yohan Thibaulta, , Akihiro Sugimotob , Yukiko Kenmochia a of Informatics, Japan Abstract In this paper, we study 3D rotations on grid points computed by using only integers. For that purpose, we investigate the intersection between the 3D half- grid and the rotation

Paris-Sud XI, Université de

263

On higher spin partition functions  

E-Print Network [OSTI]

We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the "physical" ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z=1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z=1 is also true in the conformal higher spin theory (with higher-derivative d^{2s} kinetic terms) expanded near flat or conformally flat S^4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat space. This non...

Beccaria, M

2015-01-01T23:59:59.000Z

264

Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

265

Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions  

E-Print Network [OSTI]

Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions Q. R-angle neutron scattering was used to characterize the solution behavior of charged carboxylic acid terminated- copy,16 small-angle X-ray scattering,17 and small-angle neutron scattering (SANS),18-25 have been used

Dubin, Paul D.

266

Effect of catch-and-release angling on growth of largemouth bass, Micropterus salmoides  

E-Print Network [OSTI]

Effect of catch-and-release angling on growth of largemouth bass, Micropterus salmoides K . L . P O bass, Micropterus salmoides Lace´ pe` de. Angling mortality was 0.00 ± 0.092% for largemouth bass fish over a 40-day angling and recovery period. Although catch-and-release angling appears to have

Wilde, Gene

267

Holographic Representation of Higher Spin Gauge Fields  

E-Print Network [OSTI]

Extending the results of \\cite{Heem}, \\cite{KLRS} on the holographic representation of local gauge field operators in anti de Sitter space, here we construct the bulk operators for higher spin gauge fields in the leading order of $\\frac{1}{N}$ expansion. Working in holographic gauge for higher spin gauge fields, we show that gauge field operators with integer spin $s>1$ can be represented by an integration over a ball region, which is the interior region of the spacelike bulk lightcone on the boundary. The construction is shown to be AdS-covariant up to gauge transformations, and the two-point function between higher spin gauge fields and boundary higher spin current exhibit singularities on both bulk and boundary lightcones. We also comment on possible extension to the level of three-point functions and carry out a causal construction for higher spin fields in de Sitter spacetime.

Debajyoti Sarkar; Xiao Xiao

2014-11-17T23:59:59.000Z

268

Ambipolar spin diffusion and D'yakonov-Perel' spin relaxation in GaAs quantum wells  

E-Print Network [OSTI]

We report theoretical and experimental studies of ambipolar spin diffusion in a semiconductor. A circularly polarized laser pulse is used to excite spin-polarized carriers in a GaAs multiple quantum-well sample at 80 K. ...

Zhao, Hui; Mower, Matt; Vignale, G.

2009-03-01T23:59:59.000Z

269

Spin-2 particles in gravitational fields  

E-Print Network [OSTI]

We give a solution of the wave equation for massless, or massive spin-2 particles propagating in a gravitational background. The solution is covariant, gauge-invariant and exact to first order in the background gravitational field. The background contribution is confined to a phase factor from which geometrical and physical optics can be derived. The phase also describes Mashhoon's spin-rotation coupling and, in general, the spin-gravity interaction.

G. Papini

2007-02-01T23:59:59.000Z

270

The Raychaudhuri equation for spinning test particles  

E-Print Network [OSTI]

We obtain generalized Raychaudhuri equations for spinning test particles corresponding to congruences of particle's world-lines, momentum, and spin. These are physical examples of the Raychaudhuri equation for a non-normalized vector, unit time-like vector, and unit space-like vector. We compute and compare the evolution of expansion-like parameters associated with these congruences for spinning particles confined in the equatorial plane of the Kerr space-time.

Mohseni, Morteza

2015-01-01T23:59:59.000Z

271

Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons  

E-Print Network [OSTI]

Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle $\\psi$ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum relative to the direction of the incident beam, and the Feynman variable $x_F$. The $\\sin(\\psi)$ amplitudes are positive for positive pions and kaons, slightly negative for negative pions and consistent with zero for negative kaons, with particular transverse-momentum but weak $x_F$ dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Ivanilov, A; Jackson, H E; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Muccifora, V; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

2013-01-01T23:59:59.000Z

272

Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons  

E-Print Network [OSTI]

Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle $\\psi$ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum relative to the direction of the incident beam, and the Feynman variable $x_F$. The $\\sin(\\psi)$ amplitudes are positive for positive pions and kaons, slightly negative for negative pions and consistent with zero for negative kaons, with particular transverse-momentum but weak $x_F$ dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

The HERMES Collaboration; A. Airapetian; N. Akopov; Z. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; S. Belostotski; N. Bianchi; H. P. Blok; A. Borissov; J. Bowles; V. Bryzgalov; J. Burns; M. Capiluppi; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; L. De Nardo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Düren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; R. Fabbri; A. Fantoni; L. Felawka; S. Frullani; D. Gabbert; G. Gapienko; V. Gapienko; G. Gavrilov; V. Gharibyan; F. Giordano; S. Gliske; M. Golembiovskaya; C. Hadjidakis; M. Hartig; D. Hasch; A. Hillenbrand; M. Hoek; Y. Holler; I. Hristova; A. Ivanilov; H. E. Jackson; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; L. Lapikás; I. Lehmann; P. Lenisa; A. López Ruiz; W. Lorenzon; B. -Q. Ma; D. Mahon; N. C. R. Makins; S. I. Manaenkov; Y. Mao; B. Marianski; A. Martinez de la Ossa; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; V. Muccifora; M. Murray; A. Mussgiller; E. Nappi; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; A. Petrosyan; M. Raithel; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; F. Sanftl; A. Schäfer; G. Schnell; B. Seitz; T. -A. Shibata; V. Shutov; M. Stancari; M. Statera; E. Steffens; J. J. M. Steijger; J. Stewart; F. Stinzing; S. Taroian; A. Terkulov; R. Truty; A. Trzcinski; M. Tytgat; Y. Van Haarlem; C. Van Hulse; D. Veretennikov; V. Vikhrov; I. Vilardi; S. Wang; S. Yaschenko; Z. Ye; S. Yen; W. Yu; V. Zagrebelnyy; D. Zeiler; B. Zihlmann; P. Zupranski

2013-10-18T23:59:59.000Z

273

Upper bound on parity-violating neutron spin rotation in {sup 4}He  

SciTech Connect (OSTI)

We report an upper bound on parity-violating neutron spin rotation in {sup 4}He. This experiment is the most sensitive search for neutron-weak optical activity yet performed and represents a significant advance in precision in comparison to past measurements in heavy nuclei. The experiment was performed at the NG-6 slow-neutron beamline at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Our result for the neutron spin rotation angle per unit length in {sup 4}He is d{phi}/dz=[+1.7{+-}9.1(stat.){+-}1.4(sys.)]x10{sup -7} rad/m. The statistical uncertainty is smaller than current estimates of the range of possible values of d{phi}/dz in n+{sup 4}He.

Snow, W. M.; Luo, D.; Walbridge, S. B. [Indiana University/CEEM, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408 (United States); Bass, C. D.; Bass, T. D.; Mumm, H. P.; Nico, J. S. [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Crawford, B. E. [Gettysburg College, 300 North Washington Street, Gettysburg, Pennsylvania 17325 (United States); Gan, K.; Micherdzinska, A. M.; Opper, A. K. [The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Heckel, B. R.; Swanson, H. E. [University of Washington/CENPA, Box 354290, Seattle, Washington 98195 (United States); Markoff, D. M. [North Carolina Central University/TUNL, 1801 Fayetteville Street, Durham, North Carolina 27707 (United States); Sarsour, M. [Georgia State University, 29 Peachtree Center Avenue, Atlanta, Georgia 30303-4106 (United States); Sharapov, E. I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

2011-02-15T23:59:59.000Z

274

Spin injection and transport in semiconductor and metal nanostructures  

E-Print Network [OSTI]

coefficient and can be determined for our devices from two-terminal spin valvecoefficient of the spin-selective contacts, ? n and ? sf are total ‘transport time’ through the spin valve andcoefficient of the spin-selective contacts, ? n and ? sf are total ‘transport time’ through the spin valve and

Zhu, Lei

2009-01-01T23:59:59.000Z

275

It's been over a month since the last MAGIC update, but the wheels are certainly in motion and much has been going on behind the scenes. Options for communication to and from the ship are  

E-Print Network [OSTI]

to ARM for measurements that will be associated with MAGIC. Radar calibration was a topic I mentioned is an instrument that measures the sizes and number of raindrops that fall at ground level. If it is assumed that these drops are the same ones that the radar is "seeing" aloft (i.e., no evaporation occurs during fall, etc

276

Flipping Photoelectron Spins in Topological Insulators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science....

277

Spin Foam Models from the Tetrad Integration  

E-Print Network [OSTI]

We describe a class of spin foam models of four-dimensional quantum gravity which is based on the integration of the tetrad one-forms in the path integral for the Palatini action of General Relativity. In the Euclidian gravity case this class of models can be understood as a modification of the Barrett-Crane spin foam model. Fermionic matter can be coupled by using the path integral with sources for the tetrads and the spin connection, and the corresponding state sum is based on a spin foam where both the edges and the faces are colored independently with the irreducible representations of the spacetime rotations group.

A. Mikovic

2005-11-15T23:59:59.000Z

278

RHIC spin flipper AC dipole controller  

SciTech Connect (OSTI)

The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

2011-03-28T23:59:59.000Z

279

The Spin Structure of the Nucleon  

E-Print Network [OSTI]

We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.

Filippone, B W; Ji, Xiangdong

2001-01-01T23:59:59.000Z

280

The Spin Structure of the Nucleon  

E-Print Network [OSTI]

We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.

B. W. Filippone; Xiangdong Ji

2001-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive ?0 production  

SciTech Connect (OSTI)

We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin ?h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ?h of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

Holtrop, M; Hyde, C E; Ireland, D G; Isupov, E L; Jawalkar, S S; Jenkins, D; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kimy, W; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I.J. D.; Markov, N; Mayer, M; McAndrew, J; McKinnon, B; Meyer, C A; Micherdzinska, A.M.; Mokeev, V; Moreno, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Sabatio, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Stepanyan, S S; Stepanyan, S; Stoler, P; Strakovsky, I; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Voskanyan, H; Voutier, E; Watts, D; Weinstein, L B; Weygand, D P; Wood, M H; Zana, L; Zhang, J; Zhao, B; Zhao, Z W

2011-10-25T23:59:59.000Z

282

Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive ?0 production  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin ?h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ?h of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

Holtrop, M; Hyde, C E; Ireland, D G; Isupov, E L; Jawalkar, S S; Jenkins, D; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kimy, W; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I.J. D.; Markov, N; Mayer, M; McAndrew, J; McKinnon, B; Meyer, C A; Micherdzinska, A.M.; Mokeev, V; Moreno, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Sabatio, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Stepanyan, S S; Stepanyan, S; Stoler, P; Strakovsky, I; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Voskanyan, H; Voutier, E; Watts, D; Weinstein, L B; Weygand, D P; Wood, M H; Zana, L; Zhang, J; Zhao, B; Zhao, Z W

2011-10-25T23:59:59.000Z

283

Radiation damage studies using small-angle neutron scattering  

SciTech Connect (OSTI)

This contribution reviews a number of small-angle neutron scattering (SANS) studies of irradiated metals and steels of relevance to fission and fusion technology. Information obtainable by SANS measurements is recalled with special reference to the determination of the size distribution function of the microstructural inhomogeneities. The selected examples concern studies of the main kinds of radiation defects: voids, precipitates, He-bubbles. Some recent results obtained on structural materials for the first-wall of fusion reactors are also presented.

Albertini, G.; Rustichelli, F. [INFM, Ancona (Italy); Carsughi, F. [INFM, Ancona (Italy). Ist. di Scienze Fisiche; [KFA, Juelich (Germany). Inst. fuer Festkoerperforschung; Coppola, R. [ENEA-Casaccia, Roma (Italy); Stefanon, M. [ENEA, Bologna (Italy)

1996-12-31T23:59:59.000Z

284

Experimental Verification of Comparability between Spin-Orbit and Spin-Diffusion Lengths Yasuhiro Niimi,1,* Dahai Wei,1  

E-Print Network [OSTI]

measurements are comparable to the spin diffusion lengths determined from lateral spin valve ones. Even spin-orbit length nicely follows a linear law as a function of the diffusion coefficient, clearly valve devices or along edges of samples with spin Hall effects (SHEs). Such a large spin accumulation

Otani, Yoshichika

285

Angle-resolved effective potentials for disk-shaped molecules  

E-Print Network [OSTI]

We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van-der-Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

Thomas Heinemann; Karol Palczynski; Joachim Dzubiella; Sabine H. L. Klapp

2014-10-22T23:59:59.000Z

286

Beam! Magic! | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover:Battery BoostAdvancedBe|He

287

Spin Transport and Relaxation in Graphene and Germanium  

E-Print Network [OSTI]

the diffusion coefficients of the SLG spin valve (device A)diffusion coefficients are observed in SLG spin valve withvalves (device D). (a) Spin lifetime (squares) and diffusion coefficient (

Han, Wei

2011-01-01T23:59:59.000Z

288

Criticality without Frustration for Quantum Spin-1 Chains  

E-Print Network [OSTI]

Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor ...

Movassagh, Ramis

289

Charge and spin topological insulators  

SciTech Connect (OSTI)

The topologically nontrivial states of matter-charge and spin topological insulators, which exhibit, respectively, properties of the integer quantum Hall effect and the quantum spin Hall effect-are discussed. The topological characteristics (invariant with respect to weak adiabatic changes in the Hamiltonian parameters) which lead to such states are considered. The model of a 2D hexagonal lattice having symmetries broken with respect to time reversal and spatial inversion which was proposed by Haldane and marked the beginning of unprecedented activity in the study of topologically nontrivial states is discussed. This model relates the microscopic nature of the symmetry breaking with respect to the time reversal to the occurrence of spontaneous orbital currents which circulate within a unit cell. Such currents become zero upon summation over the unit cell, but they may form spreading current states at the surface which are similar to the edge current states under the quantum Hall effect. The first model of spontaneous currents (exciton insulator model) is considered, and the possibility of implementing new topologically nontrivial states in this model is discussed.

Kopaev, Yu. V., E-mail: kopaev@sci.lebedev.ru; Gorbatsevich, A. A.; Belyavskii, V. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2011-09-15T23:59:59.000Z

290

Magnetic Monopoles in Spin Ice  

E-Print Network [OSTI]

Electrically charged particles, such as the electron, are ubiquitous. By contrast, no elementary particles with a net magnetic charge have ever been observed, despite intensive and prolonged searches. We pursue an alternative strategy, namely that of realising them not as elementary but rather as emergent particles, i.e., as manifestations of the correlations present in a strongly interacting many-body system. The most prominent examples of emergent quasiparticles are the ones with fractional electric charge e/3 in quantum Hall physics. Here we show that magnetic monopoles do emerge in a class of exotic magnets known collectively as spin ice: the dipole moment of the underlying electronic degrees of freedom fractionalises into monopoles. This enables us to account for a mysterious phase transition observed experimentally in spin ice in a magnetic field, which is a liquid-gas transition of the magnetic monopoles. These monopoles can also be detected by other means, e.g., in an experiment modelled after the celebrated Stanford magnetic monopole search.

Claudio Castelnovo; Roderich Moessner; Shivaji L. Sondhi

2007-10-31T23:59:59.000Z

291

Hysteretic Optimization For Spin Glasses  

E-Print Network [OSTI]

The recently proposed Hysteretic Optimization (HO) procedure is applied to the 1D Ising spin chain with long range interactions. To study its effectiveness, the quality of ground state energies found as a function of the distance dependence exponent, $\\sigma$, is assessed. It is found that the transition from an infinite-range to a long-range interaction at $\\sigma=0.5$ is accompanied by a sharp decrease in the performance . The transition is signaled by a change in the scaling behavior of the average avalanche size observed during the hysteresis process. This indicates that HO requires the system to be infinite-range, with a high degree of interconnectivity between variables leading to large avalanches, in order to function properly. An analysis of the way auto-correlations evolve during the optimization procedure confirm that the search of phase space is less efficient, with the system becoming effectively stuck in suboptimal configurations much earlier. These observations explain the poor performance that HO obtained for the Edwards-Anderson spin glass on finite-dimensional lattices, and suggest that its usefulness might be limited in many combinatorial optimization problems.

B. Goncalves; S. Boettcher

2007-12-10T23:59:59.000Z

292

Single-parameter spin-pumping in driven metallic rings with spin-orbit coupling  

SciTech Connect (OSTI)

We consider the generation of a pure spin-current at zero bias voltage with a single time-dependent potential. To such end we study a device made of a mesoscopic ring connected to electrodes and clarify the interplay between a magnetic flux, spin-orbit coupling, and non-adiabatic driving in the production of a spin and electrical current. By using Floquet theory, we show that the generated spin to charge current ratio can be controlled by tuning the spin-orbit coupling.

Ramos, J. P.; Apel, V. M. [Departamento de Física, Universidad Católica del Norte, Angamos 0610, Casilla 1280, Antofagasta (Chile); Foa Torres, L. E. F. [Instituto de Física Enrique Gaviola (CONICET) and FaMAF, Universidad Nacional de Córdoba, Ciudad Universitaria 5000, Córdoba (Argentina); Orellana, P. A. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, San Joaquin, Santiago (Chile)

2014-03-28T23:59:59.000Z

293

Spin precession and energy conservation Onuttom Narayan  

E-Print Network [OSTI]

Spin precession and energy conservation Onuttom Narayan Physics Department, University as a single closed system whose energy is conserved. Through two simple examples, it is shown, but as a result of the energy difference between states with the spin parallel and antiparallel to the field. Thus

California at Santa Cruz, University of

294

Spin Transport in non-inertial frame  

E-Print Network [OSTI]

The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin-orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the $\\vec{k}. \\vec{p}$ method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

Debashree Chowdhury; B. Basu

2014-04-09T23:59:59.000Z

295

Spacetime Warps for Spinning Particles Possible?  

E-Print Network [OSTI]

By incorporating spinning particles into the framework of classical General Relativity, the theory is changed insofar, as, though using holonome coordinates, the connexion becomes asymmetrical. This implies, that partial derivatives do not commute any longer. Hence, the class of functions under consideration has to be extended. A non-minimal extension leads to the possibility of spacetime warps for spinning particles.

T. Dudas

2002-01-04T23:59:59.000Z

296

Geometrical description of spin-2 fields  

E-Print Network [OSTI]

We show that the torsion of a Cartan geometry can be associated to two spin-2 fields. This structure allows a new approach to deal with the proposal of geometrization of spin-2 fields besides the traditional one dealt with in General Relativity. We use the associated Hilbert-Einstein Lagrangian $R$ for generating a dynamics for the fields.

M. Novello

2002-12-05T23:59:59.000Z

297

Environment Assisted Metrology with Spin Qubit  

E-Print Network [OSTI]

We investigate the sensitivity of a recently proposed method for precision measurement [Phys. Rev. Lett. 106, 140502 (2011)], focusing on an implementation based on solid-state spin systems. The scheme amplifies a quantum sensor response to weak external fields by exploiting its coupling to spin impurities in the environment. We analyze the limits to the sensitivity due to decoherence and propose dynamical decoupling schemes to increase the spin coherence time. The sensitivity is also limited by the environment spin polarization; therefore we discuss strategies to polarize the environment spins and present a method to extend the scheme to the case of zero polarization. The coherence time and polarization determine a figure of merit for the environment's ability to enhance the sensitivity compared to echo-based sensing schemes. This figure of merit can be used to engineer optimized samples for high-sensitivity nanoscale magnetic sensing, such as diamond nanocrystals with controlled impurity density.

P. Cappellaro; G. Goldstein; J. S. Hodges; L. Jiang; J. R. Maze; A. S. Sørensen; M. D. Lukin

2012-01-12T23:59:59.000Z

298

Environment Assisted Metrology with Spin Qubit  

E-Print Network [OSTI]

We investigate the sensitivity of a recently proposed method for precision measurement [Phys. Rev. Lett. 106, 140502 (2011)], focusing on an implementation based on solid-state spin systems. The scheme amplifies a quantum sensor response to weak external fields by exploiting its coupling to spin impurities in the environment. We analyze the limits to the sensitivity due to decoherence and propose dynamical decoupling schemes to increase the spin coherence time. The sensitivity is also limited by the environment spin polarization; therefore we discuss strategies to polarize the environment spins and present a method to extend the scheme to the case of zero polarization. The coherence time and polarization determine a figure of merit for the environment's ability to enhance the sensitivity compared to echo-based sensing schemes. This figure of merit can be used to engineer optimized samples for high-sensitivity nanoscale magnetic sensing, such as diamond nanocrystals with controlled impurity density.

Cappellaro, P; Hodges, J S; Jiang, L; Maze, J R; Sørensen, A S; Lukin, M D

2012-01-01T23:59:59.000Z

299

Electric field induced spin-polarized current  

DOE Patents [OSTI]

A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

2006-05-02T23:59:59.000Z

300

Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking  

SciTech Connect (OSTI)

We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26?MHz, and pulse duration of 800?fs.

Mary, R.; Thomson, R. R.; Kar, A. K., E-mail: a.k.kar@hw.ac.uk [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Brown, G. [Optoscribe Ltd, 0/14 Alba Innovation Centre, Alba Campus, Livingston EH54 7GA (United Kingdom)] [Optoscribe Ltd, 0/14 Alba Innovation Centre, Alba Campus, Livingston EH54 7GA (United Kingdom); Beecher, S. J. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)] [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom)] [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

2013-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Quantum Decoherence of the Central Spin in a Sparse System of Dipolar Coupled Spins  

E-Print Network [OSTI]

The central spin decoherence problem has been researched for over 50 years in the context of both nuclear magnetic resonance and electron spin resonance. Until recently, theoretical models have employed phenomenological stochastic descriptions of the bath-induced noise. During the last few years, cluster expansion methods have provided a microscopic, quantum theory to study the spectral diffusion of a central spin. These methods have proven to be very accurate and efficient for problems of nuclear-induced electron spin decoherence in which hyperfine interactions with the central electron spin are much stronger than dipolar interactions among the nuclei. We provide an in-depth study of central spin decoherence for a canonical scale-invariant all-dipolar spin system. We show how cluster methods may be adapted to treat this problem in which central and bath spin interactions are of comparable strength. Our extensive numerical work shows that a properly modified cluster theory is convergent for this problem even as simple perturbative arguments begin to break down. By treating clusters in the presence of energy detunings due to the long-range (diagonal) dipolar interactions of the surrounding environment and carefully averaging the effects over different spin states, we find that the nontrivial flip-flop dynamics among the spins becomes effectively localized by disorder in the energy splittings of the spins. This localization effect allows for a robust calculation of the spin echo signal in a dipolarly coupled bath of spins of the same kind, while considering clusters of no more than 6 spins. We connect these microscopic calculation results to the existing stochastic models. We, furthermore, present calculations for a series of related problems of interest for candidate solid state quantum bits including donors and quantum dots in silicon as well as nitrogen-vacancy centers in diamond.

Wayne M. Witzel; Malcolm S. Carroll; Lukasz Cywinski; S. Das Sarma

2012-08-02T23:59:59.000Z

302

Measurement of the CKM Angle Alpha at BaBar  

SciTech Connect (OSTI)

We present BABAR experiment studies to measure the CKM angle {alpha} of the Unitarity Triangle. The measurements are based on the B meson decays into the two-body state ({pi}{pi}), the quasi two-body state ({rho}{rho}), and the three-body state ({pi}{sup +}{pi}{sup -}{pi}{sup 0}). The results are obtained from data samples of about 230 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2004 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC.

Yeche, C.; /Saclay

2006-04-14T23:59:59.000Z

303

The higher spin Laplace operator  

E-Print Network [OSTI]

This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree k. We prove the ellipticity of these operators and use this to investigate their kernel, focusing on both polynomial solutions and the fundamental solution.

Hendrik De Bie; David Eelbode; Matthias Roels

2015-01-24T23:59:59.000Z

304

Electron Spin Precession at CEBAF  

SciTech Connect (OSTI)

The nuclear physics experiments at the Thomas Jefferson National Accelerator Facility often require longitudinally polarized electrons to be simultaneously delivered to three experimental halls. The degree of longitudinal polarization to each hall varies as function of the accelerator settings, making it challenging in certain situations to deliver a high degree of longitudinal polarization to all the halls simultaneously. Normally, the degree of longitudinal polarization the halls receive is optimized by changing the initial spin direction at the beginning of the machine with a Wien filter. Herein, it is shown that it is possible to further improve the degree of longitudinal polarization for multiple experimental halls by redistributing the energy gain of the CEBAF linacs while keeping the total energy gain fixed.

Douglas Higinbotham

2009-08-01T23:59:59.000Z

305

Electron Spin Precession at CEBAF  

SciTech Connect (OSTI)

The nuclear physics experiments at the Thomas Jefferson National Accelerator Facility often require longitudinally polarized electrons to be simultaneously delivered to three experimental halls. The degree of longitudinal polarization to each hall varies as function of the accelerator settings, making it challenging in certain situations to deliver a high degree of longitudinal polarization to all the halls simultaneously. Normally, the degree of longitudinal polarization the halls receive is optimized by changing the initial spin direction at the beginning of the machine with a Wien filter. Herein, it is shown that it is possible to further improve the degree of longitudinal polarization for multiple experimental halls by redistributing the energy gain of the CEBAF linacs while keeping the total energy gain fixed.

Higinbotham, Douglas

2009-01-01T23:59:59.000Z

306

Simulating spin models on GPU  

E-Print Network [OSTI]

Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

Martin Weigel

2011-06-07T23:59:59.000Z

307

Polytype control of spin qubits in silicon carbide  

E-Print Network [OSTI]

Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen vacancy centers in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials driven approach that could ultimately lead to "designer" spins with tailored properties. Here, we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including spins in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron-electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent spins, these interactions provide ...

Falk, Abram L; Calusine, Greg; Koehl, William F; Dobrovitski, Viatcheslav V; Politi, Alberto; Zorman, Christian A; Feng, Philip X -L; Awschalom, David D; 10.1038/ncomms2854

2013-01-01T23:59:59.000Z

308

Correlation of Oil-Water and Air-Water Contact Angles of Diverse...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Correlation of Oil-Water and Air-Water Contact Angles of Diverse...

309

Assessing the Accuracy of Contact Angle Measurements for Sessile Drops on Liquid-Repellent Surfaces  

E-Print Network [OSTI]

Gravity-induced sagging can amplify variations in goniometric measurements of the contact angles of sessile drops on super-liquid-repellent surfaces. The very large value of the effective contact angle leads to increased ...

Srinivasan, Siddarth

310

E-Print Network 3.0 - angle of repose Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lower than the angle of repose of a pile formed by slowly pouring particles... of inclination of the surface which is lower than the angle of repose for a pile formed by...

311

E-Print Network 3.0 - angle-resolved two-dimensional mapping...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rettig... in an energy- and angle-resolved manner. To achieve this, a field free drift tube with an acceptance angle... of 22 is combined with two-dimensional position-sensitive...

312

E-Print Network 3.0 - angle annular dark-field Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: angle annular dark-field Page: << < 1 2 3 4 5 > >> 1 Electron tomography of Pt nanocatalyst particles and their carbon support Summary: of high and low angle...

313

E-Print Network 3.0 - angle cutting tools Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

edge angle Process type ... Source: Grninger, Michael - Department of Mechanical and Industrial Engineering, University of Toronto Collection: Computer Technologies and...

314

E-Print Network 3.0 - angle scattering techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

angle ... Source: Ecole Polytechnique, Centre de mathmatiques Collection: Mathematics 2 Neutron Scattering in Polymer Micelle Characterization Summary: - Nondestructive technique...

315

G0 Electronics and Data Acquisition (Forward-Angle Measurements)  

SciTech Connect (OSTI)

The G$^0$ parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for $\\vec{e}p$ elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G$^0$ experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G$^0$ forward-angle measurements.

D. Marchand; J. Arvieux; L. Bimbot; A. Biselli; J. Bouvier; H. Breuer; R. Clark; J.-C. Cuzon; M. Engrand; R. Foglio; C. Furget; X. Grave; B. Guillon; H. Guler; P.M. King; S. Kox; J. Kuhn; Y. Ky; J. Lachniet; J. Lenoble; E. Liatard; J. Liu; E. Munoz; J. Pouxe; G. Quéméne; B. Quinn; J.-S. Réal; O. Rossetto; R. Sellem

2007-04-18T23:59:59.000Z

316

On conformal higher spin wave operators  

E-Print Network [OSTI]

We analyze free conformal higher spin actions and the corresponding wave operators in arbitrary even dimensions and backgrounds. We show that the wave operators do not factorize in general, and identify the Weyl tensor and its derivatives as the obstruction to factorization. We give a manifestly factorized form for them on (A)dS backgrounds for arbitrary spin and on Einstein backgrounds for spin 2. We are also able to fix the conformal wave operator in d=4 for s=3 up to linear order in the Riemann tensor on generic Bach-flat backgrounds.

Teake Nutma; Massimo Taronna

2014-07-08T23:59:59.000Z

317

Improved Superlinks for Higher Spin Operators  

E-Print Network [OSTI]

Traditional smearing or blocking techniques serve well to increase the overlap of operators onto physical states but allow for links orientated only along lattice axes. Recent attempts to construct more general propagators have shown promise at resolving the higher spin states but still rely on iterative smearing. We present a new method of superlink construction which creates meared links from (sparse) matrix multiplications, allowing for gluonic propagation in arbitrary directions. As an application and example, we compute the positive-parity, even-spin glueball spectrum up to spin 6 for pure gauge SU(2) at beta = 6, L = 16, in D = 2+1 dimensions.

Robert W. Johnson

2007-10-12T23:59:59.000Z

318

Current heating induced spin Seebeck effect  

SciTech Connect (OSTI)

A measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end, we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.

Schreier, Michael, E-mail: michael.schreier@wmi.badw.de; Roschewsky, Niklas; Dobler, Erich; Meyer, Sibylle; Huebl, Hans; Goennenwein, Sebastian T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)] [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Gross, Rudolf [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany) [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, Technische Universität München, Garching (Germany)

2013-12-09T23:59:59.000Z

319

Simulating spin-charge separation with light  

E-Print Network [OSTI]

In this work we show that stationary light-matter excitations generated inside a hollow one-dimensional waveguide filled with atoms, can be made to generate a photonic two-component Lieb Liniger model. We explain how to prepare and drive the atomic system to a strongly interacting regime where spin-charge separation could be possible. We then proceed by explaining how to measure the corresponding effective spin and charge densities and velocities through standard optical methods based in measuring dynamically the emitted photon intensities or by analyzing the photon spectrum. The relevant interactions exhibit the necessary tunability both to generate and efficiently observe spin charge separation with current technology.

Dimitris G. Angelakis; Mingxia Huo; Elica Kyoseva; Leong Chuan kwek

2010-06-08T23:59:59.000Z

320

Design of angle-tolerant multivariate optical elements for chemical imaging  

E-Print Network [OSTI]

Design of angle-tolerant multivariate optical elements for chemical imaging Olusola O. Soyemi in imaging applications. We report a method for the design of angle-insensitive MOEs based on modification of Bismarck Brown and Crystal Violet, was designed and its performance simulated. For angles of incidence

Myrick, Michael Lenn

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rotation Angle for the Optimum Tracking of One-Axis Trackers  

SciTech Connect (OSTI)

An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

Marion, W. F.; Dobos, A. P.

2013-07-01T23:59:59.000Z

322

A new method for analyzing collimation angle of neutron Soller collimator  

E-Print Network [OSTI]

A new method for analyzing collimation angle of neutron Soller collimator is described. Gaussian distribution formula is used to define the angle distribution function of neutron source and neutron transmission function of Soller collimator. A relationship between FWHM of collimator rocking curve and collimation angle is derived.

Jian-Bo Gao; Yun-Tao Liu; Dong-Feng Chen

2015-03-18T23:59:59.000Z

323

A new method for analyzing collimation angle of neutron Soller collimator  

E-Print Network [OSTI]

A new method for analyzing collimation angle of neutron Soller collimator is described. Gaussian distribution formula is used to define the angle distribution function of neutron source and neutron transmission function of Soller collimator. A relationship between FWHM of collimator rocking curve and collimation angle is derived.

Gao, Jian-Bo; Chen, Dong-Feng

2015-01-01T23:59:59.000Z

324

hal-00154048,version1-12Jun2007 The new very small angle neutron scattering  

E-Print Network [OSTI]

hal-00154048,version1-12Jun2007 The new very small angle neutron scattering spectrometer The design and characteristics of the new very small angle neutron scattering spectrometer under construction in order to fill the gap between light scattering and classical small angle neutron scattering (SANS

Boyer, Edmond

325

LimitedAngle Computed Tomography for Sandwich Structures using Data Fusion  

E-Print Network [OSTI]

1 Limited­Angle Computed Tomography for Sandwich Structures using Data Fusion Jeffrey E. Boyd and limited­angle computed­tomography (CT) are ill­posed problems, but where conventional CT has a small null. #12; 2 1. INTRODUCTION This paper presents a novel method for limited­angle computed tomography (CT

Boyd, Jeffrey E.

326

UNIVERSITY of CALIFORNIA INVESTIGATION OF HOW ANGLE OF ATTACK AFFECTS ROTOR SPEED  

E-Print Network [OSTI]

-pitch blades is tested in UCSC's wind tunnel. The turbine is used to test how varying the blade angle affects the turbine's rotational speed at different wind speeds. The data are used to determine how the blade angle 27 Appendix A Wind Turbine Data 29 Appendix B Converting Blade Pitch to Needle Angle 33 Appendix C

Belanger, David P.

327

Dynamic control of spin wave spectra using spin-polarized currents  

SciTech Connect (OSTI)

We describe a method of controlling the spin wave spectra dynamically in a uniform nanostripe waveguide through spin-polarized currents. A stable periodic magnetization structure is observed when the current flows vertically through the center of nanostripe waveguide. After being excited, the spin wave is transmitted at the sides of the waveguide. Numerical simulations of spin-wave transmission and dispersion curves reveal a single, pronounced band gap. Moreover, the periodic magnetization structure can be turned on and off by the spin-polarized current. The switching process from full rejection to full transmission takes place within less than 3?ns. Thus, this type magnonic waveguide can be utilized for low-dissipation spin wave based filters.

Wang, Qi; Zhang, Huaiwu, E-mail: hwzhang@uestc.edu.cn; Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong, E-mail: zzy@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fangohr, Hans [Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

2014-09-15T23:59:59.000Z

328

Efficient readout of a single spin state in diamond via spin-to-charge conversion  

E-Print Network [OSTI]

Efficient readout of individual electronic spins associated with atom-like impurities in the solid state is essential for applications in quantum information processing and quantum metrology. We demonstrate a new method for efficient spin readout of nitrogen-vacancy (NV) centers in diamond. The method is based on conversion of the electronic spin state of the NV to a charge state distribution, followed by single-shot readout of the charge state. Conversion is achieved through a spin-dependent photoionization process in diamond at room temperature. Using NVs in nanofabricated diamond beams, we demonstrate that the resulting spin readout noise is within a factor of three of the spin projection noise level. Applications of this technique for nanoscale magnetic sensing are discussed.

B. J. Shields; Q. P. Unterreithmeier; N. P. de Leon; H. Park; M. D. Lukin

2014-10-01T23:59:59.000Z

329

Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV  

E-Print Network [OSTI]

The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

Nicholas Zachariou; Yordanka Ilieva; Nikolay Ya. Ivanov; Misak M Sargsian; Robert Avakian; Gerald Feldman; Pawel Nadel-Turonski; K. P. Adhikari; D. Adikaram; M. D. Anderson; S. Anefalos Pereira; H. Avakian; R. A. Badui; N. A. Baltzell; M. Battaglieri; V. Baturin; I. Bedlinskiy; A. S. Biselli; W. J. Briscoe; W. K. Brooks; V. D. Burkert; T. Cao; D. S. Carman; A. Celentano; S. Chandavar; G. Charles; L. Colaneri; P. L. Cole; N. Compton; M. Contalbrigo; O. Cortes; V. Crede; A. D'Angelo; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; L. Elouadrhiri; G. Fedotov; S. Fegan; A. Filippi; J. A. Fleming; T. A. Forest; A. Fradi; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; D. I. Glazier; E. Golovatch; R. W. Gothe; K. A. Griffioen; M. Guidal; K. Hafidi; C. Hanretty; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; S. M. Hughes; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. Jiang; H. S. Jo; K. Joo; D. Keller; G. Khachatryan; M. Khandaker; A. Kim; W. Kim; F. J. Klein; V. Kubarovsky; P. Lenisa; K. Livingston; H. Y. Lu; I . J . D. MacGregor; N. Markov; P. T. Mattione; B. McKinnon; T. Mineeva; M. Mirazita; V. I. Mokeeev; R. A. Montgomery; H. Moutarde; C. Munoz Camacho; L. A. Net; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; W. Phelps; J. J. Phillips; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; Y. Prok; D. Protopopescu; A. J. R. Puckett; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatié; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; I. Senderovich; Y. G. Sharabian; Iu. Skorodumina; G. D. Smith; D. I. Sober; D. Sokhan; N. Sparveris; S. Stepanyan; S. Strauch; V. Sytnik; M. Taiuti; Ye Tian; M. Ungaro; H. Voskanyan; E. Voutier; N. K. Walford; D. Watts; X. Wei; M. H. Wood; L. Zana; J. Zhang; Z. W. Zhao; I. Zonta; for the CLAS collaboration

2015-03-18T23:59:59.000Z

330

Surface spin flip probability of mesoscopic Ag wires.  

SciTech Connect (OSTI)

Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on Permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering.

Mihajlovic, G.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.

2010-06-08T23:59:59.000Z

331

Electrically driven spin resonance in silicon carbide color centers  

E-Print Network [OSTI]

We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-frequency electric fields, and the characterization of defect spin multiplicity. While we control defects in SiC, these methods apply to spin systems in many semiconductors, including the nitrogen-vacancy center in diamond. Electrically driven spin resonance offers a viable route towards scalable quantum control of electron spins in a dense array.

P. V. Klimov; A. L. Falk; B. B. Buckley; D. D. Awschalom

2013-10-17T23:59:59.000Z

332

Spin transistor operation driven by the Rashba spin-orbit coupling in the gated nanowire  

SciTech Connect (OSTI)

A theoretical description has been proposed for the operation of the spin transistor in the gate-controlled InAs nanowire. The calculated current-voltage characteristics show that the electron current flowing from the source (spin injector) to the drain (spin detector) oscillates as a function of the gate voltage, which results from the precession of the electron spin caused by the Rashba spin-orbit interaction in the vicinity of the gate. We have studied the operation of the spin transistor under the following conditions: (A) the full spin polarization of electrons in the contacts, zero temperature, and the single conduction channel corresponding to the lowest-energy subband of the transverse motion and (B) the partial spin polarization of the electrons in the contacts, the room temperature, and the conduction via many transverse subbands taken into account. For case (A), the spin-polarized current can be switched on/off by the suitable tuning of the gate voltage, for case (B) the current also exhibits the pronounced oscillations but with no-zero minimal values. The computational results obtained for case (B) have been compared with the recent experimental data and a good agreement has been found.

Wójcik, P.; Adamowski, J., E-mail: adamowski@fis.agh.edu.pl; Spisak, B. J.; Wo?oszyn, M. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, Kraków (Poland)

2014-03-14T23:59:59.000Z

333

Spin dynamics simulation of electron spin relaxation in Ni{sup 2+}(aq)  

SciTech Connect (OSTI)

The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni{sup 2+} ion. The spin-lattice (T{sub 1}) and spin-spin (T{sub 2}) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.

Rantaharju, Jyrki, E-mail: jjrantaharju@gmail.com; Mareš, Ji?í, E-mail: jiri.mares@oulu.fi; Vaara, Juha, E-mail: juha.vaara@iki.fi [NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, Oulu, FIN-90014 (Finland)

2014-07-07T23:59:59.000Z

334

Optical pumping production of spin polarized hydrogen  

SciTech Connect (OSTI)

There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields, including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process in which photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allows the production of greater than 10/sup 18/ polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed.

Knize, R.J.; Happer, W.; Cecchi, J.L.

1984-09-01T23:59:59.000Z

335

Spin effects in single-electron transistors  

E-Print Network [OSTI]

Basic electron transport phenomena observed in single-electron transistors (SETs) are introduced, such as Coulomb-blockade diamonds, inelastic cotunneling thresholds, the spin-1/2 Kondo effect, and Fano interference. With ...

Granger, Ghislain

2005-01-01T23:59:59.000Z

336

Resolution of the Proton Spin Problem  

SciTech Connect (OSTI)

A number of lines of investigation into the structure of the nucleon have converged to the point where we believe that one has a consistent explanation of the well known proton spin crisis.

F. Myhrer; A. W. Thomas

2007-09-24T23:59:59.000Z

337

Experimental energy-dependent nuclear spin distributions  

SciTech Connect (OSTI)

A new method is proposed to determine the energy-dependent spin distribution in experimental nuclear-level schemes. This method compares various experimental and calculated moments in the energy-spin plane to obtain the spin-cutoff parameter {sigma} as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, {sigma}{sup 2}=0.391 A{sup 0.675}(E-0.5Pa{sup '}){sup 0.312}, is proposed up to about 10 MeV that is in very good agreement with experimental {sigma} values and is applied to improve the systematics of level-density parameters.

Egidy, T. von [Physik-Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Bucurescu, D. [Horia Hulubei National Institute of Physics and Nuclear Engineering, R-76900 Bucharest (Romania); Academy of Romanian Scientists, 54 Splaiul Independentei, Bucharest (Romania)

2009-11-15T23:59:59.000Z

338

Environment-assisted metrology with spin qubits  

E-Print Network [OSTI]

We investigate the sensitivity of a recently proposed method for precision measurement [ Phys. Rev. Lett. 106 140502 (2011)], focusing on an implementation based on solid-state spin systems. The scheme amplifies a quantum ...

Cappellaro, Paola

339

Intrinsic Spin-Orbit Interaction in Graphene  

E-Print Network [OSTI]

In graphene, we report the first theoretical demonstration of how the intrinsic spin orbit interaction can be deduced from the theory and how it can be controlled by tuning a uniform magnetic field, and/or by changing the strength of a long range Coulomb like impurity (adatom), as well as gap parameter. In the impurity context, we find that intrinsic spin-orbit interaction energy may be enhanced by increasing the strength of magnetic field and/or by decreasing the band gap mass term. Additionally, it may be strongly enhanced by increasing the impurity strength. Furthermore, from the proposal of Kane and Mele [Phys. Rev. Lett. 95, 226801 (2005)], it was discussed that the pristine graphene has a quantized spin Hall effect regime where the Rashba type spin orbit interaction term is smaller than that of intrinsic one. Our analysis suggest the nonexistence of such a regime in the ground state of flat graphene.

B. S. Kandemir

2012-05-03T23:59:59.000Z

340

Effect of cosmic string on spin dynamics  

E-Print Network [OSTI]

In the present paper, we have investigated the role of cosmic string on spin current and Hall electric field. Due to the background cosmic string, the modified electric field of the system generates renormalized spin orbit coupling, which induces a modified non-Abelian gauge field. The defect causes a change in the AB and AC phases appearing due to the modified electromagnetic field. In addition, for a time varying electric field we perform explicit analytic calculations to derive the exact form of spin electric field and spin current, which is defect parameter dependent and of oscillating type. Furthermore, in an asymmetric crystal within the Drude model approach we investigate the dependence of the cosmic string parameters on cosmic string induced Hall electric field.

Debashree Chowdhury; B. Basu

2014-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Entropy production in quantum spin systems  

E-Print Network [OSTI]

We consider a quantum spin system consisting of a finite subsystem connected to infinite reservoirs at different temperatures. In this setup we define nonequilibrium steady states and prove that the rate of entropy production in such states is nonnegative.

David Ruelle

2000-06-07T23:59:59.000Z

342

High-Spin Cobalt Hydrides for Catalysis  

SciTech Connect (OSTI)

Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

Holland, Patrick L. [Yale University] [Yale University

2013-08-29T23:59:59.000Z

343

Electromagnetic and spin polarisabilities in lattice QCD  

E-Print Network [OSTI]

We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of chiral perturbation theory, finding a strong dependence on the lattice volume and quark masses.

W. Detmold; B. C. Tiburzi; A. Walker-Loud

2006-10-02T23:59:59.000Z

344

Determination of gamma from Charmless B --> M1 M2 Decays Using U-Spin  

E-Print Network [OSTI]

In our previous paper we applied U-spin symmetry to charmless hadronic B+- --> M0 M+- decays for the purpose of precise extraction of the unitarity angle gamma. In this paper we extend our approach to neutral B0 and Bs --> M1 M2 decays. A very important feature of this method is that no assumptions regarding relative sizes of topological decay amplitudes need to be made. As a result, this method avoids an uncontrollable theoretical uncertainty that is often related to the neglect of some topological diagrams (e.g., exchange and annihilation graphs) in quark-diagrammatic approaches. In charged B+- decays, each of the four data sets, P0 P+-, P0 V+-, V0 P+- and V0 V+-, with P=pseudoscalar and V=vector, can be used to obtain a value of gamma. Among neutral decays, only experimental data in the B0, Bs --> P- P+ subsector is sufficient for a U-spin fit. Application of the U-spin approach to the current charged and neutral B decay data yields: gamma=(80^{+6}_{-8}) degrees. In this method, which is completely data dr...

Soni, A; Soni, Amarjit; Suprun, Denis A.

2007-01-01T23:59:59.000Z

345

Determination of gamma from Charmless B --> M1 M2 Decays Using U-Spin  

E-Print Network [OSTI]

In our previous paper we applied U-spin symmetry to charmless hadronic B+- --> M0 M+- decays for the purpose of precise extraction of the unitarity angle gamma. In this paper we extend our approach to neutral B0 and Bs --> M1 M2 decays. A very important feature of this method is that no assumptions regarding relative sizes of topological decay amplitudes need to be made. As a result, this method avoids an uncontrollable theoretical uncertainty that is often related to the neglect of some topological diagrams (e.g., exchange and annihilation graphs) in quark-diagrammatic approaches. In charged B+- decays, each of the four data sets, P0 P+-, P0 V+-, V0 P+- and V0 V+-, with P=pseudoscalar and V=vector, can be used to obtain a value of gamma. Among neutral decays, only experimental data in the B0, Bs --> P- P+ subsector is sufficient for a U-spin fit. Application of the U-spin approach to the current charged and neutral B decay data yields: gamma=(80^{+6}_{-8}) degrees. In this method, which is completely data driven, in a few years we should be able to obtain a model independent determination of gamma with an accuracy of O(few degrees).

Amarjit Soni; Denis A. Suprun

2006-09-08T23:59:59.000Z

346

Dependence of nuclear spin singlet lifetimes on RF spin-locking power Stephen J. DeVience a,  

E-Print Network [OSTI]

Dependence of nuclear spin singlet lifetimes on RF spin-locking power Stephen J. DeVience a: Received 6 January 2012 Revised 14 March 2012 Available online 28 March 2012 Keywords: Nuclear singlet of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field

Rosen, Matthew S

347

Spinning Tales about Japanese Cotton Spinning: Saxonhouse (1974) Then and Now Serguey Braguinsky and David A. Hounshell  

E-Print Network [OSTI]

1 Spinning Tales about Japanese Cotton Spinning: Saxonhouse (1974) Then and Now Serguey-era cotton spinning industry in Japan, the study of which was pioneered by Gary Saxonhouse in an article). With a history worthy of being called a tale, Japan's Meiji-era cotton spinning industry led that Asian nation

Braguinsky, Serguey

348

Two wide-angle imaging neutral-atom spectrometers  

SciTech Connect (OSTI)

The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

McComas, D.J.

1997-12-31T23:59:59.000Z

349

Comparison of collimation systems for small-angle neutron scattering  

SciTech Connect (OSTI)

It is shown by simple first-order geometric arguments that for a given resolution, the flux on sample in a small-angle scattering instrument is independent of the form of the collimator or of the length of the instrument. Count rate may be increased by increasing the sample size, through the use of multi-aperture systems. In second order, it is shown to be advantageous to place the beam defining elements as close as possible to the source and the sample. The multiple-pinhole system gives maximum flux on small samples but has non-uniform illumination so that intensity increases only about half as fast as sample area. Soller slits and continuous tubes from source to sample were also considered, but neutron scattering and reflection from surfaces generate a large halo. Monte-Carlo simulations confirm these results, with the conclusion that the optimum collimator configuration is the multiple-pinhole system. 4 refs., 4 figs.

Seeger, P.A.

1985-01-01T23:59:59.000Z

350

IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION.  

SciTech Connect (OSTI)

A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics.

LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

2005-05-16T23:59:59.000Z

351

Two wide-angle imaging neutral-atom spectrometers (TWINS)  

SciTech Connect (OSTI)

Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will provide a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach.

McComas, D.J. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Blake, B. [Aerospace Corp., CA (United States)] [Aerospace Corp., CA (United States); Burch, J. [Southwest Research Inst., San Antonio, TX (United States)] [and others] [Southwest Research Inst., San Antonio, TX (United States); and others

1998-11-01T23:59:59.000Z

352

Quantum corrections to spin effects in general relativity  

E-Print Network [OSTI]

Quantum power corrections to the gravitational spin-orbit and spin-spin interactions, as well as to the Lense-Thirring effect, were found for particles of spin 1/2. These corrections arise from diagrams of second order in Newton gravitational constant G with two massless particles in the unitary cut in the t-channel. The corrections obtained differ from the previous calculation of the corrections to spin effects for rotating compound bodies with spinless constituents.

G. G. Kirilin

2005-07-16T23:59:59.000Z

353

Charged spinning black holes as particle accelerators  

SciTech Connect (OSTI)

It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)

2010-11-15T23:59:59.000Z

354

Information storage capacity of discrete spin systems  

SciTech Connect (OSTI)

Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.

Yoshida, Beni, E-mail: rouge@caltech.edu

2013-11-15T23:59:59.000Z

355

Motional Spin Relaxation in Large Electric Fields  

E-Print Network [OSTI]

We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...

Schmid, Riccardo; Filippone, B W

2008-01-01T23:59:59.000Z

356

Motional Spin Relaxation in Large Electric Fields  

E-Print Network [OSTI]

We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.

Riccardo Schmid; B. Plaster; B. W. Filippone

2008-07-02T23:59:59.000Z

357

Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50?xCoxMn??Sn?? alloys  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Heusler-derived multiferroic alloy Ni50?xCoxMn??Sn?? has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390 K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.

Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; James, R. D.; Leighton, C.

2012-04-01T23:59:59.000Z

358

Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations  

SciTech Connect (OSTI)

This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

2014-03-15T23:59:59.000Z

359

Index theorem, spin Chern Simons theory and fractional magnetoelectric effect in strongly correlated topological insulators  

E-Print Network [OSTI]

Making use of index theorem and spin Chern Simons theory, we construct an effective topological field theory of strongly correlated topological insulators coupling to a nonabelian gauge field $ SU(N) $ with an interaction constant $ g $ in the absence of the time-reversal symmetry breaking. If $ N $ and $ g $ allow us to define a t'Hooft parameter $ \\lambda $ of effective coupling as $ \\lambda = N g^{2} $, then our construction leads to the fractional quantum Hall effect on the surface with Hall conductance $ \\sigma_{H}^{s} = \\frac{1}{4\\lambda} \\frac{e^{2}}{h} $. For the magnetoelectric response described by a bulk axion angle $ \\theta $, we propose that the fractional magnetoelectric effect can be realized in gapped time reversal invariant topological insulators of strongly correlated bosons or fermions with an effective axion angle $ \\theta_{eff} = \\frac{\\pi}{2 \\lambda} $ if they can have fractional excitations and degenerate ground states on topologically nontrivial and oriented spaces. Provided that an effective charge is given by $ e_{eff} = \\frac{e}{\\sqrt{2 \\lambda}} $, it is shown that $ \\sigma_{H}^{s} = \\frac{e_{eff}^{2}}{2h} $, resulting in a surface Hall conductance of gapless fermions with $ e_{eff} $ and a pure axion angle $ \\theta = \\pi $.

K. -S. Park; H. Han

2011-05-31T23:59:59.000Z

360

The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance  

SciTech Connect (OSTI)

Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 ?Gy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively.Conclusions: Our characterization of the designed QA “magic phantom” with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.

Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia)] [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Corde, S.; Jackson, M. [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)] [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mass and spin content of a free relativistic particle of arbitrary spins and the group  

E-Print Network [OSTI]

of particles with several spins and masses which can exist in positive as well as negative energy states Postal 20-364, 01000 Mexico D. F., Mexico 2 Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70 approach to the free parti- cle of arbitrary spins whose relativistic equation can be obtained from

Nikitin, Anatoly

362

Spin-resolved Fano resonances induced large spin Seebeck effects in graphene-carbon-chain junctions  

SciTech Connect (OSTI)

We propose a high-efficiency thermospin device constructed by a carbon atomic chain sandwiched between two ferromagnetic (FM) zigzag graphene nanoribbon electrodes. In the low-temperature regime, the magnitude of the spin figure of merit is nearly equal to that of the corresponding charge figure of merit. This is attributed to the appearances of spin-resolved Fano resonances in the linear conductance spectrum resulting from the quantum interference effects between the localized states and the expanded states. The spin-dependent Seebeck effect is obviously enhanced near these Fano resonances with the same spin index; meanwhile, the Seebeck effect of the other spin component has a smaller value due to the smooth changing of the linear conductance with the spin index. Thus, a large spin Seebeck effect is achieved, and the magnitude of the spin figure of merit can reach 1.2 at T?=?25?K. Our results indicate that the FM graphene-carbon-chain junctions can be used to design the high-efficiency thermospin devices.

Liu, Yu-Shen; Zhang, Xue; Feng, Jin-Fu, E-mail: fengjinfu@cslg.edu.cn [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Wang, Xue-Feng, E-mail: xf-wang1969@yahoo.com [Department of Physics, Soochow University, Suzhou 215006 (China)

2014-06-16T23:59:59.000Z

363

Evidence for spin selectivity of triplet pairs in superconducting spin valves  

E-Print Network [OSTI]

in spintronics to control the flow of electrons by ferromagnets in a ferromagnet (F1)/normal metal (N)/ferromagnet (F2) spin valve, where F1 acts as the polarizer and F2 the analyser. The feasibility of superconducting spintronics depends on the spin sensitivity...

Banerjee, N.; Smiet, C. B.; Smits, R. G. J.; Ozaeta, A.; Bergeret, F. S.; Blamire, M. G.; Robinson, J. W. A.

2014-01-09T23:59:59.000Z

364

Massive spin-2 and spin-1/2 no hair theorems for stationary axisymmetric black holes  

E-Print Network [OSTI]

We present a proof of the no hair theorems corresponding to free massive non-perturbative Pauli-Fierz spin-2 and perturbative massive spin-1/2 fields for stationary axisymmetric de Sitter black hole spacetimes of dimension four with two commuting Killing vector fields. The applicability of these results for asymptotically flat and anti-de Sitter spacetimes are also discussed.

Sourav Bhattacharya; Amitabha Lahiri

2012-10-09T23:59:59.000Z

365

Thermally activated switching of perpendicular magnet by spin-orbit spin torque  

SciTech Connect (OSTI)

We theoretically investigate the threshold current for thermally activated switching of a perpendicular magnet by spin-orbit spin torque. Based on the Fokker-Planck equation, we obtain an analytic expression of the switching current, in agreement with numerical result. We find that thermal energy barrier exhibits a quasi-linear dependence on the current, resulting in an almost linear dependence of switching current on the log-scaled current pulse-width even below 10?ns. This is in stark contrast to standard spin torque switching, where thermal energy barrier has a quadratic dependence on the current and the switching current rapidly increases at short pulses. Our results will serve as a guideline to design and interpret switching experiments based on spin-orbit spin torque.

Lee, Ki-Seung [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Seo-Won [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Min, Byoung-Chul [Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713 (Korea, Republic of)

2014-02-17T23:59:59.000Z

366

Current-based detection of nonlocal spin transport in graphene for spin-based logic applications  

SciTech Connect (OSTI)

Graphene has been proposed for novel spintronic devices due to its robust and efficient spin transport properties at room temperature. Some of the most promising proposals require current-based readout for integration purposes, but the current-based detection of spin accumulation has not yet been developed. In this work, we demonstrate current-based detection of spin transport in graphene using a modified nonlocal geometry. By adding a variable shunt resistor in parallel to the nonlocal voltmeter, we are able to systematically cross over from the conventional voltage-based detection to current-based detection. As the shunt resistor is reduced, the output current from the spin accumulation increases as the shunt resistance drops below a characteristic value R*. We analyze this behavior using a one-dimensional drift-diffusion model, which accounts well for the observed behavior. These results provide the experimental and theoretical foundation for current-based detection of nonlocal spin transport.

Wen, Hua; Amamou, Walid [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Zhu, Tiancong; Luo, Yunqiu; Kawakami, Roland K., E-mail: roland.kawakami@ucr.edu [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

2014-05-07T23:59:59.000Z

367

Electrical spin injection in 2D semiconductors and topological insulators  

SciTech Connect (OSTI)

We have developed a theory of spin orientation by electric current in 2D semiconductors. It is shown that the spin depends on the relation between the energy and spin relaxation times and can vary by a factor of two for the limiting cases of fast and slow energy relaxation. For symmetrically-doped (110)-grown semiconductor quantum wells the effect of current-induced spin orientation is shown to exist due to random spatial variation of the Rashba spin-orbit splitting. We demonstrate that the spin depends strongly on the correlation length of this random spin-orbit field. We calculate the spin orientation degree in two-dimensional topological insulators. In high electric fields when the “streaming” regime is realized, the spin orientation degree weakly depends on the electric field and can reach values about 5%.

Golub, L. E.; Ivchenko, E. L. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)

2013-12-04T23:59:59.000Z

368

Spin-polarized lasing in a highly photoexcited semiconductor microcavity  

E-Print Network [OSTI]

Lasing in semiconductors is generally independent of the spins of electrons and holes, which constitute the gain medium. However, in a few spin-controlled lasers, spin-polarized carriers with long spin relaxation times ($\\sim$1 ns) result in continuous or sub-nanosecond pulsed circularly polarized stimulated emission. In these spin-controlled semiconductor lasers, a spin-imbalanced population inversion has been considered necessary. Here, we demonstrate room-temperature spin-polarized ultrafast ($\\sim$10 ps) lasing in a highly optically excited GaAs microcavity embedded with InGaAs multiple quantum wells within which the spin relaxation time is less than 10 ps. The laser radiation remains highly circularly polarized even when excited by \\emph{nonresonant} \\emph{elliptically} polarized light. In contrast to conventional semiconductor lasers, it exhibits a nonlinear input-output relation, energy shifts, and spectral broadening as a function of the photoexcited density. Such spin-polarized lasing is attributed t...

Hsu, Feng-kuo; Lee, Yi-Shan; Lin, Sheng-Di; Lai, Chih-Wei

2015-01-01T23:59:59.000Z

369

Calculation of nuclear spin-spin coupling constants using frozen density embedding  

SciTech Connect (OSTI)

We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States)] [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)] [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

2014-03-14T23:59:59.000Z

370

Analyzing Powers and Spin Correlations Ann and all for Pp-]Np-Pi+ at 650 and 800 Mev  

E-Print Network [OSTI]

PHYSICAL REVIEW C VOLUME 28, NUMBER 5 NOVEMBER 1983 Analyzing powers and spin correlations A? and ALL for pp =npm+ at 650 and 800 Mev T. S. Bhatia, J. Cz. J. Boissevain, J. J. Jarmer, R. R. Silbar, and J. E. Simmons Los Alamos Rational Laboratory... deserves more careful study, however. - l.0 500 looo I,b (MeV/c} FIG. 3. Same as Fig. 2, for the 800 MeV 21.2,48.5 angle pair. Two interesting features are noteworthy in Figs. 2 and 3. Comparison of the solid (fully unitary) and dashed (Born...

Bhatia, T. S.; Boissevain, J. G. J.; Jarmer, J. J.; Silbar, R. R.; Simmons, J. E.; Glass, G.; Hiebert, John C.; Kenefick, R. A.; Northcliffe, L. C.; Tippens, W. B.; Kloet, W. M.; Dubach, J.

1983-01-01T23:59:59.000Z

371

Aerodynamic flail for a spinning projectile  

DOE Patents [OSTI]

A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.

Cole, James K. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

372

Coupling spin ensembles via superconducting flux qubits  

E-Print Network [OSTI]

We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.

Yueyin Qiu; Wei Xiong; Lin Tian; J. Q. You

2014-09-10T23:59:59.000Z

373

Measurements of the CKM Angle Alpha at BaBar  

SciTech Connect (OSTI)

The authors present improved measurements of the branching fractions and CP-asymmetries fin the B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup +} {yields} {rho}{sup +}{rho}{sup 0} decays, which impact the determination of {alpha}. The combined branching fractions of B {yields} K{sub 1}(1270){pi} and B {yields} K{sub 1}(1400){pi} decays are measured for the first time and allow a novel determination of {alpha} in the B{sup 0} {yields} {alpha}{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decay channel. These measurements are performed using the final dataset collected by the BaBar detector at the PEP-II B-factory. The primary goal of the experiments based at the B factories is to test the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP violation in the standard model of electroweak interactions. This can be achieved by measuring the angles and sides of the Unitarity Triangle in a redundant way.

Stracka, Simone; /Milan U. /INFN, Milan; ,

2012-04-04T23:59:59.000Z

374

Leptogenesis and the Small-Angle MSW Solution  

E-Print Network [OSTI]

The lepton asymmetry created in the out-of-equilibrium decay of a heavy Majorana neutrino can generate the cosmological baryon asymmetry when processed through fast anomalous electroweak reactions. In this work I examine this process under the following assumptions: (1) maximal nu_mu/nu_tau mixing (2) hierarchical mass spectrum m_3 >> m_2 (3) small-angle MSW solution to the solar neutrino deficit. Working in a basis where the charged lepton and heavy neutrino mass matrices are diagonal, I find the following bounds on the heavy Majorana masses M_i: (a) for a symmetric Dirac neutrino mass matrix (no other constraints), an asymmetry compatible with BBN constraints can be obtained for min(M_2,M_3)> 10^{11} GeV; (b) if {\\em any} of the Dirac matrix elements vanishes, successful baryogenesis can be effected for a choice of min(M_2,M_3) as low as a few times 10^{9} GeV. The latter is compatible with reheat requirements for supersymmetric cosmologies with sub-TeV gravitino masses.

Haim Goldberg

2000-01-27T23:59:59.000Z

375

Angle stations in or for endless conveyor belts  

DOE Patents [OSTI]

In an angle station for an endless conveyor belt, there are presented to each incoming run of the belt stationary curved guide members (18, 19) of the shape of a major segment of a right-circular cylinder and having in the part-cylindrical portion (16 or 17) thereof rectangular openings (15) arranged in parallel and helical paths and through which project small freely-rotatable rollers (14), the continuously-changing segments of the curved surfaces of which projecting through said openings (15) are in attitude to change the direction of travel of the belt (13) through 90.degree. during passage of the belt about the part-cylindrical portion (16 or 17) of the guide member (18 or 19). The rectangular openings (15) are arranged with their longer edges lengthwise of the diagonals representing the mean of the helix but with those of a plurality of the rows nearest to each end of the part-cylindrical portion (16 or 17) slightly out of axial symmetry with said diagonals, being slightly inclined in a direction about the intersections (40) of the diagonals of the main portion of the openings, to provide a "toe-in" attitude in relation to the line of run of the endless conveyor belt.

Steel, Alan (Glasgow, GB6)

1987-04-07T23:59:59.000Z

376

The XMM-Newton Wide Angle Survey (XWAS)  

E-Print Network [OSTI]

This programme is aimed at obtaining one of the largest X-ray selected samples of identified active galactic nuclei to date in order to characterise such a population at intermediate fluxes, where most of the Universe's accretion power originates. We present the XMM-Newton Wide Angle Survey (XWAS), a new catalogue of almost a thousand X-ray sources spectroscopically identified through optical observations. A sample of X-ray sources detected in 68 XMM-Newton pointed observations was selected for optical multi-fibre spectroscopy. Optical counterparts and corresponding photometry of the X-ray sources were obtained from the SuperCOSMOS Sky Survey. Candidates for spectroscopy were initially selected with magnitudes down to R~21, with preference for X-ray sources having a flux F(0.5-4.5 keV) >10^-14 erg s^-1 cm^-2. Optical spectroscopic observations performed at the Anglo Australian Telescope Two Degree Field were analysed, and the derived spectra were classified based on optical emission lines. We have identified ...

Esquej, P; Carrera, F J; Mateos, S; Tedds, J; Watson, M G; Corral, A; Ebrero, J; Krumpe, M; Rosen, S R; Ceballos, M T; Schwope, A; Page, C; Alonso-Herrero, A; Caccianiga, A; Della Ceca, R; Gonzalez-Martín, O; Lamer, G; Severgnini, P

2013-01-01T23:59:59.000Z

377

Ultrasonic estimation of the contact angle of a sessile droplet  

SciTech Connect (OSTI)

Radiation of energy by large amplitude leaky Rayleigh waves is regarded as one of the key physical mechanisms regulating the actuation and manipulation of droplets in surface acoustic wave (SAW) microfluidic devices. The interaction between a SAW and a droplet is highly complex and is presently the subject of extensive research. This paper investigates the existence of an additional interaction mechanism based on the propagation of quasi-Stoneley waves inside sessile droplets deposited on a solid substrate. In contrast with the leaky Rayleigh wave, the energy of the Stoneley wave is confined within a thin fluid layer in contact with the substrate. The hypothesis is confirmed by three-dimensional finite element simulations and ultrasonic scattering experiments measuring the reflection of Rayleigh waves from droplets of different diameters. Moreover, real-time monitoring of the droplet evaporation process reveals a clear correlation between the droplet contact angle and the spectral information of the reflected Rayleigh signal, thus paving the way for ultrasonic measurements of surface tension.

Quintero, R.; Simonetti, F. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221 (United States)

2014-02-18T23:59:59.000Z

378

Electron spin magnetism of zigzag graphene nanoribbon edge states  

SciTech Connect (OSTI)

The electron spin states of zigzag graphene nanoribbon (ZGNR) edge play a pivotal role in the applications of graphene nanoribbons. However, the exact arrangements of the electron spins remain unclear to date. In this report, the electronic spin states of the ZGNR edge have been elucidated through a combination of quantum chemical investigation and previous electron spin resonance experiment observations. An alternating ? and ? spin configuration of the unpaired electrons along the ZGNR edge is established in ambient condition without any external magnetic field, and the origin of the spin magnetism of the ZGNR edge is revealed. It paves a pathway for the understanding and design of graphene based electronic and spintronic devices.

Xu, Kun, E-mail: xu83@purdue.edu; Ye, Peide D. [School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

2014-04-21T23:59:59.000Z

379

Spin-dependent terahertz oscillator based on hybrid graphene superlattices  

SciTech Connect (OSTI)

We theoretically study the occurrence of Bloch oscillations in biased hybrid graphene systems with spin-dependent superlattices. The spin-dependent potential is realized by a set of ferromagnetic insulator strips deposited on top of a gapped graphene nanoribbon, which induce a proximity exchange splitting of the electronic states in the graphene monolayer. We numerically solve the Dirac equation and study Bloch oscillations in the lowest conduction band of the spin-dependent superlattice. While the Bloch frequency is the same for both spins, we find the Bloch amplitude to be spin dependent. This difference results in a spin-polarized ac electric current in the THz range.

Díaz, E.; Miralles, K.; Domínguez-Adame, F. [GISC, Departamento Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Gaul, C., E-mail: cgaul@pks.mpg.de [Max Planck Institute for the Physics of Complex Systems, 01187 Dresden (Germany)

2014-09-08T23:59:59.000Z

380

Development of a hybrid margin angle controller for HVDC continuous operation  

SciTech Connect (OSTI)

The objective of this paper is to present a new hybrid margin angle control method for HVDC continuous operation under AC system fault conditions. For stable continuous operation of HVDC systems, the margin angle controller must be designed to maintain the necessary margin angle to avoid commutation failures. The proposed method uses the open loop margin angle controller (MAC) as the basic controller, and adds output from the closed loop MAC to correct the control angle. A fast voltage detection algorithm is used for open loop control, and margin angle reference correction using harmonics detection for closed loop control are also developed. The combination of open and closed loop control provides quick responses when faults occur with stable and speedy recovery after fault clearance. The effectiveness of the developed controller is confirmed through EMTP digital simulations and also with the experiments using an analogue simulator.

Sato, M. [Kansai Electric Power Co., Osaka (Japan)] [Kansai Electric Power Co., Osaka (Japan); Yamaji, K. [Shikoku Electric Power Co., Takamatsu (Japan)] [Shikoku Electric Power Co., Takamatsu (Japan); Sekita, M. [Electric Power Development Co., Tokyo (Japan)] [Electric Power Development Co., Tokyo (Japan); Amano, M.; Nishimura, M.; Konishi, H.; Oomori, T. [Hitachi, Ltd. (Japan)] [Hitachi, Ltd. (Japan)

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Jefferson Lab Frozen Spin Target  

SciTech Connect (OSTI)

A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

Christopher Keith, James Brock, Christopher Carlin, Sara Comer, David Kashy, Josephine McAndrew, David Meekins, Eugene Pasyuk, Joshua Pierce, Mikell Seely

2012-08-01T23:59:59.000Z

382

Observation of propagating edge spin waves modes  

SciTech Connect (OSTI)

Broadband magnetization response of equilateral triangular 1000 nm Permalloy dots has been studied under an in-plane magnetic field, applied parallel (buckle state), and perpendicular (Y state) to the triangles base. Micromagnetic simulations identify edge spin waves (E-SWs) in the buckle state as SWs propagating along the two adjacent edges. These quasi one-dimensional spin waves emitted by the vertex magnetic charges gradually transform from propagating to standing due to interference and are weakly affected by dipolar interdot interaction and variation of the aspect ratio. Spin waves in the Y state have a two dimensional character. These findings open perspectives for implementation of the E-SWs in magnonic crystals and thin films.

Lara, A.; Aliev, F. G., E-mail: farkhad.aliev@uam.es [Dpto. Física de la Materia Condensada C-III, Instituto Nicolas Cabrera (INC) and Condensed Matter Physics Institute (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049 (Spain); Metlushko, V. [Department of Electrical and Computer Engineering, University of Illinois, Chicago, Illinois 60607 (United States)

2013-12-07T23:59:59.000Z

383

Decoherence of spin-deformed bosonic model  

SciTech Connect (OSTI)

The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.

Dehdashti, Sh., E-mail: shahram.dehdashti@gmail.com [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib St., Isfahan 81746-73441 (Iran, Islamic Republic of); Mahdifar, A., E-mail: mahdifar_a@sci.sku.ac.ir [Science Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Bagheri Harouni, M., E-mail: m-bagheri@phys.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib St., Isfahan 81746-73441 (Iran, Islamic Republic of); Quantum Optics Group, Department of Physics, Faculty of Science, University of Isfahan, HezarJerib St., Isfahan 81746-73441 (Iran, Islamic Republic of); Roknizadeh, R., E-mail: rokni@sci.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib St., Isfahan 81746-73441 (Iran, Islamic Republic of); Quantum Optics Group, Department of Physics, Faculty of Science, University of Isfahan, HezarJerib St., Isfahan 81746-73441 (Iran, Islamic Republic of)

2013-07-15T23:59:59.000Z

384

Spin entanglement, decoherence and Bohm's EPR paradox  

E-Print Network [OSTI]

We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies {\\eta} > 1/3 and {\\eta} > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

E. G. Cavalcanti; P. D. Drummond; H. A. Bachor; M. D. Reid

2007-11-23T23:59:59.000Z

385

E-Print Network 3.0 - angle-resolved photoemission extended Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photoemission evidence for a Gd(0001) surface state Dongqi Lia, C.W. Hutchings... April 1991. Available online 31 July 2002. Abstract From angle resolved photoemission we have...

386

E-Print Network 3.0 - angle hysteresis effects Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to be multiple-valued rather than single-valued functions of the angle of attack. Aerodynamic hysteresis... study to predict the aerodynamic hysteresis near the static stall...

387

E-Print Network 3.0 - angling sport Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

13 Journal of Biomechanics 33 (2000) 513519 The inuence of foot positioning on ankle sprains Summary: and talocural joint angles at touchdown were varied, and each...

388

E-Print Network 3.0 - anterior chamber angle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pits face anteriorly, wide "detection range + anterior... angle - records ambient air Higher Sensitivity dual chamber pit improves sensitivity detect 0.001 deg. C... are...

389

E-Print Network 3.0 - angle-resolved optical coherence Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Angle ... Source: Roma "La Sapienza", Universit di - Dipartimento di Fisica, Quantum Optics Group Collection: Physics 2 Ultrafast coherent control of electric currents at metal...

390

E-Print Network 3.0 - angle spectroscopic ellipsometry Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad... C samples are then characterized by using a spectrophotometer and an angle-...

391

E-Print Network 3.0 - angle neutron scattering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutron scattering Search Powered by Explorit Topic List Advanced Search Sample search results for: angle neutron scattering Page: << < 1 2 3 4 5 > >> 1 Exceptional tools for...

392

E-Print Network 3.0 - angle neutron diffractometer Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(300 - 2000 K) X-ray reflectometer (under installation) Small and Ultra Small Angle Neutron Scattering... (at)ipta.demokritos.gr 2106503712 2106533431 Large Scale...

393

E-Print Network 3.0 - angle diffractometer sans Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

< 1 2 3 4 5 > >> 1 Technical ParametersSNS Primary Parameters Summary: -Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) 7 BD Water Engineering Materials...

394

E-Print Network 3.0 - angle scattering revision Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and scattering, effective index, surface autocovariance, and correlation... . The phenomenology is complex, including specular and diffuse reflection, high-angle forward...

395

E-Print Network 3.0 - angle convergent beam Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

signal. Seven parameters to characterize the beam-beam... sizes of the two beams, their transverse displacement, and the angle ... Source: Cinabro, David - Department...

396

E-Print Network 3.0 - angle measurement system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

when we... are measuring an angle. In fact, as students learn to ... Source: Watanabe, Tad - Department of Mathematics and Statistics, Kennesaw State University Collection:...

397

E-Print Network 3.0 - acute primary angle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

students to think of an angle as turn, and measures... the radius ... Source: Watanabe, Tad - Department of Mathematics and Statistics, Kennesaw State University Collection:...

398

E-Print Network 3.0 - angle measure technique Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

when we... are measuring an angle. In fact, as students learn to ... Source: Watanabe, Tad - Department of Mathematics and Statistics, Kennesaw State University Collection:...

399

E-Print Network 3.0 - acute angle closure Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

students to think of an angle as turn, and measures... the radius ... Source: Watanabe, Tad - Department of Mathematics and Statistics, Kennesaw State University Collection:...

400

E-Print Network 3.0 - angle changing device Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the device functionality, we present experimental data for incidence angle dependent terahertz... - fore, it appears desirable to dispose of a device which would allow one ......

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - angle tracking procedure Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

peculiarities... affect- ing the track appearances is the total internal reflection and inclination angles of elements... tracing method in studying tracks in SSNTDs D....

402

E-Print Network 3.0 - angle of attack Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 58 NAVIERSTOKES ANALYSIS OF SUBSONIC FLOWFIELDS OVER A MISSILE CONFIGURATION Summary: configuration are computed at high angles of attack ranging...

403

Time resolved spin Seebeck effect experiments  

SciTech Connect (OSTI)

In this Letter, we present the results of transient thermopower experiments, performed at room temperature on yttrium iron garnet/platinum bilayers. Upon application of a time-varying thermal gradient, we observe a characteristic low-pass frequency response of the ensuing thermopower voltage with cutoff frequencies of up to 37 MHz. We interpret our results in terms of the spin Seebeck effect, and argue that small wavevector magnons are of minor importance for the spin Seebeck effect in our thin film hybrid structures.

Roschewsky, Niklas, E-mail: niklas.roschewsky@wmi.badw.de; Schreier, Michael; Schade, Felix; Ganzhorn, Kathrin; Meyer, Sibylle; Geprägs, Stephan [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Kamra, Akashdeep [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Huebl, Hans; Goennenwein, Sebastian T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Munich (Germany); Gross, Rudolf [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, Technische Universität München, Garching (Germany); Nanosystems Initiative Munich (NIM), Munich (Germany)

2014-05-19T23:59:59.000Z

404

Polaron spin current transport in organic semiconductors  

E-Print Network [OSTI]

of their unique functional properties, such as a long spin life- time that reflects their light-atom, mainly carbon-based composition. To date, the focus in organic spintronics has mainly been on studies of spin valves with a thin organic semicon- ductor layer... was extracted by fitting the measured field dependence of the voltage using symmetric and asymmetric Lorentz-type functions. A constant offset voltage due to the microwave irradiation (typically ? 100 nV) was also subtracted. g The equivalent circuit...

Watanabe, Shun; Ando, Kazuya; Kang, Keehoon; Mooser, Sebastian; Vaynzof, Yana; Kurebayashi, Hidekazu; Saitoh, Eiji; Sirringhaus, Henning

2014-03-16T23:59:59.000Z

405

Spinning Fluids: A Group Theoretical Approach  

E-Print Network [OSTI]

We extend the Lagrangian formulation of relativistic non-abelian fluids in group theory language. We propose a Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of de Sitter group. The equation we find correctly boils down to the one for non-spinning fluids. We study the application of our results for an FRW cosmological background for fluids with no vorticity and for dusts in the vicinity of a Kerr black hole. We also explore two alternative approaches based on a group theoretical formulation of particles dynamics.

Dario Capasso; Debajyoti Sarkar

2014-04-07T23:59:59.000Z

406

Neutron single target spin asymmetries in SIDIS  

SciTech Connect (OSTI)

The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

Evaristo Cisbani

2010-04-01T23:59:59.000Z

407

ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

Flynn, Connor

408

ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

Flynn, Connor

409

Reduced matrix elements of spin–spin interactions for the atomic f-electron configurations  

SciTech Connect (OSTI)

A re-examination of some major references on the intra-atomic magnetic interactions over the last six decades reveals that there exist some gaps or puzzles concerning the previous studies of the spin–spin interactions for the atomic f-shell electrons. Hence, tables are provided for the relevant reduced matrix elements of the four double-tensor operators z{sub r} (r=1,2,3, and 4) of rank 2 in both the orbital and spin spaces. The range of the tables covers all states of the configurations from f{sup 4} to f{sup 7}.

Yeung, Y.Y., E-mail: yeungy@acm.org

2014-03-15T23:59:59.000Z

410

Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures  

SciTech Connect (OSTI)

We present the quasi-static and dynamic switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 12?K between parallel and anti-parallel spin-valve states is investigated for slowly varied current as well as for current pulses with durations as short as 200 ps. We demonstrate 100% switching probability with current pulses 0.6?ns in duration. We also present a switching probability diagram that summarizes device switching operation under a variety of pulse durations, amplitudes, and polarities.

Ye, L., E-mail: ly17@nyu.edu; Gopman, D. B.; Rehm, L.; Backes, D.; Wolf, G.; Kent, A. D. [Department of Physics, New York University, New York, New York 10003 (United States); Ohki, T. [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States); Kirichenko, A. F.; Vernik, I. V.; Mukhanov, O. A. [HYPRES, 175 Clearbrook Road, Elmsford, New York 10523 (United States)

2014-05-07T23:59:59.000Z

411

Spin-Hamilton Operator, Graviton-Photon Coupling and an Eigenvalue Problem  

E-Print Network [OSTI]

We solve exactly the eigenvalue problem for a spin Hamilton operator describing graviton-photon coupling. Entanglement of the eigenstates are also studied. Other spin-coupled Hamilton operators involving spin-1 and spin-2 are also investigated and compared.

Yorick Hardy; Willi-Hans Steeb

2012-09-28T23:59:59.000Z

412

Quantum spin Hall effect and topological insulators for light  

E-Print Network [OSTI]

We show that free-space light has intrinsic quantum spin-Hall effect (QSHE) properties. These are characterized by a non-zero topological spin Chern number, and manifest themselves as evanescent modes of Maxwell equations. The recently discovered transverse spin of evanescent modes demonstrates spin-momentum locking stemming from the intrinsic spin-orbit coupling in Maxwell equations. As a result, any interface between free space and a medium supporting surface modes exhibits QSHE of light with opposite transverse spins propagating in opposite directions. In particular, we find that usual isotropic metals with surface plasmon-polariton modes represent natural 3D topological insulators for light. Several recent experiments have demonstrated transverse spin-momentum locking and spin-controlled unidirectional propagation of light at various interfaces with evanescent waves. Our results show that all these experiments can be interpreted as observations of the QSHE of light.

Bliokh, Konstantin Y

2015-01-01T23:59:59.000Z

413

Topological Spin Texture in a Quantum Anomalous Hall Insulator  

E-Print Network [OSTI]

The quantum anomalous Hall (QAH) effect has been recently discovered in an experiment using a thin-film topological insulator with ferromagnetic ordering and strong spin-orbit coupling. Here we investigate the spin degree ...

Wu, Jiansheng

414

Competing spin pumping effects in magnetic hybrid structures  

SciTech Connect (OSTI)

Pure spin current can be detected by its conversion into charge current in nanometer thick nonmagnetic metal layer with large spin-orbit coupling by means of the inverse spin Hall effect (ISHE). Recently, it has been shown that the metallic ferromagnet Permalloy (Py) can also be used as spin current detector in experiments in which an ISHE voltage is created in a Py layer in contact with the insulating ferromagnet yttrium iron garnet (YIG) under a thermal gradient in the longitudinal spin Seebeck configuration. Here, we report experiments with microwave driven spin pumping in heterostructures made with single crystal YIG film and a nanometer thick Py or Pt layer that show that Py behaves differently than nonmagnetic metals as a spin current detector. The results are attributed to the competition between the spin currents generated by the dynamics of the magnetizations in YIG and in Py, which are exchange coupled at the interface.

Azevedo, A., E-mail: aac@df.ufpe.br; Alves Santos, O.; Fonseca Guerra, G. A.; Cunha, R. O.; Rezende, S. M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Rodríguez-Suárez, R. [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile)

2014-02-03T23:59:59.000Z

415

INSTITUT NEEL Grenoble International training network "Spin-Optronics"  

E-Print Network [OSTI]

INSTITUT NEEL Grenoble International training network "Spin-Optronics" EU funded PhD grant Injected carrier (back) #12;INSTITUT NEEL Grenoble International training network "Spin-Optronics" EU

van Tiggelen, Bart

416

High Field Quantum Spin Hall State in Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

quantum spin Hall (QSH) state-the paradigmatic two dimensional SPT phase-in monolayer graphene. In a QSH state, electrons with opposite spin polarization carry current in opposite...

417

Spin-geodesic deviations in the Schwarzschild spacetime  

E-Print Network [OSTI]

The deviation of the path of a spinning particle from a circular geodesic in the Schwarzschild spacetime is studied by an extension of the idea of geodesic deviation. Within the Mathisson-Papapetrou-Dixon model and assuming the spin parameter to be sufficiently small so that it makes sense to linearize the equations of motion in the spin variables as well as in the geodesic deviation, the spin-curvature force adds an additional driving term to the second order system of linear ordinary differential equations satisfied by nearby geodesics. Choosing initial conditions for geodesic motion leads to solutions for which the deviations are entirely due to the spin-curvature force, and one finds that the spinning particle position for a given fixed total spin oscillates roughly within an ellipse in the plane perpendicular to the motion, while the azimuthal motion undergoes similar oscillations plus an additional secular drift which varies with spin orientation.

Donato Bini; Andrea Geralico; Robert T. Jantzen

2014-08-21T23:59:59.000Z

418

arterial spin labelling: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A proposal is outlined to probe spin-charge separation in the normal state of the high Tc cuprates using spin transport. Specifically, the proposal is to compare the temperature...

419

arterial spin labeled: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A proposal is outlined to probe spin-charge separation in the normal state of the high Tc cuprates using spin transport. Specifically, the proposal is to compare the temperature...

420

arterial spin labeling: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A proposal is outlined to probe spin-charge separation in the normal state of the high Tc cuprates using spin transport. Specifically, the proposal is to compare the temperature...

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Leading Edge Spinning the Web of Cell Fate  

E-Print Network [OSTI]

Leading Edge Minireview Spinning the Web of Cell Fate Kevin Van Bortle1 and Victor G. Corces1,* 1 involved in spinning the web of cell fate. Chromatin at the Nuclear Lamina The nuclear lamina is a thin

Corces, Victor G.

422

Coherent Control of a Single Silicon-29 Nuclear Spin Qubit  

E-Print Network [OSTI]

Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.

Jarryd J. Pla; Fahd A. Mohiyaddin; Kuan Y. Tan; Juan P. Dehollain; Rajib Rahman; Gerhard Klimeck; David N. Jamieson; Andrew S. Dzurak; Andrea Morello

2014-08-06T23:59:59.000Z

423

acoustic electron spin resonance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of electrons with spin-up and electrons with spin-down. In terms of new model we consider propagation of waves in magnetized plasmas of degenerate electrons and motionless ions. We...

424

Joule heating generated by spin current through Josephson junctions  

SciTech Connect (OSTI)

We theoretically study the spin-polarized current flowing through a Josephson junction (JJ) in a spin injection device. When the spin-polarized current is injected from a ferromagnet in a superconductor (SC), the charge current is carried by the superconducting condensate (Cooper pairs), while the spin-up and spin-down currents flow in equal magnitude but in the opposite direction in a SC, because of no quasiparticle charge current in the SC. This indicates that not only the Josephson current but also the spin current flow across JJ at zero bias voltage, thereby generating Joule heating by the spin current. The result provides a new method for detecting the spin current by measuring Joule heating at JJ. {copyright} 2001 American Institute of Physics.

Takahashi, S.; Yamashita, T.; Koyama, T.; Maekawa, S.; Imamura, H.

2001-06-01T23:59:59.000Z

425

Quantum Gravity in Three Dimensions from Higher-Spin Holography  

E-Print Network [OSTI]

Higher Spin Anti-de Sitter Gravity,” JHEP 1012, 007 (2010)gravity in three dimensions from the per- spective of higher-spin holography in anti-gravity in three dimen- sions in the framework of higher-spin holography in anti-

Tan, Hai Siong

2013-01-01T23:59:59.000Z

426

MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY  

E-Print Network [OSTI]

COURSE 7 MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY MATTHEW P.A. FISHER insulators and quantum magnetism 583 3.1 Spin models and quantum magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 #12;MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY Matthew P.A. Fisher

427

Coherent spinor dynamics in a spin-1 Bose condensate  

E-Print Network [OSTI]

, for example, a Bose­Einstein condensate or a degenerate Fermi gas, the phase space accessible to low of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin of the gas, although it does not change the nature of the coherence of the condensate--indeed it has been

Loss, Daniel

428

Muon-spin spectroscopy of the organometallic spin-1/2 kagome-lattice compound Cu(1,3-benzenedicarboxylate)  

E-Print Network [OSTI]

Using muon-spin resonance, we examine the organometallic hybrid compound Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)], which has structurally perfect spin-1/2 copper kagome planes separated by pure organic linkers. This ...

Marcipar, Lital

429

One dimensional electron spin imaging for single spin detection and manipulation using a gradient field  

E-Print Network [OSTI]

magnetic field gradients. These fabricated devices are used to demonstrate this subwavelength imaging technique by imaging single electron spins of the nitrogen-vacancy (NV) defect in diamond. In this demonstration, multiple NV defects, unresolved in a...

Shin, Chang-Seok

2009-05-15T23:59:59.000Z

430

Dependence of nuclear spin singlet lifetimes on RF spin-locking power  

E-Print Network [OSTI]

We measure the lifetime of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field and present a simple theoretical model that agrees well with our measurements, including the low-RF-power regime. We also measure the lifetime of a long-lived coherence between singlet and triplet states that does not require a spin-locking field for preservation. Our results indicate that for many molecules, singlet states can be created using weak RF spin-locking fields: more than two orders of magnitude lower RF power than in previous studies. Our findings suggest that in many biomolecules, singlets and related states with enhanced lifetimes might be achievable in vivo with safe levels of RF power.

Stephen J. DeVience; Ronald L. Walsworth; Matthew S. Rosen

2012-01-06T23:59:59.000Z

431

Spin Relaxation of Hydrogen and Deuterium  

E-Print Network [OSTI]

Spin Relaxation of Hydrogen and Deuterium in Storage Cells Bernd Braun Ludwig and the relaxation measurements, to produce polarization of hydrogen or deuterium atoms in a storage cell \\Gamma3 for hydrogen and even only 10 \\Gamma4 for deuterium during the entire time in the storage cell

432

Spin interference of holes in silicon nanosandwiches  

SciTech Connect (OSTI)

Spin-dependent transport of holes is studied in silicon nanosandwiches on an n-Si (100) surface which are represented by ultranarrow p-Si quantum wells confined by {delta}-barriers heavily doped with boron. The measurement data of the longitudinal and Hall voltages as functions of the top gate voltage without an external magnetic field show the presence of edge conduction channels in the silicon nanosandwiches. An increase in the stabilized source-drain current within the range 0.25-5 nA subsequently exhibits the longitudinal conductance value 4e{sup 2}/h, caused by the contribution of the multiple Andreev reflection, the value 0.7(2e{sup 2}/h) corresponding to the known quantum conductance staircase feature, and displays Aharonov-Casher oscillations, which are indicative of the spin polarization of holes in the edge channels. In addition, at a low stabilized source-drain current, due to spin polarization, a nonzero Hall voltage is detected which is dependent on the top gate voltage; i. e., the quantum spin Hall effect is observed. The measured longitudinal I-V characteristics demonstrate Fiske steps and a negative differential resistance caused by the generation of electromagnetic radiation as a result of the Josephson effect. The results obtained are explained within a model of topological edge states which are a system of superconducting channels containing quantum point contacts transformable to single Josephson junctions at an increasing stabilized source-drain current.

Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Danilovskii, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mashkov, V. A. [St. Petersburg State Polytechnical University (Russian Federation)

2012-01-15T23:59:59.000Z

433

Koornwinder polynomials and the XXZ spin chain  

E-Print Network [OSTI]

Nonsymmetric Koornwinder polynomials are multivariable extensions of nonsymmetric Askey-Wilson polynomials. They naturally arise in the representation theory of (double) affine Hecke algebras. In this paper we discuss how nonsymmetric Koornwinder polynomials naturally arise in the theory of the Heisenberg XXZ spin-$\\frac{1}{2}$ chain with general reflecting boundary conditions. A central role in this story is played by an explicit two-parameter family of spin representations of the two-boundary Temperley-Lieb algebra. These spin representations have three different appearances. Their original definition relates them directly to the XXZ spin chain, in the form of matchmaker representations they relate to Temperley-Lieb loop models in statistical physics, while their realization as principal series representations leads to the link with nonsymmetric Koornwinder polynomials. The nonsymmetric difference Cherednik-Matsuo correspondence allows to construct for special parameter values Laurent-polynomial solutions of the associated reflection quantum KZ equations in terms of nonsymmetric Koornwinder polynomials. We discuss these aspects in detail by revisiting and extending work of De Gier, Kasatani, Nichols, Cherednik, the first author and many others.

Jasper Stokman; Bart Vlaar

2014-04-03T23:59:59.000Z

434

Spin-out Company Portfolio Technology Transfer  

E-Print Network [OSTI]

Spin-out Company Portfolio 2012 Technology Transfer The Sir Colin Campbell Building The University `Entrepreneurial University of the Year' in 2008. The Technology Transfer Office (TTO) has close links detail. Dr Susan Huxtable Director, Technology Transfer Tel: +44 (0)115 84 66388 Email: susan

Aickelin, Uwe

435

Chiral Dynamics and Single-Spin Asymmetries  

E-Print Network [OSTI]

Parity-conserving single-spin asymmetries provide a specific measure of coherent spin-orbit dynamics in quantum chromodynamics. The origin of these effects can be traced to the interplay of chiral dynamics and confinement in the theory. The most elegant display of the relevant mechanisms occurs in the Collins functions and the polarizing fragmentation functions and fracture functions for particles with spin. In the nucleon, these same dynamical mechanisms generate virtual quantum structures leading to the Boer-Mulders functions and orbital distributions. Two complementary formalisms for these distributions appear. The familiar gauge-link formalism incorporates oll nonperturbative dynamics into nonlocal correlators. The constructive formalism introduced by the author describes distributions normalized to an intrinsic property of the nucleon, namely, the currents specified in the Bakker-Leader-Trueman sum rule. The connection between these two approaches can be explored in the process dependence of single-spin asymmetries in various hard-scattering processes. The study of the SU(2) Weyl-Dirac equation in spherical coordinates allows typical Wilson operators that determine this process dependence to be evaluated in the coordinate gauge.

Dennis Sivers

2007-11-20T23:59:59.000Z

436

On the spin-rotation-gravity coupling  

E-Print Network [OSTI]

The inertial and gravitational properties of intrinsic spin are discussed and some of the recent work in this area is briefly reviewed. The extension of relativistic wave equations to accelerated systems and gravitational fields is critically examined. A nonlocal theory of accelerated observers is presented and its predictions are compared with observation.

Bahram Mashhoon

1998-03-05T23:59:59.000Z

437

Measurements of the CKM Angle phi3/gamma  

SciTech Connect (OSTI)

We present a review on the measurements of the CKM angle {gamma} ({phi}{sub 3}){sup 1} as performed by the BABAR and Belle experiments at the asymmetric-energy e{sup +}e{sup -} B factories colliders PEP-II and KEKB. These measurements are using either charged or neutral B decays. For charged B decays the modes {tilde D}{sup 0}K{sup -}, {tilde D}*{sup 0}K{sup -}, and {tilde D}{sup 0}K*{sup -} are employed, where {tilde D}{sup 0} indicates either a D{sup 0} or a {bar D}{sup 0} meson. Direct CP violation is exploited. It is caused by interferences between V{sub ub} and V{sub cb} accessible transitions that generate asymmetries in the final states. For these decays various methods exist to enhance the sensitivity to the V{sub ub} transition, carrying the weak phase {gamma}. For neutral B decays, the modes D{sup (*){+-}}{pi}{sup {-+}} and D{sup {+-}}{rho}{sup {-+}} are used. In addition to the V{sub ub} and V{sub cb} interferences, these modes are sensitive to the B{sup 0}-{bar B}{sup 0} mixing, so that time dependent analyses are performed to extract sin(2{beta} + {gamma}). An alternative method would use the lower branching ratios decay modes {tilde D}{sup (*)0}{bar K}{sup (*)0} where much larger asymmetries are expected. The various available methods are mostly ''theoretically clean'' and always free of penguins diagrams. In some cases a high sensitivity to {gamma} is expected and large asymmetries may be seen. But these measurements are always experimentally difficult as one has to face with either low branching ratios, or small asymmetries, or additional technical/theoretical difficulties due to Dalitz/SU(3) and re-scattering models needed to treat/estimate nuisance parameters such as unknown strong phases and the relative magnitude of the amplitude of the interfering ''V{sub ub}'' transitions. Thus at the present time only a relatively limited precision on {gamma} can be extracted from these measurements. The current world average is {gamma} = (78{sub -26}{sup +19}){sup o} [1]. For other methods and long term perspectives, as discussed in details, the reader is invited to consult the proceedings of the recent CKM workshop that was held in Nagoya (Japan) in December 2006 [2].

Tisserand, Vincent; /Annecy, LAPP

2007-06-27T23:59:59.000Z

438

Determination of gamma from charmless B+ -> M0 M+ decays using U-spin  

E-Print Network [OSTI]

U-spin is used to determine the unitarity angle gamma from two body decays of charged B-mesons. Each of the four data sets, P0P+, P0V+, V0P+ and V0V+, with P = pseudoscalar and V = vector, can give a value of gamma. Significant advantage of the method is that no assumptions regarding relative sizes of topological decay amplitudes need to be made so none is neglected. Application of the method to the existing data yields: gamma=54^{+12}_{-11} degrees. We find that improved measurements of phi pi+ and K*0bar K+ branching ratios would lead to appreciably better determination of gamma. In this method, which is completely data driven, we should be able to obtain a model independent determination of gamma with an accuracy of O(few degrees).

Soni, A; Soni, Amarjit; Suprun, Denis A.

2006-01-01T23:59:59.000Z

439

Constraining MODIS snow albedo at large solar zenith angles: Implications for surface energy budget in Greenland  

E-Print Network [OSTI]

Constraining MODIS snow albedo at large solar zenith angles: Implications for surface energy budget; Solar Zenith Angle; Greenland; Surface Energy Budget 2 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 plays a pivotal role in determining the surface energy balance of Greenland which, by virtue of its area

Zender, Charles

440

Using multi-angle scattered sound to size fish swimbladders Jules S. Jaffe  

E-Print Network [OSTI]

Using multi-angle scattered sound to size fish swimbladders Jules S. Jaffe Jaffe, J. S. 2006. Using multi-angle scattered sound to size fish swimbladders. e ICES Journal of Marine Science, 63: 1397e1404 a simple one-dimensional model of scatter from a fish swimbladder, an expression is derived that predicts

Jaffe, Jules

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Time-Resolved Small-Angle Neutron Scattering Study of Polyethylene Crystallization from Solution  

E-Print Network [OSTI]

Time-Resolved Small-Angle Neutron Scattering Study of Polyethylene Crystallization from Solution-resolved small-angle neutron scattering (TR-SANS), the crystal- lization kinetics of polyethylene from deuterated of polyethylene crystallization from xylene solutions. One unique feature of this experimentation is that both

Wang, Howard "Hao"

442

SAYA's head-eye coordination system Correspondence of image-width and angle  

E-Print Network [OSTI]

SAYA's head-eye coordination system Correspondence of image-width and angle 335 - 359 [deg] 0 - 25 - 25 [deg] is input, head and eyes move to right side. b) If the angle within 335 - 359 [deg] is input, head and eyes move to left side. SAYA's head-eye coordination system Correspondence of image

Beimel, Amos

443

Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthr  

E-Print Network [OSTI]

663 Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthür Institut with the times obtained from quasi- elastic neutron and light scattering, which yield information about neutrons aux petits angles (DNPA) pour l'étude des systèmes hors d'équi- libre thermodynamique est

Boyer, Edmond

444

Solvent Entrainment in and Flocculation of Asphaltenic Aggregates Probed by Small-Angle Neutron Scattering  

E-Print Network [OSTI]

-Angle Neutron Scattering Keith L. Gawrys, George A. Blankenship, and Peter K. Kilpatrick* Department of ChemicalVed September 14, 2005. In Final Form: January 30, 2006 While small-angle neutron scattering (SANS) has proven to the scattering intensity curves were performed using the Guinier approximation, the Ornstein- Zernike (or Zimm

Kilpatrick, Peter K.

445

Small angle neutron scattering on periodically deformed polymers A. R. Rennie  

E-Print Network [OSTI]

765 Small angle neutron scattering on periodically deformed polymers A. R. Rennie Institut für Phys-768 SEPTEMBRE 1984, 1. Introduction. Neutron scattering has proved a useful tool for the investigation of a wide time for a small angle neutron scattering spectrum is several minutes. Obser- vation on rapidly

Boyer, Edmond

446

Salt-Dependent Compaction of Di-and Trinucleosomes Studied by Small-Angle Neutron Scattering  

E-Print Network [OSTI]

Salt-Dependent Compaction of Di- and Trinucleosomes Studied by Small-Angle Neutron Scattering, Germany, and Institut Laue-Langevin Grenoble, F-38042 Grenoble, France ABSTRACT Using small-angle neutron scattering (SANS), we have measured the salt-dependent static structure factor of di- and trinucleosomes from

Langowski, Jörg

447

Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated  

E-Print Network [OSTI]

Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated online: Abstract We report small angle neutron scattering (SANS) from dilute suspensions of purified University, Houghton, MI 49931, USA e NIST Center for Neutron Research, National Institute of Standards

Wang, Howard "Hao"

448

High temperature furnaces for small and large angle neutron scattering of disordered materials  

E-Print Network [OSTI]

725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

Boyer, Edmond

449

Study, by neutron small angle scattering, of addition of an electrolyte to reversed micellar solution  

E-Print Network [OSTI]

L-455 Study, by neutron small angle scattering, of addition of an electrolyte to reversed micellar the size of reversed micelles of the ternary system Aerosol OT-n-heptane-water by small angle neutron, highly soluble in hydro- carbon substances, which may give reversed micelles in the presence of water

Paris-Sud XI, Université de

450

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space  

E-Print Network [OSTI]

-angle rigid body rotations of a floating wind turbine in the time domain. The tower and rotor-nacelle assemblyFloating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space Bert Sweetman Texas A wind turbines in deep water, where environmental forcing could subject the rotor to meaningful angular

Sweetman, Bert

451

Reynolds Number Invariance of the Structure Inclination Angle in Wall Turbulence Ivan Marusic*  

E-Print Network [OSTI]

Reynolds Number Invariance of the Structure Inclination Angle in Wall Turbulence Ivan Marusic using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose has not been available before. Structure inclination angles are inferred from the cross correlation

Marusic, Ivan

452

Limited Angle Tomography of Sparse Images from Noisy Data using TLS MUSIC Algorithm  

E-Print Network [OSTI]

1 Limited Angle Tomography of Sparse Images from Noisy Data using TLS MUSIC Algorithm Andrew E The limited angle tomography problem is to recon- struct an image x(y, z) from its projections p(t, ) p-shaped region. This has applications to med- ical imaging and non-destructive evaluation where projection data

Yagle, Andrew E.

453

Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES  

SciTech Connect (OSTI)

The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)] [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

2013-11-15T23:59:59.000Z

454

Roll Angle Estimation for Motorcycles: Comparing Video and Inertial Sensor Approaches  

E-Print Network [OSTI]

Roll Angle Estimation for Motorcycles: Comparing Video and Inertial Sensor Approaches Marc such modules to motorcycles, the camera pose has to be taken into account, as e. g. large roll angles produce,schroeter,winner}@fzd.tu-darmstadt.de Z Y X Fig. 1. Illustration of the motorcycle coordinate system. instance, recognition of obstacles

Schlipsing, Marc

455

Spin-lattice relaxation measurements and spin conversion in methane below 1 K (*)  

E-Print Network [OSTI]

= EF - EA. Conversion rate measurements as a function of H then yield direct information on AAF as wellL-159 Spin-lattice relaxation measurements and spin conversion in methane below 1 K (*) B. Bouchet'espèce F, a été vérifié. La conversion résonnante E ~ F, pour la première fois observée, a fourni une

Paris-Sud XI, Université de

456

Probing spin entanglement by gate-voltage-controlled interference of current correlation in quantum spin Hall insulators  

E-Print Network [OSTI]

We propose an entanglement detector composed of two quantum spin Hall insulators and a side gate deposited on one of the edge channels. For an ac gate voltage, the differential noise contributed from the entangled electron pairs exhibits the nontrivial step structures, from which the spin entanglement concurrence can be easily obtained. The possible spin dephasing effects in the quantum spin Hall insulators are also included.

Wei Chen; Z. D. Wang; R. Shen; D. Y. Xing

2014-05-21T23:59:59.000Z

457

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1  

E-Print Network [OSTI]

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1 Gang Su,1 governed by thermal processes at high temperature. The so-called spin-valve phenomenon is clearly uncovered, the quantum size effect on the thermal conduc- tance and the Peltier coefficient,2 the diffusive thermopower

Gao, Song

458

Gravitational lensing by spinning and escaping lenses  

E-Print Network [OSTI]

The effect of currents of mass on bending of light rays is considered in the weak field regime. Following Fermat's principle and the standard theory of gravitational lensing, we derive the gravitomagnetic correction to time delay function and deflection angle caused by a geometrically-thin lens. The cases of both rotating and shifting deflectors are discussed.

M. Sereno

2003-05-12T23:59:59.000Z

459

Over-spinning a black hole with a test body  

E-Print Network [OSTI]

It has long been known that a maximally spinning black hole can not be over-spun by tossing in a test body. Here we show that if instead the black hole starts out with below maximal spin, then indeed over-spinning can be achieved when adding either orbital or spin angular momentum. We find that requirements on the size and internal structure of the test body can be met as well. Our analysis neglects radiative and self-force effects,which may prevent the over-spinning.

Ted Jacobson; Thomas P. Sotiriou

2009-12-01T23:59:59.000Z

460

From local to global ground states in Ising spin glasses  

E-Print Network [OSTI]

We consider whether it is possible to find ground states of frustrated spin systems by solving them locally. Using spin glass physics and Imry-Ma arguments in addition to numerical benchmarks we quantify the power of such local solution methods and show that for the average low-dimensional spin glass problem outside the spin- glass phase the exact ground state can be found in polynomial time. In the second part we present a heuristic, general-purpose hierarchical approach which for spin glasses on chimera graphs and lattices in two and three dimensions outperforms, to our knowledge, any other solver currently around, with significantly better scaling performance than simulated annealing.

Ilia Zintchenko; Matthew B. Hastings; Matthias Troyer

2015-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electrical detection of spin echoes for phosphorus donors in silicon  

E-Print Network [OSTI]

The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO$_2$ interface. Using the Carr-Purcell pulse sequence, an echo decay with a time constant of $1.7\\pm0.2 \\rm{\\mu s}$ is observed, in good agreement with theoretical modeling of the interaction between donors and paramagnetic interface states. Electrical spin echo tomography thus can be used to study the spin dynamics in realistic spin qubit devices for quantum information processing.

Hans Huebl; Felix Hoehne; Benno Grolik; Andre R. Stegner; Martin Stutzmann; Martin S. Brandt

2007-12-02T23:59:59.000Z

462

Propagation of nonlinearly generated harmonic spin waves in microscopic stripes  

SciTech Connect (OSTI)

We report on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes. Using an all electrical technique with coplanar waveguides, we find that two kinds of spin waves can be generated by nonlinear frequency multiplication. One has a non-uniform spatial geometry and thus requires appropriate detector geometry to be identified. The other corresponds to the resonant fundamental propagative spin waves and can be efficiently excited by double- or triple-frequency harmonics with any geometry. Nonlinear excited spin waves are particularly efficient in providing an electrical signal arising from spin wave propagation.

Rousseau, O. [Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Yamada, M.; Miura, K.; Ogawa, S. [Hitachi, Ltd., Central Research Laboratory, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601 (Japan); Otani, Y., E-mail: yotani@issp.u-tokyo.ac.jp [Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, Kashiwa 277-858 (Japan)

2014-02-07T23:59:59.000Z

463

Spin transition in a four-coordinate iron oxide  

SciTech Connect (OSTI)

The spin transition, or spin crossover, is a manifestation of electronic instability induced by external constraints such as pressure1. Among known examples that exhibit spin transition, 3d ions with d6 electron configurations represent the vast majority, but the spin transition observed thus far has been almost exclusively limited to that between high-spin (S = 2) and low-spin (S = 0) states2-9. Here we report a novel high-spin to intermediate-spin (S = 1) state transition at 33 GPa induced by pressurization of an antiferromagnetic insulator SrFeO2 with a square planar coordination10. The change in spin multiplicity brings to ferromagnetism as well as metallicity, yet keeping the ordering temperature far above ambient. First-principles calculations attribute the origin of the transition to the strong inlayer hybridization between Fe dx 2 -y 2 O p , leading to a pressure-induced electronic instability toward the depopulation of Fe dx 2 -y 2 O p antibonding states. Furthermore, the ferromagnetic S = 1 state is half-metallic due to the inception of half-occupied spin-down (dxz, dyz) degenerate states upon spin transition. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials and provide new avenues toward realizing multi-functional sensors and data-storage devices.

Kawakami, T. [Nihon University, Tokyo; Sutou, S. [Nihon University, Tokyo; Hirama, H. [Nihon University, Tokyo; Sekiya, Y. [Nihon University, Tokyo; Makino, T. [Nihon University, Tokyo; Tsujimoto, Y. [Kyoto University, Japan; Kitada, A. [Kyoto University, Japan; Tassel, C. [Kyoto University, Japan; Kageyama, H. [Kyoto University, Japan; Yoshimura, K. [Kyoto University, Japan; Chen, Xingqiu [ORNL; Fu, Chong Long [ORNL; Okada, T. [University of Tokyo, Tokyo, Japan; Yagi, T. [University of Tokyo, Tokyo, Japan; Hayashi, N. [Kyoto University, Japan; Nasu, S. [Osaka University; Podloucky, R. [Institut fur Physikalische Chemie der RWTH; Takano, M. [Kyoto University, Japan

2009-01-01T23:59:59.000Z

464

Accurate and efficient spin integration for particle accelerators  

E-Print Network [OSTI]

Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

Abell, Dan T; Ranjbar, Vahid H; Barber, Desmond P

2015-01-01T23:59:59.000Z

465

Selective coherence transfers in homonuclear dipolar coupled spin systems  

E-Print Network [OSTI]

Mapping the physical dipolar Hamiltonian of a solid-state network of nuclear spins onto a system of nearest-neighbor couplings would be extremely useful for a variety of quantum information processing applications, as well as NMR structural studies. We demonstrate such a mapping for a system consisting of an ensemble of spin pairs, where the coupling between spins in the same pair is significantly stronger than the coupling between spins on different pairs. An amplitude modulated RF field is applied on resonance with the Larmor frequency of the spins, with the frequency of the modulation matched to the frequency of the dipolar coupling of interest. The spin pairs appear isolated from each other in the regime where the RF power (omega_1) is such that omega_weak << omega_1 << omega_strong. Coherence lifetimes within the two-spin system are increased from 19 us to 11.1 ms, a factor of 572.

Chandrasekhar Ramanathan; Suddhasattwa Sinha; Jonathan Baugh; Timothy F. Havel; David G. Cory

2004-09-30T23:59:59.000Z

466

Determination of gamma from charmless B^+/- -> M^0 M^+/- decays using U-spin  

E-Print Network [OSTI]

U-spin multiplet approach is applied to the full set of charmless hadronic B+/- --> M0 M+/- decays for the purpose of precise extraction of the unitarity angle gamma. Each of the four data sets, P0 P+/-, P0 V+/-, V0 P+/- and V0 V+/-, with P = pseudoscalar and V = vector, can be used to yield a precise value of gamma. The crucial advantage of this method over the common SU(3) symmetry based quark-diagrammatic approach is that no assumptions regarding relative sizes of topological decay amplitudes need to be made. As a result, this method avoids an uncontrollable theoretical uncertainty that is related to the neglect of some topological diagrams (e.g., exchange and annihilation graphs) in the SU(3) approach. Application of the U-spin approach to the current data yields: gamma=54^{+12}_{-11} degrees. We find that improved measurements of phi pi+/- and K*0bar K+/- branching ratios would lead to appreciably better extraction of gamma. In this method, which is completely data driven, in a few years we should be able to obtain a model independent determination of gamma with an accuracy of O(few degrees).

Amarjit Soni; Denis A. Suprun

2006-01-28T23:59:59.000Z

467

Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach  

SciTech Connect (OSTI)

Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from ?1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

Eslami, Leila, E-mail: Leslami@iust.ac.ir; Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir [Department of Physics, Iran University of Science and Technology, Tehran 16846 (Iran, Islamic Republic of)

2014-02-28T23:59:59.000Z

468

Electrical spin injection using GaCrN in a GaN based spin light emitting diode  

SciTech Connect (OSTI)

We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

Banerjee, D.; Ganguly, S.; Saha, D., E-mail: dipankarsaha@iitb.ac.in [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076 (India); Adari, R.; Sankaranarayan, S.; Kumar, A. [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)] [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S. [Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)] [Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

2013-12-09T23:59:59.000Z

469

A spinning mirror for fast angular scans of EBW emission for magnetic pitch profile measurements  

SciTech Connect (OSTI)

A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega-Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12 000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10 ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

Volpe, Francesco [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

2010-10-15T23:59:59.000Z

470

A quantum Otto engine with a spin-$1/2$ and an arbitrary spin coupled by Heisenberg exchange  

E-Print Network [OSTI]

We investigate a quantum heat engine with a working substance of two particles, one with a spin-$1/2$ and the other with an arbitrary spin (spin-$s$), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spin values and can harvest work at higher exchange interaction strengths.The role of exchange coupling and spin-$s$ on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. The local work definition is generalized for the global changes and the conditions when the global work can be equal or more than the sum of the local works are determined.

Ferdi Altintas; Özgür E. Müstecapl?o?lu

2015-02-26T23:59:59.000Z

471

Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators  

E-Print Network [OSTI]

Topological insulators are a new phase of matter that exhibits exotic surface electronic properties. Determining the spin texture of this class of material is of paramount importance for both fundamental understanding of ...

Wang, Yihua

472

Electric Dipole Radiation from Spinning Dust Grains  

E-Print Network [OSTI]

We discuss the rotational excitation of small interstellar grains and the resulting electric dipole radiation from spinning dust. Attention is given to excitation and damping of rotation by: collisions with neutrals; collisions with ions; plasma drag; emission of infrared radiation; emission of microwave radiation; photoelectric emission; and formation of H_2 on the grain surface. We introduce dimensionless functions F and G which allow direct comparison of the contributions of different mechanisms to rotational drag and excitation. Emissivities are estimated for dust in different phases of the interstellar medium, including diffuse HI, warm HI, low-density photoionized gas, and cold molecular gas. Spinning dust grains can explain much, and perhaps all, of the 14-50 GHz background component recently observed in CBR studies. It should be possible to detect rotational emission from small grains by ground-based observations of molecular clouds.

B. T. Draine; A. Lazarian

1998-02-18T23:59:59.000Z

473

Phenomenological gravitational waveforms from spinning coalescing binaries  

E-Print Network [OSTI]

An accurate knowledge of the coalescing binary gravitational waveform is crucial for experimental searches as the ones performed by the LIGO-Virgo collaboration. Following an earlier paper by the same authors we refine the construction of analytical phenomenological waveforms describing the signal sourced by generically spinning binary systems. The gap between the initial inspiral part of the waveform, described by spin-Taylor approximants, and its final ring-down part, described by damped exponentials, is bridged by a phenomenological phase calibrated by comparison with the dominant spherical harmonic mode of a set of waveforms including both numerical and phenomenological waveforms of different type. All waveforms considered describe equal mass systems. The Advanced LIGO noise-weighted overlap integral between the numerical and phenomenological waveforms presented here ranges between 0.95 and 0.99 for a wide span of mass values.

R. Sturani; S. Fischetti; L. Cadonati; G. M. Guidi; J. Healy; D. Shoemaker; A. Vicere'

2011-06-23T23:59:59.000Z

474

Evidence for spin correlation in tt? production  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We present a measurement of the ratio of events with correlated t and t? spins to the total number of tt? events. This ratio f is evaluated using a matrix-element-based approach in 729 tt? candidate events with a single lepton ? (electron or muon) and at least four jets. The analyzed pp? collisions data correspond to an integrated luminosity of 5.3??fb?1 and were collected with the D0 detector at the Fermilab Tevatron collider operating at a center-of-mass energy ?s=1.96??TeV. Combining this result with a recent measurement of f in dileptonic final states, we find f in agreement with the standard model. In addition, the combination provides evidence for the presence of spin correlation in tt? events with a significance of more than 3 standard deviations.

Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.

2012-01-01T23:59:59.000Z

475

Surplus solid angle as an imprint of Horava-Lifshitz gravity  

SciTech Connect (OSTI)

We consider the electrostatic field of a point charge coupled to Horava-Lifshitz gravity and find an exact solution describing the space with a surplus (or deficit) solid angle. Although, theoretically in general relativity, a surplus angle is hardly to be obtained in the presence of ordinary matter with positive energy distribution, it seems natural in Horava-Lifshitz gravity. We present the sudden disappearance and reappearance of a star image as an astrophysical effect of a surplus angle. We also consider matter configurations of all possible power law behaviors coupled to Horava-Lifshitz gravity and obtain a series of exact solutions.

Kim, Sung-Soo; Kim, Taekyung; Kim, Yoonbai [Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB-C.P. 231, B-1050 Bruxelles (Belgium); Department of Physics, BK21 Physics Research Division, and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

2009-12-15T23:59:59.000Z

476

Spinning Black Holes as Particle Accelerators  

E-Print Network [OSTI]

It has recently been pointed out that particles falling freely from rest at infinity outside a Kerr black hole can in principle collide with arbitrarily high center of mass energy in the limiting case of maximal black hole spin. Here we aim to elucidate the mechanism for this fascinating result, and to point out its practical limitations, which imply that ultra-energetic collisions cannot occur near black holes in nature.

Ted Jacobson; Thomas P. Sotiriou

2010-01-21T23:59:59.000Z

477

Magnetism of one-dimensional strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction  

SciTech Connect (OSTI)

We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin-exchange interaction via the thermodynamic Bethe ansatz method. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field H is less than the lower critical field H{sub c1}; (ii) a ferromagnetic phase of atoms in the hyperfine state |F=1, m{sub F}=1> when the external magnetic field exceeds the upper critical field H{sub c2}; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region H{sub c1}spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired m{sub F}=1 bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.

Lee, J. Y.; Guan, X. W. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Batchelor, M. T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Lee, C. [Nonlinear Physics Centre and ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

2009-12-15T23:59:59.000Z

478

Information Transfer Fidelity in Networks of Spins  

E-Print Network [OSTI]

Networks of spins, or spintronic networks, are given an Information Transfer Fidelity (ITF) derived from an upper bound on the probability of transmission of the excitation from one spin to another. It is shown that this theoretical bound can be reached asymptotically in time under certain conditions. The process of achieving maximum transfer probability is given a dynamical model, the translation on the torus, and the time to reach the maximum probability is estimated using the simultaneous Diophantine approximation computationally implemented using a variant of the Lenstra-Lenstra-Lov\\'asz (LLL) algorithm. The ITF induces a prametric on the network. For a ring with homogeneous couplings, it is shown that this prametric satisfies the triangle inequality, opening up the road to an ITF geometry, which turns out to be completely different from the geometry of the physical arrangement of the spin in the spintronic device. It is shown that transfer fidelities and transfer times can be improved by means of simple controls taking the form of strong localized magnetic fields, opening up the possibility for intelligent design of spintronic networks and dynamic routing of information encoded in such networks. The approach is much more flexible than engineering the couplings to favor some transfers.

Edmond Jonckheere; Frank Langbein; Sophie Schirmer

2014-10-05T23:59:59.000Z

479

Brief review on higher spin black holes  

E-Print Network [OSTI]

We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-3 fields, being nonperturbatively described by a Chern-Simons theory of two independent sl(3,R) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.

Alfredo Perez; David Tempo; Ricardo Troncoso

2014-05-12T23:59:59.000Z

480

Spin-Orbit Force from Lattice QCD  

E-Print Network [OSTI]

We present a first attempt to determine nucleon-nucleon potentials in the parity-odd sector, which appear in 1P1, 3P0, 3P1, 3P2-3F2 channels, in Nf=2 lattice QCD simulations. These potentials are constructed from the Nambu-Bethe-Salpeter wave functions for J^P=0^-, 1^- and 2^-, which correspond to A1^-, T1^- and T2^- + E^- representation of the cubic group, respectively. We have found a large and attractive spin-orbit potential VLS(r) in the isospin-triplet channel, which is qualitatively consistent with the phenomenological determination from the experimental scattering phase shifts. The potentials obtained from lattice QCD are used to calculate the scattering phase shifts in 1P1, 3P0, 3P1 and 3P2-3F2 channels. The strong attractive spin-orbit force and a weak repulsive central force in spin-triplet P-wave channels lead to an attraction in the 3P2 channel, which is related to the P-wave neutron paring in neutron stars.

K. Murano; N. Ishii; S. Aoki; T. Doi; T. Hatsuda; Y. Ikeda; T. Inoue; H. Nemura; K. Sasaki

2014-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "magic angle spinning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Berry phase and Hannay's angle in a quantum-classical hybrid system  

SciTech Connect (OSTI)

The Berry phase, which was discovered more than two decades ago, provides very deep insight into the geometric structure of quantum mechanics. Its classical counterpart, Hannay's angle, is defined if closed curves of action variables return to the same curves in phase space after a time evolution. In this paper we study the Berry phase and Hannay's angle in a quantum-classical hybrid system under the Born-Oppenheimer approximation. By the term quantum-classical hybrid system, we mean a composite system consists of a quantum subsystem and a classical subsystem. The effects of subsystem-subsystem couplings on the Berry phase and Hannay's angle are explored. The results show that the Berry phase has been changed sharply by the couplings, whereas the couplings have a small effect on the Hannay's angle.

Liu, H. D.; Wu, S. L.; Yi, X. X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2011-06-15T23:59:59.000Z

482

The effects of lithology and initial fault angle in physical models of fault-propagation folds  

E-Print Network [OSTI]

Experimentally deformed physical rock models are used to examine the effects of changing mechanical stratigraphy and initial fault angle on the development of fault-propagation folds over a flat-ramp-flat thrust geometry. This study also...

McLain, Christopher Thomas

2001-01-01T23:59:59.000Z

483

Large or Small Angle MSW from Single Right-Handed Neutrino Dominance  

E-Print Network [OSTI]

In this talk we discuss a natural explanation of both neutrino mass hierarchies {\\it and} large neutrino mixing angles, as required by the atmospheric neutrino data, in terms of a single right-handed neutrino giving the dominant contribution to the 23 block of the light effective neutrino matrix, and illustrate this mechanism in the framework of models with U(1) family symmetries. Sub-dominant contributions from other right-handed neutrinos are required to give small mass splittings appropriate to the MSW solution to the solar neutrino problem. We present three explicit examples for achieving the small angle MSW solution in the framework of U(1) family symmetry models containing three right-handed neutrinos, which can naturally describe all quark and lepton masses and mixing angles. In this talk we also extend the analysis to the large angle MSW solution.

S. F. King

1999-08-26T23:59:59.000Z

484

E-Print Network 3.0 - antibody elbow angles Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Across Space and Tasks Christina T. Fuentes1,2 Summary: vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across... three tasks,...

485

E-Print Network 3.0 - angle-resolved ion tof Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

apparatus used to measure energy and angle... -of-flight (TOF) distributions of the neutral molecules are recorded by varying the delay between the ion pulse... 111 The TOF...

486

A system for optimizing interior daylight distribution using reflective Venetian blinds with independent blind angle control  

E-Print Network [OSTI]

An operational algorithm for blind angle control is developed to optimize the daylighting performance of a system of reflective Venetian blinds. Numerical modeling and experiment confirm that independent control of alternating ...

McGuire, Molly E

2005-01-01T23:59:59.000Z

487

Improved measurements of the neutrino mixing angle ?[subscript 13] with the Double Chooz detector  

E-Print Network [OSTI]

The Double Chooz experiment presents improved measurements of the neutrino mixing angle ?[subscript 13] using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two ...

Conrad, Janet

488

E-Print Network 3.0 - arbitrary flip angle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

constraints on the dihedral angles, such meshes are De- launay meshes: the open geodesic circumdisk of each... face contains no mesh vertex. The analysis is done by means of...

489

Krill-eye : Superposition Compound Eye for Wide-Angle Imaging via GRIN Lenses  

E-Print Network [OSTI]

We propose a novel wide angle imaging system inspired by compound eyes of animals. Instead of using a single lens, well compensated for aberration, we used a number of simple lenses to form a compound eye which produces ...

Hiura, Shinsaku

490

Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors  

E-Print Network [OSTI]

Small-angle neutron scattering (SANS) is the most significant neutron technique in terms of impact on science and engineering. However, the basic design of SANS facilities has not changed since the technique’s inception ...

Liu, Dazhi

491

E-Print Network 3.0 - angle scattering restraints Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Assemblies from Summary: , San Francisco 2001), small-angle X-ray and neutron scattering (KochQB3 et al., 2003), site... subcomplex) are first purified by...

492

Microsoft Word - Milestone_Report-12-2012-Small-Angle_Neutron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Reactor Sustainability Program: Milestone M3LW-13OR0402012, Report on Small-Angle Neutron Scattering Experiments of Irradiated RPV Materials Prepared by M. A. Sokolov, K....

493

E-Print Network 3.0 - angle-scanning photoemission end-station...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: angle-scanning photoemission end-station Page: << < 1 2 3 4 5 > >> 1 SRI 2007 Conference Proceedings Title: Optimization of the 3m TGM beamline, at CAMD, for constant...

494

Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle  

E-Print Network [OSTI]

This brief report is an extension of a prediction of neutrino oscillation with a sterile neutrino using parameters of the sterile neutrino mass and mixing angle recently extracted from experiment.

Leonard S. Kisslinger

2014-10-10T23:59:59.000Z

495

E-Print Network 3.0 - angle deposited nano-rough Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nano-rough Search Powered by Explorit Topic List Advanced Search Sample search results for: angle deposited nano-rough Page: << < 1 2 3 4 5 > >> 1 Advanced techniques for glancing...

496

Investigation of microstructure of disordered colloidal systems by small-angle scattering  

E-Print Network [OSTI]

Small-angle scattering (SAS) has been widely applied to study the microstructure of colloidal systems. Although colloids cover a wide range of materials, in general they can simply be viewed as basic building particles ...

Chiang, Wei-Shan

2014-01-01T23:59:59.000Z

497

E-Print Network 3.0 - angle of rest Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, because it is instantaneously at rest. But although this is the only point on the wheel that is at rest... an angle of with the vertical at a given time. If the wheel then...

498

E-Print Network 3.0 - angle-resolved x-ray photoelectron Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

x-ray photoelectron Search Powered by Explorit Topic List Advanced Search Sample search results for: angle-resolved x-ray photoelectron Page: << < 1 2 3 4 5 > >> 1 Norman Mannella...

499

Lesson Summary In this lesson, students will find and calculate the angle  

E-Print Network [OSTI]

white light source (incandescent light bulb, not fluorescent) · Copies of Astronomy Today or Sky of electromagnetic spectrum · Understanding of light and prisms · Experience with angle measurements · Experience

Mojzsis, Stephen J.