National Library of Energy BETA

Sample records for macromolecular crystallography mx

  1. SMB, Macromolecular Crystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Macromolecular Crystallography Home » Macromolecular Crystallography Macromolecular Crystallography The macromolecular crystallography (MC) program is a major experimental driver for structural biology research, serving the needs of a large number of academic and biotech groups working in this area, particularly in the Western U.S. Innovations in synchrotron-based crystallography have been catalyzed by challenges in this field, in particular the growing number of "non expert" user

  2. Instrumentation upgrades for the Macromolecular Crystallography beamlines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Swiss Light Source | Stanford Synchrotron Radiation Lightsource Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April

  3. Goniometer-based Femtosecond Macromolecular Crystallography | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Goniometer-based Femtosecond Macromolecular Crystallography Saturday, October 31, 2015 Scientists in the Structural Molecular Biology (SMB) program at the Stanford Synchrotron Radiation Lightsource (SSRL) in collaboration with scientists at Stanford University and at the Linac Coherent Light Source (LCLS) developed a goniometer-based system to study radiation-sensitive macromolecular complexes. The system operates in air and is complementary to the

  4. JBlulce Data Acquisition Software for Macromolecular Crystallography

    Energy Science and Technology Software Center (OSTI)

    2010-06-01

    JBlulce (Java Beam Line Universal Integrated Configuration Environment is a data acquisition software for macromolecular crystallography conforming user interface of the SSRL Blulce that has become a de-factor standard in the field. Besides this interface conformity, JBlulce is a unique system in terms of architecture, speec, capability and osftware implementation. It features only two software layers, the JBlulce clients and the EPICS servers, as compared to three layers present in Blulc and most of similarmore » systems. This layers reduction provides a faster communication with hardware and an easier access to advanced hardware capabilities like on-the-fly scanning. Then JBlulc clients are designed to operate in parallel with the other beamline controls which streamlines the tasks performed by staff such as beamline preparation, maitenance, audting and user assistance. Another distinction is the deployment of multiple plugins that can be written in any programming languag thus involving more staff into the development. further on, JBlulce makes use of unified motion controls allowing for easy scanning and optimizing of any beamline component. Finally, the graphic interface is implemented in Java making full use of rich Java libraries and Jave IDE for debugging. to compare, Blulce user interface is implemented with aging Tcl/tk language providing very restricted capabilities. JBlulce makes full use of the industrial power and wide drivers selection of EPICS in controlling hardware; all hardware commuication is routed via multiple EPICS servers residing on local area network. JBlulce also includes several EPICS State Notation servers aimed at making hardware communication more robust. Besides using EPICS for controlling hardware, JBlulce extensively uses EPICS databases for efficien communications between multiple instances of JBlulce clients and JBlulce pplugins that can run in parallel on different computers. All of the above makes JBlulce one of the biggest and most sophisticated EPICS client projects to date. JBlulce configuraion is stored in my SQL database which provides flexibility in tuning the system. The database is also accessible by the plugins. From the users perspective JBlulce provides all standard features of data acquisition software for macromolecular crystallography plus such unique capabilities as:one click beamline energy change that may involve switching undulator harmonics, mirrors lanes and beam realignment, automated diffraction rtastering for finding small crystals and swwet spots on poorly diffracting crystals with automated scoring of raster cells by the number of reflections; data collection along a vector; automated on-the-fly fluorescent tastering, a faster and lower-irradiation compliment to the diffraction raster; fully automated fluorescence measurements for MAD that include signal optimization, fast on the fly energy scanning and automated adapting of scan range to chemical shifts; fly-scan mimibeam realighment; automated loop and crystal centering, controls for sample automounter, automated screening, data collectin audting, remoate access and a lot more.« less

  5. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    SciTech Connect (OSTI)

    Tsai, Yingssu; McPhillips, Scott E.; Gonzlez, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-05-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully demonstrated. This workflow was run once on the same 96 samples that the group had examined manually and the workflow cycled successfully through all of the samples, collected data from the same samples that were selected manually and located the same peaks of unmodeled density in the resulting difference Fourier maps.

  6. Proposal Submittal and Scheduling Procedures for Macromolecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallography | Stanford Synchrotron Radiation Lightsource Proposal Submittal and Scheduling Procedures for Macromolecular Crystallography Beam time for macromolecular crystallography projects is obtained by submitting an SSRL Macromolecular Crystallography Proposal. This proposal is peer reviewed by the Structural Molecular Biology and Biophysics subpanel of the SSRL Proposal Review Panel (PRP) for scientific merit and rating and for criticality of synchrotron radiation use. Proposal

  7. Macromolecular Crystallography - Beamline facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the .forward file and save it. If you have more than one e-mail address or you want other people in your group to receive the notification, add one address per line. Use the...

  8. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF

    SciTech Connect (OSTI)

    Stetten, David von; Giraud, Thierry; Carpentier, Philippe; Sever, Franc; Terrien, Maxime; Dobias, Fabien; Juers, Douglas H.; Flot, David; Mueller-Dieckmann, Christoph; Leonard, Gordon A.; Sanctis, Daniele de; Royant, Antoine

    2015-01-01

    The current version of the Cryobench in crystallo optical spectroscopy facility of the ESRF is presented. The diverse experiments that can be performed at the Cryobench are also reviewed. The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for spectroscopy). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed.

  9. Automated macromolecular crystallization screening

    DOE Patents [OSTI]

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  10. The MX Factor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The MX Factor National Security Science Latest Issue:July 2015 past issues All Issues submit The MX Factor Data from atmospheric test films persuaded Department of Defense...

  11. Resources for Macromolecular Crystallography | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time GUP Login Proposal Calendar Publications Database CAT Websites: BioCARS GMCA-CAT IMCA-CAT LRL-CAT LS-CAT NE-CAT SBC-CAT SER-CAT Reports and Presentations: Stuctural Bio...

  12. Goniometer-based Femtosecond Macromolecular Crystallography ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E. G. Kovaleva, A. C. Kruse, H. T. Lemke, G. Lin, A. Y. Lyubimov, A. Manglik, I. I. Mathews, S. E. McPhillips, S. Nelson, J. W. Peters, N. K. Sauter, C. A. Smith, J. Song, H. P....

  13. Introduction to Bayesian methods in macromolecular crystallography...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOE Country of Publication: United States Language: English Subject: 97 Word Cloud More Like This Full Text File ...

  14. Instrumentation upgrades for the Macromolecular Crystallography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robotics Inspired Goniometer). On-axis micro-spectrophotometer MS3 for microscopic sample imaging with one micron image resolution. The multi-mode optical spectroscopy module is...

  15. The MX Factor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MX Factor Test films played a strategic-planning role in the debates of the late 1970s and early 1980s about where and how to deploy the MX intercontinental ballistic missile...

  16. Improving the accuracy of macromolecular structure refinement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the accuracy of macromolecular structure refinement Authors: Brunger, A.T., Adams, P.D., Fromme, P., Fromme, R., Levitt, M., and Schröder, G.F. Title: Improving the accuracy of macromolecular structure refinement Source: Structure Year: 2012 Volume: 20 Pages: 20, 957-966 ABSTRACT: In X-ray crystallography, molecular replacement and subsequent refinement is challenging at low resolution. We compared refinement methods using synchrotron diffraction data of photosystem I at 7.4 Å

  17. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational...

  18. The MX Factor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MX Factor Test films played a strategic-planning role in the debates of the late 1970s and early 1980s about where and how to deploy the MX intercontinental ballistic missile (LGM-118 Peacekeeper). The deployment would have to ensure that the missiles could survive a first strike by an adversary. Military planners were considering placing the missiles in clusters of hardened concrete shelters in the hot, dry Great Basin Desert of Nevada and Utah. Films of atmospheric tests at the Nevada Test

  19. Macromolecular Diffractive Imaging using Disordered Crystals | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Macromolecular Diffractive Imaging using Disordered Crystals Wednesday, March 9, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Henry Chapman, Center for Free-Electron Laser Science, DESY Program Description X-ray crystallography suffers from the well-known phase problem. This means that it is not possible to reconstruct an image of a molecule from its crystal diffraction pattern of Bragg peaks without additional knowledge or assumptions

  20. Holographic Methods in X-ray Crystallography

    Energy Science and Technology Software Center (OSTI)

    1995-07-28

    The holographic method makes use of partially modeled electron density and experimentally-measured structure factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density, and can incorporate a target electron density, making it similar to solvent flattening. Using both synthetic and experimental data,morewe assess the potential for applying the holographic method to macromolecular x-ray crystallography.less

  1. Deformable elastic network refinement for low-resolution macromolecular crystallography

    SciTech Connect (OSTI)

    Schrder, Gunnar F.; Levitt, Michael; Brunger, Axel T.

    2014-09-01

    An overview of applications of the deformable elastic network (DEN) refinement method is presented together with recommendations for its optimal usage. Crystals of membrane proteins and protein complexes often diffract to low resolution owing to their intrinsic molecular flexibility, heterogeneity or the mosaic spread of micro-domains. At low resolution, the building and refinement of atomic models is a more challenging task. The deformable elastic network (DEN) refinement method developed previously has been instrumental in the determinion of several structures at low resolution. Here, DEN refinement is reviewed, recommendations for its optimal usage are provided and its limitations are discussed. Representative examples of the application of DEN refinement to challenging cases of refinement at low resolution are presented. These cases include soluble as well as membrane proteins determined at limiting resolutions ranging from 3 to 7 . Potential extensions of the DEN refinement technique and future perspectives for the interpretation of low-resolution crystal structures are also discussed.

  2. Method for removing atomic-model bias in macromolecular crystallography

    DOE Patents [OSTI]

    Terwilliger, Thomas C. (Santa Fe, NM)

    2006-08-01

    Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.

  3. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 8.3.1 Print Tuesday, 20 October 2009 08:55 Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural...

  4. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational...

  5. Johann Deisenhofer, Crystallography, and Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johann Deisenhofer, Crystallography, and Proteins Resources with Additional Information Johann Deisenhofer Courtesy of UT Southwestern Medical Center "Johann Deisenhofer, Ph.D. is a Professor at UT Southwestern who shared the 1988 Nobel Prize in Chemistry for his research using X-ray crystallography to elucidate for the first time the three-dimensional structure of a large membrane-bound protein molecule. This structure helped explain the process of photosynthesis, by which sunlight is

  6. Continuous mutual improvement of macromolecular structure models...

    Office of Scientific and Technical Information (OSTI)

    ... Macromolecular Refinement, edited by E. Dodson, M. Moore, A. Ralph & S. Bailey, pp. 85-92. ... Macromolecular Refinement, edited by E. Dodson, M. Moore, A. Ralph & S. Bailey, pp. 75-84. ...

  7. Cryogenic Neutron Protein Crystallography: routine methods and potential benefits

    SciTech Connect (OSTI)

    Weiss, Kevin L; Tomanicek, Stephen J; NG, Joseph D

    2014-01-01

    The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.

  8. Microbial Electrochemical Technology (MxCs): Challenges and Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electrochemical Technology (MxCs): Challenges and Opportunities Microbial Electrochemical Technology (MxCs): Challenges and Opportunities Presentation by Jason Ren, University of Colorado Boulder, during the "Technological State of the Art" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18-19, 2015. PDF icon Microbial Electrochemical Technology (MxCs): Challenges and Opportunities More Documents &

  9. DOE - NNSA/NFO -- News & Views MX Missle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MX Missile, Shelter, Launch Methods Undergo Testing Photo - MX Missle An experimental vertical shelter for the deployment of MX missiles was constructed at the Test Site. If the design had been adopted, the missile would have been placed in an 18-foot diameter, 130-foot-deep vertical silo. At launch the silo would have cut through a 40-foot layer of soil. The missile would then have been fired. Pan Am photo. The Nevada Test Site was selected for several Air Force Peacekeeper (MX) research and

  10. Proposal Submittal and Scheduling Procedures for Macromolecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallography Proposal. This proposal is peer reviewed by the Structural Molecular Biology and Biophysics subpanel of the SSRL Proposal Review Panel (PRP) for scientific merit...

  11. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and ...

  12. Media invited to join students in crystallography experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media invited to join students in crystallography experiment Media invited to join students in crystallography experiment The student outreach effort is part of the events...

  13. Continuous mutual improvement of macromolecular structure models...

    Office of Scientific and Technical Information (OSTI)

    in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given ...

  14. Lipidic phase membrane protein serial femtosecond crystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source: Nature Methods Year: 2012 Volume: 9 Pages: 263-265 ABSTRACT: X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method...

  15. MX Group SpA | Open Energy Information

    Open Energy Info (EERE)

    SpA Place: Villasanta, Italy Zip: 20058 Product: MX group is a turnkey provider of manufacturing plants for PV and other electronic equipment. Coordinates: 45.606895, 9.3066...

  16. Serial Femtosecond Crystallography of G Protein-Coupled Receptors

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Liu

    2013-10-23

    Serial femtosecond crystallography data on microcrystals of 5-HT2B receptor bound to ergotamine grown in lipidic cubic phase.

  17. Directed Organization of Functional Materials at Inorganic-Macromolecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfaces Alex Noy is the Principal Investigator for Directed Organization of Functional Materials at Inorganic-Macromolecular Interfaces. Directed Organization of Functional Materials at Inorganic-Macromolecular Interfaces Research The purpose of this project is to develop a quantitative physical picture of macromolecular organization and its relationship to function, and to use macromolecular organization to derive new functionality. The project has several major subtasks in addition to

  18. Media invited to join students in crystallography experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media invited to join students in crystallography experiment Media invited to join students in crystallography experiment The student outreach effort is part of the events commemorating 2014 as the International Year of Crystallography. May 16, 2014 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  19. Automated macromolecular crystal detection system and method

    DOE Patents [OSTI]

    Christian, Allen T. (Tracy, CA); Segelke, Brent (San Ramon, CA); Rupp, Bernard (Livermore, CA); Toppani, Dominique (Fontainebleau, FR)

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  20. Automated High Throughput Drug Target Crystallography

    SciTech Connect (OSTI)

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  1. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  2. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect (OSTI)

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  3. Biological Macromolecular Structures Data from the RCSB Protein Data Bank (RCSB PDB)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Research Collaboratory for Structural Bioinformatics (RCSB) is a non-profit consortium that works to improve understanding of the function of biological systems through the study of the 3-D structure of biological macromolecules. The RCSB PDB is one of three sites serving as deposition, data processing, and distribution sites of the Protein Data Bank Archive. Each site provides its own view of the primary data, thus providing a variety of tools and resources for the global community. RCSB is also the official keeper for the PDB archive, with sole access authority to the PDB archive directory structure and contents. The RCSB PDB Information Portal for Biological Macromolecular Structures offers online tools for search and retrieval, for visualizing structures, for depositing, validating, or downloading data, news and highlights, a discussion forum, and links to other areas of related research. The PDB archive is a repository of atomic coordinates and other information describing proteins and other important biological macromolecules. Structural biologists use methods such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy to determine the location of each atom relative to each other in the molecule. They then deposit this information, which is then annotated and publicly released into the archive by the wwPDB. Results can be viewed as 3-D images or models.

  4. Enabling X-ray free electron laser crystallography for challenging

    Office of Scientific and Technical Information (OSTI)

    biological systems from a limited number of crystals (Journal Article) | SciTech Connect Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals Citation Details In-Document Search Title: Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals Authors: Uervirojnangkoorn, Monarin ; Zeldin, Oliver B. ; Lyubimov, Artem Y. ; Hattne, Johan Search SciTech Connect for

  5. Genentech Uses ALS Crystallography for Therapeutic Antibody Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genentech Uses ALS Crystallography for Therapeutic Antibody Research Genentech Uses ALS Crystallography for Therapeutic Antibody Research Print Wednesday, 29 January 2014 00:00 Therapeutic antibodies have revolutionized the treatment of human disease; however, antibody bivalency can limit their utility against some targets due to receptor crosslinking and activation. Genentech has developed a unique one-armed antibody, onartuzumab, which is now in late-stage clinical trials in multiple cancer

  6. Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials by Ultra-High-Resolution Electron Microscopy and Related Methods | Department of Energy Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer

  7. Towards time-resolved serial crystallography in a microfluidic device

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Towards time-resolved serial crystallography in a microfluidic device Citation Details In-Document Search Title: Towards time-resolved serial crystallography in a microfluidic device Authors: Pawate, Ashtamurthy S. ; Srajer, Vukica ; Schieferstein, Jeremy ; Guha, Sudipto ; Henning, Robert ; Kosheleva, Irina ; Schmidt, Marius ; Ren, Zhong ; Kenis, Paul J.A. ; Perry, Sarah L. [1] ; UC) [2] ; Renz) [2] ; UIUC) [2] + Show Author Affiliations (UW) ( Publication

  8. Continuous mutual improvement of macromolecular structure models in the PDB

    Office of Scientific and Technical Information (OSTI)

    and of X-ray crystallographic software: The dual role of deposited experimental data (Journal Article) | SciTech Connect Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data Citation Details In-Document Search Title: Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data Accurate

  9. Theoretical crystallography with the Advanced Visualization System

    SciTech Connect (OSTI)

    Younkin, C.R.; Thornton, E.N.; Nicholas, J.B.; Jones, D.R.; Hess, A.C.

    1993-05-01

    Space is an Application Visualization System (AVS) graphics module designed for crystallographic and molecular research. The program can handle molecules, two-dimensional periodic systems, and three-dimensional periodic systems, all referred to in the paper as models. Using several methods, the user can select atoms, groups of atoms, or entire molecules. Selections can be moved, copied, deleted, and merged. An important feature of Space is the crystallography component. The program allows the user to generate the unit cell from the asymmetric unit, manipulate the unit cell, and replicate it in three dimensions. Space includes the Buerger reduction algorithm which determines the asymmetric unit and the space group of highest symmetry of an input unit cell. Space also allows the user to display planes in the lattice based on Miller indices, and to cleave the crystal to expose the surface. The user can display important precalculated volumetric data in Space, such as electron densities and electrostatic surfaces. With a variety of methods, Space can compute the electrostatic potential of any chemical system based on input point charges.

  10. Structural Insight into HIV-1 Restriction by MxB (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Insight into HIV-1 Restriction by MxB Citation Details In-Document Search Title: Structural Insight into HIV-1 Restriction by MxB Authors: Fribourgh, Jennifer L. ; Nguyen, Henry C. ; Matreyek, Kenneth A. ; Alvarez, Frances Joan D. ; Summers, Brady J. ; Dewdney, Tamaria G. ; Aiken, Christopher ; Zhang, Peijun ; Engelman, Alan ; Xiong, Yong [1] ; DFCI) [2] ; Pitt) [2] ; Vanderbilt-MED) [2] + Show Author Affiliations (Yale) ( Publication Date: 2015-02-19 OSTI Identifier: 1164180

  11. Fermi surfaces and Phase Stability of Ba(Fe1-xMx))2As2 (M=Co...

    Office of Scientific and Technical Information (OSTI)

    Fermi surfaces and Phase Stability of Ba(Fe1-xMx))2As2 (MCo, Ni, Cu, Zn) Citation Details In-Document Search Title: Fermi surfaces and Phase Stability of Ba(Fe1-xMx))2As2 (MCo,...

  12. Fermi surfaces and phase stability of Ba(Fe1-xMx)2As2 (M = Co...

    Office of Scientific and Technical Information (OSTI)

    Fermi surfaces and phase stability of Ba(Fe1-xMx)2As2 (M Co,Ni,Cu,Zn) Citation Details In-Document Search Title: Fermi surfaces and phase stability of Ba(Fe1-xMx)2As2 (M ...

  13. Workshop on algorithms for macromolecular modeling. Final project report, June 1, 1994--May 31, 1995

    SciTech Connect (OSTI)

    Leimkuhler, B.; Hermans, J.; Skeel, R.D.

    1995-07-01

    A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.

  14. Optical properties of MX chain materials: An extended Peierls-Hubbard model

    SciTech Connect (OSTI)

    Bishop, A.R.; Batistic, I.; Gammel, J.T.; Saxena, A.

    1991-01-01

    We describe theoretical modeling of both pure (MX) and mixed-halide (MX{sub x}X{prime}{sub 1-x}) halogen (X)-bridged transition metal (M) linear chain complexes in terms of an extended Peierls-Hubbard, tight-binding Hamiltonian with 3/4-filling of two-bands. Both inter- and intra-site electron-phonon coupling are included. Electronic (optical absorption), lattice dynamic (IR, Raman) and spin (ESR) signatures are obtained for the ground states, localized excited states produced by impurities, doping or photo-excitation -- excitons, polarons, bipolarons, solitons; and the edge states (which occur in mixed-halide crystals, e.g. PtCl{sub x}Br{sub 1-x}). Adiabatic molecular dynamics is used to explore photodecay channels in pure and impure systems for ground states as well as in the presence of pre-existing polaronic states. 12 refs., 3 figs., 1 tab.

  15. Identifying, studying and making good use of macromolecular crystals

    SciTech Connect (OSTI)

    Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.; Newman, Janet; Snell, Edward H.

    2014-07-25

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.

  16. A novel inert crystal delivery medium for serial femtosecond crystallography

    SciTech Connect (OSTI)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel; Wang, Dingjie; Schaffer, Alexander; Roy-Chowdhury, Shatabdi; Zatsepin, Nadia A.; Aquila, Andrew; Coe, Jesse; Gati, Cornelius; Hunter, Mark S.; Koglin, Jason E.; Kupitz, Christopher; Nelson, Garrett; Subramanian, Ganesh; White, Thomas A.; Zhao, Yun; Zook, James; Boutet, Sbastien; Cherezov, Vadim; Spence, John C. H.; Fromme, Raimund; Weierstall, Uwe; Fromme, Petra

    2015-06-30

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 resolution using 300 g of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.

  17. A novel inert crystal delivery medium for serial femtosecond crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel; Wang, Dingjie; Schaffer, Alexander; Roy-Chowdhury, Shatabdi; Zatsepin, Nadia A.; Aquila, Andrew; Coe, Jesse; Gati, Cornelius; et al

    2015-06-30

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less

  18. Improved ambient-pressure organic superconductor. [Bis(ethylenedithio)TTF-MX/sub 2/

    DOE Patents [OSTI]

    Williams, J.M.; Wang, Hsien-Hau; Beno, M.A.

    1985-05-29

    Disclosed is a new class of organic superconductors having the formula (ET)/sub 2/MX/sub 2/ wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET)/sub 2/AuI/sub 2/ exhibits a transition temperature of 5/sup 0/K which is high for organic superconductors.

  19. Size-exclusion chromatography system for macromolecular interaction analysis

    DOE Patents [OSTI]

    Stevens, Fred J.

    1988-01-01

    A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.

  20. Macromolecular Crystallization with Microfluidic Free-Interface Diffusion

    SciTech Connect (OSTI)

    Segelke, B

    2005-02-24

    Fluidigm released the Topaz 1.96 and 4.96 crystallization chips in the fall of 2004. Topaz 1.96 and 4.96 are the latest evolution of Fluidigm's microfluidics crystallization technologies that enable ultra low volume rapid screening for macromolecular crystallization. Topaz 1.96 and 4.96 are similar to each other but represent a major redesign of the Topaz system and have of substantially improved ease of automation and ease of use, improved efficiency and even further reduced amount of material needed. With the release of the new Topaz system, Fluidigm continues to set the standard in low volume crystallization screening which is having an increasing impact in the field of structural genomics, and structural biology more generally. In to the future we are likely to see further optimization and increased utility of the Topaz crystallization system, but we are also likely to see further innovation and the emergence of competing technologies.

  1. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; Chowdhury, Shatabdi Roy; Basu, Shibom; Boutet, Sébastien; Fromme, Petra; White, Thomas A.; Barty, Anton; Spence, John C. H.; et al

    2015-08-04

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less

  2. Workshop: New Advances in Crystallography with Synchrotrons and X-FELs |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource New Advances in Crystallography with Synchrotrons and X-FELs Tuesday, October 25, 2011 - 8:00am 2011 SSRL/LCLS Annual Users Conference This workshop, part of the 2011 SSRL/LCLS Annual Users Conference, will describe resources and results from synchrotron-based micro crystallography and X-FEL-based nanocrystallography, and explore the future of these tools in producing important scientific results

  3. Macromolecular coal structure as revealed by novel diffusion tests

    SciTech Connect (OSTI)

    Peppas, N.A.; Olivares, J.; Drummond, R.; Lustig, S.

    1990-01-01

    The main goal of the present work was the elucidation of the mechanistic characteristics of dynamic transport of various penetrants (solvents) in thin sections of coals by examining their penetrant uptake, front swelling and stress development. An important objective of this work was the study of coal network structure in different thermodynamically compatible penetrants and the analysis of dynamic swelling in terms of present anomalous transport theories. Interferometry/polariscopy, surface image analysis and related techniques were used to quantify the stresses and solvent concentration profiles in these sections. Dynamic and equilibrium swelling behavior were correlated using the polar interaction contributions of the solvent solubility parameters. The penetrant front position was followed in thin coal sections as a function of time. The initial front velocity was calculated for various coals and penetrants. Our penetrant studies with thin coal section from the same coal sample but with different thickness show that within the range of 150 {mu}m to 1500{mu}m the transport mechanism of dimethyl formamide in the macromolecular coal network is non-Fickian. In fact, for the thickest samples the transport mechanism is predominately Case-II whereas in the thinner samples penetrant uptake may be diffusion-controlled. Studies in various penetrants such as acetone, cyclohexane, methanol, methyl ethyl ketone, toluene and methylene chloride indicated that penetrant transport is a non-Fickian phenomenon. Stresses and cracks were observed for transport of methylene chloride. 73 refs., 88 figs., 15 tabs.

  4. Systems Biology in Prokaryote - Eukaryote Symbiosis | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Systems Biology in Prokaryote - Eukaryote Symbiosis Monday, June 25, 2012 - 12:00pm SLAC, SSRL Main Conference Room, 137-322 Allen M. Orville, Brookhaven National Laboratory Frontier challenges for macromolecular crystallography (MX) now include determining structures of trapped reactive intermediates, large macromolecules and viruses, membrane proteins, protein-protein complexes, and protein-nucleic acid complexes. Although structure and function are intimately linked,

  5. Advanced Protein Characterization Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APCF Argonne's one-stop resource for genomic research, macromolecular crystallography, and synthetic biology More

  6. Experimental Run Schedules for Previous Years | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Run Schedules for Previous Years SPEAR Operating / Maintenance Beam Line Schedule Accelerator Physics FY2015 X-ray VUV, BL13 Macromolecular Crystallography FY2014 X-ray VUV, BL13 Macromolecular Crystallography FY2013 X-ray VUV Macromolecular Crystallography FY2012 X-ray Macromolecular Crystallography VUV FY2011 X-ray Macromolecular Crystallography VUV BL13 2011 FY2010 X-ray Macromolecular Crystallography VUV FY2009 X-ray Macromolecular Crystallography VUV FY2008 X-ray

  7. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; et al

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less

  8. Effects of Macromolecular Crowding on the Structure of a Protein Complex

    SciTech Connect (OSTI)

    Rajapaksha Mudalige, Ajith Rathnaweera [ORNL; Stanley, Christopher B [ORNL; Todd, Brian [ORNL

    2015-01-01

    Macromolecular crowding can alter the structure and function of biological macromolecules. We used small angle scattering (SAS) to measure the change in size of a protein complex, superoxide dismutase (SOD), induced by macromolecular crowding. Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl- -glucoside ( -MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. SAXS done in the presence of TEG suggests that for further deformation beyond a 9% decrease in volume the resistance to deformation may increase dramatically.

  9. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOE Patents [OSTI]

    Craig, G.D.; Glass, R.; Rupp, B.

    1997-01-28

    A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.

  10. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOE Patents [OSTI]

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  11. Serial time-resolved crystallography of photosystem II using a femtosecond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray laser Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser Authors: Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Brenda, Reeder; Raymond, G. Sierra; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.;

  12. Combining Electron Crystallography and X-ray Crystallography to Study the MlotiK1 Cyclic Nucleotide-Regulated Potassium Channel

    SciTech Connect (OSTI)

    Clayton, G.; Aller, S; Wang, J; Unger, V; Morais-Cabral, J

    2009-01-01

    We have recently reported the X-ray structure of the cyclic nucleotide-regulated potassium channel, MlotiK1. Here we describe the application of both electron and X-ray crystallography to obtain high quality crystals. We suggest that the combined application of these techniques provides a useful strategy for membrane protein structure determination. We also present negative stain projection and cryo-data projection maps. These maps provide new insights about the properties of the MlotiK1 channel. In particular, a comparison of a 9 {angstrom} cryo-data projection with calculated model maps strongly suggests that there is a very weak interaction between the pore and the S1-S4 domains of this 6 TM tetrameric cation channel and that the S1-S4 domains can adopt multiple orientations relative to the pore.

  13. Damage by X-rays: A Case Study for Metallo-Protein Crystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Damage by X-rays: A Case Study for Metallo-Protein Crystallography Junko Yano1,2, Jan Kern3, Klaus-Dieter Irrgang3, Matthew J. Latimer4, Uwe Bergmann4, Pieter Glatzel5, Yulia Pushkar1,2, Jacek Biesiadka6, Bernhard Loll6, Kenneth Sauer1,2, Johannes Messinger7, Athina Zouni3, Vittal K. Yachandra1 1Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and 2Department of Chemistry, University of California, Berkeley, CA, USA 3Max-Volmer-Laboratorium für

  14. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques -Philippe

    2015-04-25

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less

  15. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    SciTech Connect (OSTI)

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Miller, R. J. Dwayne

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  16. Parallel macromolecular delivery and biochemical/electrochemical interface to cells employing nanostructures

    DOE Patents [OSTI]

    McKnight, Timothy E; Melechko, Anatoli V; Griffin, Guy D; Guillorn, Michael A; Merkulov, Vladimir L; Simpson, Michael L

    2015-03-31

    Systems and methods are described for parallel macromolecular delivery and biochemical/electrochemical interface to whole cells employing carbon nanostructures including nanofibers and nanotubes. A method includes providing a first material on at least a first portion of a first surface of a first tip of a first elongated carbon nanostructure; providing a second material on at least a second portion of a second surface of a second tip of a second elongated carbon nanostructure, the second elongated carbon nanostructure coupled to, and substantially parallel to, the first elongated carbon nanostructure; and penetrating a boundary of a biological sample with at least one member selected from the group consisting of the first tip and the second tip.

  17. Crystallography Without Crystals: Determining the Structure of Individual Biological Molecules and Nanoparticles

    ScienceCinema (OSTI)

    Ourmazd, Abbas [University of Wisconsin, Milwaukee, Wisconsin, USA

    2010-01-08

    Ever shattered a valuable vase into 10 to the 6th power pieces and tried to reassemble it under a light providing a mean photon count of 10 minus 2 per detector pixel with shot noise? If you can do that, you can do single-molecule crystallography. This talk will outline how this can be done in principle. In more technical terms, the talk will describe how the combination of scattering physics and Bayesian algorithms can be used to reconstruct the 3-D diffracted intensity distribution from a collection of individual 2-D diffiraction patterns down to a mean photon count of 10 minus 2 per pixel, the signal level anticipated from the Linac Coherent Light Source, and hence determine the structure of individual macromolecules and nanoparticles.

  18. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader; Chaston, Jessica J.; Pentelute, Bradley L.; Lott, J. Shaun; Kent, Stephen B. H.; Baker, Edward N.

    2015-04-07

    Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less

  19. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  20. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  1. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  2. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  3. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  4. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  5. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  6. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  7. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  8. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  9. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  10. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.2.2 Beamline 8.2.2 Print Tuesday, 20 October 2009 08:54 Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot

  11. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  12. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  13. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  14. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  15. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  16. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beamline 8.2.2 Print Tuesday, 20 October 2009 08:54 Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size

  17. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  18. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3

  19. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3

  20. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3

  1. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.3.1 Beamline 8.3.1 Print Tuesday, 20 October 2009 08:55 Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x

  2. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Beamline 8.3.1 Print Tuesday, 20 October 2009 08:55 Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35

  3. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3

  4. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  5. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  6. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  7. Beamline 8.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot

  8. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  9. Beamline 8.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch

  10. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 8.3.1 Print Tuesday, 20 October 2009 08:55 Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35

  11. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3

  12. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3

  13. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew; Woldeyes, Rahel A.; Hopkins, Jesse B.; Thompson, Michael C.; Brewster, Aaron S.; Van Benschoten, Andrew H.; Baxter, Elizabeth L.; Uervirojnangkoorn, Monarin; et al

    2015-09-30

    Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences ofmore » these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.« less

  14. Administered activity and metastatic cure probability during radioimmunotherapy of ovarian cancer in nude mice with {sup 211}At-MX35 F(ab'){sub 2}

    SciTech Connect (OSTI)

    Elgqvist, Joergen . E-mail: jorgen.elgqvist@radfys.gu.se; Andersson, Hakan; Bernhardt, Peter; Baeck, Tom; Claesson, Ingela; Hultborn, Ragnar; Jensen, Holger; Johansson, Bengt R.; Lindegren, Sture; Olsson, Marita; Palm, Stig; Warnhammar, Elisabet; Jacobsson, Lars

    2006-11-15

    Purpose: To elucidate the therapeutic efficacy of {alpha}-radioimmunotherapy of ovarian cancer in mice. This study: (i) estimated the minimum required activity (MRA), giving a reasonable high therapeutic efficacy; and (ii) calculated the specific energy to tumor cell nuclei and the metastatic cure probability (MCP) using various assumptions regarding monoclonal-antibody (mAb) distribution in measured tumors. The study was performed using the {alpha}-particle emitter Astatine-211 ({sup 211}At) labeled to the mAb MX35 F(ab'){sub 2}. Methods and Materials: Animals were inoculated intraperitoneally with {approx}1 x 10{sup 7} cells of the cell line NIH:OVCAR-3. Four weeks later animals were treated with 25, 50, 100, or 200 kBq {sup 211}At-MX35 F(ab'){sub 2} (n = 74). Another group of animals was treated with a nonspecific mAb: 100 kBq {sup 211}At-Rituximab F(ab'){sub 2} (n = 18). Eight weeks after treatment the animals were sacrificed and presence of macro- and microscopic tumors and ascites was determined. An MCP model was developed and compared with the experimentally determined tumor-free fraction (TFF). Results: When treatment was given 4 weeks after cell inoculation, the TFFs were 25%, 22%, 50%, and 61% after treatment with 25, 50, 100, or 200 kBq {sup 211}At-MX35 F(ab'){sub 2}, respectively, the specific energy to irradiated cell nuclei varying between {approx}2 and {approx}400 Gy. Conclusion: As a significant increase in the therapeutic efficacy was observed between the activity levels of 50 and 100 kBq (TFF increase from 22% to 50%), the conclusion was that the MRA is {approx}100 kBq {sup 211}At-MX35 F(ab'){sub 2}. MCP was most consistent with the TFF when assuming a diffusion depth of 30 {mu}m of the mAbs in the tumors.

  15. JBLULCE

    Energy Science and Technology Software Center (OSTI)

    002719MLTPL00 JBlulce Data Acquisition Software for Macromolecular Crystallography http://www.gmca.anl.gov/jbluice-epics/

  16. Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells

    SciTech Connect (OSTI)

    Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain; Shim, Jae Won; Cheun, Hyeunseok; Steffy, Fred; So, Franky; Kippelen, Bernard; Reynolds, John R.

    2011-03-15

    The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 0.37% with no PDMS to 2.16 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) as the electron acceptor. PDMS is shown to have a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.

  17. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  18. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect (OSTI)

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  19. Goniometer-based femtosecond crystallography with X-ray free electron lasers

    SciTech Connect (OSTI)

    Cohen, Aina E.; Soltis, S. Michael; Gonzlez, Ana; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Baxter, Elizabeth L.; Brehmer, Winnie; Brewster, Aaron S.; Brunger, Axel T.; Calero, Guillermo; Chang, Joseph F.; Chollet, Matthieu; Ehrensberger, Paul; Eriksson, Thomas L.; Feng, Yiping; Hattne, Johan; Hedman, Britt; Hollenbeck, Michael; Holton, James M.; Keable, Stephen; Kobilka, Brian K.; Kovaleva, Elena G.; Kruse, Andrew C.; Lemke, Henrik T.; Lin, Guowu; Lyubimov, Artem Y.; Manglik, Aashish; Mathews, Irimpan I.; McPhillips, Scott E.; Nelson, Silke; Peters, John W.; Sauter, Nicholas K.; Smith, Clyde A.; Song, Jinhu; Stevenson, Hilary P.; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Vinetsky, Vladimir; Wakatsuki, Soichi; Weis, William I.; Zadvornyy, Oleg A.; Zeldin, Oliver B.; Zhu, Diling; Hodgson, Keith O.

    2014-10-31

    The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6- resolution electron density map. With smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of ?2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.

  20. Goniometer-based femtosecond crystallography with X-ray free electron lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cohen, Aina E.; Soltis, S. Michael; González, Ana; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Baxter, Elizabeth L.; Brehmer, Winnie; Brewster, Aaron S.; Brunger, Axel T.; et al

    2014-10-31

    The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. With smaller crystals, high-density grids were usedmore » to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.« less

  1. Protein kinase A catalytic subunit primed for action: Time-lapse crystallography of Michaelis complex formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.; Langan, Paul; Kovalevskyi, Andrey Y.; Heller, William T.

    2015-11-12

    The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg2+ binds first to the M1 site as a complex with ATP and is followed by Mg2+ binding to the M2 site. Furthermore, themore » target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.« less

  2. Indexing amyloid peptide diffraction from serial femtosecond crystallography: New algorithms for sparse patterns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T.; Cascio, Duilio; Adams, Paul D.; Eisenberg, David S.; Sauter, Nicholas K.

    2015-01-23

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of theComputational Crystallography Toolbox(cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patternsmore » with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less

  3. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures

    SciTech Connect (OSTI)

    Pranikar, Jure [Institute Joef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); University of Primorska, (Slovenia); Turk, Duan, E-mail: dusan.turk@ijs.si [Institute Joef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); Center of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, (Slovenia)

    2014-12-01

    The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. They utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.

  4. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    SciTech Connect (OSTI)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  5. DOE F 740-MX

    Office of Environmental Management (EM)

    Form 740M (10-88) MANDATORY DATA COLLECTION AUTHORIZED BY 10 CFR 30, 40, 50, 70, 75, 150, Public Laws 83-703, 93-438, 95-91 OMB Control No. 1910-1800 4. REPORTING PERIOD 3. RIS 2. ATTACHMENT TO a. DOE/NRC 741 a. SHIPPER'S RIS b. RECEIVER'S RIS c. TRANS. NO. d. CORR NO. e. PC f. AC g. DATA CODE b. DOE/NRC 742 c. DOE/NRC 742c 5. TRANSACTION DATA 1. NAME 8a. LINE NO. 9. SIGNATURE (See instructions for provisions regarding confidentiality.) To the best of my knowledge and belief, the information

  6. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    2016-02-11

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS2 and single ionization energy dependencemore » spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  7. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography

    SciTech Connect (OSTI)

    Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader; Chaston, Jessica J.; Pentelute, Bradley L.; Lott, J. Shaun; Kent, Stephen B. H.; Baker, Edward N.

    2015-04-07

    Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738, which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.

  8. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    SciTech Connect (OSTI)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  9. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  10. Systematics of the temperature-dependent interplane resistivity in Ba(Fe1-xMx)?As? (M=Co, Rh, Ni, and Pd)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tanatar, M. A.; Ni, N.; Thaler, A.; Budko, S. L.; Canfield, P. C.; Prozorov, R.

    2011-07-27

    Temperature-dependent interplane resistivity ?c(T) was measured systematically as a function of transition-metal substitution in the iron-arsenide superconductors Ba(Fe1-xMx)?As?, M=Ni, Pd, Rh. The data are compared with the behavior found in Ba(Fe1-xCox)?As?, revealing resistive signatures of pseudogap. In all compounds we find resistivity crossover at a characteristic pseudogap temperature T* from nonmetallic to metallic temperature dependence on cooling. Suppression of T* proceeds very similarly in cases of Ni and Pd doping and much faster than in similar cases of Co and Rh doping. In cases of Co and Rh doping an additional minimum in the temperature-dependent ?c emerges for high dopings,morewhen superconductivity is completely suppressed. These features are consistent with the existence of a charge gap covering part of the Fermi surface. The part of the Fermi surface affected by this gap is notably larger for Ni- and Pd-doped compositions than in Co- and Rh-doped compounds.less

  11. Bent Diamond Crystals and Multilayer Based Optics at the new 5-Station Protein Crystallography Beamline 'Cassiopeia' at MAX-lab

    SciTech Connect (OSTI)

    Mammen, Christian B.; Als-Nielsen, Jens; Ursby, Thomas; Thunnissen, Marjolein

    2004-05-12

    A new 5-station beamline for protein crystallography is being commissioned at the Swedish synchrotron light source MAX-II at Lund University. Of the 2K/{gamma} = 14 mrad horizontal wiggler fan, the central 2 mrad are used and split in three parts. The central 1 mrad will be used for a station optimized for MAD experiments and on each side of the central fan, from 0.5 mrad to 1 mrad, there are two fixed energy stations using different energies of the same part of the beam. These, in total five stations, can be used simultaneously and independently for diffraction data collection. The two upstream monochromators for the side stations are meridionally bent asymmetric diamond(111) crystals in Laue transmission geometry. The monochromators for the downstream side stations are bent Ge(111) crystals in asymmetric Bragg reflection geometry. Curved multilayer mirrors inserted in the monochromatic beams provide focusing in the vertical plane. The first side station is under commissioning, and a preliminary test protein data set has been collected.

  12. Women @ Energy: Jasmine Hasi | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Jasmine Hasi is an expert in designing and fabricating silicon radiation sensors for high energy physics and macromolecular crystallography applications. Dr. Jasmine Hasi is an expert in designing and fabricating silicon radiation sensors for high energy physics and macromolecular crystallography applications. Dr. Jasmine Hasi is an expert in designing and fabricating silicon radiation sensors for high energy physics and macromolecular crystallography applications. She received her doctorate

  13. SSRL30

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users. Meeting sessions will focus on interdisciplinary applications of small angle X-ray scattering, macromolecular crystallography, microspectroscopy and diffraction, and...

  14. FY2003 SSRLUO Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Macromolecular Crystallography Materials Chemistry SSRL Liaison Structural Molecular Biology corner corner Uwe Bergmann (Chair) SSRL, ESRD, 2575 Sand Hill Rd., Menlo Park, CA...

  15. MitoNEET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Macromolecular Crystallography at SSRL UCSD Press Release 2 November 2007 Potential Diabetes Drug Target summary written by Amber Dance, SLAC Communication Office Scientists...

  16. Protein crystallography prescreen kit

    DOE Patents [OSTI]

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  17. Protein crystallography prescreen kit

    DOE Patents [OSTI]

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  18. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  19. LANSCE | Lujan Center | Instruments | PCS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Crystallography Station | PCS Structural Enzymology The Protein Crystallography Station (PCS) at LANSCE is a high performance beam line that is funded by DOE-OBER. It forms the core of a capability for joint neutron and X-ray macromolecular structure and function determination. The PCS is the first protein crystallography beam line to be built at a spallation neutron source in North America and is one of the world's premier neutron crystallography instruments. The beam-line exploits the

  20. Neutron crystallography aids drug design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos and currently at Oak Ridge National Laboratory, and Robert McKenna, David Silverman and Mayank Aggarwal of the University of Florida. The U.S. Department of Energy...

  1. Johann Deisenhofer, Crystallography, and Proteins

    Office of Scientific and Technical Information (OSTI)

    Johann Deisenhofer Courtesy of UT Southwestern Medical Center "Johann Deisenhofer, Ph.D. is a Professor at UT Southwestern who shared the 1988 Nobel Prize in Chemistry for...

  2. Powder Diffraction Crystallography Instructional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Least-squares Fitting: A mostly descriptive approach A non-rigorous introduction to linear algebra, linear and non-linear least squares and related concepts. Software...

  3. EA-184-B MSCG MX.pdf

    Office of Environmental Management (EM)

  4. EA-206-B Frontera (MX).pdf

    Office of Environmental Management (EM)

  5. EA-247-A_Constellation_MX.pdf

    Office of Environmental Management (EM)

  6. EA-289-B Intercom MX.pdf

    Office of Environmental Management (EM)

  7. EA-336_ConocoPhillips_MX.pdf

    Office of Environmental Management (EM)

  8. EA-338_Shell_Energy_MX.pdf

    Office of Environmental Management (EM)

  9. EA-341_Photovoltaic_MX.pdf

    Office of Environmental Management (EM)

  10. EA-346_Credit_Suisse_MX.pdf

    Office of Environmental Management (EM)

  11. EA-373_EDF_MX.pdf

    Office of Environmental Management (EM)

  12. EA-378 CPM MX.pdf

    Office of Environmental Management (EM)

  13. EA-383 Pilot Power MX.pdf

    Office of Environmental Management (EM)

  14. EA-383 Pilot Power MX_0.pdf

    Office of Environmental Management (EM)

  15. EA-384 NRGPML MX.pdf

    Office of Environmental Management (EM)

  16. EA-386 GSEMNA - MX.pdf

    Office of Environmental Management (EM)

  17. EA-387 Energia Renovable (MX).pdf

    Office of Environmental Management (EM)

  18. EA-401 Lonestar (MX).pdf

    Office of Environmental Management (EM)

  19. EA-401 Lonestar (MX)_0.pdf

    Office of Environmental Management (EM)

  20. EA-402 ESJUS MX.pdf

    Office of Environmental Management (EM)

  1. EA-403 Frontera Marketing (MX).pdf

    Office of Environmental Management (EM)

  2. EA-403 Frontera Marketing (MX).pdf

    Office of Environmental Management (EM)

  3. EA-406 Sempra Generation (MX).pdf

    Office of Environmental Management (EM)

  4. EA-407 Vitol (MX).pdf

    Office of Environmental Management (EM)

  5. EA-413 Elan Energy MX.pdf

    Office of Environmental Management (EM)

  6. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 4.2.2 Beamline 4.2.2 Print Tuesday, 20 October 2009 08:31 Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography...

  7. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Sources (CARS) 434-D Sector 16 HP-CAT High Pressure CAT 434-E Sector 17 IMCA-CAT Industrial Macromolecular Crystallography Association 435-A Sector 18 Bio-CAT...

  8. Experimental Station 7-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 7-1 is a wiggler side-station beamline dedicated for monochromatic, high-throughput, high-resolution macromolecular crystallography. It is SAD and MAD capable and can be run in a full remote access mode. It is equipped with an ADSC Q315R CCD detector. For aditional information about the experimental capabilities, see http://smb.slac.stanford.edu/index.shtml. Status Open Supported Techniques Macromolecular Crystallography Multi wavelength anomalous diffraction (MAD) Single wavelength

  9. A national facility for biological cryo-electron microscopy

    SciTech Connect (OSTI)

    Saibil, Helen R.; Grnewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  10. Center for Nanophase Materials Sciences (CNMS) - Macromolecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled ring-opening...

  11. Microcrystallization techniques for serial femtosecond crystallography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray diffraction data are collected from a fully hydrated stream of nano- or microcrystals of biomolecules in their mother liquor using high-energy, X-ray free-electron lasers. ...

  12. SSRL Experimental Run Schedule | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Run Schedule November 2015- May 2016 Schedules for X-ray, VUV and Macromolecular Crystallography beamlines. X-ray VUV (BL5, 8, 10-1, 13-1/2/3) Macromolecular Crystallography see also: Support Staff Schedule SPEAR3 Operating / Maintenance LCLS see Schedule Archive The SSRL storage ring team is in the final stages of installing hardware that will enable reducing the SPEAR3 emittance to 6 nm from its present value of 10 nm. The last piece is the installation of the thin septum

  13. Microsoft Word - Cohen-Goniometer bh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goniometer-based Femtosecond Macromolecular Crystallography Scientists in the Structural Molecular Biology (SMB) program at the Stanford Synchrotron Radiation Lightsource (SSRL) in collaboration with scientists at Stanford University and at the Linac Coherent Light Source (LCLS) developed a goniometer-based system to study radiation-sensitive macromolecular complexes. The system operates in air and is complementary to the injector-based in-vacuum crystallographic x-ray diffraction experiments

  14. Microbial Electrochemical Technology (MxCs): Challenges and Opportunit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Jason Ren, University of Colorado Boulder, during the "Technological State of the Art" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from ...

  15. MxEnergy Electric, Inc. (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    Place: Massachusetts Phone Number: 1-866-237-7693 Website: www.constellation.compagesmx Twitter: @ConstellationEG Facebook: https:mbasic.facebook.comConstellationEnergy Outage...

  16. Microbial Fuel Cell Technologies—MxCs: Can They Scale?

    Broader source: Energy.gov [DOE]

    Presentation by Bruce Logan, Penn State University, during the "Technological State of the Art" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18–19, 2015.

  17. MxEnergy Electric, Inc. (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    1-877-997-9995 Website: www.constellation.compagesmx Twitter: @constellationeg Facebook: https:www.facebook.comConstellationEnergy Outage Hotline: 1-877-997-9995...

  18. EA-279_UNS__MX.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9UNSMX.pdf EA-279UNSMX.pdf EA-279 PDF icon EA-279UNSMX.pdf More Documents & Publications CX-004879: Categorical Exclusion Determination ANTELOPE VALLEY SOLAR RANCH...

  19. PP-304_GDD_-_WAPA__San_Luis_MX.pdf

    Energy Savers [EERE]

  20. MxEnergy Electric, Inc. (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 50149 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.0819kWh...

  1. EA-106 Arizona Public Service (MX).pdf

    Office of Environmental Management (EM)

  2. EA-149 PacifiCorp (MX).pdf

    Office of Environmental Management (EM)

  3. EA-184-A_Morgan_Stanley_MX.pdf

    Office of Environmental Management (EM)

  4. EA-247-D Constellation NewEnergy (MX).pdf

    Office of Environmental Management (EM)

  5. EA-294-B TexMex MX.pdf

    Office of Environmental Management (EM)

  6. EA-318-A_AEPEP_Inc__MX.pdf

    Office of Environmental Management (EM)

  7. EA-318-C AEP EP MX.pdf

    Office of Environmental Management (EM)

  8. EA-331-A_RBS_Rescission_MX.pdf

    Office of Environmental Management (EM)

  9. EA-331_Royal_Bank_of_Scotland_MX.pdf

    Office of Environmental Management (EM)

  10. EA-336-A ConocoPhillips (MX).pdf

    Office of Environmental Management (EM)

  11. EA-338-A Shell Energy (MX).pdf

    Office of Environmental Management (EM)

  12. EA-357-A Hunt Electric Power (MX).pdf

    Office of Environmental Management (EM)

  13. EA-363-A Noble Americas MX.pdf

    Office of Environmental Management (EM)

  14. EA-405 Del Norte Energy (MX).pdf

    Office of Environmental Management (EM)

  15. EA-413 Elan Energy Svcs. (MX).pdf

    Office of Environmental Management (EM)

  16. EA-415 Lion Shield Energy (MX).pdf

    Office of Environmental Management (EM)

  17. EA-415 Lion Shield Energy (MX)_0.pdf

    Office of Environmental Management (EM)

  18. EA-48-I El Paso (MX).pdf

    Office of Environmental Management (EM)

  19. Evolution of the macromolecular structure of sporopollenin during thermal degradation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bernard, S.; Benzerara, K.; Beyssac, O.; Balan, E.; G. E. Brown, Jr.

    2015-10-01

    Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure ofmore » sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.« less

  20. Evolution of the macromolecular structure of sporopollenin during thermal degradation

    SciTech Connect (OSTI)

    Bernard, S.; Benzerara, K.; Beyssac, O.; Balan, E.; G. E. Brown, Jr.

    2015-10-01

    Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure of sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 C); in a second stage (above 500 C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 C), oxygen is progressively lost and conjugated carboncarbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.

  1. Goniometer-based femtosecond crystallography with X-ray free...

    Office of Scientific and Technical Information (OSTI)

    I. ; McPhillips, Scott E. ; Nelson, Silke ; Peters, John W. ; Sauter, Nicholas K. ; Smith, Clyde A. ; Song, Jinhu ; Stevenson, Hilary P. ; Tsai, Yingssu ; Uervirojnangkoorn,...

  2. Genentech Uses ALS Crystallography for Therapeutic Antibody Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    antibody bivalency can limit their utility against some targets due to receptor crosslinking and activation. Genentech has developed a unique one-armed antibody, onartuzumab,...

  3. Serial snapshot crystallography for materials science with SwissFEL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; Tamura, Nobumichi; Pattison, Philip; Abela, Rafael; McCusker, Lynne B.

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of datamore » can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.« less

  4. Serial femtosecond crystallography of soluble proteins in lipidic...

    Office of Scientific and Technical Information (OSTI)

    of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP...

  5. Workshop: New Advances in Crystallography with Synchrotrons and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Synchrotrons and X-FELs Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

  6. Goniometer-based femtosecond crystallography with X-ray free...

    Office of Scientific and Technical Information (OSTI)

    ; Nelson, Silke ; Peters, John W. ; Sauter, Nicholas K. ; Smith, Clyde A. ; Song, Jinhu ; Stevenson, Hilary P. ; Tsai, Yingssu ; Uervirojnangkoorn, Monarin ; Vinetsky, Vladimir ;...

  7. Time-resolved serial crystallography captures high-resolution...

    Office of Scientific and Technical Information (OSTI)

    ; Srajer, Vukica ; Henning, Robert ; Schwander, Peter ; Fromme, Raimund ; Ourmazd, Abbas ; Moffat, Keith ; Van Thor, Jasper J. ; Spence, John C.H. ; Fromme, Petra ; Chapman,...

  8. Goniometer-based femtosecond crystallography with X-ray free...

    Office of Scientific and Technical Information (OSTI)

    L. ; Brehmer, Winnie ; Brewster, Aaron S. ; Brunger, Axel T. ; Calero, Guillermo ; Chang, Joseph F. ; Chollet, Matthieu ; Ehrensberger, Paul ; Eriksson, Thomas L. ; Feng,...

  9. Serial femtosecond crystallography of soluble proteins in lipidic...

    Office of Scientific and Technical Information (OSTI)

    structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting...

  10. Towards time-resolved serial crystallography in a microfluidic...

    Office of Scientific and Technical Information (OSTI)

    Henning, Robert ; Kosheleva, Irina ; Schmidt, Marius ; Ren, Zhong ; Kenis, Paul J.A. ; Perry, Sarah L. 1 ; UC) 2 ; Renz) 2 ; UIUC) 2 + Show Author Affiliations (UW) ( ...

  11. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Mission Our Mission The SSRL Structural Molecular Biology program operates as a integrated resource and has three primary areas (or cores) of technological research and development and scientific focus: Macromolecular Crystallography (MC) Small Angle X-ray Scattering/Diffraction (SAXS) X-ray Absorption Spectroscopy (XAS) Central to the core technological developments in all three of these areas is the development and utilization of improved detectors and instrumentation, especially to be

  12. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extension Application for Macromolecular Crystallography Proposals Please submit via email attachment to Lisa Dunn (lisa@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the proposal, if applicable (1-2 paragraphs) 3. FUTURE PLANS: Describe future plans or the next steps that you

  13. SSRL HEADLINES June 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 June, 2011 __________________________________________________________________________ Contents of this Issue: From the Director of SSRL: Looking Ahead Science Highlight - Estimating Cr(VI) in Coal-Derived Fly-Ash Science Highlight - Staying One Step Ahead of Antibiotic Resistance Science Highlight - SSRL's Microfocus Macromolecular Crystallography Beam Line 12-2 First SSRL Pump-Probe Experiments Under Way SSRL X-rays Reveal Patterns in the Plumage of the First Birds Upcoming SSRL Events:

  14. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    03, 2008 » Links Scientific Highlight Tainer Website Scripps Press Release » Share this Article Laboratree Ologeez SciLink LabSpaces Role of Specific Protein Mutations in Causing Human Disease Revealed summary written by Brad Plummer, SLAC Communication Office Scientists are one step closer to understanding a piece of the machinery involved in DNA transcription and repair, thanks to work done in part at the SSRL macromolecular crystallography Beam Line 11-1. The team, led by The Scripps

  15. Proposal Submittal and Scheduling Procedures Entry Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Submittal and Scheduling Procedures for Research at SSRL X-ray/VUV Macromolecular Crystallography SSRL is funded by the Department of Energy, Office of Basic Energy Sciences under contract DE-AC03-76SF00515. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General

  16. Data Collection & Analysis Software | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Collection & Analysis Software Techniques Data Collection Packages Data Analysis Packages Macromolecular Crystallography See http://smb.slac.stanford.edu/facilities/ See http://smb.slac.stanford.edu/facilities/ Materials Scattering SPEC Super X-ray Absorption Spectroscopy XAS Collect uses an X Window-based graphical user interface. It is designed to allow quick and easy XAS experimental setup and data collection, and to make optimal use of available beam time. It has many

  17. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  18. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  19. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  20. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories 1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution

  1. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories 2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding,

  2. FY2005 SSRLUO Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Executive Committee corner corner Environmental Sciences Graduate Student LCLS Macromolecular Crystallography Materials Chemistry SSRL Liaison Structural Molecular Biology corner corner Juana Acrivos CSU San Jose, Chemistry, 1 Washington Square, SanJose, CA 95192-0101 Juana Acrivos has done experiments at SSRL since 1978. She is a chemist at SJSU (Professor). Her students first work at SSRL (Alan Robertson, Kevin Hathaway) showed how metal (Rb and Ba) in ammonia solutions change valence from 0

  3. FY2006 SSRLUO Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Executive Committee corner corner Environmental Sciences Graduate Student LCLS Macromolecular Crystallography Materials Chemistry SSRL Liaison Biospectroscopy corner corner Juana Acrivos CSU San Jose, Chemistry, 1 Washington Square, SanJose, CA 95192-0101 Juana Acrivos has done experiments at SSRL since 1978. She is a chemist at SJSU (Professor). Her students first work at SSRL (Alan Robertson, Kevin Hathaway) showed how metal (Rb and Ba) in ammonia solutions change valence from 0 (in metallic

  4. FY2007 SSRLUO Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Executive Committee corner corner Environmental Sciences Graduate Student LCLS Macromolecular Crystallography Materials Chemistry SSRL Liaison Biospectroscopy corner corner Joy Andrews (Ex-Officio) California State University East Bay, Chemistry, 25800 Carlos Bee Blvd., Hayward, CA 94542 Professor in the Department of Chemistry and Biochemistry at California State University, East Bay, where she has taught since 1996. Her B.A. degree is in biochemistry from Barnard College, and Ph.D. in

  5. FY2008 SSRLUO Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Executive Committee corner corner Environmental Sciences Graduate Student LCLS Macromolecular Crystallography Materials Chemistry SSRL Liaison Biospectroscopy corner corner Joy Andrews California State University East Bay, Chemistry, 25800 Carlos Bee Blvd., Hayward, CA 94542 Professor in the Department of Chemistry and Biochemistry at California State University, East Bay, where she has taught since 1996. Her B.A. degree is in biochemistry from Barnard College, and Ph.D. in Biophysical

  6. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  7. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  8. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  9. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  10. Proposal Submittal and Scheduling Procedures for Research | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Proposal Submittal and Scheduling Procedures for Research New Proposals Standard GU Proposals Instructions for New Standard Proposals (Not LOI or Rapid Access) Tips for How to Wow Rapid Access Letter of Intent (LOI) Proposal Extension Requests X-ray/VUV Macromolecular Crystallography Beam Time Allocation/Scheduling How to Request Beam Time SSRL Access Policy SSRL Schedules Publications & Reports New Proposals SSRL operates as a dedicated synchrotron

  11. SSRL Science | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SSRL Science Visit our Science Highlights Archive and list of User and Staff Publications for examples of SSRL user research. Accelerator Physics Macromolecular Crystallography (SMB) Magnetic Dichroism Spectroscopy & Microscopy Materials Scattering Molecular Environmental & Interface Science Near Edge X-ray Absorption Fine Structure (NEXAFS) SAXS Materials Science Powder Diffraction Small Angle Scattering/Diffraction (SMB) Total X-ray Reflection Fluorescence (TXRF) X-ray

  12. Microsoft Word - RNA_polymerase_Kornberg_04.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Inner Workings of RNA Polymerase: How Genetic Information is Transcribed The research group of Professor Roger Kornberg of Stanford University has studied RNA polymerase II for more than 20 years. In 2000, his group solved the atomic-level structure of RNA polymerase, a macromolecular machine that transcribes genetic information, using crystallography diffraction data collected at SSRL [1]. The structure was featured on the cover of Science Magazine in the April 28, 2000 issue (Fig. 1). One

  13. On the protonation states, hydrogen bonding and catalytic mechanism of family 11 glycosidases: Direct visualization with neutrons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fisher, Suzanne Zoe; Graham, David E.; Hanson, Leif; Kovalevskyi, Andrii Y.; Langan, Paul; Parks, Jerry M.; Wan, Qun; Ostermann, Andreas; Schrader, Tobias

    2015-10-06

    Most enzymatic reactions involve hydrogen or proton transfer among the enzyme, substrate, and water at physiological pH. Thus, enzyme catalysis cannot be fully understood without accurate mapping of hydrogen atom positions in these macromolecular catalysts. Direct information on the location of hydrogen atoms can be obtained using neutron crystallography. We used neutron crystallography and biomolecular simulation to characterize the initial stage of the glycoside hydrolysis reaction catalyzed by a family 11 glycoside hydrolase. We provide evidence that the catalytic glutamate residue alternates between two conformations bearing different basicities, first to obtain a proton from the bulk solvent, and then tomore » deliver it to the glycosidic oxygen to initiate the hydrolysis reaction.« less

  14. SSRLUO 2002 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 2 Executive Committee Members ENVIRONMENTAL/GEOSCIENCES Satish Myneni Princeton University Geoscience 151 Guyot Hall Princeton, NJ 08544 Phone: 609-258-5848 E-mail: smyneni@princeton.edu Nicholas Pingitore University of Texas at El Paso Environmental & Geosciences El Paso, TX 79968-0555 Phone: 915-747-5754 Fax: 915-747-5073 E-mail: nick@geo.utep.edu MACROMOLECULAR CRYSTALLOGRAPHY Paul Foster(ex-officio) UCSF/Exelixis Biophysics Box 0448 San Francisco, CA 94143 Phone:

  15. Experimental Station 11-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 11-1 is a PRT station, available to general users 33%; it is a wiggler side-station beamline dedicated for monochromatic, high-throughput and high-resolution macromolecular crystallography. It is SAD and MAD capable and can be run in a full remote access mode. It is equipped with an Dectris PILATUS 6M detector and a remote access controlled UV-Vis microspectrophotometer. For aditional information about the experimental capabilities, see http://smb.slac.stanford.edu/index.shtml. Status

  16. Experimental Station 12-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-2 Beamline 12-2 is a PRT station, realized through third party funding from the Gordon and Betty Moore Foundation via the California Institute of Technology and available to general users 60%; it is an undulator beamline with fully adjustable focus from 100 to 15 microns. Micron-sized beams can be achieved by the use of microcollimators. It is optimized for microdiffraction, monochromatic, high-throughput and high-resolution macromolecular crystallography. It is SAD and MAD capable and can be

  17. Floor Support | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floor Support Service Responsible Person BLDG Extension (650) 926-XXXX Beam Status Duty Operator 120 926-2326 (BEAM) Duty Operator Cell Duty Operator 120 926-4040 User Program/Beam Line Scheduling X-ray/VUV Beam Lines Macromolecular Crystallography/Bio SAXS Beam Lines Cathy Knotts TBD Lisa Dunn 137 120 120 3191 2886 2087 User Check-In/Badging Jackie Kerlegan 120 2079 User Financial Accounts Jackie Kerlegan 120 2079 Beam Lines/ VUV Bart Johnson 120 3858 Beam Lines/ X-ray Bart Johnson 120 3858

  18. Vesicle-based method for collecting, manipulating, and chemically processing trace macromolecular species

    DOE Patents [OSTI]

    Davalos, Rafael V. (Oakland, CA); Ellis, Christopher R. B. (Oakland, CA)

    2010-08-17

    Disclosed is an apparatus and method for inserting one or several chemical or biological species into phospholipid containers that are controlled within a microfluidic network, wherein individual containers are tracked and manipulated by electric fields and wherein the contained species may be chemically processed.

  19. Vesicle-based method and apparatus for collecting, manipulating, and chemically processing trace macromolecular species

    DOE Patents [OSTI]

    Davalos, Rafael V. (Oakland, CA); Ellis, Christopher R. B. (Oakland, CA)

    2008-03-04

    Disclosed is an apparatus and method for inserting one or several chemical or biological species into phospholipid containers that are controlled within a microfluidic network, wherein individual containers are tracked and manipulated by electric fields and wherein the contained species may be chemically processed.

  20. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions

    SciTech Connect (OSTI)

    Brown, Alan; Long, Fei; Nicholls, Robert A.; Toots, Jaan; Emsley, Paul; Murshudov, Garib, E-mail: garib@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom)

    2015-01-01

    A description is given of new tools to facilitate model building and refinement into electron cryo-microscopy reconstructions. The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 . Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.

  1. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hattne, Hattne

    2014-03-04

    Diffraction patterns from thermolysin microcrystals and one dark run, collected in December 2011. This data was used for metrology calibration and general cctbx.xfel development.

  2. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOE Patents [OSTI]

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William; Yegian, Derek; Earnest, Thomas N.; Jaklevic, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2005-07-19

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  3. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOE Patents [OSTI]

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William F.; Yegian, Derek T.; Earnest, Thomas N.; Jaklevich, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2007-09-25

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  4. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  5. In meso in situ serial X-ray crystallography of soluble and membrane...

    Office of Scientific and Technical Information (OSTI)

    Agency (IAEA) Country of Publication: Denmark Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY...

  6. Direct detection of x-rays for protein crystallography employing a thick, large area CCD

    DOE Patents [OSTI]

    Atac, Muzaffer; McKay, Timothy

    1999-01-01

    An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

  7. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ibrahim, Mohamed; Chatterjee, Ruchira; Hellmich, Julia; Tran, Rosalie; Bommer, Martin; Yachandra, Vittal K.; Yano, Junko; Kern, Jan; Zouni, Athina

    2015-07-01

    In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup thatmore » requires microcrystals less than 40 μm in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 Å, using crystals grown without the micro seeding approach, to 4.5 Å using crystals generated with the new method.« less

  8. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    SciTech Connect (OSTI)

    Barends, Thomas R. M., E-mail: thomas.barends@mpimf-heidelberg.mpg.de [MPI for Medical Research, Heidelberg (Germany); Brosi, Richard W. W. [Freie Universitat Berlin, Berlin (Germany); Steinmetz, Andrea; Scherer, Anna; Hartmann, Elisabeth; Eschenbach, Jessica; Lorenz, Thorsten [MPI for Medical Research, Heidelberg (Germany); Seidel, Ralf [MPI for Molecular Physiology, Dortmund (Germany); Shoeman, Robert L.; Zimmermann, Sabine [MPI for Medical Research, Heidelberg (Germany); Bittl, Robert [Freie Universitat Berlin, Berlin (Germany); Schlichting, Ilme; Reinstein, Jochen [MPI for Medical Research, Heidelberg (Germany)

    2013-08-01

    The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.

  9. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    SciTech Connect (OSTI)

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  10. The crystallography of fatigue crack initiation in Incoloy-908 and A-286 steel

    SciTech Connect (OSTI)

    Krenn, C.R. |

    1996-12-01

    Fatigue crack initiation in the austenitic Fe-Ni superalloys Incoloy-908 and A-286 is examined using local crystallographic orientation measurements. Results are consistent with sharp transgranular initiation and propagation occurring almost exclusively on {l_brace}111{r_brace} planes in Incoloy-908 but on a variety of low index planes in A-286. This difference is attributed to the influence of the semicoherent grain boundary {eta} phase in A-286. Initiation in each alloy occurred both intergranularly and transgranularly and was often associated with blocky surface oxide and carbide inclusions. Taylor factor and resolved shear stress and strain crack initiation hypotheses were tested, but despite an inconclusive suggestion of a minimum required {l_brace}111{r_brace} shear stress, none of the hypotheses were found to convincingly describe preferred initiation sites, even within the subsets of transgranular cracks apparently free from the influence of surface inclusions. Subsurface inclusions are thought to play a significant role in crack initiation. These materials have applications for use in structural conduit for high field superconducting magnets designed for fusion energy use.

  11. Processing incommensurately modulated protein diffraction data with Eval15

    SciTech Connect (OSTI)

    Porta, Jason [Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Lovelace, Jeffrey J. [Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Borgstahl, Gloria E. O., E-mail: gborgstahl@unmc.edu [Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Nebraska Medical Center, Omaha, NE 68198-7696 (United States)

    2011-07-01

    Data processing of an incommensurately modulated profilinactin crystal is described. Recent challenges in biological X-ray crystallography include the processing of modulated diffraction data. A modulated crystal has lost its three-dimensional translational symmetry but retains long-range order that can be restored by refining a periodic modulation function. The presence of a crystal modulation is indicated by an X-ray diffraction pattern with periodic main reflections flanked by off-lattice satellite reflections. While the periodic main reflections can easily be indexed using three reciprocal-lattice vectors a*, b*, c*, the satellite reflections have a non-integral relationship to the main lattice and require a q vector for indexing. While methods for the processing of diffraction intensities from modulated small-molecule crystals are well developed, they have not been applied in protein crystallography. A recipe is presented here for processing incommensurately modulated data from a macromolecular crystal using the Eval program suite. The diffraction data are from an incommensurately modulated crystal of profilinactin with single-order satellites parallel to b*. The steps taken in this report can be used as a guide for protein crystallographers when encountering crystal modulations. To our knowledge, this is the first report of the processing of data from an incommensurately modulated macromolecular crystal.

  12. Collaborative Computational Project for Electron cryo-Microscopy

    SciTech Connect (OSTI)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  13. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structuremore » reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less

  14. Au133(SPh-tBu)52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    SciTech Connect (OSTI)

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C.

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the nanostructure problem. Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

  15. Structure and Dynamics of NBD1 from CFTR Characterized Using Crystallography and Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect (OSTI)

    Lewis, H.A.; Wang, C.; Zhao, X.; Hamuro, Y.; Conners, K.; Kearins, M.C.; Lu, F.; Sauder, J.M.; Molnar, K.S.; Coales, S.J.; Maloney, P.C.; Guggino, W.B.; Wetmore, D.R.; Weber, P.C.; Hunt, J.F. (SGX); (ExSAR); (Cystic); (JHU-MED); (Columbia)

    2012-04-30

    The {Delta}F508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and {Delta}F508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because {Delta}F508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and {Delta}F508 constructs, and the {Delta}F508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide {sup 1}H/{sup 2}H exchange rates in matched F508 and {Delta}F508 constructs reveal that {Delta}F508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the {Delta}F508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-{Delta}F508 structures but completely solvent exposed in all {Delta}F508 structures. These results reinforce the importance of the perturbation {Delta}F508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.

  16. Supporting Advanced Scientific Computing Research * Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peeringupgrades: * EQX-SJ:installedMX480onOct15 th * EQX-ASH:installedMX480onNov30 th * EQX-CHI:PendingMX480ins...

  17. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highlymore » active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).« less

  18. The carburization of transition metal molybdates (MxMoO?, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO? hydrogenation

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo?C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu?(MoO?)?(OH)?, a-NiMoO? and CoMoO?nH?O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was ?-Mo?C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu?, Ni? and Co? cations inside each molybdate. The synthesized Cu/Mo?C, Ni/Mo?C and Co/Mo?C catalysts were highly active for the hydrogenation of CO?. The metal/Mo?C systems exhibited large variations in the selectivity towards methanol, methane and CnH?n?? (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo?C displayed a high selectivity for CO and methanol production. Ni/Mo?C and Co/Mo?C were the most active catalysts for the activation and full decomposition of CO?, showing high selectivity for the production of methane (Ni case) and CnH?n?? (n > 2) hydrocarbons (Co case).

  19. Towards phasing using high X-ray intensity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  20. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sbastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  1. SSRL- Experimental Run Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY2008 Experimental Run Schedules 2008 Run Ends August 11, 2008. User Operations will resume November 2008. Operating / Maintenance Beam Line Schedule FY2009 FY2008 X-ray (1-4, 2-1, 2-3, 4-2, 6-2, 7-2, 7-3, 9-3, 10-2, 11-2, 11-3) Macromolecular Crystallography Support Staff Schedule (1-5, 7-1, 9-1, 9-2, 11-1) VUV (5-1, 5-2, 5-4, 8-1, 8-2, 10-1) Schedules for previous years Accelerator Schedule (for staff): Accelerator Physics SPEAR Maintenance and Shutdown SPEAR Startup Injector Startup

  2. Station for X-ray structural analysis of materials and single crystals (including nanocrystals) on a synchrotron radiation beam from the wiggler at the Siberia-2 storage ring

    SciTech Connect (OSTI)

    Kheiker, D. M. Kovalchuk, M. V.; Korchuganov, V. N.; Shilin, Yu. N.; Shishkov, V. A.; Sulyanov, S. N.; Dorovatovskii, P. V.; Rubinsky, S. V.; Rusakov, A. A.

    2007-11-15

    The design of the station for structural analysis of polycrystalline materials and single crystals (including nanoobjects and macromolecular crystals) on a synchrotron radiation beam from the superconducting wiggler of the Siberia-2 storage ring is described. The wiggler is constructed at the Budker Institute of Nuclear Physics of the Siberian Division of the Russian Academy of Sciences. The X-ray optical scheme of the station involves a (1, -1) double-crystal monochromator with a fixed position of the monochromatic beam and a sagittal bending of the second crystal, segmented mirrors bent by piezoelectric motors, and a (2{theta}, {omega}, {phi}) three-circle goniometer with a fixed tilt angle. Almost all devices of the station are designed and fabricated at the Shubnikov Institute of Crystallography of the Russian Academy of Sciences. The Bruker APEX11 two-dimensional CCD detector will serve as a detector in the station.

  3. 2010 Diffraction Methods in Structural Biology

    SciTech Connect (OSTI)

    Dr. Ana Gonzalez

    2011-03-10

    Advances in basic methodologies have played a major role in the dramatic progress in macromolecular crystallography over the past decade, both in terms of overall productivity and in the increasing complexity of the systems being successfully tackled. The 2010 Gordon Research Conference on Diffraction Methods in Structural Biology will, as in the past, focus on the most recent developments in methodology, covering all aspects of the process from crystallization to model building and refinement, complemented by examples of structural highlights and complementary methods. Extensive discussion will be encouraged and it is hoped that all attendees will participate by giving oral or poster presentations, the latter using the excellent poster display area available at Bates College. The relatively small size and informal atmosphere of the meeting provides an excellent opportunity for all participants, especially younger scientists, to meet and exchange ideas with leading methods developers.

  4. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  5. An evaluation of adhesive sample holders for advanced crystallographic experiments

    SciTech Connect (OSTI)

    Mazzorana, Marco; Sanchez-Weatherby, Juan Sandy, James; Lobley, Carina M. C.; Sorensen, Thomas

    2014-09-01

    Commercially available adhesives have been evaluated for crystal mounting when undertaking complex macromolecular crystallography experiments. Here, their use as tools for advanced sample mounting and cryoprotection is assessed and their suitability for room-temperature data-collection and humidity-controlled studies is investigated. The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposing it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is discussed.

  6. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    SciTech Connect (OSTI)

    Kumaran, D.; Adler, M.; Levit, M.; Krebs, M.; Sweeney, R.; Swaminathan, S.

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Frster resonance excitation transfer (FRET) assay, CPI-1 was found to have a Ki of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter

  7. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumaran, D.; Adler, M.; Levit, M.; Krebs, M.; Sweeney, R.; Swaminathan, S.

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care;more » therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Förster resonance excitation transfer (FRET) assay, CPI-1 was found to have a Ki of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter« less

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destructio...

  9. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor GENERAL BEAMLINE INFORMATION...

  10. Challenges and solutions for the analysis of in situ, in crystallo micro-spectrophotometric data

    SciTech Connect (OSTI)

    Dworkowski, Florian S. N.; Hough, Michael A.; Pompidor, Guillaume

    2015-01-01

    The particular challenge of the analysis of optical absorption and Raman spectroscopic data measured from protein crystals and how the SLS-APE software toolbox supports scientists in dealing with such data is described. Combining macromolecular crystallography with in crystallo micro-spectrophotometry yields valuable complementary information on the sample, including the redox states of metal cofactors, the identification of bound ligands and the onset and strength of undesired photochemistry, also known as radiation damage. However, the analysis and processing of the resulting data differs significantly from the approaches used for solution spectrophotometric data. The varying size and shape of the sample, together with the suboptimal sample environment, the lack of proper reference signals and the general influence of the X-ray beam on the sample have to be considered and carefully corrected for. In the present article, how to characterize and treat these sample-dependent artefacts in a reproducible manner is discussed and the SLS-APEin situ, in crystallo optical spectroscopy data-analysis toolbox is demonstrated.

  11. Covering complete proteomes with X-ray structures: A current snapshot

    SciTech Connect (OSTI)

    Mizianty, Marcin J.; Fan, Xiao; Yan, Jing; Chalmers, Eric; Woloschuk, Christopher; Joachimiak, Andrzej; Kurgan, Lukasz

    2014-10-23

    Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtained through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined.

  12. Covering complete proteomes with X-ray structures: A current snapshot

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mizianty, Marcin J.; Fan, Xiao; Yan, Jing; Chalmers, Eric; Woloschuk, Christopher; Joachimiak, Andrzej; Kurgan, Lukasz

    2014-10-23

    Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtainedmore » through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined.« less

  13. Crystallography and Physical Properties of BaCo2As2, Ba0.94K0.06Co2As2, and Ba0.78K0.22Co2As2

    SciTech Connect (OSTI)

    Anand, V K; Quirinale, Dante G; Lee, Yongbin; Harmon, Bruce N; Furukawa, Yuji; Ogloblichev, V V; Huq, A; Abernathy, D L; Stephens, P W; McQueeney, Robert J; Kreyssig, Aandreas; Goldman, Alan I; Johnston, David C

    2014-08-01

    The crystallographic and physical properties of polycrystalline and single crystal samples of BaCo2As2 and K-doped Ba{1-x}K{x}Co2As2 (x = 0.06, 0.22) are investigated by x-ray and neutron powder diffraction, magnetic susceptibility chi, magnetization, heat capacity Cp, {75}As NMR and electrical resistivity rho measurements versus temperature T. The crystals were grown using both Sn flux and CoAs self-flux, where the Sn-grown crystals contain 1.6-2.0 mol% Sn. All samples crystallize in the tetragonal ThCr2Si2-type structure (space group I4/mmm). For BaCo2As2, powder neutron diffraction data show that the c-axis lattice parameter exhibits anomalous negative thermal expansion from 10 to 300 K, whereas the a-axis lattice parameter and the unit cell volume show normal positive thermal expansion over this T range. No transitions in BaCo2As2 were found in this T range from any of the measurements. Below 40-50 K, we find rho ~ T^2 indicating a Fermi liquid ground state. A large density of states at the Fermi energy D(EF) ~ 18 states/(eV f.u.) for both spin directions is found from low-T Cp(T) measurements, whereas the band structure calculations give D(EF) = 8.23 states/(eV f.u.). The {75}As NMR shift data versus T have the same T dependence as the chi(T) data, demonstrating that the derived chi(T) data are intrinsic. The observed {75}As nuclear spin dynamics are consistent with the presence of ferromagnetic and/or stripe-type antiferromagnetic spin fluctuations. The crystals of Ba{0.78}K{0.22}Co2As2 were grown in Sn flux and show properties very similar to those of undoped BaCo2As2. On the other hand, the crystals from two batches of Ba{0.94}K{0.06}Co2As2 grown in CoAs self-flux show evidence of weak ferromagnetism at T < 10 K with small ordered moments at 1.8 K of 0.007 and 0.03 muB per formula unit, respectively.

  14. 391st Brookhaven Lecture

    ScienceCinema (OSTI)

    Bob Sweet

    2010-09-01

    A description of how crystallography methods work and how several results obtained using the NSLS have impacted biological science.

  15. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor...

  16. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor...

  17. Record of Categorical Exclusion (CX) Determination: Office of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery and Energy Reliability (OE): Application from Pilot Power Group Inc to export electric energy to Mexico. PDF icon EA-383 Pilot Power MX0.pdf More Documents &...

  18. Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Microbial Fuel Cell Technologies-MxCs: Can They Scale?...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Structural Insight into HIV-1 Restriction by MxB Fribourgh, Jennifer L. ; Nguyen, Henry C. ; Matreyek, Kenneth A. ; Alvarez, Frances Joan D. ; Summers, Brady J. ; Dewdney, Tamaria ...

  20. Beam Stability Complaint Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For New Users For Current Users For Administrators MX Users APS User Portal APS Data Management Practices Find a Beamline Apply for Beam Time ESAF Contacts Calendars User...

  1. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion (AD): not only methane Microbial Electrochemical Technology (MxCs): Challenges and Opportunities Non-Photosynthetic Biohydrogen--Overview of Options...

  2. Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens

    SciTech Connect (OSTI)

    Chaikuad, Apirat; Knapp, Stefan; Delft, Frank von

    2015-07-28

    An alternative strategy for PEG sampling is suggested through the use of four newly defined PEG smears to enhance chemical space in reduced screens with a benefit towards protein crystallization. The quest for an optimal limited set of effective crystallization conditions remains a challenge in macromolecular crystallography, an issue that is complicated by the large number of chemicals which have been deemed to be suitable for promoting crystal growth. The lack of rational approaches towards the selection of successful chemical space and representative combinations has led to significant overlapping conditions, which are currently present in a multitude of commercially available crystallization screens. Here, an alternative approach to the sampling of widely used PEG precipitants is suggested through the use of PEG smears, which are mixtures of different PEGs with a requirement of either neutral or cooperatively positive effects of each component on crystal growth. Four newly defined smears were classified by molecular-weight groups and enabled the preservation of specific properties related to different polymer sizes. These smears not only allowed a wide coverage of properties of these polymers, but also reduced PEG variables, enabling greater sampling of other parameters such as buffers and additives. The efficiency of the smear-based screens was evaluated on more than 220 diverse recombinant human proteins, which overall revealed a good initial crystallization success rate of nearly 50%. In addition, in several cases successful crystallizations were only obtained using PEG smears, while various commercial screens failed to yield crystals. The defined smears therefore offer an alternative approach towards PEG sampling, which will benefit the design of crystallization screens sampling a wide chemical space of this key precipitant.

  3. Covering complete proteomes with X-ray structures: a current snapshot

    SciTech Connect (OSTI)

    Mizianty, Marcin J.; Fan, Xiao; Yan, Jing; Chalmers, Eric; Woloschuk, Christopher; Joachimiak, Andrzej; Kurgan, Lukasz

    2014-11-01

    The current and the attainable coverage by X-ray structures of proteins and their functions on the scale of the protein universe are estimated. A detailed analysis of the coverage across nearly 2000 proteomes from all superkingdoms of life and functional annotations is performed, with particular focus on the human proteome and the family of GPCR proteins. Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtained through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined.

  4. Protein Characterisation by Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy

    SciTech Connect (OSTI)

    Wallace, B.

    2009-01-01

    Circular dichroism (CD) spectroscopy is a well-established technique for the study of proteins. Synchrotron radiation circular dichroism (SRCD) spectroscopy extends the utility of conventional CD spectroscopy (i.e. using laboratory-based instruments) because the high light flux from a synchrotron enables collection of data to lower wavelengths, detection of spectra with higher signal-to-noise levels and measurements in the presence of strongly absorbing non-chiral components such as salts, buffers, lipids and detergents. This review describes developments in instrumentation, methodologies and bioinformatics that have enabled new applications of the SRCD technique for the study of proteins. It includes examples of the use of SRCD spectroscopy for providing static and dynamic structural information on molecules, including determinations of secondary structures of intact proteins and domains, assessment of protein stability, detection of conformational changes associated with ligand and drug binding, monitoring of environmental effects, examination of the processes of protein folding and membrane insertion, comparisons of mutant and modified proteins, identification of intermolecular interactions and complex formation, determination of the dispositions of proteins in membranes, identification of natively disordered proteins and their binding partners and examination of the carbohydrate components of glycoproteins. It also discusses how SRCD can be used in conjunction with macromolecular crystallography and other biophysical techniques to provide a more complete picture of protein structures and functions, including how proteins interact with other macromolecules and ligands. This review also includes a discussion of potential new applications in structural and functional genomics using SRCD spectroscopy and future instrumentation and bioinformatics developments that will enable such studies. Finally, the appendix describes a number of computational/bioinformatics resources for secondary structure analyses that take advantage of the improved data quality available from SRCD. In summary, this review discusses how SRCD can be used for a wide range of structural and functional studies of proteins.

  5. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect (OSTI)

    Jorda, Julien; Sawaya, Michael R. [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Yeates, Todd O., E-mail: yeates@mbi.ucla.edu [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Molecular Biology Institute, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); University of California, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States)

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as crowdsourcing. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of individuals, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30 phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.

  6. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size at sample (FWHM) 25 nm (theoretical), 31 nm actual Scientific applications Photovoltaics, thin films, macromolecular chemistry, geology, cosmological chemistry,...

  7. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Links BIOSYNC: Structural Biology Synchrotron Users Organization X-ray Anomalous Scattering Going MAD at CHESS Protein Data Bank Protein Data Bank Search International Union of Crystallography American Crystallographic Association Crystallography 101 Teaching Crystallography Periodic Table Periodic Table and X-ray Properties X-ray data booklet Merohedral crystal twinning server Software Links CCP4 MOSFLM HKL Research, Inc. homepage Solve/Resolve The O-files - Useful reference to the O

  8. Electronic Structure, Phonon Dynamical Properties, and Capture Capability

    Office of Scientific and Technical Information (OSTI)

    of Na2-xMxZrO3 (M=Li,K): Density-Functional Calculations and Experimental Validations (Journal Article) | SciTech Connect Electronic Structure, Phonon Dynamical Properties, and Capture Capability of Na2-xMxZrO3 (M=Li,K): Density-Functional Calculations and Experimental Validations Citation Details In-Document Search Title: Electronic Structure, Phonon Dynamical Properties, and Capture Capability of Na2-xMxZrO3 (M=Li,K): Density-Functional Calculations and Experimental Validations Authors:

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (3) serial femtosecond crystallography (2) xfel (2) algorithms (1) analog-to-digital converters (1) atom scattering (1) basic biological sciences xfel (1) bio-inspired...

  10. Craig Brown | Center for Gas SeparationsRelevant to Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Craig Brown Previous Next List CraigBrown Craig Brown Team leader for crystallography and diffraction applications, Center for Neutron Research, National Institute of Standards and...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject crystallography (1) ferromagnetic shape memory alloy (1) heusler alloys (1) magnetic properties (1) materials science copper alloys (1) Filter by ...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    biological sciences (4) crystallography (4) crystals (4) proteins (3) atoms (2) biophysics (2) crystal structure (2) escherichia coli (2) lipids (2) liquid crystals (2) ...

  13. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    three-dimensional shape. Although x-ray crystallography yields higher-resolution images, SAXS makes up for what it lacks in precision by providing fast, accurate...

  14. Automatic recovery of missing amplitudes and phases in tilt-limited...

    Office of Scientific and Technical Information (OSTI)

    Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals Citation Details In-Document Search Title: Automatic...

  15. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE...

  16. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE...

  17. What Triggers Asthma - Newcomer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROTEIN CRYSTALLOGRAPHY (PX): determine molecular structures with x-ray diffraction a protein crystal is a uniform array of individual proteins Prepare crystals of the...

  18. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Crystallography 2014 (IYCr2014) commemorates not only the centennial of X-ray diffraction, which allowed the detailed study of crystalline material, but also the 400th...

  19. SSRL HEADLINES July 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Inorganic Transition-Metal Complexes (Oct. 8) International Year of Crystallography - X-ray Diffraction Success Stories (Oct. 8) Characterizing and Controlling Chemical...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Everything2 Electronic Full Text0 Citations2 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject crystallography (1) ferromagnetic shape memory alloy (1) heusler ...

  1. De novo protein crystal structure determination from X-ray free-electron laser data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Barends, Thomas, R.M.

    2013-11-25

    Serial femtosecond crystallography (SFX) data of microcrystals of a lysozyme gadolinium derivative. The data was used to demonstrate de-novo phasing by single anomalous dispersion.

  2. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9.0.1 Print Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor...

  3. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour...

  4. SSRLUO 2012 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at SSRL since 1986, and has managed the administration of protein crystallography experiments since 2000. Lisa earned her Bachelor of Science degree from San Jose State...

  5. SSRLUO 2011 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at SSRL since 1986, and has managed the administration of protein crystallography experiments since 2000. Lisa earned her Bachelor of Science degree from San Jose State...

  6. Intriguing DNA Editor Has a Structural Trigger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    representing large and small versions, from Streptococcus pyogenes (SpyCas) and Actinomyces naeslundii (AnaCas9) respectively. Using protein crystallography Beamlines 8.2.2...

  7. ALSNews Vol. 326

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystallography beamlines at the ALS and hosts over 100 industrial and academic research groups each year. During his tenure as head of the BCSB, Adams oversaw performance...

  8. HEADLINES July 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallography Beam Line in User Commissioning Panel Selects First Scientific Experiments for LCLS SESAME Site Selected in Jordan New Gateway Program has Successful Start 1....

  9. Advisory Panels | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reviews proposals for imaging, X-ray spectroscopic studies, small-angle scattering experiments, and crystallography of biologically important samples. MAT1: The materials-1 panel...

  10. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  11. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instruments, and foster interaction with users. I work with the Macromolecular Nanomaterial group within the Functional Polymer Architectures theme. My main duty in CNMS is...

  12. Footprinting Technique Gives ALS Users New Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    left: Research Scientist Sayan Gupta, Beamline 5.3.1 Scientist Rich Celestre, and BCSB Head Corie Ralston. XFP, a powerful technique for the study of macromolecular structures...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    November 2015 , Elsevier Introduction to Phenix Terwilliger, Thomas C. PHENIX is a software package that automates nearly all aspects of macromolecular structure determination. ...

  14. Theme 2 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis of complex structure function and interfacial relationships between membrane, polymer and macromolecular systems at the interface of Biology and Materials Science. Fig. 3....

  15. SSRL HEADLINES March 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and other areas. The SMB program will continue to develop and provide state-of-the-art facilities and methodologies to study the most challenging biological macromolecular...

  16. Women @ Energy: Deanna Pickel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    your favorites on Pinterest. Deanna Pickel is on the Research Staff of the Macromolecular Nanomaterials Group, at Oak Ridge National Laboratory's Center for Nanophase Materials...

  17. APS Colloquium | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the National Center for Macromolecular Imaging at Baylor College of Medicine, will give a talk entitled "Electron Cryo-Microscopy of Molecular Machines." Bio and Abstract of...

  18. Introduction to Phenix (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    that automates nearly all aspects of macromolecular structure determination. This talk will describe the main features of PHENIX, including automated structure solution by...

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frank Svec: Using Gold to Boost Power of Chromatography MSD scientist Frantisek Svec, director of the Organic and Macromolecular Synthesis facility at the Molecular Foundry,...

  20. Application to Export Electric Energy OE Docket No. EA-402 Energia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sierra Juarez U.S., LLC Application from ESJ to export electric energy to Mexico. PDF icon EA-402 ESJ (MX).pdf More Documents & Publications EA-402 Energia Sierra Juarez U.S., ...

  1. Application to Export Electric Energy OE Docket No. EA-294-B...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy OE Docket No. EA-294-B TexMex Energy LLC Application from TexMex Energy to export electric energy to Mexico. PDF icon EA-294-B TexMex Energy (MX).pdf More Documents...

  2. Application to Export Electric Energy OE Docket No. EA-406 Sempra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Energy OE Docket No. EA-406 Sempra Generation, LLC Application from Sempra to export electric energy to Mexico. PDF icon EA-406 Sempra Generation (MX).pdf More...

  3. Application to Export Electric Energy OE Docket No. EA-338-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    No. EA-338-A Shell Energy North America (US), L.P. Application from Shell Energy to export electric energy to Mexico. PDF icon EA-338-A Shell Energy (MX).pdf More Documents &...

  4. Application to Export Electric Energy OE Docket No. EA-405 Del...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Energy OE Docket No. EA-405 Del Norte Energy LLC Application from Del Norte to export electric energy to Mexico. PDF icon EA-405 Del Norte Energy LLC (MX).pdf More...

  5. Application to Export Electric Energy OE Docket No. EA-363-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OE Docket No. EA-363-A Noble Americas Gas & Power Corporation Application from NAG&P to export electric energy to Mexico. PDF icon EA-363-A Noble Americas G&P (MX).pdf More...

  6. Application to Export Electric Energy OE Docket No. 382 Glacial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice Volume 76, No. 157 - Aug. 15, 2011 Application from Glacial Energy of Texas to export electric energy to Mexico. Federal Register Notice. PDF icon EA-382 Glacial MX.pdf...

  7. Application to Export Electric Energy OE Docket No. EA-407 Vitol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Application from Vitol to export electric energy to Mexico. Federal Register Notice. PDF icon EA-407 Vitol (MX).pdf...

  8. Application to Export Electric Energy OE Docket No. EA-145-E...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy OE Docket No. EA-145-E Powerex Corporation Application from Powerex Corp to export electric energy to Mexico. PDF icon EA-145-E Powerex Corp MX.pdf More Documents &...

  9. CX-006725: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whispered Dismantle and Relocation From 58-MX-10CX(s) Applied: B1.31, B3.11Date: 03/19/2010Location(s): Casper, WyomingOffice(s): RMOTC

  10. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by: Z.-H. Pan and T. Valla (Brookhaven National Laboratory); A.V. Fedorov (ALS); D. Gardner, Y.S. Lee, and S. Chu (Massachusetts Institute of Technology); M.-X. Wang, C. Liu,...

  11. Application to Export Electric Energy OE Docket No. EA-384 NRG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing LLC Application from NRG Power Mktg to export electric energy to Mexico. PDF icon EA-384 NRG Power Mktg (MX).pdf More Documents & Publications EA-384 NRG Power Marketing ...

  12. ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 9:45:32 AM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" "Sourcekey","N9102MX2" "Date","U.S. Natural Gas...

  13. ,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet)" "Sourcekey","N9102MX3" "Date","Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)" 33984 34015 34043 34074 34104 34135 34165 34196...

  14. EA-106 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon EA-106 Arizona Public Service (MX).pdf More Documents & Publications EA-336-A ConocoPhillips Company EA-247-D Constellation NewEnergy, Inc EA-387 Energia Renovable S.C., ...

  15. Electronic Structure, Phonon Dynamical Properties, and CO2 Capture...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( MLi ,K): Density-Functional Calculations and Experimental...

  16. EA-384 NRG Power Marketing LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 NRG Power Marketing LLC EA-384 NRG Power Marketing LLC Order authorizing NRG Power Marketing to export electric energy to Mexico. PDF icon EA-384 NRGPML MX.pdf More Documents & ...

  17. DOE/NRC F 740M | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0M DOENRC F 740M DOENRC Concise Note (Preprinted) PDF icon DOE F 740-MX More Documents & Publications o:informsfixformsnrc740m.wpf DOENRC F 742 PHYSICAL INVENTORY LISTING

  18. The calibration of the WISE W1 and W2 Tully-Fisher relation

    SciTech Connect (OSTI)

    Neill, J. D. [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena, CA 91125 (United States); Seibert, Mark; Scowcroft, Victoria [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Courtois, Hlne; Sorce, Jenny G. [Institut de Physique Nucleaire, Universit Claude Bernard Lyon I, F-69100 Lyon (France); Jarrett, T. H. [University of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa (South Africa); Masci, Frank J. [Image Processing and Analysis Center (IPAC), California Institute of Technology, 1200 East California Boulevard, MC 100-22, Pasadena, CA 91125 (United States)

    2014-09-10

    In order to explore local large-scale structures and velocity fields, accurate galaxy distance measures are needed. We now extend the well-tested recipe for calibrating the correlation between galaxy rotation rates and luminositiescapable of providing such distance measuresto the all-sky, space-based imaging data from the Wide-field Infrared Survey Explorer (WISE) W1 (3.4 ?m) and W2 (4.6 ?m) filters. We find a correlation of line width to absolute magnitude (known as the Tully-Fisher relation, TFR) of M{sub W1}{sup b,i,k,a}=?20.35?9.56(log?W{sub mx}{sup i}?2.5) (0.54 mag rms) and M{sub W2}{sup b,i,k,a}=?19.76?9.74(log?W{sub mx}{sup i}?2.5) (0.56 mag rms) from 310 galaxies in 13 clusters. We update the I-band TFR using a sample 9% larger than in Tully and Courtois. We derive M{sub I}{sup b,i,k}=?21.34?8.95(log?W{sub mx}{sup i}?2.5) (0.46 mag rms). The WISE TFRs show evidence of curvature. Quadratic fits give M{sub W1}{sup b,i,k,a}=?20.48?8.36(log?W{sub mx}{sup i}?2.5)+3.60(log?W{sub mx}{sup i}?2.5){sup 2} (0.52 mag rms) and M{sub W2}{sup b,i,k,a}=?19.91?8.40(log?W{sub mx}{sup i}?2.5)+4.32(log?W{sub mx}{sup i}?2.5){sup 2} (0.55 mag rms). We apply an I-band WISE color correction to lower the scatter and derive M{sub C{sub W{sub 1}}}=?20.22?9.12(log?W{sub mx}{sup i}?2.5) and M{sub C{sub W{sub 2}}}=?19.63?9.11(log?W{sub mx}{sup i}?2.5) (both 0.46 mag rms). Using our three independent TFRs (W1 curved, W2 curved, and I band), we calibrate the UNION2 Type Ia supernova sample distance scale and derive H {sub 0} = 74.4 1.4(stat) 2.4(sys) km s{sup 1} Mpc{sup 1} with 4% total error.

  19. Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4

    Office of Scientific and Technical Information (OSTI)

    as revealed by X-ray crystallography (Journal Article) | SciTech Connect Journal Article: Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography Citation Details In-Document Search Title: Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography Authors: Gonzalez-Gutierrez, Giovanni ; Cuello, Luis G. ; Nair, Satish K. ; Grosman, Claudio [1] ; TTU) [2] + Show Author Affiliations UIUC (

  20. MEDIA ADVISORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    invited to join students in crystallography experiment May 16, 2014 MEDIA ADVISORY Los Alamos High School chemistry students to get hands-on x-ray experience LOS ALAMOS, N.M., May 16, 2014-Some 20 students from Los Alamos High School's advanced-placement chemistry class will get to put their wits and crystal-growing skills to the test Monday in the Protein Crystallography Station at the Los Alamos Research Park. The students will learn about the history and theory of X-ray crystallography in the

  1. ALSNews Vol. 320

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." Read more... ...

  2. Michael Levitt and Computational Biology

    Office of Scientific and Technical Information (OSTI)

    At that time, X-ray crystallography was used to ascertain the location of atoms like hydrogen, carbon and oxygen in larger molecules like proteins or DNA. Researchers then used the ...

  3. MEDIA ADVISORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced-placement chemistry class will get to put their wits and crystal-growing skills to the test Monday in the Protein Crystallography Station at the Los Alamos Research...

  4. ALSNews Vol. 351

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is being protected from spambots. You need JavaScript enabled to view it . International Summer School of Crystallography Hamburg, Germany: May 11-17, 2014 UEC Corner User Meeting...

  5. Structural analysis of flexible proteins in solution by SmallAngle...

    Office of Scientific and Technical Information (OSTI)

    Title: Structural analysis of flexible proteins in solution by SmallAngle X-ray Scattering combined with crystallography In the last few years, SAXS of biological materials has ...

  6. 2011 User Meeting Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    54-130 (Pers. Hall) Industrial Protein Crystallography Corie Ralston (LBNL) and Gyorgy Snell (Takeda, Inc.) 6-1105 (Wed.) New Computational Approaches for X-Ray Science Alex...

  7. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    SciTech Connect (OSTI)

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadenin

  8. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect (OSTI)

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS capabilities and much-needed beam time for the life sciences, soft condensed matter physics, and nanoscience communities. Looking toward the future, a significant step has been made in expanding the user base and diversifying the work force by holding the first Historically Black Colleges and Universities (HBCU) Professors' Workshop. The workshop, which brought 11 professors to the NSLS to learn how to become successful synchrotron users, concluded with the formation of an HBCU User Consortium. Finally, significant contributions were made in optics and detector development to enhance the utilization of the NSLS and address the challenges of NSLS-II. In particular, x-ray detectors developed by the NSLS Detector Section have been adopted by an increasing number of research programs both at the NSLS and at light sources around the world, speeding up measurement times by orders of magnitude and making completely new experiments feasible. Significant advances in focusing and high-energy resolution optics have also been made this year.

  9. LCLS-II New Instruments Workshops Report

    SciTech Connect (OSTI)

    Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim; ,

    2012-08-08

    The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and heterogeneous catalysis. Of particular interest is the efficient conversion of light to electrical or chemical energy, which requires understanding the non-adiabatic dynamics of electronic excited states. Ultrafast x-ray scattering presents an excellent opportunity to investigate structural dynamics of molecular systems with atomic resolution, and x-ray scattering and spectroscopy present an excellent opportunity to investigating the dynamics of the electronic charge distribution. Harnessing solar energy to generate fuels, either indirectly with photovoltaics and electrochemical catalysis or directly with photocatalysts, presents a critical technological challenge that will require the use of forefront scientific tools such as ultrafast x-rays. At the center of this technical challenge is the rational design of efficient and cost effective catalysts. Important materials science opportunities relate to information technology applications, in particular the transport and storage of information on increasingly smaller length- and faster time-scales. Of interest are the understanding of the intrinsic size limits associated with the storage of information bits and the speed limits of information or bit processing. Key questions revolve about how electronic charges and spins of materials can be manipulated by electric and magnetic fields. This requires the exploration of speed limits subject to the fundamental conservation laws of energy and linear and angular momentum and the different coupling of polar electric and axial magnetic fields to charge and spin. Of interest are novel composite materials, including molecular systems combining multi electric and magnetic functionality. Ultrafast x-rays offer the required probing speed, can probe either the charge or spin properties through polarization control and through scattering and spectroscopy cover the entire energy-time-momentum-distance phase space. In the field of atomic and molecular science, LCLS II promises to elucidate the fundamental interactions among electrons and between electrons and nuclei, and to explore the fron

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Advances in Fiber Diffraction of Macromolecular Assembles Orgel, Joseph P.R.O ; Irving, Thomas C. July 2015 , 2013; Wiley;NA;Robert A. Meyers, eds.;online- Crystal structure of ...

  11. SSRLUO 2002 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pingitore University of Texas at El Paso Environmental & Geosciences El Paso, TX 79968-0555 Phone: 915-747-5754 Fax: 915-747-5073 E-mail: nick@geo.utep.edu MACROMOLECULAR...

  12. SSRL Events & Presentations | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anford-synchrotron-radiation-lightsource-ssrl Updated: 11 hours 1 min ago SSRL Hosts 17th Annual RapiData Course in Macromolecular X-ray Diffraction Mon, 20150518 - 9:30am The...

  13. RapiData 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Collection and Structure Solving: A Practical Course in Macromolecular X-Ray Diffraction Measurement May 3-8, 2015 RapiData 2015 Download Image 1 | Download image 2...

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 Time: 11:00 am Speaker: Eva Nogales, UC Berkeley Title: Visualization of biological macromolecular complexes by Cryo-EM Location: 67-3111 Chemla Room Abstract: The...

  15. 99M-Technetium labeled tin colloid radiopharmaceuticals

    DOE Patents [OSTI]

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1976-07-06

    An improved 99m-technetium labeled tin(II) colloid, size-stabilized for reticuloendothelial organ imaging without the use of macromolecular stabilizers and a packaged tin base reagent and an improved method for making it are disclosed.

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... The crystals are hexagonal and belong to space group P6sub 5, with unit-cell parameters ... Three large macromolecular complexes known as the death-inducing signaling complex (DISC), ...

  17. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Kingsport, Tennessee as a Research Chemist where I worked in the Specialty Plastics Business. I joined the CNMS in 2007 as part of the Macromolecular Nanomaterials Group and...

  18. Bioscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioscience Bioscience Print Bioscience research at the ALS can be divided into two areas: general biology (microscopy/spectroscopy) and structural biology (crystallography/diffraction). These fields provide complementary approaches to the study of living organisms from the molecular to the cellular levels. Crystallography is used to determine the atomic-resolution, three-dimensional structures of proteins and nucleic acids-the building blocks of life-as well as complexes of these molecules, the

  19. LOS ALAMOS, N.M., October 9, 2012-Researchers at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystallography aids drug design October 9, 2012 Precisely tailored pharmaceuticals could reduce medical side effects LOS ALAMOS, N.M., October 9, 2012-Researchers at Los Alamos National Laboratory have used neutron crystallography for the first time to determine the structure of a clinical drug in complex with its human target enzyme. Seeing the detailed structure of the bonded components provides insights into developing more effective drugs with fewer side effects for patients. - 2 - The

  20. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramón Ramírez, Armando Gómez, Javier Ortiz, Luis C. Longoria. Instituto Nacional de Investigaciones Nucleares México palacios@nuclear.inin.mx, galonso@nuclear.inin.mx . ABSTRACT In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and

  1. LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MX Factor A Peacekeeper missile being test-launched from Vandenberg Air Force Base, CA. The Peacekeeper, also known as the MX missile (for Missile-eXperimental), was a land-based, intercontinental ballistic missile deployed starting in 1986. The Peacekeeper carried up to 10 re-entry vehicles, each armed with a nuclear warhead. The last of the Peacekeeper missiles was decommissioned in 2005. (Photo: U.S. Air Force.) Test films played a strategic-planning role in the debates of the late 1970s and

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yi Liu Liu Staff Scientist, Organic and Macromolecular Synthesis YLiu@lbl.gov 510.486.6287 personal website Biography Yi Liu is a Staff Scientist in the Organic and Macromolecular Synthesis Facility. He obtained a Ph.D. in Chemistry in 2004 from the University of California, Los Angeles under the direction of Sir. J. Fraser Stoddart. After his postdoctoral research with Professor K. Barry Sharpless at the Scripps Research Institute, San Diego, he joined the Foundry in 2006 as an independent

  3. Advanced Photon Source Directory | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-MPE XSD-MX XSD-OPT XSD-QA XSD-SDM XSD-SPC XSD-SRS XSD-SSM XSD-TRR XSD-XMI Enter the terms you wish to search for. Try this if you're struggling to find the person you are...

  4. EA-149 PacifiCorp | Department of Energy

    Energy Savers [EERE]

    9 PacifiCorp EA-149 PacifiCorp Order authorizing PacifiCorp to export electric energy to Mexico. PDF icon EA-149 PacifiCorp (MX).pdf More Documents & Publications EA-247-D Constellation NewEnergy, Inc EA-387 Energia Renovable S.C., LLC EA-336-A ConocoPhillips Company

  5. EA-247-D Constellation NewEnergy, Inc | Department of Energy

    Energy Savers [EERE]

    D Constellation NewEnergy, Inc EA-247-D Constellation NewEnergy, Inc Order authorizing Constellation to export electric energy to Mexico. PDF icon EA-247-D Constellation NewEnergy (MX).pdf More Documents & Publications EA-247-C Constellation NewEnergy Inc EA-247-A Constellation NewEnergy Inc EA-247-B Constellation NewEnergy

  6. EA-289-B INTERCOM ENERGY INC | Department of Energy

    Energy Savers [EERE]

    B INTERCOM ENERGY INC EA-289-B INTERCOM ENERGY INC Order authorizing Intercom Energy Inc. to export electric energy to Mexico. PDF icon EA-289-B Intercom MX.pdf More Documents & Publications EA-318-C AEP Energy Partners, Inc. EA-289-A Intercom Energy, Inc. EA-386 IPR-GDF Suez Energy Marketing North America, Inc. (GSEMNA)

  7. EA-378 Cargill Power Markets LLC | Department of Energy

    Energy Savers [EERE]

    8 Cargill Power Markets LLC EA-378 Cargill Power Markets LLC Order authorizing Cargill Power Markets to export electric energy to Mexico. PDF icon EA-378 CPM MX.pdf More Documents & Publications EA-384 NRG Power Marketing LLC EA-413 Elan Energy Services, LLC EA-294-B TexMex Energy,

  8. EA-383 Pilot Power Group Inc. | Department of Energy

    Energy Savers [EERE]

    3 Pilot Power Group Inc. EA-383 Pilot Power Group Inc. Order authorizing Pilot Power Group to export electric energy to Mexico. PDF icon EA-383 Pilot Power MX.pdf More Documents & Publications EA-289-B INTERCOM ENERGY INC EA-318-C AEP Energy Partners, Inc. Application to Export Electric Energy OE Docket No. EA-383 Pilot Power Group, Inc

  9. EA-48-I El Paso Electric Company | Department of Energy

    Energy Savers [EERE]

    8-I El Paso Electric Company EA-48-I El Paso Electric Company Order authorizing El Paso Electric Company to export electric energy to Mexico. PDF icon EA-48-I El Paso (MX).pdf More Documents & Publications EA-336-A ConocoPhillips Company EA-247-D Constellation NewEnergy, Inc EA-387 Energia Renovable S.C., LLC

  10. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    SciTech Connect (OSTI)

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  11. Theoretical Studies in Chemical Kinetics - Annual Report, 1970.

    DOE R&D Accomplishments [OSTI]

    Karplus, Martin

    1970-10-01

    The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M’X’) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.

  12. EA-379 FreePoint Commodities | Department of Energy

    Office of Environmental Management (EM)

    9 FreePoint Commodities EA-379 FreePoint Commodities Order authorizing FreePoint Commodities to export electric energy to Mexico. File EA-379 Freepoint MX_Revised.docx More Documents & Publications EA-380 Freeport Commodities EA-314-A BP Energy Co EA-176 Sempra Energy Trading Corporation

  13. Aminoindazole PDK1 Inhibitors: A Case Study in Fragment-Based Drug Discovery

    SciTech Connect (OSTI)

    Medina, Jesus R.; Blackledge, Charles W.; Heerding, Dirk A.; Campobasso, Nino; Ward, Paris; Briand, Jacques; Wright, Lois; Axten, Jeffrey M.

    2012-05-29

    Fragment screening of phosphoinositide-dependent kinase-1 (PDK1) in a biochemical kinase assay afforded hits that were characterized and prioritized based on ligand efficiency and binding interactions with PDK1 as determined by NMR. Subsequent crystallography and follow-up screening led to the discovery of aminoindazole 19, a potent leadlike PDK1 inhibitor with high ligand efficiency. Well-defined structure-activity relationships and protein crystallography provide a basis for further elaboration and optimization of 19 as a PDK1 inhibitor.

  14. Assembly and Evolution of Complex Fe-S Clusters as Revealed by X-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallography Assembly and Evolution of Complex Fe-S Clusters as Revealed by X-ray Crystallography Complex Fe-S cluster-containing enzymes are ubiquitous in nature where they are involved in a number of fundamental reactions for life including carbon dioxide fixation, nitrogen fixation, and hydrogen metabolism. One of the more complex and unusual biological clusters is found in the [FeFe]-hydrogenase. The active-site H-cluster in these enzymes has a [4Fe-4S] subcluster bridged via a

  15. ,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9102mx3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102mx3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:30:55 PM" "Back to

  16. ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9102mx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102mx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:30:54 PM" "Back to

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","n9132mx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132mx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"02/29/2016 9:11:52 AM" "Back

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","n9132mx3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132mx3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"02/29/2016 9:11:52 AM" "Back

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","n9132mx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132mx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"02/29/2016 9:11:52 AM" "Back to

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","n9132mx3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132mx3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"02/29/2016 9:11:52 AM" "Back to

  1. EMERGING DIMMINGS OF ACTIVE REGIONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Zhang Jun; Yang Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu Yang; Sun Xudong, E-mail: zjun@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yliu@sun.stanford.edu, E-mail: xudong@sun.stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2012-12-01

    Using the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the emerging dimmings (EDs) of 24 isolated active regions (IARs) from 2010 June to 2011 May. All the IARs show EDs in lower-temperature lines (e.g., 171 A) at their early emerging stages. Meanwhile, in higher temperature lines (e.g., 211 A), the ED regions brighten continuously. There are two types of EDs: fan-shaped and halo-shaped. There are 19 fan-shaped EDs and 5 halo-shaped ones. The EDs appear to be delayed by several to more than ten hours relative to the first emergence of the IARs. The shortest delay is 3.6 hr and the longest is 19.0 hr. The EDs last from 3.3 hr to 14.2 hr, with a mean duration of 8.3 hr. Before the appearance of the EDs, the emergence rate of the magnetic flux of the IARs is between 1.2 Multiplication-Sign 10{sup 19} Mx hr{sup -1} to 1.4 Multiplication-Sign 10{sup 20} Mx hr{sup -1}. The larger the emergence rate is, the shorter the delay time is. While the dimmings appear, the magnetic flux of the IARs ranges from 8.8 Multiplication-Sign 10{sup 19} Mx to 1.3 Multiplication-Sign 10{sup 21} Mx. These observations imply that the reconfiguration of the coronal magnetic fields due to reconnection between the newly emerging flux and the surrounding existing fields results in a new thermal distribution which leads to a dimming for the cooler channel (171 A) and brightening in the warmer channels.

  2. Record of Categorical Exclusion (CX) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery and Energy Reliability (OE): EA-403 Frontera Marketing, LLC | Department of Energy 3 Frontera Marketing, LLC Record of Categorical Exclusion (CX) Determination, Office of Electricity Delivery and Energy Reliability (OE): EA-403 Frontera Marketing, LLC Application from Frontera Marketing to export electric energy to Mexico. Record of Categorical Exclusion. PDF icon EA-403 Frontera Marketing (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No.

  3. EA-294-B TexMex Energy, LLC | Department of Energy

    Energy Savers [EERE]

    B TexMex Energy, LLC EA-294-B TexMex Energy, LLC Order authorizing TexMex to export electric energy to Mexico. PDF icon EA-294-B TexMex MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-294-B TexMex Energy LLC EA-294-A TexMex Energy, LLC EA-413 Elan Energy Services, LLC

  4. EA-336-A ConocoPhillips Company | Department of Energy

    Energy Savers [EERE]

    -A ConocoPhillips Company EA-336-A ConocoPhillips Company Order authorizing ConocoPhillips to export electric energy to Mexico. PDF icon EA-336-A ConocoPhillips (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-336-A ConocoPhillips Company EA-336 ConocoPhillips Company EA-247-D Constellation NewEnergy, Inc

  5. EA-338-A Shell Energy North America (US), L.P. | Department of Energy

    Energy Savers [EERE]

    -A Shell Energy North America (US), L.P. EA-338-A Shell Energy North America (US), L.P. Order authorizing Shell Energy to export electric energy to Mexico. PDF icon EA-338-A Shell Energy (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-338-A Shell Energy North America (US), L.P. EA-338 Shell Energy North America (US), L.P. EA-339 Shell Energy North

  6. EA-381 E-T Global Energy, LLC | Department of Energy

    Energy Savers [EERE]

    1 E-T Global Energy, LLC EA-381 E-T Global Energy, LLC Order authorizing E-T Global to export electric energy to Mexico. PDF icon EA-381 E-T Global MX.pdf More Documents & Publications EA-381 E-T Global Energy Application to export electric energy OE Docket No. EA-381 E-T Global Energy EA-379 FreePoint Commodities

  7. EA-387 Energia Renovable S.C., LLC | Department of Energy

    Energy Savers [EERE]

    7 Energia Renovable S.C., LLC EA-387 Energia Renovable S.C., LLC Order authorizing Energia Renovable to export electric energy to Mexico. PDF icon EA-387 Energia Renovable (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-387 Energia Renovable S.C, LLC Application to Export Electric Energy OE Docket No. EA-402 Energia Sierra Juarez U.S., LLC EA-402 Energia Sierra Juarez U.S., LLC

  8. EA-406 Sempra Generation, LLC | Department of Energy

    Energy Savers [EERE]

    6 Sempra Generation, LLC EA-406 Sempra Generation, LLC Order authoriizing Sempra Generation, LLC to export electric energy to Mexico. PDF icon EA-406 Sempra Generation (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-406 Sempra Generation, LLC Application to Export Electric Energy OE Docket No. EA-406 Sempra Generation, LLC: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Record of Categorical Exclusiom (CX) Determination, Office of

  9. EA-413 Elan Energy Services, LLC | Department of Energy

    Energy Savers [EERE]

    3 Elan Energy Services, LLC EA-413 Elan Energy Services, LLC Order authorizing Elan Energy to export electric energy to Mexico. PDF icon EA-413 Elan Energy MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 EA-294-B TexMex Energy, LLC

  10. EA-415 Lion Shield Energy, LLC | Department of Energy

    Energy Savers [EERE]

    5 Lion Shield Energy, LLC EA-415 Lion Shield Energy, LLC Order authorizing Lion Shield to export electric energy to Mexico. PDF icon EA-415 Lion Shield Energy (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-415 Lion Shield Energy, LLC Application to Export Electric Energy OE Docket No. EA-415 Lion Shield Energy, LLC: Federal Register Notice, Volume 80, No. 164 - Aug. 25, 2015 EA-387 Energia Renovable S.C., LLC

  11. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    Office of Scientific and Technical Information (OSTI)

    C* frontiers in Microbiology ORIGINAL RESEARCH published: 19 May 2015 doi: 10.3389/fmicb.2015.00447 OPEN ACCESS Edited by: Boran Kartai, Radboud University, Netherlands Reviewed by: Guus Roeselers, TNO, Netherlands Caleb Dakotah Phillips, Texas Tech University, USA Correspondence: Luisa I. Faicon, Laboratorio de Ecoiogfa Bacteriana, Instituto de Ecoiogfa, Universidad Nacionai Autonoma de Mexico, Circuito exterior sn, Cd. Universitaria, Coyoacan 04510, Mexico faicon@ecoiogia. unam.mx *These

  12. Application to Export Electric Energy OE Docket No. EA-145-E Powerex

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporation | Department of Energy Corporation Application to Export Electric Energy OE Docket No. EA-145-E Powerex Corporation Application from Powerex Corp to export electric energy to Mexico. PDF icon EA-145-E Powerex Corp MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-145-E Powerex Corp: Comment from Jean Public EA-145-E Powerex Corp. Application to Export Electric Energy OE Docket No. EA-318-C AEP

  13. Application to Export Electric Energy OE Docket No. EA-145-E Powerex

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporation: Federal Register Notice, Volume 78, No. 213 - Nov. 4, 2013 | Department of Energy Corporation: Federal Register Notice, Volume 78, No. 213 - Nov. 4, 2013 Application to Export Electric Energy OE Docket No. EA-145-E Powerex Corporation: Federal Register Notice, Volume 78, No. 213 - Nov. 4, 2013 Application from Powerex Corp to transmit electric energy to Mexico. Federal Register Notice. PDF icon EA-145-E Powerex Corp (MX).pdf More Documents & Publications Application to

  14. Application to Export Electric Energy OE Docket No. EA-336-A ConocoPhillips

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company | Department of Energy 6-A ConocoPhillips Company Application to Export Electric Energy OE Docket No. EA-336-A ConocoPhillips Company Application from ConocoPhillips Company to export electric energy to Mexico. PDF icon EA-336-A ConocoPhillips (MX).pdf More Documents & Publications EA-336-A ConocoPhillips Company EA-336 ConocoPhillips Company Application to Export Electric Energy OE Docket No. EA-387 Energia Renovable S.C, LLC

  15. Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Corporation | Department of Energy 75-A Rainbow Energy Marketing Corporation Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation Application from Rainbow to transmit electric energy to Mexico. PDF icon EA-375-A Rainbow Energy (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation: Federal Register Notice, Volume 80, No. 80 - April 27, 2015 Application

  16. Application to Export Electric Energy OE Docket No. EA-384 NRG Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing LLC | Department of Energy LLC Application to Export Electric Energy OE Docket No. EA-384 NRG Power Marketing LLC Application from NRG Power Mktg to export electric energy to Mexico. PDF icon EA-384 NRG Power Mktg (MX).pdf More Documents & Publications EA-384 NRG Power Marketing LLC Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power Marketing LLC Application to Export Electric Energy OE Docket No. EA-403 Frontera Marketing, LLC

  17. Application to Export Electric Energy OE Docket No. EA-406 Sempra

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation, LLC | Department of Energy LLC Application to Export Electric Energy OE Docket No. EA-406 Sempra Generation, LLC Application from Sempra to export electric energy to Mexico. PDF icon EA-406 Sempra Generation (MX).pdf More Documents & Publications EA-406 Sempra Generation, LLC Application to Export Electric Energy OE Docket No. EA-406 Sempra Generation, LLC: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Record of Categorical Exclusiom (CX) Determination, Office of

  18. Application to Export Electric Energy OE Docket No. EA-406 Sempra

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation, LLC: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 | Department of Energy LLC: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Application to Export Electric Energy OE Docket No. EA-406 Sempra Generation, LLC: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Application from Sempra to export electric energy to Mexico. Federal Register Notice. PDF icon EA-406 Sempra Generation (MX).pdf More Documents & Publications Application to Export

  19. Application to Export Electric Energy OE Docket No. EA-413 Elan Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services, LLC | Department of Energy 3 Elan Energy Services, LLC Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC Application from Elan Energy Services to export electric energy to Mexico. PDF icon EA-413 Elan Energy Services (MX).pdf More Documents & Publications EA-413 Elan Energy Services, LLC Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 Application

  20. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peacekeeper (MX) is a four-stage intercontinental ballistic missile capable of carrying up to ten independently-targetable reentry vehicles with greater accuracy than any other ballistic missile. Its design combines advanced technology in fuels, guidance, nozzle design, and motor construction with protection against the hostile nuclear environment associated with land- based systems. Several Air Force Peacekeeper research and testing experiments took place from 1978 through 1982 in Area 25 of

  1. Application to Export Electric Energy OE Docket No. EA-318-C AEP |

    Energy Savers [EERE]

    Department of Energy 18-C AEP Application to Export Electric Energy OE Docket No. EA-318-C AEP Application from AEP to export electric energy to Mexico. PDF icon EA-318-C AEP EP MX.pdf More Documents & Publications EA-318-C AEP Energy Partners, Inc. Application to Export Electric Energy OE Docket No. EA-145-E Powerex Corporation Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners

  2. Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power

    Energy Savers [EERE]

    Marketing LLC | Department of Energy LLC Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power Marketing LLC Application from Lonestar to export electric energy to Mexico. PDF icon EA-401 Lonestar (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power Marketing LLC: Federal Register Notice, Volume 79, No. 116 - June 17, 2014 Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power Marketing

  3. Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power

    Energy Savers [EERE]

    Marketing LLC: Federal Register Notice, Volume 79, No. 116 - June 17, 2014 | Department of Energy Federal Register Notice, Volume 79, No. 116 - June 17, 2014 Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power Marketing LLC: Federal Register Notice, Volume 79, No. 116 - June 17, 2014 Application from Lonestar to export electric energy to Mexico. Federal Register Notice. PDF icon EA-401 Lonestar (MX).pdf More Documents & Publications Application to Export Electric

  4. Application to Export Electric Energy OE Docket No. EA-403 Frontera

    Energy Savers [EERE]

    Marketing, LLC | Department of Energy 3 Frontera Marketing, LLC Application to Export Electric Energy OE Docket No. EA-403 Frontera Marketing, LLC Application from Frontera Marketing to export electric energy to Mexico. PDF icon EA-403 Frontera Marketing (MX).pdf More Documents & Publications Record of Categorical Exclusion (CX) Determination, Office of Electricity Delivery and Energy Reliability (OE): EA-403 Frontera Marketing, LLC EA-403 Frontera Marketing,

  5. Application to Export Electric Energy OE Docket No. EA-413 Elan Energy

    Energy Savers [EERE]

    Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 | Department of Energy 3 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 Application from Elan Energy Services to export electric energy to Mexico. Federal Register Notice. PDF icon EA-413 Elan Energy Svcs. (MX).pdf More Documents &

  6. Application to Export Electric Energy OE Docket No. EA-415 Lion Shield

    Energy Savers [EERE]

    Energy, LLC: Federal Register Notice, Volume 80, No. 164 - Aug. 25, 2015 | Department of Energy 5 Lion Shield Energy, LLC: Federal Register Notice, Volume 80, No. 164 - Aug. 25, 2015 Application to Export Electric Energy OE Docket No. EA-415 Lion Shield Energy, LLC: Federal Register Notice, Volume 80, No. 164 - Aug. 25, 2015 Application from Lion Shield Energy to export electric energy to Mexico. Federal Register Notice. PDF icon EA-415 Lion Shield Energy (MX).pdf More Documents &

  7. Synergy between Membranes and Microbial Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergy between Membranes and Microbial Fuel Cells Synergy between Membranes and Microbial Fuel Cells Presentation by Jason He, Virginia Tech, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18-19, 2015. PDF icon Synergy between Membranes and Microbial Fuel Cells More Documents & Publications Electrolyte Materials for AMFCs and AMFC Performance Microbial Fuel Cell Technologies-MxCs: Can

  8. Ambient-pressure organic superconductor

    DOE Patents [OSTI]

    Williams, Jack M. (Downers Grove, IL); Wang, Hsien-Hau (Willowbrook, IL); Beno, Mark A. (Woodridge, IL)

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  9. Ambient-temperature superconductor symetrical metal-dihalide bis-(ethylenedithio)-tetrathiafulvalene compounds

    DOE Patents [OSTI]

    Williams, Jack M. (Downers Grove, IL); Wang, Hsien-Hau (Willowbrook, IL); Beno, Mark A. (Woodridge, IL)

    1987-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K. which is high for organic superconductors.

  10. EA-318-C AEP Energy Partners, Inc. | Department of Energy

    Office of Environmental Management (EM)

    18-C AEP Energy Partners, Inc. EA-318-C AEP Energy Partners, Inc. Order authorizing AEP-EP to export electric energy to Mexico. PDF icon EA-318-C AEP EP MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-318-C AEP EA-289-B INTERCOM ENERGY INC EA-318-B Clarification of Temporary Emergency Order for AEP Energy Partners, Inc.

  11. EA-381 E-T Global Energy | Department of Energy

    Office of Environmental Management (EM)

    1 E-T Global Energy EA-381 E-T Global Energy Order authorizing E-T Global Energy to export electric energy to Mexico. File EA-381 ET Global MX.docx More Documents & Publications EA-381 E-T Global Energy, LLC EA-379 FreePoint Commodities Application to export electric energy OE Docket No. EA-381 E-T Global Energy

  12. Crystallographic attributes of a shape-memory alloy

    SciTech Connect (OSTI)

    Bhattacharya, K.

    1999-01-01

    Shape-memory alloys are attractive for many potential applications. In an attempt to provide ideas and guidelines for the development of new shape-memory alloys, this paper reports on a series of investigations that examine the reasons in the crystallography that made (i) shape-memory alloys special amongst martensites and (ii) Nickel-Titanium special among shape-memory alloys.

  13. S-H bond activation in H{sub 2}S and thiols by [RhMn(CO){sub 4}(Ph{sub 2}PCH{sub 2}PPh{sub 2}){sub 2}]. Compounds containing terminal or bridging sulfhydryl and thiolato groups

    SciTech Connect (OSTI)

    Li-Sheng Wang; McDonald, R.; Cowie, M. [Univ. of Alberta, Edmonton (Canada)

    1994-08-17

    A rhodium-magnesium carbonyl-phosphines reacted with thiols to yield the products of S-H addition. Further reactions result in bridging sulfide can be alkylated or protonated at the sulfur. The compound, [RhMn(CO){sub 4}({mu}-S)(dppm){sub 2}], was structurally characterized by X-ray crystallography.

  14. 456th Brookhaven Lecture

    ScienceCinema (OSTI)

    Allen Orville

    2010-09-01

    Orville presents ?Getting More From Less: Correlated Single-Crystal Spectroscopy and X-ray Crystallography at the NSLS? in which he discusses how researchers can use many different tools and techniques to study atomic structure and electronic structure to provide insights into chemistry.

  15. LSU EFRC - Center for Atomic Level Catalyst Design - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities >> space control Synchrotron Capabilities space control Analytical Capabilities space control Computational Capabilities space control space control Facilities space control space control Synchrotron Capabilities space control Center for Advanced Microstructures & Devices (CAMD), Baton Rouge, LA Micromachining X-ray Lithography Beamline (XRLM) Infrared Microspectroscopy Beamline X-ray Powder Diffraction Beamline (XPD) Protein Crystallography MAD Beamline (GCPCC) X-ray

  16. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    SciTech Connect (OSTI)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jrg; Schertler, Gebhard; Panneels, Valrie

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  17. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  18. Biochemical transformation of solid carbonaceous material

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  19. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  20. Numerical Optimization Algorithms and Software for Systems Biology

    SciTech Connect (OSTI)

    Saunders, Michael

    2013-02-02

    The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic and Macromolecular Synthesis Significant staff effort and facility instrumentation is devoted to the chemical synthesis and application of porous soft, hard and hybrid materials as bulk solids, thin films, or in confined geometries. User collaborations with staff generally involve new materials for gas and liquid phase separations, membranes, high capacity sorbates, electrochemical energy storage, catalysis, superhydrophobic/ superhydrophilic surface modification, etc. Nanoporous

  2. Frantisek Svec | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome Frantisek Svec Previous Next List svec Formerly: Facility Director, Organic and Macromolecular Synthesis Facility, Lawrence Berkeley National Laboratory Research Interests: Porous polymer materials, monolithic polymer structures, preparation of membranes, separations in gas and liquid phases EFRC publications: Blinova, Natalia; and Svec, Frantisek Functionalized High Performance Polymer Membranes for Separation of Carbon Dioxide and Methane, J. Mater. Chem. A,

  3. IUPAC_handout

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developments in Synthesis Prof. Craig Hawker, University of California Santa Barbara Modern Methods of Characterization Dr. Kathryn Beers, National Institute of Standards and Technology Surfaces and Interfaces Prof. Thomas Russell, University of Massachusetts Amherst Macromolecules and Nanotechnology Prof. Paula Hammond, Massachusetts Institute of Technology Macromolecules in Biotechnology and Medicine Prof. Buddy Ratner, University of Washington Complex Macromolecular Systems Prof. Timothy

  4. Crystallographic data processing for free-electron laser sources

    SciTech Connect (OSTI)

    White, Thomas A. Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-07-01

    A processing pipeline for diffraction data acquired using the serial crystallography methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the serial crystallography methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  5. MicroED data collection and processing

    SciTech Connect (OSTI)

    Hattne, Johan; Reyes, Francis E.; Nannenga, Brent L.; Shi, Dan; Cruz, M. Jason de la; Leslie, Andrew G. W.; Gonen, Tamir

    2015-07-01

    The collection and processing of MicroED data are presented. MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges.

  6. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  7. Programming new geometry restraints: Parallelity of atomic groups

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sobolev, Oleg V.; Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre

    2015-08-01

    Improvements in structural biology methods, in particular crystallography and cryo-electron microscopy, have created an increased demand for the refinement of atomic models against low-resolution experimental data. One way to compensate for the lack of high-resolution experimental data is to use a priori information about model geometry that can be utilized in refinement in the form of stereochemical restraints or constraints. Here, the definition and calculation of the restraints that can be imposed on planar atomic groups, in particular the angle between such groups, are described. Detailed derivations of the restraint targets and their gradients are provided so that they canmore » be readily implemented in other contexts. Practical implementations of the restraints, and of associated data structures, in the Computational Crystallography Toolbox(cctbx) are presented.« less

  8. Process and composition for drying of gaseous hydrogen halides

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); Brown, Duncan W. (Wilton, CT)

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  9. Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL

    SciTech Connect (OSTI)

    Ellis, Ronald James

    2015-04-01

    The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) during cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.

  10. In silico method for modelling metabolism and gene product expression at genome scale

    SciTech Connect (OSTI)

    Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem; Portnoy, Vasiliy A.; Lewis, Nathan E.; Orth, Jeffrey D.; Rutledge, Alexandra C.; Smith, Richard D.; Adkins, Joshua N.; Zengler, Karsten; Palsson, Bernard O.

    2012-07-03

    Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.

  11. Method of filtering a target compound from a first solvent that is above its critical density

    DOE Patents [OSTI]

    Phelps, Max R. (Richland, WA) [Richland, WA; Yonker, Clement R. (Kennewick, WA) [Kennewick, WA; Fulton, John L. (Richland, WA) [Richland, WA; Bowman, Lawrence E. (Richland, WA) [Richland, WA

    2001-07-24

    The present invention is a method of separating a first compound having a macromolecular structure from a mixture. The first solvent is a fluid that is a gas at standard temperature and pressure and is at a density greater than a critical density of the fluid. A macromolecular structure containing a first compound is dissolved therein as a mixture. The mixture is contacted onto a selective barrier and the first solvent passed through the selective barrier thereby retaining the first compound, followed by recovering the first compound. By using a fluid that is a gas at standard temperature and pressure at a density greater than its critical density, separation without depressurization is fast and efficient.

  12. 3D Structures of Biomolecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Miao and Keith Hodgson Protein crystallography can routinely determine the 3D structure of protein molecules at near atomic or atomic resolution. The bottleneck of this methodology is to obtain sizable and good quality protein crystals. Overcoming the crystallization difficulty requires the development of the new methodologies. One approach is to use NMR to image protein molecules in solvent. However, it is only applicable primarily to macromolecules in the lower molecular weight range.

  13. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles Print Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered ensembles in aqueous solutions or in biomembranes. Now, researchers from

  14. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles Print Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered ensembles in aqueous solutions or in biomembranes. Now, researchers from

  15. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles Print Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered ensembles in aqueous solutions or in biomembranes. Now, researchers from

  16. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles A New Light on Disordered Ensembles Print Wednesday, 27 April 2011 00:00 Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered

  17. America Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xu named Mineralogical Society of America Fellow January 31, 2013 The Mineralogical Society of America (MSA) has selected Hongwu Xu of LANL's Earth System Observations group as a Fellow. MSA members who have contributed significantly to the advancement of mineralogy, crystallography, geochemistry, petrology or allied sciences and whose scientific contribution used mineralogical studies or data are elected to the rank of Fellow. The Society recognized Xu as a crystallographer who is equally

  18. Archived Publications and Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archived Publications and Documents Print ALS 20-Year Roadmap, 2003 Presentations made to the BESAC subcommittee on the 20-Year BES Facilities Roadmap, with references and relevant links. Beamline Data Sheets Data sheets for individual ALS beamlines. The Atomic and Molecular Facility on Beamline 10.0.1 A guide to Beamline 10's facilities for general users studying atomic and molecular physics. (LBL PUB-832) World Class Protein Crystallography A guide to the facilities and capabilities of the

  19. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  20. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 ALSNews Vol. 305 Print Wednesday, 27 January 2010 00:00 Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and

  1. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSNews Vol. 305 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update

  2. ALSNews Vol. 309

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 Print In This Issue Lensless Imaging of Whole Biological Cells with Soft X-Rays Mechanical Behavior of Indium Nanostructures Meet New Division Deputy for Operations, Michael Banda Students in Uruguay Collect Protein Crystallography Data at the ALS Roger Falcone Attends Prague Workshop via Skype Ring Leaders: Experimental Systems Announcements: Next Science Café Fri 6/25, Guest House Special Who's in the News Operations Update UEC Corner News Links RingLeaders Ring Leaders Experimental

  3. ALSNews Vol. 309

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 Print In This Issue Lensless Imaging of Whole Biological Cells with Soft X-Rays Mechanical Behavior of Indium Nanostructures Meet New Division Deputy for Operations, Michael Banda Students in Uruguay Collect Protein Crystallography Data at the ALS Roger Falcone Attends Prague Workshop via Skype Ring Leaders: Experimental Systems Announcements: Next Science Café Fri 6/25, Guest House Special Who's in the News Operations Update UEC Corner News Links RingLeaders Ring Leaders Experimental

  4. ALSNews Vol. 309

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Print In This Issue Lensless Imaging of Whole Biological Cells with Soft X-Rays Mechanical Behavior of Indium Nanostructures Meet New Division Deputy for Operations, Michael Banda Students in Uruguay Collect Protein Crystallography Data at the ALS Roger Falcone Attends Prague Workshop via Skype Ring Leaders: Experimental Systems Announcements: Next Science Café Fri 6/25, Guest House Special Who's in the News Operations Update UEC Corner News Links RingLeaders Ring Leaders Experimental Systems

  5. ALSNews Vol. 309

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Print In This Issue Lensless Imaging of Whole Biological Cells with Soft X-Rays Mechanical Behavior of Indium Nanostructures Meet New Division Deputy for Operations, Michael Banda Students in Uruguay Collect Protein Crystallography Data at the ALS Roger Falcone Attends Prague Workshop via Skype Ring Leaders: Experimental Systems Announcements: Next Science Café Fri 6/25, Guest House Special Who's in the News Operations Update UEC Corner News Links RingLeaders Ring Leaders Experimental Systems

  6. ALSNews Vol. 309

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 Print In This Issue Lensless Imaging of Whole Biological Cells with Soft X-Rays Mechanical Behavior of Indium Nanostructures Meet New Division Deputy for Operations, Michael Banda Students in Uruguay Collect Protein Crystallography Data at the ALS Roger Falcone Attends Prague Workshop via Skype Ring Leaders: Experimental Systems Announcements: Next Science Café Fri 6/25, Guest House Special Who's in the News Operations Update UEC Corner News Links RingLeaders Ring Leaders Experimental

  7. ALSNews Vol. 317

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Print Giant Protease TPP II's Structure, Mechanism Uncovered Tripeptidyl peptidase II, the largest known eukaryotic protease complex, is implicated in numerous cellular processes including the degradation of the endogenous satiety agent cholecystokinin-8, making it a target in the treatment of obesity. To gain insight into this molecular machine's mechanisms of activation and proteolysis, researchers combined single-particle cryo-electron microscopy and x-ray crystallography at ALS Beamline

  8. ALSNews Vol. 317

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Print Giant Protease TPP II's Structure, Mechanism Uncovered Tripeptidyl peptidase II, the largest known eukaryotic protease complex, is implicated in numerous cellular processes including the degradation of the endogenous satiety agent cholecystokinin-8, making it a target in the treatment of obesity. To gain insight into this molecular machine's mechanisms of activation and proteolysis, researchers combined single-particle cryo-electron microscopy and x-ray crystallography at ALS Beamline

  9. ALSNews Vol. 317

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSNews Vol. 317 Print Giant Protease TPP II's Structure, Mechanism Uncovered Tripeptidyl peptidase II, the largest known eukaryotic protease complex, is implicated in numerous cellular processes including the degradation of the endogenous satiety agent cholecystokinin-8, making it a target in the treatment of obesity. To gain insight into this molecular machine's mechanisms of activation and proteolysis, researchers combined single-particle cryo-electron microscopy and x-ray crystallography at

  10. ALSNews Vol. 320

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Print Cool Magnetic Molecules Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, an international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such

  11. ALSNews Vol. 320

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Print Cool Magnetic Molecules Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, an international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such

  12. ALSNews Vol. 320

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Print Cool Magnetic Molecules Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, an international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such

  13. ALSNews Vol. 320

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Print Cool Magnetic Molecules Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, an international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such

  14. Microsoft Word - DOE-ID-15-061 Alabama EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    61 SECTION A. Project Title: Understanding the Interactions of Seawater Ions with Amidoxime through X-Ray Crystallography - The University of Alabama SECTION B. Project Description The University of Alabama (UA) proposes to understand how metal ions from seawater bind to uranium-selective amidoxime functionalized sorbents by experimentally determining the structures of metal complexes with molecules simulating the possible binding sites and characterizing these binding sites spectroscopically to

  15. Browse by Discipline -- E-print Network Subject Pathways: Geosciences --

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community -- hosted by the Office of Scientific and Technical Information, U.S. Department of Energy W X Y Z Walba, David (David Walba) - Department of Chemistry and Biochemistry, University of Colorado at Boulder Wallace, Bonnie Ann (Bonnie Ann Wallace) - School of Crystallography, Birkbeck College, University of London Wallace, Mark (Mark Wallace) - Department of Chemistry, University of Oxford Walsh, Patrick J. (Patrick J. Walsh) -

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Torchinsky, Darius" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything3 Electronic Full Text1 Citations2 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject anisotropy (1) condensed matter physics, superconductivity & superfluidity(75) (1) crystallography (1)

  17. Pixel and Microstrip detectors for current and future synchrotron light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources | Stanford Synchrotron Radiation Lightsource Pixel and Microstrip detectors for current and future synchrotron light sources Friday, July 1, 2011 - 1:00pm SLAC, Kavli Auditorium Dr. Christian Brönnimann, CEO, DECTRIS Ltd., CH-5400 Baden, Switzerland The PILATUS pixel detectors, large area modular two-dimensional hybrid pixel array detectors, have revolutionized protein crystallography and biological small- and wide-angle scattering by combining noise-free counter properties with

  18. Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techniques | Stanford Synchrotron Radiation Lightsource Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to

  19. Dr. Andrew Russo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disabling a Killer Virus The CAMD Protein Crystallography beamline was used to determine the structure of a protein that the Venezuelan Equine Encephalitis (VEE) virus requires for replication. VEE is a mosquito-borne virus found in Central and South America, and southern Texas. Periodic outbreaks infect tens of thousands of people and kill hundreds of thousands of horses, donkeys and mules. The virus was developed into a biological weapon during the Cold War by both the United States and the

  20. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  1. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  2. Archived Publications and Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archived Publications and Documents Print ALS 20-Year Roadmap, 2003 Presentations made to the BESAC subcommittee on the 20-Year BES Facilities Roadmap, with references and relevant links. Beamline Data Sheets Data sheets for individual ALS beamlines. The Atomic and Molecular Facility on Beamline 10.0.1 A guide to Beamline 10's facilities for general users studying atomic and molecular physics. (LBL PUB-832) World Class Protein Crystallography A guide to the facilities and capabilities of the

  3. Junko Yano - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    junko yano Principal Investigator and User Facilities Expert Team Coordinator Email: jyano@lbl.gov Dr. Yano's research interests include: water oxidation reaction in natural photosynthesis; structure and function of active metal sites in metalloenzymes; X-ray crystallography and X-ray spectroscopy using an X-ray free electron laser; and the application of X-ray-based techniques to artificial photosynthetic systems. Dr. Yano works on the application of synchrotron X-ray absorption/diffraction

  4. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Instruments Lujan Center Flight Paths Instrument Suite by Science Crystallography: NPDF, HIPD, HIPPO,PCS Engineering and Strain: HIPPO, SMARTS, NPDF Disordered Materials: NPDF, HIPD, HIPPO Large Scale Structures: LQD, ASTERIX Magnetism: ASTERIX, HIPD, HIPPO Biology: PCS, LQD Neutron Imaging: HIPPO, SMARTS, NPDF Nuclear Science and Technology: DANCE, FP5, FP12 Instrument Suite by Technique Powder Diffractometers: HIPD, HIPPO, NPDF, SMARTS Engineering Diffraction: SMARTS Reflectometer:

  5. Concerted Allosteric Transition Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined use of x-ray crystallography and solution small angle x-ray scattering has enabled a research collaboration involving scientists from Boston College and SSRL to provide structural evidence supporting a 30-year old model accounting for the cooperative binding of ligands to allosteric proteins and enzymes - a function central to physiology and cellular processes. Over 30 years ago, two major models were developed to account for the cooperativity observed in oligomeric allosteric proteins

  6. Crystallographic Consulting Brings Research to the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallographic Consulting Brings Research to the ALS Crystallographic Consulting Brings Research to the ALS Print Wednesday, 06 February 2013 15:50 cc Tom Pauly and Josh Stillwell, managing partners at Crystallographic Consulting, have a rich history as synchrotron users. It is likely because of this that they're entrusted with the protein crystallography research for about 15 cutting-edge pharmaceutical companies. They conduct most of their research at ALS Beamline 5.0.2. Crystallographic

  7. Pressure-driven orbital reorientations and coordination-sphere reconstructions in [CuF2(H2O)2(pyz)

    SciTech Connect (OSTI)

    Prescimone, A.; Morien, C.; Allan, D.; Schlueter, J.; Tozer, S.; Manson, J. L.; Parsons, S.; Brechin, E. K.; Hill, S.

    2012-07-23

    Successive reorientations of the Jahn-Teller axes associated with the Cu{sup II} ions accompany a series of pronounced structural transitions in the title compound, as is shown by X-ray crystallography and high-frequency EPR measurements. The second transition forces a dimerization involving two thirds of the Cu{sup II} sites due to ejection of one of the water molecules from the coordination sphere

  8. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  9. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  10. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  11. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  12. Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfaces/interfaces, catalysis, chemical dynamics (gas-phase chemistry), crystallography, and physical chemistry. By one estimate, nearly 80% of all chemical reactions in nature and in human technology take place at boundaries between phases, i.e., at surfaces or interfaces. Atomic- and molecular-scale studies are needed to develop a thorough understanding of the relationships

  13. Craig Brown | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome Craig Brown Previous Next List CraigBrown Craig Brown Team leader for crystallography and diffraction applications, Center for Neutron Research, National Institute of Standards and Technology Email: craig.brown [at] nist.gov Phone: (301) 975-5134 EFRC research: Craig Brown is an Associated Investigator involved in the characterization of MOFs with in-situ neutron scattering techniques. EFRC publications: Lee, Jason S.; Vlaisavljevich, Bess; Britt, David K.;

  14. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles Print Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered ensembles in aqueous solutions or in biomembranes. Now, researchers from

  15. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles Print Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered ensembles in aqueous solutions or in biomembranes. Now, researchers from

  16. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles Print Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered ensembles in aqueous solutions or in biomembranes. Now, researchers from

  17. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Light on Disordered Ensembles Print Because individual biomolecules are very small, x-ray scattering experiments usually determine their structures by an analysis of scattering from a large number of them. In crystallography, scattering by many molecules in identical orientations vastly enhances the signal from a single molecule. However, not all biomolecules form crystals. They are more usually found in disordered ensembles in aqueous solutions or in biomembranes. Now, researchers from

  18. LANL: AOT & LANSCE The Pulse July 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2013 Approved for public release; distribution is unlimited I N S I D E 2 From Alex's Desk 4 Jandel receives DOE early career award Carlsten recognized with mentoring award 5 Dale elected to Executive Committee in American Nuclear Society When quantum becomes magic 6 Ultrahigh resolution neutron crystallography at the Protein Crystal- lography Station 7 Development of LANSCE irradiation capability to produce molybdenum-99 Lujan Center offers new high magnetic field, low temperature

  19. LANSCE | Lujan Center | People | Zoe Fisher

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Instrument Scientists Zoë Fisher | PCS Biographical Sketch Dr. Zoë Fisher is Staff Scientist II in the Bioscience Division of Los Alamos National Laboratory. She is also the instrument scientist for the neutron Protein Crystallography Station and has managed the DOE-OBER funded user program since 2007. Dr. Fisher perfoms her independent research as well as collaborative research with users, other scientists at national labs, and researchers at various academic institutions. After

  20. Relevant Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relevant Links **Light Source Facilities Around the World** Advanced Materials Research Institiute(AMRI), UNO Area Hotels Chase Suite Hotel Baton Rouge Extended Stay America Holiday Inn South Baton Rouge Marriott Residence Inns Wyndham Garden Gulf Coast Protein Crystallography Consortium Health Physics Society Institute for Micromanufacturing, LA Tech University Interactions.org - Particle Physics News and Resources International Nuclear Information System (INIS) Light Sources.org The Louisiana

  1. Simon Teat | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome Simon Teat Previous Next List Simon Teat Simon Teat Staff Scientist, Lawrence Berkeley National Laboratory Email: sjteat [at] lbl.gov Phone: 510-486-4457 EFRC research: Within the CGS, the Teat group is developing environmental synchrotron-based crystallography methods to study MOFs in the presence of gasses. EFRC publications: Yuan, Shuai; Liu, Tian-Fu; Feng, Dawei; Tian, Jian; Wang, Kecheng; Qin, Junsheng; Zhang, Qiang; Chen, Ying-Pin; Bosch, Mathieu; Zou,

  2. Microsoft PowerPoint - Liu_2014_CNMS_StaffScienceHighlight_Science.pptx [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this paper, we created an ordered atomic sheet consisting of two dissimilar materials with an atomically abrupt heterojunction and lattice coherence that does not depend on the lattice of the underlying support. We project the concept of heteroepitaxy to two-dimensional (2D) space to demonstrate a single-atomic layer, in-plane heterostructure based on two prototypical materials that share the same crystallography -- graphene and hexagonal boron nitride (BN). Monolayer BN grows from fresh

  3. XOP: Recent developments (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    XOP: Recent developments Citation Details In-Document Search Title: XOP: Recent developments XOP (X-ray OPtics utilities) is a graphical user interface (GUI) to run computer programs which calculate basic information needed by synchrotron radiation beamline scientists and engineers. It can also be used as a front-end for specific codes or packages for data analysis and data reduction (XAFS, surface crystallography, etc.). XOP contains a customized database for optical and atomic constants. It

  4. Application to Export Electric Energy OE Docket No. EA-363-A Noble Americas

    Office of Environmental Management (EM)

    Gas & Power Corporation: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 | Department of Energy Corporation: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Application to Export Electric Energy OE Docket No. EA-363-A Noble Americas Gas & Power Corporation: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Application from NAG&P to export electric energy to Mexico. Federal Register Notice. PDF icon EA-363-A Noble Americas (MX).pdf More Documents

  5. EA-206-B Frontera Generation L.P. | Department of Energy

    Energy Savers [EERE]

    6-B Frontera Generation L.P. EA-206-B Frontera Generation L.P. Order authorizing Frontera Generation L.P. to export electricity to Mexico. PDF icon EA-206-B Frontera (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-403 Frontera Marketing, LLC EA-338-A Shell Energy North America (US), L.P. Application to Export Electric Energy OE Docket No. EA-403 Frontera Marketing, LLC - Joint ERCOT and Frontera Marketing, LLC and Frontera Generation Limited

  6. EA-357-A Hunt Electric Power Marketing, L.L.C. | Department of Energy

    Energy Savers [EERE]

    -A Hunt Electric Power Marketing, L.L.C. EA-357-A Hunt Electric Power Marketing, L.L.C. Order authorizing Hunt Electric to export electric energy to Mexico. PDF icon EA-357-A Hunt Electric Power (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-357-A Hunt Electric Power Marketing, L.L.C. Application to Export Electric Energy OE Docket No. EA-357-A Hunt Electric Power Marketing, L.L.C: Federal Register Notice, Volume 79, No. 87 - May 6, 2014 EA-357

  7. EA-363-A Noble Americas Gas & Power Corporation | Department of Energy

    Energy Savers [EERE]

    3-A Noble Americas Gas & Power Corporation EA-363-A Noble Americas Gas & Power Corporation Order authorizing NAG&P to export electric energy to Mexico. PDF icon EA-363-A Noble Americas MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-363-A Noble Americas Gas & Power Corporation Application to Export Electric Energy OE Docket No. EA-363-A Noble Americas Gas & Power Corporation: Federal Register Notice, Volume 80, No. 42 - March 4,

  8. EA-386 IPR-GDF Suez Energy Marketing North America, Inc. (GSEMNA) |

    Energy Savers [EERE]

    Department of Energy 6 IPR-GDF Suez Energy Marketing North America, Inc. (GSEMNA) EA-386 IPR-GDF Suez Energy Marketing North America, Inc. (GSEMNA) Order authorizing GSEMNA to export electric energy to Mexico. PDF icon EA-386 GSEMNA - MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-386 IPR-GDF Suez Energy Marketing (Gsemna) Application to Export Electric Energy OE Docket No. EA-386 IPR-GDF SUEZ Energy Marketing (GSEMNA): Federal Register

  9. EA-402 Energia Sierra Juarez U.S., LLC | Department of Energy

    Energy Savers [EERE]

    402 Energia Sierra Juarez U.S., LLC EA-402 Energia Sierra Juarez U.S., LLC Order authorizing ESJ to export electric energy to Mexico. PDF icon EA-402 ESJUS MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-402 Energia Sierra Juarez U.S., LLC Application to Export Electric Energy OE Docket No. EA-402 Energia Sierra Juarez U.S., LLC: Federal Register Notice, Volume 79, No. 122, June 25, 2014 PP-334 Energia Sierra Juarez U.S. Transmission,

  10. EA-405 Del Norte Energy LLC | Department of Energy

    Energy Savers [EERE]

    5 Del Norte Energy LLC EA-405 Del Norte Energy LLC Order authorizing Del Norte to export electric energy to Mexico. PDF icon EA-405 Del Norte Energy (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-405 Del Norte Energy LLC Application to Export Electric Energy OE Docket No. EA-405 Del Norte Energy LLC: Federal Register Notice, Volume 80, No. 21 - Feb. 2, 2015 Record of Categorical Exclusion (CX) Office of Electricity Delivery and Energy

  11. Appication to Export Electric Energy OE Docket No. EA-390 Global Pure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, LLC | Department of Energy Appication to Export Electric Energy OE Docket No. EA-390 Global Pure Energy, LLC Appication to Export Electric Energy OE Docket No. EA-390 Global Pure Energy, LLC Application from Global Pure Energy to export electric energy to Mexico. PDF icon EA-390 Global Pure Energy (MX).pdf More Documents & Publications EA-390 Global Pure Energy, LLC Application to Export Electric Energy OE Docket No. EA-415 Lion Shield Energy, LLC: Federal Register Notice, Volume

  12. Application to Export Electric Energy OE Docket No. EA-294-B TexMex Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC | Department of Energy LLC Application to Export Electric Energy OE Docket No. EA-294-B TexMex Energy LLC Application from TexMex Energy to export electric energy to Mexico. PDF icon EA-294-B TexMex Energy (MX).pdf More Documents & Publications EA-294-B TexMex Energy, LLC EA-294-A TexMex Energy, LLC Application to Export Electric Energy OE Docket No. EA-294-B TexMex Energy LLC, Federal Register Notice, Volume 77, No. 162 - Aug. 21, 2012

  13. Application to Export Electric Energy OE Docket No. EA-294-B TexMex Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC, Federal Register Notice, Volume 77, No. 162 - Aug. 21, 2012 | Department of Energy LLC, Federal Register Notice, Volume 77, No. 162 - Aug. 21, 2012 Application to Export Electric Energy OE Docket No. EA-294-B TexMex Energy LLC, Federal Register Notice, Volume 77, No. 162 - Aug. 21, 2012 Application from TexMex Energy to export electric energy to Mexico. Federal Register Notice. PDF icon EA-294-B TexMex (MX).pdf More Documents & Publications EA-294-B TexMex Energy, LLC Application to

  14. Application to Export Electric Energy OE Docket No. EA-338-A Shell Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North America (US), L.P. | Department of Energy 8-A Shell Energy North America (US), L.P. Application to Export Electric Energy OE Docket No. EA-338-A Shell Energy North America (US), L.P. Application from Shell Energy to export electric energy to Mexico. PDF icon EA-338-A Shell Energy (MX).pdf More Documents & Publications EA-338-A Shell Energy North America (US), L.P. EA-338 Shell Energy North America (US), L.P. EA-339 Shell Energy North America (US), L.P.

  15. Application to Export Electric Energy OE Docket No. EA-357-A Hunt Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Marketing, L.L.C. | Department of Energy C. Application to Export Electric Energy OE Docket No. EA-357-A Hunt Electric Power Marketing, L.L.C. Application from Hunt Electric to export electric energy to Mexico. PDF icon EA-357-A Hunt Electric Power (MX).pdf More Documents & Publications EA-357-A Hunt Electric Power Marketing, L.L.C. Application to Export Electric Energy OE Docket No. EA-357-A Hunt Electric Power Marketing, L.L.C: Federal Register Notice, Volume 79, No. 87 - May 6,

  16. Application to Export Electric Energy OE Docket No. EA-357-A Hunt Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Marketing, L.L.C: Federal Register Notice, Volume 79, No. 87 - May 6, 2014 | Department of Energy C: Federal Register Notice, Volume 79, No. 87 - May 6, 2014 Application to Export Electric Energy OE Docket No. EA-357-A Hunt Electric Power Marketing, L.L.C: Federal Register Notice, Volume 79, No. 87 - May 6, 2014 Application from Hunt Electric to export electric energy to Mexico. Federal Register Notice. PDF icon EA-357-A Hunt Electric (MX).pdf More Documents & Publications

  17. Application to Export Electric Energy OE Docket No. EA-363-A Noble Americas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas & Power Corporation | Department of Energy 3-A Noble Americas Gas & Power Corporation Application to Export Electric Energy OE Docket No. EA-363-A Noble Americas Gas & Power Corporation Application from NAG&P to export electric energy to Mexico. PDF icon EA-363-A Noble Americas G&P (MX).pdf More Documents & Publications EA-363-A Noble Americas Gas & Power Corporation Application to Export Electric Energy OE Docket No. EA-363-A Noble Americas Gas & Power

  18. Application to Export Electric Energy OE Docket No. EA-386 IPR-GDF Suez

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Marketing (Gsemna) | Department of Energy Suez Energy Marketing (Gsemna) Application to Export Electric Energy OE Docket No. EA-386 IPR-GDF Suez Energy Marketing (Gsemna) Application from IPR-GDF SUEZ (GSEMNA) to export electric energy to Mexico. PDF icon EA-386 IPR-GDF SUEZ (GSEMNA) MX.pdf More Documents & Publications EA-386 IPR-GDF Suez Energy Marketing North America, Inc. (GSEMNA) Application to Export Electric Energy OE Docket No. EA-386 IPR-GDF SUEZ Energy Marketing

  19. Application to Export Electric Energy OE Docket No. EA-387 Energia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renovable S.C, LLC | Department of Energy 7 Energia Renovable S.C, LLC Application to Export Electric Energy OE Docket No. EA-387 Energia Renovable S.C, LLC Application from Energia Renovable to export electric to Mexico. PDF icon EA-387 Energy Renovable S.C (MX).pdf More Documents & Publications EA-387 Energia Renovable S.C., LLC Application to Export Electric Energy OE Docket No. EA-402 Energia Sierra Juarez U.S., LLC Application to Export Electric Energy OE Docket No. EA-401 Lonestar

  20. Application to Export Electric Energy OE Docket No. EA-402 Energia Sierra

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Juarez U.S., LLC | Department of Energy LLC Application to Export Electric Energy OE Docket No. EA-402 Energia Sierra Juarez U.S., LLC Application from ESJ to export electric energy to Mexico. PDF icon EA-402 ESJ (MX).pdf More Documents & Publications EA-402 Energia Sierra Juarez U.S., LLC Application to Export Electric Energy OE Docket No. EA-402 Energia Sierra Juarez U.S., LLC: Federal Register Notice, Volume 79, No. 122, June 25, 2014 Application to Export Electric Energy OE Docket