National Library of Energy BETA

Sample records for mackenzie river valley

  1. The role of blowing snow in the hydrometeorology of the Mackenzie River Basin

    E-Print Network [OSTI]

    Dery, Stephen

    ´ery Department of Atmospheric and Oceanic Sciences McGill University Montr´eal, Qu´ebec A thesis submitted in the Mackenzie River Basin (MRB) of Canada, the role of snow in its energy and water budgets are still open

  2. Snow distribution from SSM/I and its relationships to the hydroclimatology of the Mackenzie River Basin, Canada

    E-Print Network [OSTI]

    Dery, Stephen

    Snow distribution from SSM/I and its relationships to the hydroclimatology of the Mackenzie River March 2010 Accepted 19 March 2010 Available online 27 March 2010 Keywords: Snow distribution Microwave remote sensing Hydroclimatology The spatial and temporal distribution of snow cover extent (SCE) and snow

  3. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic

    E-Print Network [OSTI]

    Paytan, Adina

    Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin a Institut de Physique du Globe de Paris, Sorbonne Paris Cite´, Univ Paris Diderot, UMR 7154 CNRS, F-75005 Paris, France b Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB23EQ

  4. Local diffusion networks act as pathways?to sustainable agriculture in the Sacramento River Valley

    E-Print Network [OSTI]

    Lubell, Mark; Fulton, Allan

    2007-01-01

    agriculture in the Sacramento River Valley by Mark Lubellquality management in the Sacramento River Valley. Data fromencourage growers in the Sacramento River Valley to

  5. Beyond Density: Measuring Neighborhood Form in New England's Upper Connecticut River Valley

    E-Print Network [OSTI]

    Owens, Peter Marshall

    2005-01-01

    in New England’s Upper Connecticut River Valley by Peterin New England’s Upper Connecticut River Valley by Peterof New England’s Upper Connecticut River Valley encompassing

  6. Tracing Freshwater Anomalies Through the Air-Land-Ocean System: A Case Study from the Mackenzie River Basin and

    E-Print Network [OSTI]

    Zhang, Jinlun

    Tracing Freshwater Anomalies Through the Air-Land-Ocean System: A Case Study from the Mackenzie, Seattle, WA 98195 USA 3Cooperative Institute for Research in Environmental Sciences, National Snow and Ice-E and precipitation, recycled summer precipitation, and dry sur- face conditions immediately prior to the water year

  7. Red River Valley REA- Heat Pump Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  8. Microsoft Word - CROOKED RIVER VALLEY REHABILITATION PROJECT...

    Broader source: Energy.gov (indexed) [DOE]

    Power Act). Among other things, this Act directs BPA to protect, mitigate, and enhance fish and wildlife affected by the development and operation of the Federal Columbia River...

  9. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia:Riva, Maryland: Energy ResourcesValley

  10. HABITAT AND POPULATIONS OF THE VALLEY ELDERBERRY LONGHORN BEETLE ALONG THE SACRAMENTO RIVER1

    E-Print Network [OSTI]

    HABITAT AND POPULATIONS OF THE VALLEY ELDERBERRY LONGHORN BEETLE ALONG THE SACRAMENTO RIVER1 F, and Environmental Specialist, respectively, Jones & Stokes Associates, Inc., Sacramento, California. Abstract: Prior and Putah Creek in the Sacramento Valley, and along several rivers in the northern San Joaquin Valley

  11. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  12. Red River Valley Coop Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecent content in EnergyRed River Valley

  13. Geology of the central part of the James River Valley, Mason County, Texas 

    E-Print Network [OSTI]

    Dannemiller, George David

    1957-01-01

    ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ P LATE I ~ II ' XIII' ILLUSTHATIOJJS GEOLOGIC J"A: AND CROSS SECTIONS GF THF CENTRAL PART OP THE JAMi'S RIVER VALLEY MASON COUNTY, IIJDr~ MAP OP THE CENTRAL PART OP HJ? JAMES RIVER VALLEY, MASON COUNTY, TEXAS ~ "WAGON TRACKS~ IN THE UPPER... VALLEY, RA~OR COURTY, TEXAS ABSTRACT The Central Part of the James River Valley is located ln south-central mason County, southwest of the town of' %aeon, Rock units of Uppex O'brien, Lower Ordovician, and Quaternary age sre found in the area, Ihe...

  14. A cleaning energy area conception on Fenhe river valley

    SciTech Connect (OSTI)

    Guan, C. [Shanxi Environmental Protection Bureau (China)

    1997-12-31

    Fenhe river valley has a dense population, abundant resources and coal mining, coke making, metallurgy industry concentration. Therefore, it is a seriously pollute area. The paper puts forward a concept of building up a clean energy area through process improvement and change of energy structure to realize ecological economy. The analysis shows that the indigenous method used for coking produces serious pollution, the resource cannot be used comprehensively, the regular machinery coke has a high investment in capital construction, but not much economic benefit. All are disadvantages for health and sustainable economic development. Also, this paper describes a LJ-95 machinery coke oven which has lower investment, higher product quality, less pollution, and higher economical benefit. LJ-95 coke oven will be the technical basis for construction of a clean energy area. The clean energy area concept for the Fenhe river valley consists of a coal gas pipeline network during the first phase and building electricity generation using steam turbines in the second phase.

  15. Influence of logjam-formed hard points on the formation of valley-bottom landforms in an old-growth forest valley, Queets River, Washington, USA

    E-Print Network [OSTI]

    Montgomery, David R.

    -growth forest valley, Queets River, Washington, USA David R. Montgomery *, Tim B. Abbe 1 Department of Earth for the role of logjam-formed ``hard points'' on creating and maintaining valley-bottom surfaces that shelter

  16. Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley

    E-Print Network [OSTI]

    Williams, Philip B.; Andrews, Elizabeth; Opperman, Jeff J.; Bozkurt, Setenay; Moyle, Peter B.

    2009-01-01

    Public Policy, and the Sacramento Valley. University ofTechnologies Ltd. 2008. Sacramento River ecological flowsRestoration Program. Sacramento (CA). 72 p. Available from:

  17. Energy and Development Gordon Mackenzie

    E-Print Network [OSTI]

    Energy and Development Gordon Mackenzie Energy Programme Coordinator UNEP Risø Centre #12;Energy · Nordic Arctic energy network #12;African Rural Energy Enterprise Development - AREED ENDA MFC KITE TaTEDO CEEEZ E+Co Africa E+Co NJ UNEP Paris URC UN Foundation Sida Others Demonstrating that needed energy

  18. Geoarchaeology in the Current River Valley, Ozark National Scenic Riverways, Southeast Missouri

    E-Print Network [OSTI]

    Dempsey, Erin Caitlin

    2012-08-31

    valley landform sediment assemblage…………………. 24 3.1 Pre-Clovis sites and their ages, issues with acceptance, and references……………….. 44 4.1 Quantification of horizon properties for calculating horizon morphology index (HDI) values... in the Current River valley with the goal of locating pre-Clovis deposits (Mandel 2009; Ray and Mandel 2010). The research presented in this dissertation was designed to supplement ODYSSEY’s work. In this dissertation, I determined the geologic potential...

  19. White River Valley Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The residential and commercial appliance and heating rebate program encourages members to purchase Energy Star equipment that qualifies under the White River energy efficiency program. Items...

  20. Pearl River Valley El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltos delValley El Pwr Assn Jump to:

  1. Influence of a river valley constriction on upstream sedimentation 

    E-Print Network [OSTI]

    Kinnebrew, Quin

    1988-01-01

    is constant, and the channel is wide, then the velocity is proportional to the depth-slope product (D2/s st/2). This quantitative description makes it easy to visualize the control that depth and slope have over the flow velocity. Channels with greater.... Wetted perimeter (P) is the outline of the edge where water and channel surface meet. Cross section (A) is the area of a transverse section of the river. The depth (D) is approximately the same as the hydraulic radius (R), which is the cross sectional...

  2. Development of an integrated pest management system for the Brazos River Valley 

    E-Print Network [OSTI]

    Myers, Deanna

    1981-01-01

    8 August 13 0 0 726a 18606a 20499a 3Z942a 15464a 22869a 1960a 16444a 6697a 6643a 17959a Z475a 2340a 0 0 1906a 33837b 12Z75a 19789a 6670a 15682a 39ZOa 591Za 13340a 3679a 9120a 644a 1271a ? Tl = Untreated; TZ = Treated... DEVELOPMENT OF AN INTEGRATED PEST MANAGEMENT SYSTEM FOR THE BRAZOS RIVER VALLEY A Thesis by DEANNA MYERS Approved as to style and content by: Chairman of Committee em er Member (Member) (Head of Department December 1981 ABSTRACT...

  3. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

  4. Energy and Development Gordon A. Mackenzie

    E-Print Network [OSTI]

    Energy and Development Gordon A. Mackenzie #12;Energy and Development · 4 EU/COOPENER projects · EUEI workshop follow-up completed · Nordic Arctic energy network · DFID energy research programme consortium proposal · FEMA #12;Energy and Development COOPENER projects: · Development and Energy in Africa

  5. GNESD and Impact Analysis Gordon Mackenzie

    E-Print Network [OSTI]

    and other EU energy sector assistance? DEA Development and Energy in Africa #12;Solar home system componentsGNESD and Impact Analysis Gordon Mackenzie #12;Distinguish from DEA project · DEA ­ COOPENER project · Risø, ECN + 6 African Centres · Methodology and case studies for evaluating the impact of energy

  6. Late quaternary geomorphology and geoarchaeology of a segment of the Central Mimbres River Valley, Grant County, New Mexico 

    E-Print Network [OSTI]

    Fitch, Michael Anthony

    1996-01-01

    Two terraces, a modem floodplain, and alluvial fans were identified along a segment of the central Mimbres River Valley in Grant County, New Mexico. The oldest terrace, T2, is composed of one major depositional unit (1) and is capped by a...

  7. Paleoseismology study of the Cache River Valley, southern Illinois, and New Madrid seismic zone, southeast Missouri and northeast Kansas 

    E-Print Network [OSTI]

    Noonan, Brian James

    1999-01-01

    and location of prehistoric earthquakes needs to be better constrained. Some areas of the mid-continent, such as the Cache River Valley (CRV) of southern Illinois, have not been studied in the detail of the New Madrid seismic zone, thus the earthquake hazard...

  8. Evaluation of the water quality in the releases from thirty dams in the Tennessee River Valley

    SciTech Connect (OSTI)

    Butkus, S.R.

    1990-09-01

    The Tennessee Valley Authority (TVA) has routinely monitored dissolved oxygen (DO) and temperature from the tailwater releases of its dams since the 1950s. The original objective of this monitoring was to collect baseline information to support reaeration research and determine the relative impact of impoundments on the assimilative capacity of the river system. This monitoring has continued even though the original objective was satisfied. New purposes for this monitoring data have arisen in support of several programs, without new consideration of the monitoring strategy and sampling design. The primary purpose of this report is to compare the historical release data for 30 dams in the Tennessee Valley based on four different objectives: (1) comparison of seasonal patterns, (2) comparison of baseline conditions using descriptive statistics, (3) evaluation of monotonic trends, and (4) discussion of monitoring strategies that might be required to determine compliance with existing and proposed criteria. A secondary purpose of the report is to compile the existing database into tables and figures that would be useful for other investigators. 51 refs., 210 figs., 1 tab.

  9. Influence of Ohio River valley emissions on fine particle sulfate measured from aircraft over large regions of the eastern United States

    E-Print Network [OSTI]

    Weber, Rodney

    valley emissions on fine particle sulfate measured from aircraft over large regions of the eastern UnitedInfluence of Ohio River valley emissions on fine particle sulfate measured from aircraft over large regions of the eastern United States and Canada during INTEX-NA Christopher J. Hennigan,1 Scott Sandholm,2

  10. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  11. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III THE OHIO RIVER VALLEY CO2 STORAGE PROJECT

    SciTech Connect (OSTI)

    Neeraj Gupta

    2005-05-26

    As part of the Department of Energy's (DOE) initiation on developing new technologies for storage of carbon dioxide in geologic reservoir, Battelle has been awarded a project to investigate the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. This project is the Phase III of Battelle's work under the Novel Concepts in Greenhouse Gas Management grant. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations and potentially in nearby deep coal seams. The current technical progress report summarizes activities completed for the January through March 2005 period of the project. As discussed in the report, the technical activities focused on development of injection well design, preparing a Class V Underground Injection Control permit, assessment of monitoring technologies, analysis of coal samples for testing the capture system by Mitsubishi Heavy Industry, and presentation of project progress at several venues. In addition, related work has progressed on a collaborative risk assessment project with Japan research institute CREIPI and technical application for the Midwest Regional Carbon Sequestration Partnership.

  12. The Zooarchaeology of the Late Neolithic Strymon (Struma) river valley: the case of the

    E-Print Network [OSTI]

    Wyatt, Lucy

    ) and Bulgaria (sector Topolnica) in the basin of the river Strymonas, Central Macedonia, have revealed a `flat Macedonia, along with the evidence from pottery decoration and structural features, suggests that - to some provided interesting insights into the diverse husbandry practices among Late Neolithic sites in Macedonia

  13. A History of Irrigation in the Arkansas River Valley in Western Kansas, 1880-1910

    E-Print Network [OSTI]

    Sorensen, Conner

    1968-01-01

    , "The High Plains and their Utilization," United States Geological Survey, Twenty- First Annual Report (1899-1900), facing p. 609. Note that the Arkansas River in western Kansas is depicted as an intermittent stream. CHAPTER I THE NATURAL SETTING...-21. St. John, "Notes on the Geology of Southwest Kansas," Kansas State Board of Agriculture, Fifth Biennial Report (1885-1886), p. 13$. k Plains of Eastern Colorado and Western Kansas.** As a result of the absorptive powers of the tertiary mantle...

  14. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    SciTech Connect (OSTI)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The screening method was also useful in identifying unnecessary items that were not significant given the site-specific geology and proposed scale of the Ohio River Valley CO{sub 2} Storage Project. Overall, the FEP database approach provides a comprehensive methodology for assessing potential risk for a practical CO{sub 2} storage application. An integrated numerical fate and transport model was developed to enable risk and consequence assessment at field scale. Results show that such an integrated modeling effort would be helpful in meeting the project objectives (such as site characterization, engineering, permitting, monitoring and closure) during different stages. A reservoir-scale numerical model was extended further to develop an integrated assessment framework which can address the risk and consequence assessment, monitoring network design and permitting guidance needs. The method was used to simulate sequestration of CO{sub 2} in moderate quantities at the Mountaineer Power Plant. Results indicate that at the relatively low injection volumes planned for pilot scale demonstration at this site, the risks involved are minor to negligible, owing to a thick, low permeability caprock and overburden zones. Such integrated modeling approaches coupled with risk and consequence assessment modeling are valuable to project implementation, permitting, monitoring as well as site closure.

  15. Interdecadal Connection Between Artic Temperature and Summer Precipitation Over the Yangtze River Valley in the CMIP5 Historical Simulations

    SciTech Connect (OSTI)

    Li, Yuefeng; Leung, Lai-Yung R.; Xiao, Ziniu; Wei, Min; Li, Qingquan

    2013-10-01

    This study assesses the ability of the Phase 5 Coupled Model Intercomparison Project (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic warming to the interdecadal variability of the East Asian summer monsoon rainfall. Six CMIP5 historical simulations including models from Canada (CCCma), China (BCC), Germany (MPI-M), Japan (MRI), United Kingdom (MOHC), and United States (NCAR) are used. The NCEP/NCAR reanalysis and observed precipitation are also used for comparison. Among the six CMIP5 simulations, only CCCma can approximately simulate the enhancement of interdecadal summer precipitation over the YRV in 1990-2005 relative to 1960-1975, and the relationships between the summer precipitation with surface temperature (Ts), the 850hPa winds, and 500hPa height field (H500), and between Ts and H500 using regression, correlation, and SVD analyses. It is found that CCCma can reasonably simulate the interdecadal surface warming over the boreal mid-to high latitudes and the Arctic in winter, spring and summer. The summer Baikal blocking appears to be the bridge that links the winter and spring surface warming over the mid-to high latitude and Arctic with the enhancement of summer precipitation over the YRV. Models that missed some or all of these relationships found in CCCma and the reanalysis failed to simulate the interdecadal enhancement of precipitation over the YRV. This points to the importance of high latitude and Arctic processes on interdecadal variability of the East Asian summer monsoon and the challenge for global climate models to correctly simulate the linkages.

  16. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  17. Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean

    E-Print Network [OSTI]

    Vincent, Warwick F.

    in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells m. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie

  18. OPTIMIZING GEO-CELLULAR RESERVOIR MODELING IN A BRAIDED RIVER INCISED VALLEY FILL: POSTLE FIELD, TEXAS COUNTY, OKLAHOMA

    E-Print Network [OSTI]

    , TEXAS COUNTY, OKLAHOMA by Tiffany Dawn Jobe #12;#12;ABSTRACT Reservoir characterization, modeling Field is a mature oil and gas field in Texas County, Oklahoma which produces from Pennsylvanian valley

  19. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-10-15

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day.

  20. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  1. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  2. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-04-15

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This semi-annual Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 2003 through March 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  3. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-12-27

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This Final Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 1998 through December 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  4. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  5. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2004-03-02

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Previous Semi-Annual Technical Progress Reports presented the following: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Analyses of data conducted during the period from April 1, 2003 through September 30, 2003 are presented in this Semi-Annual Technical Progress Report. Report Revision No. 1 includes the additions or removals of text presented in the previous version of this report.

  6. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2003-04-30

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

  7. Riparian Valley Oak (Quercus lobata) Forest Restoration on the Middle Sacramento

    E-Print Network [OSTI]

    Riparian Valley Oak (Quercus lobata) Forest Restoration on the Middle Sacramento River, California1 horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all that affect valley oaks on the Sacramento River floodplain will require additional study and more detailed

  8. The Oyster Industry of Eastern Mexico CLYDE L. MacKENZIE, Jr. and ARMANDO T. WAKIDA-KUSUNOKI

    E-Print Network [OSTI]

    The Oyster Industry of Eastern Mexico CLYDE L. MacKENZIE, Jr. and ARMANDO T. WAKIDA-KUSUNOKI Introduction Mexico has an oyster industry of sub stantial size, ranking about sixth in the world. In 1993 of Mexico, while the Philippines, Aus tralia, Canada, and New Zealand trailed it (Fig. 1). On its east coast

  9. Temporal Trends in Hatchery Releases of Fall-Run Chinook Salmon in California's Central Valley

    E-Print Network [OSTI]

    Huber, Eric R.; Carlson, Stephanie M.

    2015-01-01

    in Central Valley rivers, many fall-run Chinook salmon nowrun Chinook salmon, Oncorhynchus tshawytscha, to yearlings at Feather Riverrun Chinook salmon breed and rear in low-elevation mainstem rivers (

  10. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined...

  11. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    magnetization in the Raft River valley, Idaho Abstract Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal...

  12. An empirical-stochastic, event-based program for simulating inflow from a tributary network: Framework and application to the Sacramento River basin, California

    E-Print Network [OSTI]

    Singer, M B; Dunne, T

    2004-01-01

    tributaries of the Sacramento River, California, report,sensitivities of the Sacramento-San Joaquin River basin,Historical flooding in the Sacramento Valley, Pac. Hist.

  13. Death Valley TronaWestend

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

  14. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    E-Print Network [OSTI]

    Singer, Michael

    Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley

  15. Delineation of delta ecozones using interferometric SAR phase coherence Mackenzie River Delta, N.W.T., Canada

    E-Print Network [OSTI]

    Smith, Laurence C.

    when overall image coherence is decreased by increasing temporal and spatial baselines. Evaluation significant categories. Sensors such as the Land- sat Thematic Mapper (TM) have been used to attain such classifications based upon visible and near-infrared reflec- tance (Jensen et al., 1986; Mertes, Dunne

  16. Trends in the Sediment Yield of the Sacramento River, California, 1957–2001

    E-Print Network [OSTI]

    Wright, Scott A.; Schoellhamer, David H.

    2004-01-01

    Cenozoic tectonism of the Sacramento Valley, California:Public Information Officer, USGS Sacramento District Office.migration of the Middle Sacramento River, California: U.S.

  17. Successes, Failures and Suggested Future Directions for Ecosystem Restoration of the Middle Sacramento River, California

    E-Print Network [OSTI]

    2013-01-01

    initial results from the Sacramento River Project. Rest Ecolrestoration [Internet]. Sacramento (CA): CALFED Bay Deltasoil survey of the Sacramento Valley, California. U.S.

  18. Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice in the Near-shore Zone, Mackenzie Delta, NWT, Canada

    E-Print Network [OSTI]

    Moorman, Brian

    Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice Resources Canada, Dartmouth, Nova Scotia, Canada ABSTRACT Interannual changes in seasonal ground freezing. KEY WORDS: seasonal ground freezing; permafrost; bottom-fast ice; Mackenzie Delta INTRODUCTION Arctic

  19. The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley

    E-Print Network [OSTI]

    McDermott, David Thomas

    2009-11-09

    Definitions of the extent of the Loess Hills of the Missouri River valley have become smaller over the last century. The reduced extent of the Hills, as represented in both promotional and scientific literature, no longer accurately reflects...

  20. Crop Rotations in the Brazos River Valley

    E-Print Network [OSTI]

    Whiteley, Eli L.; Hipp, Billy W.

    1966-01-01

    OF ROTATIONS ON SOIL PRODUCTIVITY AND PHYST- CAL PROPERTIES OF MILLER CLAY. First Second Third Fourth Rotation* year year year Year C Cr C, 0 C. 8-sc C, 0-sc, Sc C, A C, 0-a C, 0-a, A C, A-f, A-f C, C, A-f, A-f C, C, A-f, A-f Cr, Cr, A-f, A...-f Cr, Cr, A-f, A-f Cr, 0-sc, Sc Cotton Corn Cotton Cotton Cotton Cotton Cotton Cot ton Cotton Cotton Cotton Corn Corn Corn Continuous Continuous Oats Oats- sweetclover Oats- swee tclover Alfalfa Oats- alfalfa Oats- alfalfa...

  1. Draft Environmental Impact Statement- Crooked River Valley...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Likely to Adversely Affect; NLAA - Not Likely to Adversely Affect. Proposed species: NI - No Impact; NLJCE - Not Likely to Jeopardize the Continued Existence of the species; LJ...

  2. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  3. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  4. Geometry of Valley Growth

    E-Print Network [OSTI]

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H

    2011-01-01

    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  5. NV PFA - Steptoe Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  6. An Archaeological Survey for the Riverbend Midstream Partners, LP Neches River Crossing Project in Jasper and Tyler Counties Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-30

    RiverBend Midstream Partners, LP (client) proposes to install a natural gas pipeline that will pass beneath the Neches River in western Jasper and eastern Tyler counties, Texas. Brazos Valley Research Associates (BVRA) and Dixie Environmental...

  7. Hydrochemistry of selected parameters at the Raft River KGRA...

    Open Energy Info (EERE)

    geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal wells ranging in depth from 4911 feet to 6543 feet (1490 to 1980 meters)...

  8. Evaluation of supplemental aeration for the Trinity River System 

    E-Print Network [OSTI]

    Reap, Edward John

    1974-01-01

    of the water management system for the Ruhr River Valley, Germany. The system makes use of both a mechanical and diffuser 16 aeration system to maintain high quality water. To achieve comparable water quality by erecting advanced water treatment facilities...

  9. Powell Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexusJumpPowder RiverValley

  10. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  11. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  12. Session: Long Valley Exploratory Well

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  13. Elk Valley Rancheria- 2010 Project

    Broader source: Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  14. South Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston, Texas:588958°,River,Toms River,Valley,

  15. Geoarchaeology of the Kostenki Borshchevo Sites, Don River

    E-Print Network [OSTI]

    Holliday, Vance T.

    Geoarchaeology of the Kostenki­ Borshchevo Sites, Don River Valley, Russia Vance T. Holliday,1 of the Don River, near Voronezh on the central East European Plain. Geoarchaeological research from 2001 archaeological horizons sealed within two sets of thin lenses of silt, car- bonate, chalk fragments, and organic

  16. Salmon River Habitat Enhancement, 1990 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  17. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  18. Spring Valley Public Utilities - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting Program Info Sector Name Utility Administrator Spring Valley Public Utilities Website http:www.SaveEnergyInSpringValley.com State Minnesota Program Type Rebate...

  19. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration...

  20. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  1. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  2. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  3. Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport

    E-Print Network [OSTI]

    Singer, Michael

    Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport in the Sacramento River, California Michael Bliss Singer and Thomas Dunne Donald Bren School of Environmental Science and Management, University of California Santa Barbara, California, USA Abstract. Spatial patterns

  4. A comparison of AMSR-E/Aqua snow products with in situ observations and MODIS snow cover products in the Mackenzie River Basin, Canada

    E-Print Network [OSTI]

    Tong, J; Velicogna, I; Velicogna, I

    2010-01-01

    MODIS images-potential for snow cover mapping. Water Resour.R.D. Northern hemisphere snow cover variability and changeof remotely sensed snow-cover products with constraints from

  5. A Comparison of AMSR-E/Aqua Snow Products with in situ Observations and MODIS Snow Cover Products in the Mackenzie River Basin, Canada

    E-Print Network [OSTI]

    Tong, Jinjun; Velicogna, Isabella

    2010-01-01

    MODIS images-potential for snow cover mapping. Water Resour.R.D. Northern hemisphere snow cover variability and changeof remotely sensed snow-cover products with constraints from

  6. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  7. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  8. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

  9. Explosion at Hapton Valley Colliery, Lancashire 

    E-Print Network [OSTI]

    Stephenson, H. S.

    MINISTRY OF POWER EXPLOSION AT HAPTON VALLEY COLLIERY, LANCASHIRE REPORT On the causes of, and circumstances attending, the Explosion which occurred at Hapton Valley Colliery, Lancashire, on 22nd March, 1962 By H. S. ...

  10. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  11. Microearthquakes in and near Long Valley, California

    E-Print Network [OSTI]

    Steeples, Don W.; Pitt, A. M.

    1976-02-10

    Sixteen portable seismograph stations were deployed in the vicinity of the Long Valley geothermal area, California, from April 27 to June 2, 1973. Only minor microearthquake activity was detected in the Long Valley caldera, but a high level...

  12. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan­ dersteg valley and 1100 feet above, there is another, smaller, secret valley---the Gasterntal. Flat green fields

  13. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan- dersteg valley and 1100 feet above, there is another, smaller, secret valley--the Gasterntal. Flat green fields

  14. MANAGEMENT OF AGRICULTURAL WASTES LOWER FRASER VALLEY

    E-Print Network [OSTI]

    #12;MANAGEMENT OF AGRICULTURAL WASTES IN THE LOWER FRASER VALLEY SUMMARY REPORT - A WORKING DOCUMENT Presented on Behalf of: The Management of Agricultural Wastes in the Lower Fraser Valley Program of the Agricultural Nutrient Management in the Lower Fraser Valley program. The ideas and opinions expressed herein do

  15. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    SciTech Connect (OSTI)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  16. Characterizing the geospatial features and hydrology of four pro-glacial valleys in the Cordillera Blanca, Peru

    E-Print Network [OSTI]

    it is important to accurately incorporate groundwater contributions and pathways in addition to glacial melt1 Sara Knox Characterizing the geospatial features and hydrology of four pro-glacial valleys by providing melt-water throughout the year (Mark and Seltzer 2005). Many rivers draining glaciated basins

  17. City extensions : the revitalization of Denver Colorado's Platte River Valley

    E-Print Network [OSTI]

    Sobey, James A

    1982-01-01

    This thesis examines a process for future city growth in Denver, Colorado. Its objective is to develop a model by which future expansion of the city might build qualities of continuity and identity between adjacent sections ...

  18. New River Geothermal Research Project, Imperial Valley, California...

    Open Energy Info (EERE)

    (Company Institution) Ram Power, Inc. Awardee Website http:www.rampower.co.ukindex.php Funding Opportunity Announcement DE-FOA-0000109 DOE Funding Level (total award...

  19. EIS-0506: Crooked River Valley Rehabilitation Project, Idaho...

    Energy Savers [EERE]

    an EIS that evaluates the potential environmental impacts of a proposal to improve fish habitat by restoring stream and floodplain functions, restoring instream fish habitat...

  20. EIS-0114: Fall River/Lower Valley Transmission System Reinforcement

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore reinforcing the electrical transmission system in southeastern Idaho by adding a 161-kilovolt partly single- and double-circuit line from the Goshen to Drummond Substations in order to maintain reliable electric service in the area.

  1. Red River Valley Rrl Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycledMesa,

  2. New River Geothermal Research Project, Imperial Valley, California

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio:Archaeological PermitsMilford,

  3. Liangtai River Valley Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, United Kingdom: EnergyLeyboldInformation Liangtai

  4. Sichuan Province Leshan City Mabian Gaozhuoying River Valley Development Co

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianhe Power CoShixiaLtd |

  5. The investigation of anomalous magnetization in the Raft River valley,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgramSulFeroxOpenVote

  6. White River Valley El Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWest PlainsAssn, Inc JumpGroup LLCInc Jump

  7. EIS-0506: Crooked River Valley Rehabilitation Project; Idaho County, Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatement |toDepartment of EnergyDepartment ofYakima,

  8. The Hunter Valley Access Undertaking

    E-Print Network [OSTI]

    Bordignon, Stephen; Littlechild, Stephen

    2012-04-25

      13  FERC  staff  play  a  similar  role  with  respect  to  rate  applications  by  interstate  pipeline  and  transmission networks in the US. (Littlechild 2011)  EPRG No.1206...  coal from mines in the Hunter Valley region to  the Port of Newcastle  for export. Approximately 16  coal producers have either  existing or planned operations in the region, and it has been estimated that the  coal  shipped  on  the  network  equates  to  around  $9  billion  worth  of  export...

  9. Valley Electric Association- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  10. Poudre Valley REA- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential water heaters, heat pumps, space...

  11. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security (HSS). This independent review of the emergency management program at the West Valley Demonstration Project (WVDP) was conducted prior to the creation of EA. HSS...

  12. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish...

  13. Poudre Valley REA- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  14. Golden Valley Electric Association - Sustainable Natural Alternative...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Tidal Wave Wind (Small) Hydroelectric (Small) Maximum Rebate 1.50kWh Program Info Sector Name Utility Administrator Golden Valley Electric Association Website http:...

  15. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley...

  16. MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER Find mountain valley circulation patterns that indicate mountain-valley flow, e.g.,

    E-Print Network [OSTI]

    MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER TASK: Find mountain valley circulation patterns that indicate mountain-valley flow, e.g., in the Boulder Canyon or katabatic flow between the mountain ranges and the lower terrains around Denver and Colorado. MOTIVATION: Mountain-valley flow is a common well understood

  17. Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

    Office of Environmental Management (EM)

    Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

  18. Single-valley engineering in graphene superlattices (Journal...

    Office of Scientific and Technical Information (OSTI)

    Single-valley engineering in graphene superlattices This content will become publicly available on June 14, 2016 Prev Next Title: Single-valley engineering in graphene...

  19. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  20. A Study of Visitor Bicycle Use in Yosemite Valley

    E-Print Network [OSTI]

    Co, Sean; Kurani, Ken; Turrentine, Tom

    2000-01-01

    Merced to better understand bicycle use in Yosemite Valley.A Study of Visitor Bicycle Use in Yosemite Valley UCD-ITS-V Bicycle rental

  1. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  2. The Hidden Valley-Langdraney

    E-Print Network [OSTI]

    Lhundup

    2001-01-01

    , is now in Ngayabling (the land of the Yak's Tail). May the fortunate living beings of this world be guided to the palace of Zangdog Pelri (the peak of Copper Mountain) by you Lord Ugyen. Journal of Bhutan Studies 66 Living in this era... ) who is surrounded by Manaka the daughters of Amitabhs. They entertain and preach while on auspicious days the celestial beings (Amitabhs) from heaven and serpents (klu) bathe in the pond formed at the inner most part of the valley. On the slope...

  3. Spring Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop JumpValley Jump to:

  4. Magic Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New York:MagicValley Jump

  5. Setting the renormalization scale in pQCD: Comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach

    SciTech Connect (OSTI)

    Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang; Brodsky, Stanley J.; Mojaza, Matin

    2015-05-26

    A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach to all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the ?0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio Re+e at four-loop order in pQCD.

  6. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  7. Schlumberger soundings in the Upper Raft River and Raft River Valleys,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindISave Energy atScheringIdaho and Utah

  8. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  9. HISTORICAL VEGETATION AND DRAINAGE PATTERNS OF WESTERN SANTA CLARA VALLEY

    E-Print Network [OSTI]

    describing landscape ecology in Lower Peninsula, West Valley, and Guadalupe Watershed Management Areas San

  10. Bear Valley Electric Service- Solar Initiative Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  11. VALMET-A valley air pollution model

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  12. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  13. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June...

  14. The Way Ahead - West Valley Demonstration Project

    Office of Environmental Management (EM)

    Project Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 198171 The Way...

  15. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    E-Print Network [OSTI]

    Miller, N.L.

    2009-01-01

    Eastside San Joaquin Tulare Central Valley Base Period (m/y)Eastside Delta San Joaquin Tulare Central Valley BaseSacramento Eastside San Joaquin Tulare Central Valley Severe

  16. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01

    California’s northern Sacramento Valley* DBH class, inches†woodlands in the northern Sacramento Valley. In: Proc Sympfirewood harvest in northern Sacramento Valley by Richard B.

  17. Potential economic impacts of irrigation-water reductions estimated for Sacramento Valley

    E-Print Network [OSTI]

    Lee, Hyunok; Sumner, Daniel A.; Howtt, Richard

    2001-01-01

    Water Cuts in the Sacramento Valley. UC Agricultural Issuesare also the poorest in the Sacramento Valley. All of thereductions estimated for Sacramento Valley Hyunok Lee u

  18. Analysis of Dam Failure in the Saluda River February 8, 2005

    E-Print Network [OSTI]

    Morrow, James A.

    Analysis of Dam Failure in the Saluda River Valley February 8, 2005 Abstract We identify and model two possible failure modes for the Saluda Dam: gradual failure due to an enlarging breach and sudden catas- trophic failure due to liqui#12;cation of the dam. For the #12;rst case we de- scribe the breach

  19. San Francisco Bay Estuary and its Delta. It is the complex system of waterways at the head of the estuary, formed by the confluence of the Sacramento and San Joaquin rivers that drain California's Central Valley (~40% of the state's watershed). [GIS figur

    E-Print Network [OSTI]

    San Francisco Bay Estuary and its Delta. It is the complex system of waterways at the head of the estuary, formed by the confluence of the Sacramento and San Joaquin rivers that drain California's Central by the San Francisco Regional Water Quality Control Board.] #12;Environmental Research 105 (2007) 1

  20. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  1. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  2. Salmon River Habitat Enhancement, 1984 Annual Report.

    SciTech Connect (OSTI)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  3. Geology and geothermal waters of Lightning Dock region, Animas Valley and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaft river valley,Pyramid

  4. The repairs on the joint head dam on the Salt River in Arizona

    E-Print Network [OSTI]

    Tillotson, Luther Rudolph

    1916-01-01

    on the Salt River. This structure impounds the flood waters of the Salt and holds them in a reservoir to be used as needed in the valley below. The next structure un­ dertaken was on the site of the old Granite Reef Dam. This new work is of concrete..., leaving the Joint Head Dam h igh and dry. The government rebuilt this dam of concrete, as shown. It further built dykes of earth over the arroyas south of the river which formed the high level river bed. A p rofile of these washed-out por­ tions...

  5. Salmon River Habitat Enhancement, Part 1 of 2, 1986 Annual Report.

    SciTech Connect (OSTI)

    Richards, Carl

    1987-03-01

    The tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved fish inventories in Bear Valley Creek, Idaho, that will be used in conjunction with 1984 and 1985 fish and habitat pre-treatment (baseline) data to evaluate effects of habitat enhancement on the habitat and fish community in Bear Valley Creek overtime. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur in the upper-Salmon River basin. Subproject III involved fish inventories (pre-treatment) in the Yankee Fork drainage of the Salmon River, and habitat problem identification on Fivemile and Ramey Creek. Subproject IV involved baseline habitat and fish inventories on the East Fork of the Salmon River, Herd Creek and Big-Boulder Creek. Individual abstracts have been prepared for the four subproject reports. 20 refs., 37 figs., 22 tabs.

  6. Merguerian, Charles; and Sanders, J. E., 1996a, Diversion of the Bronx River in New York City -evidence for postglacial surface faulting?, p. 131-145 in Hanson, G. N., chm., Geology

    E-Print Network [OSTI]

    Merguerian, Charles

    Merguerian, Charles; and Sanders, J. E., 1996a, Diversion of the Bronx River in New York City Program with Abstracts, 177 p. DIVERSION OF THE BRONX RIVER IN NEW YORK CITY - EVIDENCE FOR POSTGLACIAL valleys that we have obtained from the archives of the City of New York. We conclude that the new tectonic

  7. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    Z. 2015. Progress report: subsidence in the Central Valley,Ingebritsen SE. 1999. Land subsidence in the United States.Ireland RL. 1986. Land subsidence in the San Joaquin Valley,

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  9. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  10. The Evolution and Life Cycle of Valley Cold Pools

    E-Print Network [OSTI]

    Wilson, Travis Harold

    2015-01-01

    drainage flows undercut the preexisting valley air and liftof drainage flows is their ability to undercut and lift

  11. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  12. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    2002-09-30

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  13. Project Reports for Elk Valley Rancheria- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  14. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  15. River Corridor Achievements

    Broader source: Energy.gov [DOE]

    Washington Closure Hanford and previous contractors have completed much of the cleanup work in the River Corridor, shown here.

  16. Implementing a Cost Effective GIS Based River Classification Technique

    E-Print Network [OSTI]

    Williams, Brad

    2008-11-19

    Variable Mean Annual Precipitation Geology Scale Ca tchm en t Riv er Val ley Riv er Ch ann el Elevation Valley Width Valley Floor Width Valley Side Slopes Down Valley Slope Ratio of Valley Width to Valley Floor Width Methods Data Layers Wavelength... Variable Mean Annual Precipitation Geology Scale Ca tchm en t Riv er Val ley Riv er Ch ann el Elevation Valley Width Valley Floor Width Valley Side Slopes Down Valley Slope Ratio of Valley Width to Valley Floor Width Methods Data Layers Wavelength...

  17. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2006-05-10

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds significantpromise to address some of the problems described earlier in the paperthat have limited past efforts to improve Basin water qualitymanagement.

  18. Whirlwind Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: EnergyWexfordSouthValley Geothermal Project Jump

  19. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  20. Community Leadership: Best Practices for Brazos Valley 

    E-Print Network [OSTI]

    Reed, Johnathan; Harlow, Evan; Dorshaw, Carlie; Brower, David

    2008-01-01

    . #0;? Foster the creation networks between community and university entities 5. Nonprofit Resource Center #0;? Participate in efforts to organize and develop a nonprofit resource center The implementation of these action steps can help strengthen... by the Brazos Community Foundation and the Brazos Valley at large. These roles received wide support, were feasible - based on available resources, and aligned with the mission and purpose of BCF. Students developed a series of action steps to provide...

  1. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformationOpenTees Valley Biofuels Jump

  2. Lumbee River Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-Pacific DevelopingLower ValleyLudgateLumbee River

  3. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  4. Citrus Production in the Lower Rio Grande Valley of Texas. 

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01

    . TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS.... . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up to July, 1929...

  5. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    were designed to assess the Long Valley hydrothermal system and to identify possible deep geothermal drilling targets beneath the western portion of the caldera. Notes The...

  6. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Hyperspectral Imaging At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    Kennedy-Bowdoin, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Area...

  8. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    Ground Gravity Survey At Dixie Valley Geothermal Area (Allis, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  9. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    Open Energy Info (EERE)

    conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These...

  10. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  11. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Jump to: navigation, search...

  12. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  13. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  14. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  15. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At...

  16. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test...

  17. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  18. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  19. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid...

  1. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  2. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Conceptual Model Activity Date 2003 - 2003...

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  4. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in...

  5. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1998 - 2002...

  6. The Mechanics of Unrest at Long Valley Caldera, California. 2...

    Open Energy Info (EERE)

    gravity change determinations are used to estimate the intrusion geometry, assuming a vertical prolate ellipsoidal source. The U.S. Geological Survey occupied the Long Valley...

  7. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

  8. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature...

  9. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  10. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  11. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  12. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  13. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  14. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that will provide support to the DOE, West Valley Demonstration Project, and the New York State Energy Research and Development Authority in performing a probabilistic...

  15. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    Open Energy Info (EERE)

    Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated...

  16. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  17. Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

  18. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  19. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

  20. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  1. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

  2. Update On Geothermal Exploration At Fort Bidwell, Surprise Valley...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Abstract A...

  3. Multiple Ruptures For Long Valley Microearthquakes- A Link To...

    Open Energy Info (EERE)

    Tremor(Question) Abstract Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not...

  4. Clean Cities: Clean Cities Coachella Valley Region coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    achievements, and from DOE for outstanding public outreach. Through his leadership, hydrogen fueling infrastructure and vehicles were also implemented in the Coachella Valley. In...

  5. Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings...

  6. Exploration and Development at Dixie Valley, Nevada- Summary...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

  7. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At...

  8. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  9. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  10. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  11. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  13. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration...

  14. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  15. Possible Magmatic Input to the Dixie Valley Geothermal Field...

    Open Energy Info (EERE)

    fault zone-like structure extending from the baseof Dixie Valley to a broad, deep crustal conductor beneaththe Stillwater-Humboldt Range area. The deep conductor...

  16. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  17. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  18. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    System. Geothermics. () . Related Geothermal Exploration Activities Activities (4) Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Isotopic...

  19. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    Mariner & Willey, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,...

  1. Voluntary Protection Program Onsite Review, West Valley Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    June 2008 Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review...

  2. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  3. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Additional References Retrieved from...

  4. DOE Awards Contract for the West Valley Demonstration Project...

    Energy Savers [EERE]

    to the U.S. Department of Energy (DOE) West Valley Demonstration Project (WVDP), and the New York State Energy Research and Development Authority (NYSERDA) in performing a...

  5. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  6. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  7. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  8. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    W. Younker, C. Dan Miller, Grant H. Heiken, Kenneth H. Wohletz (1988) Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California...

  9. Volcanism, Structure, and Geochronology of Long Valley Caldera...

    Open Energy Info (EERE)

    Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  10. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  11. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

  12. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  13. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    Open Energy Info (EERE)

    Chemical Logging At Dixie Valley Geothermal Area (Los Alamos National Laboratory, NM, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density...

  15. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2009 d river run by Eireann Aspell Jamie Gorton Heidi Lynch Matt Serron #12 lives. #12;BLANK Editors' Note There were portents hinting at the Onion River Review's future as early

  16. Farmscape ecology of a native stink bug in the Sacramento Valley

    E-Print Network [OSTI]

    2002-01-01

    to rural roadsides in the Sacramento Valley of Cali­ fornia:tomato, a major crop in the Sacramento Valley. This is notLPJM Prop-am. In the Sacramento Valley, there are several

  17. West Valley Site History, Cleanup Status, and Role of the West...

    Office of Environmental Management (EM)

    Site History, Cleanup Status, and Role of the West Valley Citizen Task Force West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force Presentation...

  18. When Emergency Rooms Close: Ambulance Diversion in the West San Fernando Valley

    E-Print Network [OSTI]

    Natasha Mihal; Renee Moilanen

    2005-01-01

    of diversion on the West Valley, identifies major problemsa working group of the five West Valley hospitals to exposehigh diversion rates in the West Valley and proposed ways to

  19. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    releases into the river from a hydropower project. Data fromSymposium on small hydropower and fisheries; Bethesda,instream flow needs in hydropower licensing. Palo Alto, CA:

  20. TVA's Integrated River System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and controlling floods. So far as may be consistent with such purposes, ...for the generation of electric energy... TVA Power Service Area TVA'S INTEGRATED RIVER SYSTEM | 3...

  1. Large River Floodplains

    E-Print Network [OSTI]

    Dunne, T; Aalto, RE

    2013-01-01

    River, California. Sedimentology 57, 389–407. http://J. (Eds. ), Fluvial Sedimentology VI. Special PublicationsAnatomy of an avulsion. Sedimentology 36, 1–24. Stallard,

  2. Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain View CA, USA

    E-Print Network [OSTI]

    Fiat, Amos

    Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain University, Ithaca NY, USA Aleksandrs Slivkins, Microsoft Research Silicon Valley, Mountain View CA, USA We

  3. Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster

    E-Print Network [OSTI]

    Steinfield, Charles

    Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster Valley biotech region located in Denmark and Southern Sweden. Responding companies included established

  4. VWA-0033- In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc.

    Broader source: Energy.gov [DOE]

    This decision considers a Complaint filed by John L. Gretencord (Gretencord) against West Valley Nuclear Services, Inc. (West Valley) under the Department of Energy's (DOE) Contractor Employee...

  5. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  6. Unalakleet Valley Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPAEnergyUltraUnalakleet Valley Elec Coop

  7. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: Energy Resources JumpSouth,GrapeGrass Valley

  8. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin GeothermalValley Ethanol

  9. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudorOpenApplicationDixie Valley

  10. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton, Ohio:St. Paul,Valley

  11. Chippewa Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewa Valley Electric Coop Place:

  12. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableIncAlcornNRELAlineasolarValley

  13. Penoyer Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltosPenoyer Valley Electric Coop Jump

  14. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley Authority (Kentucky)

  15. Tennessee Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley AuthorityTennessee

  16. Valley Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates API VersionVadiumNevada) JumpValley

  17. Valley View Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:Valley Rural Electric

  18. Antelope Valley Neset | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo, Nebraska:AnsonNebraska:Valley

  19. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen Energy Information Geothermal AreaAire Valley

  20. Imperial Valley Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71CommercialThisImperial Valley Geothermal project

  1. Lighthouse Solar Diablo Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchem IncLighthouse Solar Address:Valley

  2. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList ofBalanceLittle Valley Geothermal

  3. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpIICalifornia:BlueBioStarValley

  4. Bolton Valley Resort | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass FacilityBluegrass Ridge Wind2BoeingBolton Valley

  5. Clayton Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,GeorgiaValley Geothermal Project Jump to:

  6. Bear Creek Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585Bear Creek Valley

  7. Bethel Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy| DepartmentBethel Valley Watershed. Topics

  8. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest Valley

  9. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest ValleyWest

  10. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergyofC3ECALIFORNIA VALLEY

  11. Counting Mountain-Valley Assignments for Flat Folds

    E-Print Network [OSTI]

    Hull, Thomas C.

    Counting Mountain-Valley Assignments for Flat Folds Thomas Hull Department of Mathematics Merrimack), a mountain-valley (MV) assignment is a function f : E {M,V} which indicates which crease lines are con- vex can be thought of as a structural blueprint of the fold.) Creases come in two types: mountain creases

  12. Onion River OnionRiverReview2011dd

    E-Print Network [OSTI]

    Weaver, Adam Lee

    2011 d river run by Lauren Fish Heather Lessard Jenna McCarthy Philip Noonan Erica Sabelawski #12;TheOnion River Review OnionRiverReview2011dd 2011 Our Lives in Dance Alex Dugas We were born with bare. Then we tap-danced on our graves, and back through the womb again, shoeless. #12;d Onion River Review d

  13. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2013 d river run by Alex Dugas Sarah Fraser Bryan Hickey Nick Lemon Diana Marchessault Mickey O'Neill Amy Wilson #12;#12;Editors' Note For this edition of the Onion River Review, we are finally able to present to you this year's edition of the Onion River Review: our love child, our shining

  14. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  15. The San Joaquin Valley Westside Perspective

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.; Linneman, J. Christopher; Tanji, Kenneth K.

    2006-03-27

    Salt management has been a challenge to westside farmerssince the rapid expansion of irrigated agriculture in the 1900 s. Thesoils in this area are naturally salt-affected having formed from marinesedimentary rocks rich in sea salts rendering the shallow groundwater,and drainage return flows discharging into the lower reaches of the SanJoaquin River, saline. Salinity problems are affected by the importedwater supply from Delta where the Sacramento and San Joaquin Riverscombine. Water quality objectives on salinity and boron have been inplace for decades to protect beneficial uses of the river. However it wasthe selenium-induced avian toxicity that occurred in the evaporationponds of Kesterson Reservoir (the terminal reservoir of a planned but notcompleted San Joaquin Basin Master Drain) that changed public attitudesabout agricultural drainage and initiated a steady stream ofenvironmental legislation directed at reducing non-point source pollutionof the River. Annual and monthly selenium load restrictions and salinityand boron Total Maximum Daily Loads (TMDLs) are the most recent of thesepolicy initiatives. Failure by both State and Federal water agencies toconstruct a Master Drain facility serving mostly west-side irrigatedagriculture has constrained these agencies to consider only In-Valleysolutions to ongoing drainage problems. For the Westlands subarea, whichhas no surface irrigation drainage outlet to the San Joaquin River,innovative drainage reuse systems such as the Integrated Farm DrainageManagement (IFDM) offer short- to medium-term solutions while morepermanent remedies to salt disposal are being investigated. Real-timesalinity management, which requires improved coordination of east-sidereservoir releases and west-side drainage, offers some relief toGrasslands Basin farmers and wetland managers - allowing greater salinityloading to the River than under a strict TMDL. However, currentregulation drives a policy that results in a moratorium on all drainagereturn flows.

  16. Asynchronous ice lobe retreat and glacial Lake Bascom: Deglaciation of the Hoosic and Vermont valleys, southwestern Vermont

    SciTech Connect (OSTI)

    Small, E.; Desimone, D. (Williams Coll., Williamstown, MA (United States). Dept. of Geology)

    1993-03-01

    Deglaciation of the Hoosic River drainage basin in southwestern Vermont was more complex than previously described. Detailed surficial mapping, stratigraphic relationships, and terrace levels/delta elevations reveal new details in the chronology of glacial Lake Bascom: (1) a pre-Wisconsinan proglacial lake was present in a similar position to Lake Bascom as ice advanced: (2) the northern margin of 275m (900 ft) glacial Lake Bascom extended 10 km up the Vermont Valley; (3) the 215m (705 ft) Bascom level was stable and long lived; (4) intermediate water planes existed between 215m and 190m (625 ft) levels; and (5) a separate ice tongue existed in Shaftsbury Hollow damming a small glacial lake, here named glacial Lake Emmons. This information is used to correlate ice margins to different lake levels. Distance of ice margin retreat during a lake level can be measured. Lake levels are then used as control points on a Lake Bascom relative time line to compare rate of retreat of different ice tongues. Correlation of ice margins to Bascom levels indicates ice retreat was asynchronous between nearby tongues in southwestern Vermont. The Vermont Valley ice tongue retreated between two and four times faster than the Hoosic Valley tongue during the Bascom 275m level. Rate of retreat of the Vermont Valley tongue slowed to one-half of the Hoosic tongue during the 215m--190m lake levels. Factors responsible for varying rates of retreat are subglacial bedrock gradient, proximity to the Hudson-Champlain lobe, and the presence of absence of a calving margins. Asynchronous retreat produced splayed ice margins in southwestern Vermont. Findings from this study do not support the model of parallel, synchronous retreat proposed by many workers for this region.

  17. Rules of the River

    E-Print Network [OSTI]

    Anonymous,

    1980-01-01

    't overexert. Be careful of sunburn, heat exhaustion and heat stroke. ? Leave car keys hidden at launch point or take-out (with shuttle cars), or firmly attach them to an article of clothing on your person with a strong safety pin. Don't leave valuables... are organized into four parts: ? Planning Your River Trip ? Selecting Your Equipment ? Rules of Safety ? Rules of Conduct When put into practice, these "Rules of the River" may turn an uncomfortable river trip into a lasting and special experience. Read...

  18. Development of the Lower Sacramento Valley Flood-Control System: Historical Perspective

    E-Print Network [OSTI]

    Singer, Michael

    Development of the Lower Sacramento Valley Flood-Control System: Historical Perspective L. Allan in the Sacramento Valley. The valley is a broad, low plain with backswamp basins that were frequently inundated in the Sacramento Valley due to high flow variability, mining sedimentation, lack of a coordinated levee system

  19. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    none,

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U/sub 3/O/sub 8/ by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive.

  20. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    River and Fresno Slough to Tulare Lake and beyond (Figure 3-wet years, overflow from Tulare Lake passed down FresnoFresno Slough, connecting Tulare Lake and the San Joaquin

  1. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    through June of around 4,000 cfs are required to produceadults and of around 7,500 cfs are required for runs ofRiver was above about 20,000 cfs, high when flow was less

  2. Conjunctive management of groundwater and surface water resources in the San Joaquin Valley of California

    SciTech Connect (OSTI)

    Quinn, N.W.T.

    1992-01-01

    The San Joaquin-Tulare Conjunctive Use Model (SANTUCM) was developed to evaluate possible long-term scenarios for long term management of drainage and drainage related problems in the western San Joaquin Valley of California. The unique aspect of the conjunctive use model is its coupling of a surface water delivery operations model with a regional groundwater model. A salinity model has been added to utilize surface water model output and allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. The results of scenario runs, performed to data, using the SANTUCM model show table lowering and consequent drainage reduction can be achieved through a combination of source control, land retirement and regional groundwater pumping. The model also shows that water transfers within the existing distribution system are technically feasible and might allow additional releases to be made from Friant Dam for water quality maintenance in the San Joaquin River. However, upstream of Mendota Pool, considerable stream losses to the aquifer are anticipated, amounting to as much as 70% of in-stream flow.

  3. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    SciTech Connect (OSTI)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and Johnson 1997; Pravecek and Kline 1998; Kline and Heindel 1999; Hebdon et al. 2000; Flagg et al. 2001; Kline and Willard 2001; Frost et al. 2002; Hebdon et al. 2002; Hebdon et al. 2003; Kline et al. 2003a; Kline et al. 2003b; Willard et al. 2003a; Willard et al. 2003b; Baker et al. 2004; Baker et al. 2005; Willard et al. 2005; Baker et al. 2006; Plaster et al. 2006; Baker et al. 2007). The immediate goal of the program is to utilize captive broodstock technology to conserve the population's unique genetics. Long-term goals include increasing the number of individuals in the population to address delisting criteria and to provide sport and treaty harvest opportunity. (1) Develop captive broodstocks from Redfish Lake sockeye salmon, culture broodstocks and produce progeny for reintroduction. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program reintroduction efforts. (4) Utilize genetic analysis to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, provide written activity reports, and participate in essential program management and planning activities. Idaho Department of Fish and Game's participation in the Snake River Sockeye Salmon Captive Broodstock Program includes two areas of effort: (1) sockeye salmon captive broodstock culture, and (2) sockeye salmon research and evaluations. Although objectives and tasks from both components overlap and contribute to achieving the same goals, work directly related to sockeye salmon captive broodstock research and enhancement will appear under a separate cover. Research and enhancement activities associated with Snake River sockeye salmon are permitted under NOAA permit numbers 1120, 1124, and 1481. This report details fish

  4. Guide for Citrus Production in the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Maxwell, Norman P. (Norman Paul); Bailey, Morris A.

    1963-01-01

    Norman Maxwell, Ralph Petersen, Robert Orton and Donald Haddock* The earliest record of citrus planted in the Valley is a planting of seedling orange trees, made by Don JIaceclona Vela in the early 1880's, on the Laguna 5eca Ranch, north of Edinburg..., Morris Bailey, Norman Maxwell, V. C. Cooper and Bruce Lime" GRAPF,%R UIT VA R6ETI.S The Valley's reputation as a citrus area is based primarily upon the high interior quality of its grape- fruit. Valley grapefruit is sweeter than that raised...

  5. On tropospheric rivers

    E-Print Network [OSTI]

    Hu, Yuanlong, 1964-

    2002-01-01

    In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated ...

  6. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste...

  7. Multidimensional Computational Fluid Dynamics Modeling of the Dispersion of White Oak Creek Contaminants in the Clinch River

    SciTech Connect (OSTI)

    Platfoot, J.H.; Wendel, M.W.; Williams, P.T.

    1996-10-01

    This report describes the simulation of the dispersion and dilution of dissolved or finely suspended contaminants entering the Clinch river from White Oak Creek. The work is accomplished through the application of a commercial computational fluid dynamics (CFD) solver. This study assumes that contaminants originating in the White Oak Creed watershed, which drains Oak Ridge National Laboratory, will eventually reach the mouth of White Oak Creek and be discharged into the clinch River. The numerical model was developed to support the analysis of the off-site consequences of releases from the ORNL liquid low-level waste system. The system contains storage tanks and transfer lines in Bethel Valley and Melton Valley. Under certain failure modes, liquid low-level waste could be released to White Oak Creek or Melton Branch to White Oak Creek and eventually be discharged to the Clinch River. Since the Clinch River has unrestricted access by the public and water usage from the Clinch River is not controlled by the Department of Energy, such a liquid low-level waste spill would create the possibility of public exposure to the contaminant. This study is limited to the dispersion of the contaminants downstream of the confluence of White Oak Creek.

  8. Ecology of the river dolphin, Inia geoffrensis, in the Cinaruco River, Venezuela 

    E-Print Network [OSTI]

    McGuire, Tamara Lee

    1995-01-01

    The Cinaruco River is a tributary of the Orinoco River, and forms the southern boundary of Venezuela's newest national park, Santos Luzardo. Like other rivers of this region, the Cinaruco River undergoes an extreme seasonal flood cycle. River...

  9. Quaternary Glaciations in the Lago Pueyrredón Valley, Argentina 

    E-Print Network [OSTI]

    Hein, Andrew S.

    This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley...

  10. Little Boxes: High Tech and the Silicon Valley

    E-Print Network [OSTI]

    Crawford, Margaret

    2013-01-01

    Immigrant Workers and the High-Tech Global Economy (Newin a clerical position at high-tech firms like Varian. TheCrawford Little Boxes High-Tech and the Silicon Valley The

  11. Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING

    E-Print Network [OSTI]

    Gray, Matthew

    IN 1 YEAR BAR-TAILED GODWIT 6,000 MILES NON-STOP Tennessee Valley Shorebird Assessment Project NICHE Assessment Project Overview Construction of TVA dams over the past 60+ years has created extensive inland

  12. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Energy, Tthe American Recovery and Reinvestment Act, and AltaRock Energy Inc. Notes A GIS Database was populated to help develop a conceptual model of the Dixie Valley...

  13. A Four-Dimensional Viscoelastic Deformation Model For Long Valley...

    Open Energy Info (EERE)

    1995 And 2000 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera,...

  14. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    DE, Swain LA. 1989. Ground-water flow in the Central Valley,California Department of Water Resources. 2015. CaliforniaCalifornia Department of Water Resources. [cited 2015 Sep

  15. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal...

  16. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

  17. Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...

    Open Energy Info (EERE)

    Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to...

  18. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    is needed to preserve the geochemical signature of the reservoir and . Finally, a new stress model is planned to be used for Dixie Valley, the model will utilize a boundary...

  19. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface geological conditions within...

  20. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV Geothermal Development Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  1. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  2. Sulphur Springs Valley EC- SunWatts Loan Program

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of ...

  3. Feasibility Study of the Effects of Water Quality on Soil Properties in the Red River Valley 

    E-Print Network [OSTI]

    Gerard, C. J.; Hipp, B. W.; Runkles, J. R.; Bordovsky, D. J.; McCully, W. G.

    1981-01-01

    The suitability of water for irrigation depends upon many factors, of primary concern is the quantity and quality of salts present in the water Ayers and Wescot1. If total dissolved solids in the irrigation water are too high, salts accumulate...

  4. Food Habits of Fall Migrating Least Sandpipers in the Tennessee River Valley

    E-Print Network [OSTI]

    Gray, Matthew

    Wirwa Forestry Wildlife and Fisheries Graduate Seminar Series Introduction Transcontinental Migrations

  5. The Great Diversion Project in the Owens River Valley and Mono Lake Area

    E-Print Network [OSTI]

    Polly, David

    not only produce water, but also can produce hydroelectric power due to the high elevation from which

  6. Lichuan City Yujiang River Valley Hydro Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place: RhodeLichuan City

  7. Microsoft Word - CROOKED RIVER VALLEY REHABILITATION PROJECT RECORD of DECISION.docx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May2.doc MicrosoftMicrosoft Word -

  8. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  9. Systems and Computer Engineering 4456 Mackenzie Building

    E-Print Network [OSTI]

    Dawson, Jeff W.

    Health, smart grids, retail and logistics, critical infrastructure, smart machinery, or industrial controlE sensor technologies and its use in transforming business architectures to reduce cost and increase that improve efficiency, reliability and reduce cost. Specific application areas are characterized by a strong

  10. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2012 d river run by Alex Dugas Lauren Fish Heather Lessard Jenna Mc jokes. Together these things helped shape the 2012 edition of the Onion River Review. A worthwhile departing on an adventure, you simply have no idea what will happen or who you will meet. You may run

  11. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  12. Higgs portal valleys, stability and inflation

    E-Print Network [OSTI]

    Guillermo Ballesteros; Carlos Tamarit

    2015-09-30

    The measured values of the Higgs and top quark masses imply that the Standard Model potential is very likely to be unstable at large Higgs values. This is particularly problematic during inflation, which sources large perturbations of the Higgs. The instability could be cured by a threshold effect induced by a scalar with a large vacuum expectation value and directly connected to the Standard Model through a Higgs portal coupling. However, we find that in a minimal model in which the scalar generates inflation, this mechanism does not stabilize the potential because the mass required for inflation is beyond the instability scale. This conclusion does not change if the Higgs has a direct weak coupling to the scalar curvature. On the other hand, if the potential is absolutely stable, successful inflation in agreement with current CMB data can occur along a valley of the potential with a Mexican hat profile. We revisit the stability conditions, independently of inflation, and clarify that the threshold effect cannot work if the Higgs portal coupling is too small. We also show that inflation in a false Higgs vacuum appearing radiatively for a tuned ratio of the Higgs and top masses leads to an amplitude of primordial gravitational waves that is far too high, ruling out this possibility.

  13. Rio Grande River

    E-Print Network [OSTI]

    Hills Photo Shop

    2011-09-05

    FORKS BIRDBEAR-NISKU JEFFERSON GROUP DUPEROW O (IJ o BEAVER HILL LAKE GR UP ELK POINT GROUP SOURIS RIVER Ist. RED BED DAWSON BAY 2ll(IRED BED PRAIRIE EVAP WI NI ASHERN INTERLAKE STONY MOUNTAIN RED RIVER WINN IP EG Figure 3... and is bounded by the Sioux Arch, the Black Hills Uplift, the Miles City Arch, and the Bowdoin Dome. The structural trends within the basin parallel the major structural trends of the Rocky Mountain Belt. The Williston Basin is characterized by gently...

  14. VOLUNTEER-BASED SALMON RIVER

    E-Print Network [OSTI]

    Institute Environment Canada VOLUNTEER-BASED MONITORING PROGRAM FOR THE SALMON RIVER BASIN: USING BENTHICVOLUNTEER-BASED MONITORING PROGRAM FOR THE SALMON RIVER BASIN: USING BENTHIC INDICATORS TO ASSESS INDICATORS TO ASSESS STREAM ECOSYSTEM HEALTH #12;Volunteer-Based Monitoring Program for the Salmon River

  15. UPPER SACRAMENTO RIVER SPORT FISHERY

    E-Print Network [OSTI]

    UPPER SACRAMENTO RIVER SPORT FISHERY Marine Biological Laborato«y L I B R. A. R "ST OCT 2 31950 significant changes in the environmental conditions which affect fisheries in Sacramento River have resulted number of sportsmen who are turning to the Upper Sacramento River is indicative of the magnitude

  16. Salmon Lifecycle Considerations to Guide Stream Management: Examples from California’s Central Valley

    E-Print Network [OSTI]

    Merz, Joseph E.; Workman, Michelle; Threloff, Doug; Cavallo, Brad

    2013-01-01

    Lower Mokelumne River fall- run Chinook salmon escapementviability of Sacramento River winter-run Chinook salmon (estimation of Mokelumne River fall-run Chinook salmon (

  17. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  18. Ward Valley status report: Science versus politics. Which will win?

    SciTech Connect (OSTI)

    Pasternak, A.D.

    1996-10-01

    The State of California has issued a license to US Ecology, Inc. to construct and operate a disposal facility for low-level radioactive waste (LLRW) at the remote, arid Ward Valley site in the Mojave Desert. The license and certification of the associated environmental documentation have been upheld by the California courts. The Ward Valley license is the first and, so far, only license to be issued for a new LLRW disposal facility pursuant to the Low-Level Radioactive Waste Policy Act enacted in 1980 and amended in 1985. However, the dates of construction and operation of the disposal facility are uncertain because the federal government has refused to sell land in Ward Valley to the State of California for the site of the Southwestern Compact`s regional disposal facility. The Clinton Administration`s repeated excuses for delaying the land transfer, and the circumstances of these delays, indicate that prospects for success of the Ward Valley project, and perhaps the Policy Act itself, depend on the outcome of a battle between science and politics. In view of these delays by the administration, Congressional action to Transfer the Ward Valley lands to California will serve both state and federal goals for safe disposal of LLRW.

  19. The diurnal cycle of air pollution in the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    Panday, Arnico Kumar

    2006-01-01

    This dissertation describes the most comprehensive study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal -- a bowl-shaped mountain valley of two million people with a growing air pollution ...

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  1. North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    E-Print Network [OSTI]

    Sacks, Benjamin N.; Statham, Mark J.; Perrine, John D.; Wisely, Samantha M.; Aubry, Keith B.

    2010-01-01

    and the origin of the Sacramento Valley red fox Benjamin N.in arid habitats in the Sacramento Valley of California wellState University Sacramento, Sacramento, CA 95819, USA M. J.

  2. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    E-Print Network [OSTI]

    Panday, Arnico K.

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

  3. An Analysis of Texas Waterways: A Report on the Physical Characteristics of Rivers, Streams, and Bayous in Texas. 

    E-Print Network [OSTI]

    Belisle, Harold J.; Josselet, Ron

    1977-01-01

    Cree k San Jacinto River, East Fork Spring Creek Taylor Bayou Turkey Creek V. CENTRAL TEXAS WATE RWAYS A. Major Waterways Blanco River Bosque River Brazos River Colorado River Concho River . Frio River Guadalupe River Lampasas River... MAJOR CENTRAL TEXAS WATERWAYS 13. Blanco River 14. Bosque River 15. Brazos River 16. Colorado River 17. Concho River 18. Frio River 19. Guadal upe River 20. Lampasas River 21. Lavaca River 22. Leon River 23. Little River 24. Llano River 25...

  4. Preliminary Open File Report: Geological and Geophysical Studies in Grass Valley, Nevada

    E-Print Network [OSTI]

    Beyer, H.

    2010-01-01

    component. The 3 shaded areas in Figure 51 correspond toValley area that is seismically active (Figure 51). The

  5. Evidence for Multiple Glacial Advances and Ice Loading From a Buried Valley in Southern Manhattan

    E-Print Network [OSTI]

    Merguerian, Charles

    of unraveling glacial history. A site in lower Manhattan near the Brooklyn Bridge occupies a bedrock valley

  6. North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    E-Print Network [OSTI]

    Sacks, Benjamin N.; Statham, Mark J.; Perrine, John D.; Wisely, Samantha M.; Aubry, Keith B.

    2010-01-01

    to the Valley via transcontinental railway, after it reachedthe West along the transcontinental railway (e.g. , Wyoming,

  7. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  8. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  9. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  10. West Valley Demonstration Project site environmental report, calendar year 1997

    SciTech Connect (OSTI)

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  11. DOE Awards Small Business Contract for West Valley NY Services

    Broader source: Energy.gov [DOE]

    CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

  12. North Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton, Ohio:St. Paul,ValleyValley,

  13. San Luis Valley R E C, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon DevelopmentValley Clean EnergySanLuis Valley

  14. West Valley Demonstration Project Food Drive Delivers Food for 700 Families

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM employees at West Valley Demonstration Project (WVDP) helped collect and deliver 114,843 pounds of food, including 360 turkeys, to nine food pantries in the West Valley area, just in time to benefit about 700 families in need during the holidays.

  15. MAP IOP 10 South Foehn Event in the Wipp Valley: Verification of High-Resolution Numerical

    E-Print Network [OSTI]

    Gohm, Alexander

    MAP IOP 10 South Foehn Event in the Wipp Valley: Verification of High-Resolution Numerical-of-the-art mesoscale model run in a very high- resolution mode. The phenomenon: Deep south foehn in the Wipp Valley-sigma levels · initialized with operational ECMWF analysis at 23 Oct 18 UTC and 24 Oct 00 UTC Wipp Valley

  16. Great Spaces of Rock: The Traprock Ridgelands of the Central Connecticut Valley

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    Great Spaces of Rock: The Traprock Ridgelands of the Central Connecticut Valley Photography Ridgelands of the Central Connecticut Valley Photography by Robert Pagini With essays by Peter M. Le and bad, to the beauty, joy, and solace of the Traprock Ridgelands of the central Connecticut Valley. Born

  17. The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    1 The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal by Arnico K. Panday A OF AIR POLLUTION IN THE KATHMANDU VALLEY, NEPAL by Arnico K. Panday Submitted to the Department of Earth study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal ­ a bowl

  18. CONFLICTS IN RIVER MANAGEMENT: A CONSERVATIONIST'S PERSPECTIVE ON SACRAMENTO RIVER RIPARIAN HABITATS--

    E-Print Network [OSTI]

    CONFLICTS IN RIVER MANAGEMENT: A CONSERVATIONIST'S PERSPECTIVE ON SACRAMENTO RIVER RIPARIAN, Defenders of Wildlife, Sacramento, California. Abstract: The Sacramento River's historic riparian habi- tats on this conference's plenary session panel, I will provide a conservationist perspective on Sacramento River riparian

  19. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  20. d Onion River Review d OnionRiverReview2010dd

    E-Print Network [OSTI]

    Weaver, Adam Lee

    ://www.smcvt.edu/onionriver/. #12;d Onion River Review d 2010 d river run by Eireann Aspell Lauren Fish Jamie Gorton Heidi Lynchd Onion River Review d 2010 d OnionRiverReview2010dd #12;The Onion River Review is the literary Matt Serron #12;BLANK Editors' Note The only certainty of the Onion River Review is the editors' un

  1. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  2. The T-REX valley wind intercomparison project

    SciTech Connect (OSTI)

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  3. Appendix C: The sources of Copan Valley obsidian

    SciTech Connect (OSTI)

    Harbottle, G. [Brookhaven National Lab., Upton, NY (United States); Neff, H.; Bishop, R.L. [Smithsonian Institution, Washington, DC (United States). Conservation Analytical Lab.

    1995-05-01

    One hundred thirty-nine obsidian samples from the Copan Valley were subjected to neutron activation analysis at Brookhaven National Laboratory (BNL). Obsidian sources from Mesoamerica have been characterized by a number of different laboratories using several techniques. Over 1,800 samples from Mesoamerica have been analyzed by neutron activation at BNL. These data are now housed both at BNL and in the Smithsonian Archaeometric Research Collections and Records (SARCAR) data base. Previous statistical analysis of the Mesoamerican obsidian artifacts and source samples has produced reference groups representing many of the sources, including Ixtepeque, San Martin Jilotepeque, and El Chayal, the three sources closest to the Copan Valley and therefore most likely to be represented in the analyzed sample. As anticipated, the overwhelming majority of obsidian recovered in the Copan Valley comes from the closest source, Ixtepeque. Of the seven El Chayal specimens, four pertain to CV-43 and three pertain to CV-20. These data provide no evidence of a difference between the two localities in external obsidian exchange relations. Thus, the authors find no grounds for questioning the assumption that the minor quantities of El Chayal obsidian that reached the Copan Valley were distributed through the same channels responsible for distribution of the more common Ixtepeque obsidian.

  4. Field Testing Protocol Western Mountains, Valleys and Coast Regional Supplement

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Field Testing Protocol Western Mountains, Valleys and Coast Regional Supplement Organization and oversee the field testing of the draft Regional Supplement. Field testing will be done in cooperation, the District coordinator will provide team members with an introduction to the Regional Supplement

  5. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  6. PRACTICAL TECHNIQUES FOR VALLEY ELDERBERRY LONGHORN BEETLE MITIGATION1

    E-Print Network [OSTI]

    -24, 1988, Davis, California 2 Resource Ecologist, Jones & Stokes Associates Inc., Sacramento, Calif.; Entomologist, U.S. Fish and Wildlife Service, Sacramento Endangered Species Office, Sacramento Calif of Flood Management, Sacramento Calif.; Owner and Manager, Cornflower Farms, Elk Grove, Calif. The valley

  7. University Of California, Berkeley Valley Life Sciences Building

    E-Print Network [OSTI]

    University Of California, Berkeley Valley Life Sciences Building (VLSB) Building Emergency Plan Date Revised: January 2014 Prepared By: Derek Apodaca #12;TABLE OF CONTENTS I. BUILDING INFORMATION 1. Building Name 2. Building Coordinator Name 3. Alternate BC Name 4. Emergency Assembly Area Location 5

  8. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  9. RiverHeath Appleton, WI

    Broader source: Energy.gov [DOE]

    The goal of the project is to produce a closed loop neighborhood-wide geothermal exchange system using the river as the source of heat exchange.

  10. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  11. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  13. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  14. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  15. Spatial design principles for sustainable hydropower development in river basins

    E-Print Network [OSTI]

    Jager, Henriette I.

    : Freshwater reserve design Hydroelectric power Network theory Optimization Regulated rivers River portfolio

  16. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    March 6, 2000 Issued to Westinghouse Savannah River Company, related to Procurement Quality Assurance and Quality Improvement Deficiencies at the Savannah River Site. On March 6,...

  17. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA 98-09 Preliminary Notice of Violation, Westinghouse Savannah River Company - EA 98-09 September 21, 1998 Preliminary Notice of Violation issued to Westinghouse Savannah River...

  18. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic...

  19. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    Management Institute Highlights Savannah River Nuclear Solutions in Publication Project Management Institute Highlights Savannah River Nuclear Solutions in Publication February 6,...

  20. Independent Oversight Review, Savannah River Operations Office...

    Office of Environmental Management (EM)

    Savannah River Operations Office - July 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 July 2013 Review of the Employee Concerns Program at the...

  1. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  2. New River Geothermal Research Program

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

  3. River Corridor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigningResourcesfeed-image Digg:RisingRiver

  4. GOLF COURSES FRASER RIVER BASIN

    E-Print Network [OSTI]

    : Fraser Pollution Abatement Office Fraser River Action Plan Environment Canada North Vancouver, B judgement in light of the knowledge and information available to UMA at the time of preparation. UMA denies by Environment Canada under the Fraser River Action Plan through the Fraser Pollution Abatement Office. The views

  5. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    . Table 4. Out-of-subbasin production for three Hood River steelhead populations. Table 5. Life cycle river mile 6 13 Dee ID seepage 13 cold springs 2 city of HR overflow? riverside drive reservoir? 2 stone springs 4 city of HR riverside drive reservoir? 4 middle fork coe branch 15 MFID 15 clear branch 19 MFID

  6. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  7. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  8. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  9. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  10. Coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides

    SciTech Connect (OSTI)

    Xiao, Di; Liu, G. B.; Feng, wanxiang; Xu, Xiaodong; Yao, Wang

    2012-01-01

    We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the 0.1 eV valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.

  11. EIS-0337: West Valley Demonstration Project Waste Management

    Broader source: Energy.gov [DOE]

    The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energy’s proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

  12. The Lower Rio Grande Valley Regional Public Transportation Coordination Plan 

    E-Print Network [OSTI]

    Lower Rio Grande Valley Development Council

    2006-11-30

    . Prepared By Lago Elsa Solis Pharr Muniz Donna Bixby Alton Alamo Olmito Lozano Yznaga Lyford Lasana Combes Lasara Encino Havana Bayview Primera Weslaco Nurillo Mission McAllen La Homa Hidalgo Edcouch Penitas Laureles Willamar Ratamosa La Feria Scissors... Isidro Port Isabel South Point Los Fresnos Indian Lake Brownsville Palm Valley Grand Acres Santa Maria Rangerville Arroyo Alto San Perlita Villa Verde South Alamo North Alamo Laguna Seca Citrus City Alton North Villa Pancho Rancho Viejo Laguna Vista...

  13. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie Valley Geothermal Area

  14. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie Valley Geothermal|(Newman,

  15. Resistivity Log At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformation Fish Lake Valley

  16. Quail Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuail Valley, California: Energy

  17. Queen Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuailValley, Arizona: Energy

  18. Savannah River Site Environmental Data for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09

    This document presents data from Savannah River Site routine effluent monitoring and environmental surveillance programs.

  19. Wood River Levee Reconstruction, Madison County, IL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

  20. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers

    SciTech Connect (OSTI)

    Gong, Zhirui; Liu, G. B.; Yu, Hongyi; Xiao, Di; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2013-01-01

    In monolayer group-VI transition metal dichalcogenides, charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here we show that transition metal dichalcogenide bilayers offer an unprecedented platform to realize a strong coupling between the spin, valley and layer pseudospin of holes. Such coupling gives rise to the spin Hall effect and spin-dependent selection rule for optical transitions in inversion symmetric bilayer and leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making an interplay between the spin and valley as information carriers possible for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit.

  1. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    " fish and wildlife in the Columbia River as affected by development and operation of the hydroelectric modified in terms of physical and biological processes. The development and operation of the hydroelectric

  2. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples...

  3. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  4. Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  5. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or...

  6. Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County, Nevada

    E-Print Network [OSTI]

    Ahmad, Sajjad

    1 Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County..................................................................................................................................... 4 Piedmont Geomorphology and Related Flood Hazards..................... 6 The Field Area

  7. INTERPRETATION OF GRAVITY SURVEYS IN GRASS AND BUENA VISTA VALLEYS, NEVADA

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01

    resistivity, and seismic interpretations along selectedboth gra- vity and seismic interpretations at several pointsValley. Gravity and seismic interpretations also give The

  8. Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program

    Broader source: Energy.gov [DOE]

    Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

  9. Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky...

    Open Energy Info (EERE)

    Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling...

  10. Wabash Valley Power Association (28 Member Cooperatives)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  11. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  12. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mary FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Risk · Previous Flooding · Flood Forecasting · Local Information · Flood Warnings and Bulletins · Interpreting Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood RiskBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mary FLOOD

  13. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Nerang FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Height Bulletins · Flood Classifications · Other Links Flood Risk The Nerang River catchment is locatedBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Nerang FLOOD

  14. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01

    in Transition Zusman/The River Runs Dry Wang Liurong.YRCC’sin Transition Zusman/The River Runs Dry not just importantin Transition Zusman/The River Runs Dry emerging market

  15. Raft River Idaho Magnetotelluric Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  16. Exhibit D: Mirant Potomac River Schedule of Unit Operations:...

    Broader source: Energy.gov (indexed) [DOE]

    Operating Plan of Mirant Potomac River, LLC Exhibit D: Mirant Potomac River Schedule of Unit Operations More Documents & Publications Exhibit D: Mirant Potomac River Schedule of...

  17. Sacramento River Steelhead: Hatchery vs. Natural Smolt Outmigration

    E-Print Network [OSTI]

    Sandstrom, Phil

    2012-01-01

    DELTA SCIENCE PROGRAM Sacramento River Steelhead: HatcheryUC Davis BACKGROUND The Sacramento River steelhead trout (a tributary of the upper Sacramento River. Smolts are young,

  18. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  19. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    SciTech Connect (OSTI)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 {times} 10{sup {minus}4} events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 {times} 10{sup {minus}1} mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 {times} 10{sup {minus}1} mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual`s lifetime radiation dose.

  20. Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo [Idaho Department of Fish and Game

    2009-04-09

    This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less than the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.

  1. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (8) assist IDFG with captive broodstock production activities.

  2. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  3. Workers at EM’s West Valley Site Surpass 1 Million Hours without Lost-Time Accident

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM’s cleanup contractor at the West Valley Demonstration Project (WVDP) recently marked 1 million work hours without a lost-time accident or illness.

  4. Predicting the Effects of Climate Change on the Size and Frequency of Floods in the Sacramento-San Joaquin Valley

    E-Print Network [OSTI]

    Das, Tapash

    2011-01-01

    Conference, September 2010, Sacramento, Calif. Das T. ,and Frequency of Floods in the Sacramento-San Joaquin ValleySierra Nevada and the Sacramento-San Joaquin Valley. These

  5. Towards a new high technology development in the Silicon Valley : a 21st century urban design vision

    E-Print Network [OSTI]

    Pang, Jonathan K. (Jonathan Kam)

    1988-01-01

    Santa Clara Valley, perhaps better known as the Silicon Valley, is currently facing many problems and uncertainties. The explosion of the high technology industry has changed the regional scene faster than anyone could ...

  6. Citrus Varieties for the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

    1941-01-01

    TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict~!baa! % khhani~al Callep oof TsM~: Co.... Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none of these are of com- mercial importance...

  7. Sun Valley to Morgan Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the EntireOpenSumpter,Energy Group LLCCoop,Valley

  8. DOE - Office of Legacy Management -- Tennessee Valley Authority - AL 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OHStar CutterTennessee Valley

  9. Hunting Valley, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdon County, NewHunting Valley, Ohio:

  10. Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,FuelEnergyGabbs Valley Area (DOE

  11. Hydrothermal Alteration Mineral Studies in Long Valley, In- Proceedings of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,FuelEnergyGabbs Valley Areathe

  12. Imperial Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdeaEnergyFacility | OpenValley,

  13. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon:CorpGreenburgh,1347943°, -82.820974°Valley

  14. Fountain Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jump to: navigation,County,FountainValley,

  15. Duncan Valley Elec Coop, Inc (New Mexico) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal ResourcesEnergyDumont, NewDuncan Valley

  16. Middle Valley, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickeyWest Energy JumpValley, Tennessee:

  17. Missouri Valley Renewable Energy MOVRE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectric Coop, Inc Jump to:Valley Renewable

  18. Long Valley, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranch Capital Jump to:AuthorityValley,

  19. Maple Valley, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5TransportManitouChange | OpenMapPark,Ridge,Valley,

  20. Pine Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehem Biomass Facility Jump to: navigation,Valley,

  1. Bridger Valley Elec Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJerseyEconomyBridger Valley Elec Assn, Inc

  2. Chariton Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing World Technologies JumpChaplin,Valley Elec

  3. Chippewa Valley Ethanol Company CVEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewa Valley Electric Coop

  4. Ark Valley Elec Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,Summaries |AreteAriane EnvironmentArk Valley

  5. Lower Valley Energy Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-Pacific DevelopingLower Valley Energy Inc Place:

  6. Guadalupe Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydroLegalAltoOlho DaguaSolantisGryphonValley

  7. Licking Valley Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place: RhodeLichuanValley

  8. San Joaquin Valley Clean Energy Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon DevelopmentValley Clean Energy Organization

  9. South Utah Valley Electric Service District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin JumpOpen Energy InformationValley Electric

  10. Sulphur Springs Valley E C Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategicStoriesSuezSprings Valley E C

  11. Suwannee Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMember CorpSunviePty Ltd JumpIncSustainxValley

  12. Tallahatchie Valley E P A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI P RuralTaigaValley E P A Jump to:

  13. Tennessee Valley Authority (North Carolina) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley Authority

  14. Village of Little Valley, New York (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) Jump to:New YorkInformation Valley, New York

  15. Spring Valley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop JumpValley Jump

  16. Squaw Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquaw Valley, California:

  17. Squirrel Mountain Valley, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquaw Valley,

  18. Valley Rural Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:Valley Rural Electric Coop

  19. Avra Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal RegionAvra Valley, Arizona: Energy

  20. Canadian Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: Energy ResourcesNew York:CamptonCan IIncValley

  1. Canton Valley, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty, Tennessee:Valley, Connecticut:

  2. Copper Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy Resources Jump to:NewValley Elec

  3. Imperial Valley Renewable Energy Summit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71CommercialThisImperial Valley Geothermal

  4. File:LongValley Strat.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonasterwind crossword.pdfInvitation-EnglishLongValley

  5. Indian Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source Historypub [ICO]Indian Valley Hot Springs

  6. Mid Valley Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysvilleMicrogravity-Hybrid MicrogravitySize HomeValley Landfill

  7. Moapa Valley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View New Pages RecentMithunCoValley,

  8. Arkansas Valley Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil and Gas Commission Jump to:Valley

  9. Bear Valley Springs, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc Jump to:Baywood-LosCreekValley

  10. Yazoo Valley Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPupingYanyuanValley Elec Power

  11. Concho Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson,InformationConcho Valley Elec

  12. Castro Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota: EnergyValley,

  13. Paradise Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: EnergyIncPanEnergyValley, Arizona:

  14. West Valley Demonstration Project Transportation Emergency Management Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » Air SealingDepartmentWest CoastWest Valley

  15. NON-STRUCTURAL FLOOD MANAGEMENT SOLUTIONS FOR THE LOWER FRASER VALLEY,

    E-Print Network [OSTI]

    NON-STRUCTURAL FLOOD MANAGEMENT SOLUTIONS FOR THE LOWER FRASER VALLEY, BRITISH COLUMBIA by Tamsin of Project: Non-Structural Flood Management Solutions for the Lower Fraser Valley, British Columbia Examining storage capacity flood hazard reduction has traditionally been achieved using engineered structures

  16. Evolution of sediment accommodation space in steady state bedrock-incising valleys subject to episodic aggradation

    E-Print Network [OSTI]

    % of mountain valley networks are dominated by debris flow scour and identified a transition to fluvial process length of valley bottom (Bear Creek; Table 1) in the Oregon Coast Range (OCR). And, as debris flow of sediment in mountain drainage basins. [3] In the Oregon Coast Range's Tyee Formation, the example addressed

  17. Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks

    E-Print Network [OSTI]

    Amelung, Falk

    Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks. The analysis reveals areas of rapid deformation caused by mining and agricultural activities in the Crescent), Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks

  18. Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California

    E-Print Network [OSTI]

    Fialko, Yuri

    Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California Yuri associated with currently active crustal magma bodies in Socorro, New Mexico, and Long Valley, California induced by magma migration are also important for forecasting local volcanic and seismic hazards. A prime

  19. Groundwater-controlled valley networks and the decline of surface runoff on early Mars

    E-Print Network [OSTI]

    Harrison, Keith

    Groundwater-controlled valley networks and the decline of surface runoff on early Mars Keith P was dominated by valley networks created through a combination of groundwater processes and surface runoff evolution characterized by a weakening of surface runoff, leaving groundwater processes as the dominant

  20. Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge

    E-Print Network [OSTI]

    Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

  1. Low velocity zone under Long Valley as determined from teleseismic events

    E-Print Network [OSTI]

    Steeples, Don W.; Lyer, H. M.

    1976-02-10

    A temporary seismograph station network was used to estimate teleseismic P wave residuals in the vicinity of Long Valley geothermal area, California. Relative P wave delays of 0.3 s persist at stations in the west central part of the Long Valley...

  2. Technical Services Contract Awarded for West Valley Demonstration Project Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value.

  3. Sex-related dispersion of breeding deer mice in the Kananaskis Valley, Alberta XUHUAXIAAND JOHNS. MILLAR

    E-Print Network [OSTI]

    Xia, Xuhua

    Sex-related dispersion of breeding deer mice in the Kananaskis Valley, Alberta XUHUAXIAAND JOHNS September 17, 1985 XIA,X., andJ. S. MILLAR.1986. Sex-relateddispersionof breeding deermice in the KananaskisValley, Alberta, during the breeding seasons of 1982and 1983provided data used to analyse sex

  4. Comparison of Two Models for Identifying Low Gradient, Unconfined Streams and Valley Bottom Extent

    E-Print Network [OSTI]

    In Support of Stream Temperature Modeling Associated with Fire Effects USDA Forest Service, Rocky Mountain, bedrock controlled channels. In order to test the influence of valley confinement on stream temperature, we developed an in-house algorithm to delineate wide, flat valley bottoms using DEM data as input. We

  5. Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated by observations

    E-Print Network [OSTI]

    Ehleringer, Jim

    Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated within Salt Lake Valley, Utah, USA. The model was forced by observed winds, soundingderived mixing depths, and ecosystem type. The model was validated using hourly CO2 mole fractions measured at five sites in the urban

  6. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley impact crop produc- tion in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for 50

  7. A GIS Nonpoint Source Pollution Model for the Las Vegas Valley Marcelo Reginato* and Thomas Piechota*

    E-Print Network [OSTI]

    Piechota, Thomas C.

    of the Las Vegas Valley basin. The nonpoint source pollution from urban runoff has direct water quality the model are compared to waste water treatment loads for 2000 and 2001. The Model Total monthly and annual1 A GIS Nonpoint Source Pollution Model for the Las Vegas Valley Marcelo Reginato* and Thomas

  8. Commercial production of ethanol in the San Luis Valley, Colorado. Final Report

    SciTech Connect (OSTI)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

    1983-07-01

    The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

  9. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    8, 2000 Issued to Westinghouse Savannah River Company, related to Unplanned Exposures and Radioactive Material Intakes at the Savannah River Site (EA-2000-08) On July 18, 2000, the...

  10. BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND

    E-Print Network [OSTI]

    of the Columbia River hydropower system. Nothing in this Plan, or the participation in its development, or related to, the development and operation of the Columbia River hydropower system. Nothing in this Plan

  11. BITTERROOT RIVER SUBBASIN MANAGEMENT PLAN FOR FISH

    E-Print Network [OSTI]

    from the development and operation of the Columbia River hydropower system. Nothing in this Plan and exclusively resulting from, or related to, the development and operation of the Columbia River hydropower

  12. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www government that allowed tax-supported institutions (like the University of Minnesota) to acquire these works: The Weisman is located at 333 E. River Road in

  13. INTEGRATED RIVER QUALITY MANAGEMENT USING INTERNET TECHNOLOGIES

    E-Print Network [OSTI]

    INTEGRATED RIVER QUALITY MANAGEMENT USING INTERNET TECHNOLOGIES P. Cianchi*, S. Marsili such a computing architecture can be implemented using current internet technologies. Based on the "intelligent a normal web browser. KEYWORDS River water quality, Environmental management, Internet computing, Systems

  14. Bureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Barron FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warning and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Barron River has a catchmentBureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Barron FLOOD

  15. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate-to-day variations of spill and upstream fish passage at the eight dams of the Columbia/Snake river hydrosystem

  16. In-River Backwards Run Reconstruction of Fraser River Sockeye Fisheries from 2002 -2009 and

    E-Print Network [OSTI]

    In-River Backwards Run Reconstruction of Fraser River Sockeye Fisheries from 2002 - 2009: Master of Resource Management Title of Research Project: In-River Backwards Run Reconstruction of Fraser managers I develop an in-river backwards run reconstruction to provide Conservation Unit (CU) specific

  17. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Introduction For centuries, man has modified running waters [51]. In alpine rivers, production of hydropower of power plants are commonly in use: (1) run-of-river power plants that continuously pro- cessHydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber

  18. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  19. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  20. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  1. Diets of the Arkansas River Shiner and Peppered Chub in the Canadian River, New Mexico and Texas

    E-Print Network [OSTI]

    Wilde, Gene

    Diets of the Arkansas River Shiner and Peppered Chub in the Canadian River, New Mexico and Texas)collectedfrom the Canadian River in New Mexico andTexasfrom September1996to August 1998. Both the Ark~n~~ River streamsand rivers of the Arkansas River drainage systemof Arkansas,Colorado, Kansas,New Mexico, Kansas

  2. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect (OSTI)

    None

    1982-01-01

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  3. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; McCurdy, Greg; Campbell, Scott

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

  4. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    SciTech Connect (OSTI)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  5. Influence of environomental factors at the Brazos River Valley Laboratory on seed set of soybean, Glycine max (L.) Merr 

    E-Print Network [OSTI]

    Scott, John Edward

    1956-01-01

    and their guidance and supervision in the planning and execution of the experiment~ and their helpful sur gestions in the preparation of this manuscript ~ nr. C. B. Oodbey, Professor of Genetics and I!ead of the Denart- mont, for his assistance in the statisticai... analysis the response of lplants to difforent planting datos vas i'ound to be significant a~mo. rom figures 1 and 2a it is seen that peak oroduction for the same varieties occurred from different planting dates in the two separate tests. gupple...

  6. "The River of Revenge": The Tension Between Farmers and the Federal Government in the Tula Valley, Mexico, 1992-2014

    E-Print Network [OSTI]

    Johnson, Michelaina

    2014-01-01

    Avanza 30.5 por ciento construcción de la planta Atotonilco:30-5-por-ciento-construccion-de-la-planta-atotonilco-Avanza 30.5 por ciento construcción de la planta Atotonilco:

  7. 2007-2008 Annual Progress Report for BPA Grant Exp Restore Walla Walla River Flow

    SciTech Connect (OSTI)

    Bower, Bob

    2009-07-10

    WWBWC and its partners have been working on a wide variety of conservation and aquifer recharge related activities including: monitoring groundwater and surface water conditions, creating a geospatial database for the Walla Walla River valley (project focal area), expanding aquifer recharge testing at the HBDIC site and conducting an extensive outreach/education program by which to share the information, ideas and potential solutions to our current water management issues in this basin. This report is an outline of those activities and is accompanied by individual program-component (attached as appendices) reports for the areas that BPA is assisting to fund these on-the-ground projects along with the innovative research and monitoring being done to further aquifer recharge as a water management tool for the Pacific Northwest.

  8. River System Hydrology in Texas 

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01

    and databases maintained by the Texas Water Development Board and the U.S. Geological Survey. River basin volume budgets and trend and frequency metrics for simulated naturalized and regulated stream flows and reservoir storage are developed using the WAM System...

  9. A giant dune-dammed lake on the North Platte River, Nebraska

    SciTech Connect (OSTI)

    Swinehart, J.B. (Univ. of Nebraska, Lincoln, NE (United States). Conservation and Survey Div.); Loope, D.B. (Univ. of Nebraska, Lincoln, NE (United States). Dept. of Geology)

    1992-01-01

    The recent work in the Nebraska Sand Hills, just north of the North Platte Valley, has revealed the presence of numerous dune dams--sites where eolian sand has filled Pleistocene paleovalleys and caused the formation of lake basins containing abundant small, interdunal lakes. Although the Platte River is considered the southern margin of the Sand Hills, there is a 1,200 sq km triangular area of large dunes in Lincoln County just south of the South Platte. The authors hypothesize that large dunes migrated southward to fill the North Platte Valley during glacial maximum when both the North and South Platte were dry. As Rocky Mountain snowmelt and Great Plains precipitation increased during deglaciation, a single 65 km-long, 15 km-wide, 50 m-deep lake formed behind the massive dune dam. The tentative chronology suggests that the lake was in existence for at least several thousand years. They have not yet found compelling evidence of catastrophic flooding downstream of the former lake. Evidence of two large Quaternary lakes on the White Nile between Khartoum and Malakal (Sudan) was discovered in the 1960's. Shoreline deposits indicate the lakes were 400--600 km long and up to 50 km wide. Although the lakes have been attributed to repeated blockage of the White Nile by clay-rich Blue Nile deposits, the distribution and age of dune sand near the confluence of these rivers suggest that, as in the Nebraska example, the course of the White Nile was blocked by dunes when the region was desiccated in the Late Pleistocene. Lakes behind permeable dams rise to a level where input equals output. Earthen dams are vulnerable to overtopping and piping. The relatively high permeability of dune sand prevents or delays overtopping, and piping is prevented by the extremely high low hydraulic gradients that typify extant sand dams.

  10. Valley pair qubits in double quantum dots of gapped graphene

    E-Print Network [OSTI]

    G. Y. Wu; N. -Y. Lue; L. Chang

    2011-07-03

    The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

  11. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  12. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  13. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    SciTech Connect (OSTI)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  14. Historical Shoreline Evolution as a Response to Dam Placement on the Elwha River, Washington

    E-Print Network [OSTI]

    Nagid, Bethany Marie

    2015-01-01

    of the Elwha River, Washington- Biological and physicalthe Elwha River, Washington, U.S. , Fisheries Management &on the Elwha River, Washington, USA: River channel and

  15. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    SciTech Connect (OSTI)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

  16. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  17. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  18. The Santa Clara Valley R & D Dillema: The Real Estate Industry and High Tech Growth

    E-Print Network [OSTI]

    Kroll, Cynthia A.; Kimball, Linda M.

    1986-01-01

    Absorption . 57 VI. Evolving High Tech Demand for Space:Silicon Valley Job Growth within High Tech Sectors .. 64 TheOccupational Composition of High Tech Employment. 71 Santa

  19. Financing the "Valley of Death" : an evaluation of incentive schemes for global health businesses

    E-Print Network [OSTI]

    Miller, Brian L. K

    2009-01-01

    Many early-stage biotech companies face a significant funding gap when trying to develop a new drug from preclinical development to a proof of concept clinical trial. This funding gap is sometimes referred to as the "valley ...

  20. Impacts of Irrigation on Citrus in the Lower Rio Grande Valley 

    E-Print Network [OSTI]

    Enciso, Juan; Sauls, Julian W.; Wiedenfeld, Robert P.; Nelson, Shad D.

    2008-07-11

    such as ECH 2 O ? probes from Decagon Devices, Inc., of Pullman, Wash., and EnviroSCAN ? soil moisture sensors from Sentek Sensor Technologies, Australia. During 2004, two Valley farmers installed EnviroSCAN sensors, which relayed soil moisture...