Sample records for machine drive electricity

  1. Integrated Inverter For Driving Multiple Electric Machines

    SciTech Connect (OSTI)

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04T23:59:59.000Z

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  2. Electric machine and current source inverter drive system

    DOE Patents [OSTI]

    Hsu, John S

    2014-06-24T23:59:59.000Z

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  3. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17T23:59:59.000Z

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  4. Power factor correction of an electrical drive system based on multiphase machines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    both in wind energy conversion or motor drive applications. A power factor (PF) control scheme is to maintain the PF of the power-winding, of the double star induction machine, in vicinity of unity whatever signify a machine with more than three phases in the stator side. So, the number of phases can be used

  5. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Energy Savers [EERE]

    EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power...

  6. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- Battery Workshop Thursday, Electric

  7. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Drive Workshop EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere Grand Challenge - Battery...

  8. Publish date: 06/27/2011 ECE 4391: Electric Machines and Drives

    E-Print Network [OSTI]

    Gelfond, Michael

    and induction machines. Space vector theory. Field oriented control. Modeling of machine and controller dynamics Steady state and dynamic models of DC machines ­ 3 hours Closed loop control of DC machines ­ 3 hours hours Dynamic models of AC induction machines; model validation ­ 5 hours V/f control of induction

  9. SDEMPED 2005 Symposium on Diagnostics for Electric Machines, Power Electronics and Drives

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'H`eres, France Phone: +33-476827132 Fax: +33-476826384 Email: pierre.granjon@lis.inpg.fr Abstract--Stator frame different physical informations, such a processing could be interesting to further analyze each component independently, and finally diagnose induction machine faults more easily. This paper deals with a new processing

  10. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Broader source: Energy.gov (indexed) [DOE]

    Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. 3warded.pdf More Documents &...

  11. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Energy Savers [EERE]

    David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare,...

  12. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  13. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  14. Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion 

    E-Print Network [OSTI]

    Crozier, Richard Carson

    2014-06-30T23:59:59.000Z

    Combined electrical and structural models of five types of permanent magnet linear electrical machines suitable for direct-drive power take-off on wave energy applications are presented. Electromagnetic models were ...

  15. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. Electric Drive Status and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy Eighth Annual NationalELECTRIC DRIVE

  17. Simplified Modelling and Control of a Synchronous Machine with VariableSpeed SixStep Drive

    E-Print Network [OSTI]

    Sanders, Seth

    systems. A scheme for control of electrical power flow is proposed for machines with variable­speed six (e.g. in implement- ing torque or power control), the mechanical dynamics of the model can to select a drive scheme before embarking on the system modelling and subsequent control design. Each drive

  18. Environmental constituents of Electrical Discharge Machining

    E-Print Network [OSTI]

    Cho, Margaret H. (Margaret Hyunjoo), 1982-

    2004-01-01T23:59:59.000Z

    Electrical Discharge Machining (EDM) is a non-traditional process that uses no mechanical forces to machine metals. It is extremely useful in machining hard materials. With the advantages EDM has to offer and its presence ...

  19. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  20. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  1. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  2. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  3. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  4. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  5. Vehicle Technologies Office Merit Review 2015: Electric Drive...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak...

  6. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  7. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems...

  8. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells...

  9. Center for Electric Drive Transportation at the University of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Transportation at the University of Michigan - Dearborn Center for Electric Drive Transportation at the University of Michigan - Dearborn 2012 DOE Hydrogen and Fuel...

  10. 6.685 Electric Machines, Fall 2003

    E-Print Network [OSTI]

    Kirtley, James L.

    Treatment of electromechanical transducers, rotating and linear electric machines. Lumped-parameter electromechanics of interaction. Development of device characteristics: energy conversion density, efficiency; and of ...

  11. Cancellation of TorqueRipple Due to Nonidealitiesof PermanentMagnet SynchronousMachine Drives

    E-Print Network [OSTI]

    Chapman, Patrick

    -magnet synchronous application than the predecessors. Further, the technique is machine (PMSM) drives dictates

  12. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    SciTech Connect (OSTI)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02T23:59:59.000Z

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  13. Electric Machine R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Throughout this process, ideas have been stimulated for even more highly advanced machines. * The machine will be built and evaluated in FY09 and subsequently made...

  14. Electric Drive Vehicle Infrastructure Deployment

    Broader source: Energy.gov (indexed) [DOE]

    pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

  15. In-line drivetrain and four wheel drive work machine using same

    DOE Patents [OSTI]

    Hoff, Brian (East Peoria, IL)

    2008-08-05T23:59:59.000Z

    A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.

  16. Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles A. Kolli1 , Student Magnet Synchronous Machine in Electric Vehicle application. First, a short survey of existing power regarding compactness and vehicle integration. More specifically electric vehicles (EVs) require a high

  17. Advnaced Power Electronics and Electric Machines (APEEM) R&D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview 2010 DOE Vehicle...

  18. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun (Oak Ridge, TN)

    2007-09-18T23:59:59.000Z

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  19. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  20. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

    1988-01-01T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  1. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program...

  2. Multi-winding homopolar electric machine

    DOE Patents [OSTI]

    Van Neste, Charles W

    2012-10-16T23:59:59.000Z

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  3. High slot utilization systems for electric machines

    DOE Patents [OSTI]

    Hsu, John S (Oak Ridge, TN)

    2009-06-23T23:59:59.000Z

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  4. Apparatus for cooling an electric machine

    DOE Patents [OSTI]

    Palafox, Pepe; Gerstler, William Dwight; Shen, Xiaochun; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Salasoo, Lembit

    2013-07-16T23:59:59.000Z

    Provided is an apparatus, for example, for use with a rotating electric machine, that includes a housing. The housing can include a housing main portion and a housing end portion. The housing main portion can be configured to be disposed proximal to a body portion of a stator section of an electric machine. The housing main portion can define a main fluid channel that is configured to conduct fluid therethrough. The housing end portion can receive fluid from said main fluid channel and direct fluid into contact with a winding end portion of a conductive winding of the stator section.

  5. Electric Drive Vehicles: A Huge New Distributed Energy Resource

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric Drive Vehicles: A Huge New Distributed Energy Resource Alec Brooks AC Propulsion, Inc. San Dimas, California www.acpropulsion.com #12;The Old and the New.. Old way of thinking: Electric vehicles are an unnecessary burden to an over- taxed electricity grid New way of thinking: Electric drive vehicles

  6. Insulation assembly for electric machine

    SciTech Connect (OSTI)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15T23:59:59.000Z

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  7. Workplace Plug-in Electric Vehicle Ride and Drive

    Broader source: Energy.gov [DOE]

    Workplace plug-in electric vehicle (PEV) Ride and Drive events are one of the most effective ways to drive PEV adoption. By providing staff the opportunity to experience PEVs first hand, they can...

  8. Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates

    E-Print Network [OSTI]

    Holsinger, Kent

    Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

  9. advanced electrical drives: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    require large voltage changes on very short time scales. Since piezos behave electrically as capacitors, this requires a drive circuit capable of quickly sourcing or sinking...

  10. Rotating electric machine with fluid supported parts

    DOE Patents [OSTI]

    Smith, Jr., Joseph L. (Concord, MA); Kirtley, Jr., James L. (Brookline, MA)

    1981-01-01T23:59:59.000Z

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  11. The Design of a Novel Prismatic Drive for a Three-DOF Parallel-Kinematics Machine

    E-Print Network [OSTI]

    Boyer, Edmond

    The Design of a Novel Prismatic Drive for a Three-DOF Parallel-Kinematics Machine D. Chablat1 , J.Chablat@irccyn.ec-nantes.fr angeles@cim.mcgill.ca April 7, 2011 Abstract The design of a novel prismatic drive is reported on a common translating follower. The design of Slide-o-Cam was reported elsewhere. This drive thus provides

  12. U.S. First Responder Safety Training for Advanced Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation 2010 DOE...

  13. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  14. Dynamic Simulation of Electric Machines on FPGA Boards

    E-Print Network [OSTI]

    Zambreno, Joseph A.

    Dynamic Simulation of Electric Machines on FPGA Boards Hao Chen, Song Sun, Dionysios C. Aliprantis USA Abstract--This paper presents the implementation of an induc- tion machine dynamic simulation] devices. Herein, the goal is to implement an entire dynamic simulation of an induction machine on a single

  15. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12T23:59:59.000Z

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  16. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Energy Savers [EERE]

    EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles January 31, 2014 -...

  17. Vehicle Technologies Office: Electric Drive Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Electronics and Electric Motor R&D North American Power Electronics Supply Chain Analysis Benchmarking EV and HEV Technology View all presentations from the 2014 Merit Review....

  18. Physical model of a hybrid electric drive train

    E-Print Network [OSTI]

    Young, Brady W. (Brady William)

    2006-01-01T23:59:59.000Z

    A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

  19. Neuro-Fuzzy Controller of a Sensorless PM Motor Drive For Washing Machines

    E-Print Network [OSTI]

    , appliance design engineers are working hard to reduce the machine's energy consumption, water use, weight, and improved fabric care. To gain further energy savings, engineers are now introducing laundry algorithms algorithms to enable direct drive from permanent magnet (PM) synchronous motors[3]. #12;Among AC drives

  20. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-05-01T23:59:59.000Z

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  1. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Broader source: Energy.gov (indexed) [DOE]

    MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive,...

  2. National Drive Electric Week | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.docMusings on| DepartmentEnergyNational Drive

  3. The Wavedriver integrated drive and charger system for electric buses

    SciTech Connect (OSTI)

    Shemmans, D.J.; Green, R.M. [Wavedriver Ltd. (United Kingdom)

    1994-12-31T23:59:59.000Z

    Electric propulsion presents a realistic economic alternative to hydro-carbon fuelled passenger transport. Progress continues to reduce the major cost element - the battery - but other expensive systems, on-board and off-board, are still needed for an electric bus to function. The power conversion systems can be improved considerably, and this paper describes the Wavedriver combined field oriented AC motor drive and high rate charger. The field-oriented control gives high performance as a traction drive, and similar vector control strategies are used for the charging processes; advanced fabrication methods realise low costs. By using the drive system components for charging, the off-board electrical infrastructure components are extremely simple and cost-effective, meaning that opportunistic recharging at convenient locations around a route is feasible. This means that the on-board battery can be optimally sized, without restricting the service range, while reducing capital costs. 4 refs.

  4. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    management of small electric energy systems including V2Gand renewable energy sources,” Electric Power Systemsof electric-drive vehicles with renewable energy,” Energy,

  5. Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Bcker

    E-Print Network [OSTI]

    Hellebrand, Sybille

    Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker Research Topics Mechatronic Systems, Electrical Drives and Electric Vehicles Control, modeling and optimization of electrical drives vehiclesElectric vehicles RailCab Power Electronics Switched-mode power supplies High efficiency

  6. Modeling induction machine winding faults for diagnosis In Electrical Machines Diagnosis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Chapter 2 Modeling induction machine winding faults for diagnosis In Electrical Machines Diagnosis of a winding fault situation, then the time available to the experimenter may vary from a few minutes to a few will see that the controls are perfectly free from imbalances induced by a stator insulation fault, whether

  7. EV Everywhere Workshop: Traction Drive Systems Breakout Group...

    Energy Savers [EERE]

    Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare,...

  8. Driving Pattern Recognition for Control of Hybrid Electric Trucks

    E-Print Network [OSTI]

    Peng, Huei

    Driving Pattern Recognition for Control of Hybrid Electric Trucks CHAN-CHIAO LIN1 , SOONIL JEON2 strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified trucks. The 21st Century Truck program in the US, spearheaded by two government agencies, Department

  9. Predicting Electricity Distribution Feeder Failures Using Machine Learning Susceptibility Analysis

    E-Print Network [OSTI]

    Tomkins, Andrew

    ) from the generating station to substations closer to the customers 3.Primary Distribution: electricity into the city from upstate New York, New Jersey and Long Island, as well as from in-city generation facilitiesPredicting Electricity Distribution Feeder Failures Using Machine Learning Susceptibility Analysis

  10. An alternative isolated wind electric pumping system using induction machines

    SciTech Connect (OSTI)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1999-12-01T23:59:59.000Z

    An isolated variable speed variable frequency wind electric pumping system is proposed. Induction machines are used both in the generation unit as well as in the pumping unit and a static VAR compensator is used for providing the magnetizing currents of both machines. An indirect induction generator stator flux control strategy is adopted. System steady state and dynamic operation is studied basing on simulation and experimental results.

  11. Insulation condition monitoring and testing for large electrical machines

    SciTech Connect (OSTI)

    Zhou, Y.; Dix, G.I.; Quaife, P.W. [Industrial Research Ltd., Christchurch (New Zealand)

    1996-12-31T23:59:59.000Z

    An efficient method to assess the insulation condition of rotating machines is on-line partial discharge monitoring. Difficulties in on-line monitoring result from various noise sources associated with the machine and from the power system. The paper introduces and discusses the theories, different testing techniques and monitoring methods currently used by Industrial Research Limited and other laboratories. The design and testing of high frequency current transformers for partial discharge on-line monitoring are introduced. Laboratory and field tests on electrical machines are presented. A database has been developed for efficient insulation monitoring and maintenance. The database allows intra and inter comparisons of partial discharge, tan delta, capacitance between phases in a machine and with other machines easily. The functions of the database enhance the efficiency and provide more information for effective insulation condition assessment.

  12. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01T23:59:59.000Z

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  13. Optimal Design of Electrical Machines: Mathematical Programming ...

    E-Print Network [OSTI]

    2012-06-06T23:59:59.000Z

    is to investigate the efficiency and reliability of standard local optimization. 2 ...... Electrical and Electronic Engeneering, 22(4), 2003. [2] E. Fitan, F. Messine, and ...

  14. ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States

    E-Print Network [OSTI]

    Kemner, Ken

    ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Laboratory, or UChicago Argonne, LLC. #12;ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States .............................................................................................................. 1 2 STATE OF ELECTRIC DRIVE VEHICLE TECHNOLOGY .......................................... 4 2

  15. BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE

    E-Print Network [OSTI]

    Perez, Richard R.

    BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Steven, however, the use of batteries from parked electric- drive vehicles (EDV) to provide buffer storage for PV requirements that will result in a number of new battery-powered electric drive vehicles being sold beginning

  16. Co-Simulation of an Electric Traction Drive Christoph Schulte and Joachim Bocker

    E-Print Network [OSTI]

    Paderborn, Universität

    ) for an electric drive, where the control structure, power electronics and motor are modeled in different environ works as a combined system. The system model of the electric drive discussed in this work consists--For the simulation of electrical drives, reduced- order models or simple look-up tables are often used in order

  17. 6.685 Electric Machines, Fall 2005

    E-Print Network [OSTI]

    Kirtley Jr., James L.

    6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing ...

  18. ELECTRIC DRIVE BY `25: How California Can Catalyze Mass Adoption of

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , introducing a range of cars and trucks that can "plug in" to the grid for electricity to power the engineELECTRIC DRIVE BY `25: How California Can Catalyze Mass Adoption of Electric Vehicles by 2025@law.berkeley.edu. #12;1UCLA Law \\ Berkeley Law ELECTRIC DRIVE BY `25: How California Can Catalyze Mass Adoption

  19. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in the FederalPresentation|Electric Machines)

  20. Abstract --Our approach to laboratory education in power electronics and electric machines is presented. The approach

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    1 Abstract --Our approach to laboratory education in power electronics and electric machines -- Power engineering education, education, en- ergy conversion, educational technology I. INTRODUCTION Power electronics and electric machines are largely appli- cation driven but draws from a broad

  1. Electric Drive Transportation Association EDTA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, search ToolEcowareEkisolarModelElectric Drive

  2. Electric vehicles: How much range is required for a day's driving? Nathaniel S. Pearre a,

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric vehicles: How much range is required for a day's driving? Nathaniel S. Pearre a, , Willett online xxxx Keywords: Electric vehicle Plug-in vehicle Daily driving range Range requirement Trip timing Vehicle design a b s t r a c t One full year of high-resolution driving data from 484 instrumented

  3. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  4. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  5. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  6. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  7. Driving Research in Electric Machines |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and enthusiasm. I learned a lot of frontier technology during the lab tour, like 3D printing, nanotech, smart-grid, etc. I even got my own 3D printer after the lab tour and I...

  8. Combined Electric Machine and Current Source Inverter Drive System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration MarchCanadian and

  9. Optimal Control of Permanent-MagnetAC MachineDrives with a Novel Multiple ReferenceFrame Estimator/Regulator

    E-Print Network [OSTI]

    Chapman, Patrick

    , IN 47907-1285 Abstract- With appropriate current waveforms, permanent- magnet synchronous machine (PMSM are used to validate the work. I. INTRODUCTION PMSM drives have recently been a topic of intense research

  10. A study of alternative drive control interfaces for next-generation electric vehicles

    E-Print Network [OSTI]

    Post, C. Christopher (Charles Christopher)

    2011-01-01T23:59:59.000Z

    The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle ...

  11. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect (OSTI)

    Santini, D. J.; Energy Systems

    2011-02-16T23:59:59.000Z

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  12. Apparatus For Laminating Segmented Core For Electric Machine

    DOE Patents [OSTI]

    Lawrence, Robert Anthony (Kokomo, IN); Stabel, Gerald R (Swartz Creek, MI)

    2003-06-17T23:59:59.000Z

    A segmented core for an electric machine includes segments stamped from coated electric steel. The segments each have a first end, a second end, and winding openings. A predetermined number of segments are placed end-to-end to form layers. The layers are stacked such that each of the layers is staggered from adjacent layers by a predetermined rotation angle. The winding openings of each of the layers are in vertical alignment with the winding openings of the adjacent layers. The stack of layers is secured to form the segmented core.

  13. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H [ORNL; Ayers, Curtis William [ORNL; Chiasson, J. N. [University of Tennessee, Knoxville (UTK); Burress, Timothy A [ORNL; Marlino, Laura D [ORNL

    2006-05-01T23:59:59.000Z

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  14. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N. (U Tennessee-Knoxville); Burress, B.A. (ORISE); Marlino, L.D.

    2006-05-01T23:59:59.000Z

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  15. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi...

  16. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare,...

  17. A two-phase spherical electric machine for generating rotating uniform magnetic fields

    E-Print Network [OSTI]

    Lawler, Clinton T. (Clinton Thomas)

    2007-01-01T23:59:59.000Z

    This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...

  18. Stator for a rotating electrical machine having multiple control windings

    DOE Patents [OSTI]

    Shah, Manoj R. (Latham, NY); Lewandowski, Chad R. (Amsterdam, NY)

    2001-07-17T23:59:59.000Z

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  19. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    DOE Patents [OSTI]

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06T23:59:59.000Z

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  20. Scheduling on a single machine under time-of-use electricity tariffs

    E-Print Network [OSTI]

    Kan Fang

    2014-04-10T23:59:59.000Z

    Apr 10, 2014 ... Abstract: We consider the problem of scheduling jobs on a single machine to minimize the total electricity cost of processing these jobs under ...

  1. Non-linear analysis of advanced high-phase number induction machines for adjustable speed drive applications

    E-Print Network [OSTI]

    Qahtany, Nasser H.

    2002-01-01T23:59:59.000Z

    This study focuses on the effect of high order phases on electrical machines' parameters and performance. A general approach has been conducted using the induction motor equivalent circuit, winding function and conventional design methods...

  2. Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives

    E-Print Network [OSTI]

    Liou, S. P.; Aguiar, D.

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  3. High Frequency Effects of Variable Frequency Drives (VFD) on Electrical Submersible Pump (ESP) Systems

    E-Print Network [OSTI]

    Ozkentli, Esra

    2012-10-19T23:59:59.000Z

    Variable frequency drives (VFD) and subsea (umbilical) cables are frequently used in electrical submersible pump (ESP) systems for offshore platforms. There are two basic system configurations for ESP systems; VFD can be installed on the platform...

  4. Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing

    E-Print Network [OSTI]

    Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

    for replacement of older gas engines and for new compressor installations. In ozone nonattainment regions, bringing gas compressor stations into compliance with NOx emission regulations is a must. Outside those regions, new electric drives are being considered...

  5. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

  6. US-ABC Collaborates to Lower Cost of Electric Drive Batteries...

    Energy Savers [EERE]

    Lower Cost of Electric Drive Batteries April 16, 2013 - 12:00am Addthis The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and...

  7. adjustable electric drives: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ogden, Joan M. 2009-01-01 48 220,000-rmin, 2-kW Permanent Magnet Motor Drive for Turbocharger Toshihiko Noguchi, Yosuke Takata * Engineering Websites Summary: -combustion...

  8. adjustable electric drive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ogden, Joan M. 2009-01-01 48 220,000-rmin, 2-kW Permanent Magnet Motor Drive for Turbocharger Toshihiko Noguchi, Yosuke Takata * Engineering Websites Summary: -combustion...

  9. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01T23:59:59.000Z

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  10. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  11. Comparison of the Unique Mobility and DOE-developed ac electric drive systems

    SciTech Connect (OSTI)

    Cole, G.H.

    1993-01-01T23:59:59.000Z

    A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

  12. Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study M. Zeraoulia1 and on an effective comparison of the performances of the four main electric propulsion systems that are the dc motor, the induction motor, the permanent magnet synchronous motor, and the switched reluctance motor. The main

  13. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  14. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01T23:59:59.000Z

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  15. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  16. Electrical instrumentation of a contra-rotating propeller drive system

    E-Print Network [OSTI]

    Angle, Matthew G. (Matthew Gates)

    2011-01-01T23:59:59.000Z

    A prototype ship propulsion device based on an electric motor that spins propellers in opposite directions was constructed and tested. The device uses a single motor to spin both propellers without a gearbox. The rotor is ...

  17. 1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV

    E-Print Network [OSTI]

    1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor) and the electric motor to deliver power in parallel to drive the wheels.

  18. 3-D Printed Electrically and Optically Paced Skeletal Muscle Based Biological Machines Caroline Cvetkovic, Bioengineering

    E-Print Network [OSTI]

    Kilian, Kristopher A.

    3-D Printed Electrically and Optically Paced Skeletal Muscle Based Biological Machines Caroline Research Aims and Goals · To use 3D printing technologies to fabricate the structure of the biological

  19. All Electric Injection Molding Machines: How Much Energy Can You Save?

    E-Print Network [OSTI]

    Kanungo, A.; Swan, E.

    2008-01-01T23:59:59.000Z

    . Ferret. Sumitomo Range of All Electric Injection Molding Machines Available. (http://www.ferret.com.au/articles/z1/view.asp?id=27 11). December 2006. 7. Klaus, Barr. Energy Savings: A New Revenue Source for Molders. (http...

  20. Measured Savings of DC to AC Drive Retrofit in Plastic Extrusion

    E-Print Network [OSTI]

    Sfeir, R. A.

    2008-01-01T23:59:59.000Z

    This paper presents the potential electrical energy efficiency improvements for utilizing alternating current (AC) motors controlled by variable frequency drives (VFD) in place of direct current (DC) motors to drive plastic extrusion machines. A...

  1. Test Drive EIA's New Interactive Electricity Data Browser | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H TreatmentEnergy Test Drive EIA's New

  2. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 2015 < prev nextDrive a

  3. Intelligent System for Detection of Abnormalities and Theft of Electricity using Genetic Algorithm and Support Vector Machines

    E-Print Network [OSTI]

    Ducatelle, Frederick

    ) analysis in electric utilities using Genetic Algorithm (GA) and Support Vector Machine (SVM). The main. Keywords: Support vector machine, Genetic algorithm, Electricity theft, Non-technical loss, Data mining. 1. Introduction Electricity utilities lose large amounts of money each year due to fraud by electricity consumers

  4. Fiber optic diagnostic techniques for the electrical discharge machining process

    E-Print Network [OSTI]

    Pillans, Brandon William

    1998-01-01T23:59:59.000Z

    were used along with current pulse waveforms from the EDM machine to study the temporal characteristics of the spark. During this experiment an optical pattern was identified that indicated when an arc was being formed in the EDM machine instead of a...

  5. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11T23:59:59.000Z

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  6. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13T23:59:59.000Z

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  7. Vehicle Technologies Office: Electric Drive Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy TechConnect World InnovationBatteries VehicleEnergy Electric

  8. US Electric Drive Manufacturing Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartment of EnergyDepartment ofUSUS2

  9. US Electric Drive Manufacturing Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartment of EnergyDepartment

  10. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of EnergyReport |

  11. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL

    2014-01-01T23:59:59.000Z

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the range-related cost as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36,664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. The bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  12. Attend a Webinar on AMO's Next Generation Electric Machines Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will fund four to six projects that develop a new generation of energy efficient, high power density, high speed, integrated medium voltage drive systems for a wide variety of...

  13. Kandler Smith, NREL EDV Battery Robust Design -1 Design of Electric Drive Vehicle

    E-Print Network [OSTI]

    Kandler Smith, NREL EDV Battery Robust Design - 1 Design of Electric Drive Vehicle Batteries for significant market penetration to be achieved · Batteries are the most expensive component of the vehicle · Consumers expect >10 years vehicle life · Periodic battery replacement (e.g., every 5 years) not warranted

  14. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01T23:59:59.000Z

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  15. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  16. EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20,inConsumer/Charging Workshop:-

  17. Improving the Efficiency of Die Casting Machine Hydraulic Systems with the Retrofit of Adjustable Frequency Drives

    E-Print Network [OSTI]

    Ambs, L.; Kosanovic, D.; Edberg, C.

    casting machine, DCM, consists of basically four fundamental systems. These are the casting mold or die, the clamping unit, the injection unit, and the hydraulic system. Die casting molds perfonn two crucial functions; imparting the desired shape..., speeding the solidification process. The clamping unit is responsible for opening and closing the mold halves, as well as exerting the force that holds the two halves of the mold together during injection. Most die casting machines use a type...

  18. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  19. The Use of Variable Speed Drives to Retrofit Hydraulic Injection Molding Machines

    E-Print Network [OSTI]

    Ambs, L.; Frerker, M. M.

    Research Institute, Palo Alto, California. 8.) Remley, Carl H. (1993) "Measured performance of variable speed drives on injection molding hydraulic pumps." Energy Management Consulting and Equipment, Inc., North Attleboro, Massachusetts'. 9.) Rosato...

  20. Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

    2013-06-01T23:59:59.000Z

    This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

  1. Electrical discharge machining of titanium diboride and its composites

    E-Print Network [OSTI]

    Bedi, Harmohinder Singh

    1990-01-01T23:59:59.000Z

    the pulse duration or current, increased the crater depth (the roughness) up to a certain value, beyond which increasing these parameters yield a smoother surface. The conductivity of the dielectric was only effective for compositions rich in TiB2... on EDM of BN-TiBp. 50 Pulse Duration and Conductivity of the Dielectric Frequency and Current. Diamond Saw Machining. Polishing BN-TiBp. 53 57 63 63 V CONCLUSIONS. 70 TiB2 TiB2-Ti Laminate. TiBg-A1203 Particulate Composite. . TiB p...

  2. Electric Machine R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. ||Department ofMachine

  3. Advanced Power Electronics and Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment ofDepartment ofMachines Advanced Power

  4. Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah Ortzar and Felipe Ros

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah converters for electric vehicles using multilevel inverters. They are being compared with inverters using vehicles. On the other hand, the PWM techniques used today to control modern static converters for electric

  5. Computation of the Field in an Axial Gap, Trapped-Flux Type Superconducting Electric Machine

    E-Print Network [OSTI]

    Shen, Zejun; Ainslie, Mark D.; Campbell, Archie M.; Cardwell, David A.

    2014-11-04T23:59:59.000Z

    Abstract—The Bulk Superconductivity Group at the University of Cambridge is currently investigating the use of high temper- ature superconductors in wire and bulk form to increase the electrical and magnetic loading of an axial gap, trapped flux... electric machines are an importantapplication of superconducting materials in both bulk and wire forms. Bulk high temperature superconductors, in partic- ular, are capable of trapping magnetic fields greater than 17 T below 30 K [1], [2], as well as up to 3...

  6. Manufacturing and performance of ceramic/metal matrix composite electrical discharge machining electrodes

    E-Print Network [OSTI]

    Kim, Eugene Ty

    1998-01-01T23:59:59.000Z

    The manufacturing and performance of ceramic/metal matrix composite (cermet) electrical discharge machining (EDM) electrodes have been investigated. The processing techniques necessary for creating TiB2/Cu, TaC/Cu, TaC/Cu(s), TaC/CuNi, TaC/Al, Nb...

  7. Manufacturing and performance of ceramic/metal matrix composite electrical discharge machining electrodes 

    E-Print Network [OSTI]

    Kim, Eugene Ty

    1998-01-01T23:59:59.000Z

    The manufacturing and performance of ceramic/metal matrix composite (cermet) electrical discharge machining (EDM) electrodes have been investigated. The processing techniques necessary for creating TiB2/Cu, TaC/Cu, TaC/Cu(s), TaC/CuNi, TaC/Al, Nb...

  8. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23T23:59:59.000Z

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  9. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01T23:59:59.000Z

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  10. IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 8, AUGUST 2008 2021 Modeling of Eddy-Current Loss of Electrical Machines and Transformers

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    of Electrical Machines and Transformers Operated by Pulsewidth-Modulated Inverters Ruifang Liu1;2, Chris

  11. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect (OSTI)

    Center for Energy and Innovative Technologies; NEC Laboratories America Inc.; Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-10-27T23:59:59.000Z

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  12. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01T23:59:59.000Z

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  13. Fuzzy logic enhanced speed control of an indirect field-oriented induction machine drive

    SciTech Connect (OSTI)

    Heber, B.; Xu, L.; Tang, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering] [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering

    1997-09-01T23:59:59.000Z

    Field orientation control (FOC) of induction machines has permitted fast transient response by decoupled torque and flux control. However, field orientation detuning caused by parameter variations is a major difficulty for indirect FOC methods. Traditional probability density function (PID) controllers have trouble meeting a wide range of speed tracking performance even when proper field orientation is achieved. PID controller performance is severely degraded when detuning occurs. This paper presents a fuzzy logic design approach that can meet the speed tracking requirements even when detuning occurs. Computer simulations and experimental results obtained via a general-purpose digital signal processor (DSP) system are presented.

  14. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30T23:59:59.000Z

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

  15. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle 

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08T23:59:59.000Z

    -emf ................................................................................................. 77 6.8 Regenerative Capability of the Implemented System ....................................... 78 6.9 Fault Analysis .................................................................................................... 79 6.10 Fault Diagnostics... follow the reference drive cycle. e) To evaluate the performance of the batteries during charge and recharge cycles, especially during regeneration which is achieved through the electrical braking. 1.5 Demand for Electric Vehicles In a popular...

  16. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  17. Method for providing slip energy control in permanent magnet electrical machines

    DOE Patents [OSTI]

    Hsu, John S.

    2006-11-14T23:59:59.000Z

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  18. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01T23:59:59.000Z

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Using Electricity Harvesting Elliptical Machines

    E-Print Network [OSTI]

    of greenhouse gas emissions. This report recommends installing 15 ReRev machines in the space already allocatedUBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Using Electricity Harvesting Elliptical Machines As A Renewable Energy Source Remy Barois, Michael

  20. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil

    2007-06-01T23:59:59.000Z

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  1. Design and market considerations for axial flux superconducting electric machine design

    E-Print Network [OSTI]

    Ainslie, Mark D; Shaw, Robert; Dawson, Lewis; Winfield, Andy; Steketee, Marina; Stockley, Simon

    2013-01-01T23:59:59.000Z

    In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. This work was carried out as part of the University of Cambridge's Centre for Entrepreneurial Learning ETECH Project programme, designed to accelerate entrepreneurship and diffusion of innovations based on early stage and potentially disruptive technologies from the University. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricin...

  2. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  3. Electrical machine

    DOE Patents [OSTI]

    Van Dam, Jeremy Daniel; Alexander, James Pellegrino; Lokhandwalla, Murtuza Yusuf

    2013-12-31T23:59:59.000Z

    In one embodiment, an apparatus includes a rotor shaft, at least one pole segment, at least one pole tip segment and at least one permanent magnet pair. The at least one pole segment is mechanically coupled to the rotor shaft. Each permanent magnet pair is disposed between the at least one pole segment and respective pole tip segment. The apparatus further includes at least one mechanical member that mechically restrains the at least one pole tip segment to at least one of the rotor shaft or the at least one pole segment.

  4. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  5. Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators of Electrical Machines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators magnetic materials properties (magnetic behavior law, iron losses) during the manufacturing process pole stator generator. Twenty eight (28) samples of slinky stator (SS) coming from the same production

  6. A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . This is a serious issue in case of Permanent-Magnet Synchronous Machine (PMSM). In this paper, an original

  7. Harmonic control of multiple-stator induction machines for voltage regulation

    E-Print Network [OSTI]

    Holloway, Jack Wade, 1980-

    2004-01-01T23:59:59.000Z

    Small, one to a few horsepower, three-phase induction machines with three sets of electrically-isolated, magnetically-coupled stator winding circuits are described. A voltage inverter is developed and used to drive one set ...

  8. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30T23:59:59.000Z

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  9. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    rates from the electricity sector to assumed values inrates from the electricity sector to assumed values intend to underestimate electricity sector emissions, and it

  10. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    of Smart Grids with Electric Vehicle Interconnection,”Economy of 2012 Electric Vehicles. ” [Online]. Available:Plug-in Hybrid Electric Vehicle Charging Infrastructure

  11. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumSystem. 23rd International Electric Vehicle Symposium andof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

  12. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01T23:59:59.000Z

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  13. Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study

    SciTech Connect (OSTI)

    Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

    2012-01-01T23:59:59.000Z

    Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

  14. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01T23:59:59.000Z

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  15. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    electricity marginal generation mix in California’s Low Carbon Fueland Fuel Cell Electric Vehicle Symposium Table 1: Summary of California electricity supply (2005) Capacity, Generation,and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable cost Demand/Generation (MW) Figure 1: Representative California-wide electricity

  16. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

  17. 2014 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 4, APRIL 2012 Diagnosis of Three-Phase Electrical Machines Using

    E-Print Network [OSTI]

    Boyer, Edmond

    - tor-current modulation. To detect a failure, we propose a new method based on stator, electrical machines, prin- cipal component analysis (PCA), signal processing. I. INTRODUCTION THREE lead to stator-current modulation with a modulation index which is directly pro- portional

  18. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable costand Fuel Cell Electric Vehicle Symposium GHG emissions rate (CO 2 -eq/kWh) Cost

  19. Study and Analysis 100-car Naturalistic Driving Data Amanda Justiniano (Dr. Eliza Y. Du), Department of Electrical and Computer Engineering, Purdue

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Study and Analysis 100-car Naturalistic Driving Data Amanda Justiniano (Dr. Eliza Y. Du), Department of Electrical and Computer Engineering, Purdue School of Engineering, Indianapolis, IN 46202 Every uses facilities such as car simulators, Drive Safety DS-600c, directed towards the research

  20. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  1. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    plants in California and 1195 power plants collectively inutilities within California. Those power plants are mostly16] California electricity supply in The mix of power plants

  2. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  3. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    if supplied with coal power; at emissions rates equal torates). If coal power Electricity GHG emissions rate (gCOlower GHG emissions rates than coal power supplying non-

  4. Mechanical fault detection in induction motor drives through stator current monitoring -Theory

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    vibrations lead to acoustic noise, noise monitoring is also a possible approach. However, these methods0 Mechanical fault detection in induction motor drives through stator current monitoring - Theory machines are a key element in many electrical systems. Amongst all types of electric motors, induction

  5. Impact of Inductor Placement on the Performance of Adjustable Speed Drives Under Input Voltage Unbalance and

    E-Print Network [OSTI]

    Lipo, Thomas

    Engineering Dr. Madison, WI 53706 #12;IEEE 2005 International Electric Machines and Drives Conference (IEMDC a year to outages and another $6.7 billion each year to power quality phenomena [4]. Among various power]. Such current transients may be caused by a variety of electrical phenomena including motor starting

  6. Parametric electric motor study

    SciTech Connect (OSTI)

    Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

    1995-04-30T23:59:59.000Z

    Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

  7. Secretary Chu to Kick-off the Electric Drive Transportation Associatio...

    Office of Environmental Management (EM)

    that will start at the Department of Energy and travel around the city. Supporting electric vehicles will help the U.S. reach President Obama's bold but achievable goal of...

  8. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    plants are given, as well as the assumed electricity marginal generationplants are needed and total generation from those less-efficient power plants. Median marginal electricityelectricity generation. Note that this will not be the case in regions with significant coal-fired power plant

  9. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01T23:59:59.000Z

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  10. US-ABC Collaborates to Lower Cost of Electric Drive Batteries | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartmentIndia Joint Center forGridUSof

  11. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks demonstrated by several prototype hybrid passenger cars, produced by the PNGV program, will be an unrealistic Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

  12. Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive

    E-Print Network [OSTI]

    Tolbert, Leon M.

    system, additional heat, audible noise, mechanical stress, and vibration [1]. DC bus harmonic current- powered three-phase inverter is used to drive the traction motor. Due to the switching behavior combustion engine, electric motor, and energy storage device (for example, batteries and ultracapacitors

  13. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31T23:59:59.000Z

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  14. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.

    2011-10-20T23:59:59.000Z

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  15. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    DOE Patents [OSTI]

    Su, Gui-Jia [Knoxville, TN

    2005-11-29T23:59:59.000Z

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  16. Three-dimensional Composite Lattice Structures Fabricated by Electrical Discharge Machining

    E-Print Network [OSTI]

    Vaziri, Ashkan

    to carbon fiber composites is the low electrical conductivity of the composite material [21]. To address present a novel method for fabricating carbon fiber composite sandwich panels with lattice core structuring composite materials show promise for filling gaps in the strength versus density map of all known

  17. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond [BIZTEK Consulting, Inc.

    2011-03-01T23:59:59.000Z

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  18. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET

  19. Rotating electrical machines - Part 15: Impulse voltage withstand levels of rotating a.c. machines with form-wound stator coils

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1995-01-01T23:59:59.000Z

    Applies to rotating a.c. machines for rated voltages from 3 kV to 15 kV inclusive and incorporating form-wound stator coils. Specifies the rated phase-to-earth impulse voltage withstand levels and the test procedure and voltages to be applied to the main and interturn insulation of sample coils.

  20. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16T23:59:59.000Z

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  1. Ride and Drive Webinar

    Broader source: Energy.gov [DOE]

    Listen to this webinar and follow along using the slides below to learn how on-site plug-in electric vehicle (PEV) Ride and Drives can create value for your organization, your employees, and your...

  2. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  3. Proposal for the award of a service contract for the operation, maintenance and other work relating to the low-voltage electrical facilities of CERN’s non- machine buildings

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Proposal for the award of a service contract for the operation, maintenance and other work relating to the low-voltage electrical facilities of CERN’s non- machine buildings

  4. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01T23:59:59.000Z

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  5. Base drive and overlap protection circuit

    DOE Patents [OSTI]

    Gritter, David J. (Southfield, MI)

    1983-01-01T23:59:59.000Z

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  6. CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control

    E-Print Network [OSTI]

    Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

  7. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01T23:59:59.000Z

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  8. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  9. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  10. CRADIT FARM DRIVE CREEK DRIVE

    E-Print Network [OSTI]

    Davis, H. Floyd

    CRADIT FARM DRIVE THURSTON CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME DRIVE HIGHLAND ROBERTS PLACE GARDEN DEANS ARTS QUAD RAWLINGS GREEN R. URIS GARDEN AG QUAD BIOLOGY BEEBE LAK FALL CREEK Clark Hall Olin

  11. Producing diamond anvil cell gaskets for ultrahigh-pressure applications using an inex ensive electric discharge machine

    E-Print Network [OSTI]

    Kruger, Michael - Department of Physics, University of Missouri

    . Laser drilling is another method for preparing holes but, of course, is dependent on the availability are drilled in diamond anvil cell gaskets to contain and pressurize samples. As high-pressure technology machine that can drill metals with holes as small as 25 pm in diameter. This method of drilling is easy

  12. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect (OSTI)

    Wang, Q. (California Univ., Davis, CA (United States)); Santini, D.L. (Argonne National Lab., IL (United States))

    1992-01-01T23:59:59.000Z

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  13. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect (OSTI)

    Wang, Q. [California Univ., Davis, CA (United States); Santini, D.L. [Argonne National Lab., IL (United States)

    1992-12-31T23:59:59.000Z

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  14. Diamond machine tool face lapping machine

    DOE Patents [OSTI]

    Yetter, H.H.

    1985-05-06T23:59:59.000Z

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  15. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

  16. Diagnostics for machine protection of DEMO

    SciTech Connect (OSTI)

    Felton, R. [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2014-08-21T23:59:59.000Z

    DEMO aims to (i) integrate, demonstrate and validate all relevant technology necessary to convert fusion energy to electrical energy and (ii) that the machine and its operations are economically and environmentally acceptable. To maintain the efficiency and availability of the machine, there are several physics and combined physics/technology issues as well as the engineering issues. Machine Protection (also known as Protection of Investment) addresses both the risks to plant (to avoid costly repair or replacement) and the risks to normal operating time (to avoid loss of productivity and the return on investment). The plasma-related Machine Protection issues involve measurement and control of plasma stability, plasma purity, and plasma-wall interactions. Machine Protection aims to avoid hitting catastrophic limits by using early warning alarm systems, and controlled termination or avoidance, involving coordinated actions of the magnets, gas and auxiliary heating or current-drive systems. This article outlines the key processes, some of which are used in present-day tokamaks and some of which are new specifically for DEMO (e.g. First wall and divertor power handling) and reveals the need to research and develop new science and technology for Machine Protections in DEMO's high radiation and thermal fields. This work was funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE and conducted partly under EFDA PPPT (WP13-DAS04). The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  17. US DRIVE Highlights of Technical Accomplishments 2013

    Broader source: Energy.gov (indexed) [DOE]

    for longer-lasting and more cost-effective electric drive vehicle batteries. National Renewable Energy Laboratory Advanced energy storage devices, such as lithium- based...

  18. Please cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010

    E-Print Network [OSTI]

    Parker, Lynne E.

    2012-01-01T23:59:59.000Z

    electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010 ARTICLE IN PRESSG Model ENB-3661; No.of Pages13 Energy and Buildings xxx (2012) xxx­xxx Contents lists available at SciVerse ScienceDirect Energy and Buildings journal homepage: www

  19. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  20. Proceedings of the 2008 International Conference on Electrical Machines Paper ID 1434 DFIG-Based Wind Turbine Fault Diagnosis

    E-Print Network [OSTI]

    Boyer, Edmond

    -Based Wind Turbine Fault Diagnosis Using a Specific Discrete Wavelet Transform E. Al-Ahmar1,2 , M for electrical and mechanical fault diagnosis in a DFIG-based wind turbine. The investigated technique unambiguously diagnose faults under transient conditions. Index Terms--Wind turbine, Doubly-Fed Induction

  1. Electric Drive Component Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. US Electric Drive Manufacturing Center

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Comments on: Electric Drive Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April

  4. Sandia Energy - Electric Drive Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContact UsECECElectric

  5. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

  6. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Electric Vehicles. EPRI: Palo Alto, CA. Report1009299. [9]Popular Science. July. [4] EPRI (2001) Comparing theHybrid Electric Vehicle Options. EPRI: Palo Alto, CA. Report

  7. Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle

    E-Print Network [OSTI]

    Estrada Gutierrez, Pedro Cuauhtemoc

    1997-01-01T23:59:59.000Z

    is recharged at the user's home, office, or at a public "charging station". A typical HEV has a drive train with a small internal combustion engine (ICE) and an electric machine powered by a battery. The fuel for the ICE can be gasoline, diesel... or The journal model is IEEE Transactions on Automatic Control. compressed natural gas (CNG), and the battery can be recharged by the ICE or by the same methods described for EVs. The most popular alternative is an EV with a high power electric machine. Its...

  8. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  9. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Energy Savers [EERE]

    Materials for Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to...

  10. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Center for Electric Drive Transportation at the University of Michigan - Dearborn...

  11. Variable Frequency Pump Drives

    E-Print Network [OSTI]

    Karassik, I. J.; Petraccaro, L. L.; McGuire, J. T.

    . In a conventional pump and driver arrangement (for example, a centrifugal pump coupled to an AC induction motor'with no speed control provision), the motor runs at. a constant speed, which is determined by the incoming line frequency, and the pump... when it is needed. LONG RANGE DESIGN TRENDS The growing use of variable-frequency electric motor drives will permit the integration of 60 and 50 cycle pump lines. One important concern for future improvements is the growing possibility...

  12. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  14. Method and apparatus for monitoring machine performance

    DOE Patents [OSTI]

    Smith, Stephen F. (Loudon, TN); Castleberry, Kimberly N. (Harriman, TN)

    1996-01-01T23:59:59.000Z

    Machine operating conditions can be monitored by analyzing, in either the time or frequency domain, the spectral components of the motor current. Changes in the electric background noise, induced by mechanical variations in the machine, are correlated to changes in the operating parameters of the machine.

  15. Traction sheave elevator, hoisting unit and machine space

    DOE Patents [OSTI]

    Hakala, Harri (Hyvinkaa, FI); Mustalahti, Jorma (Hyvinkaa, FI); Aulanko, Esko (Kerava, FI)

    2000-01-01T23:59:59.000Z

    Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.

  16. Wind turbine ring/shroud drive system

    DOE Patents [OSTI]

    Blakemore, Ralph W.

    2005-10-04T23:59:59.000Z

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  17. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    A.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric UtilitiesWould You Buy a Hybrid Vehicle? Study #715238, conducted for

  18. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Broader source: Energy.gov (indexed) [DOE]

    rogers.pdf More Documents & Publications Advanced Power Electronics and Electric Motors R&D Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Electric...

  19. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  20. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  1. Watch Energy Secretary Moniz Test Drive the Toyota Mirai

    Broader source: Energy.gov [DOE]

    The Energy Department posted a video of ?Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

  2. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Vehicle Technologies Office: Power Electronics and Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    overview of electric drive vehicles, see the Alternative Fuels Data Center's pages on Hybrid and Plug-in Electric Vehicles. The Vehicle Technologies Office (VTO) supports...

  4. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2014: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) Center for Electric Drive Transportation at the University of Michigan - Dearborn...

  5. Machine therapy

    E-Print Network [OSTI]

    Dobson, Kelly E. (Kelly Elizabeth), 1970-

    2007-01-01T23:59:59.000Z

    Machine Therapy is a new practice combining art, design, psychoanalysis, and engineering work in ways that access and reveal the vital, though often unnoticed, relevance of people's interactions and relationships with ...

  6. Engineering AnteaterDrive

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Rockw ell & M DEA Engineering Tower AnteaterDrive AnteaterDrive East Peltason Drive EastPeltasonDrive East Peltason Drive Anteater Parking Structure EngineeringServiceRoad Engineering Laboratory Facility Engineering Gateway Engineering Hall AIRB Calit2 Engineering Lecture Hall Campus Building Engineering Building

  7. Cooling system for rotating machine

    DOE Patents [OSTI]

    Gerstler, William Dwight (Niskayuna, NY); El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Alexander, James Pellegrino (Ballston Lake, NY); Quirion, Owen Scott (Clifton Park, NY); Palafox, Pepe (Schenectady, NY); Shen, Xiaochun (Schenectady, NY); Salasoo, Lembit (Schenectady, NY)

    2011-08-09T23:59:59.000Z

    An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

  8. Active surge control of centrifugal compressors using drive torque

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Active surge control of centrifugal compressors using drive torque Jan Tommy Gravdahl , Olav control is presented. A centrifugal compressor driven by an electrical motor is studied, and the drive of the drive as control ensures exponential convergence. The proposed method is simulated on a compressor model

  9. Substrate denaturation and translocation by a proteolytic machine

    E-Print Network [OSTI]

    Kenniston, Jon Anders

    2005-01-01T23:59:59.000Z

    Many AAA+ molecular machines generate power and drive cellular processes by harnessing energy from cycles of ATP hydrolysis. ClpX is a relatively simple AAA+ ATPase that powers regulated protein degradation by binding ...

  10. A high-speed hysteresis motor spindle for machining applications

    E-Print Network [OSTI]

    Bayless, Jacob D. (Jacob Daniel)

    2014-01-01T23:59:59.000Z

    An analysis of suitable drive technologies for use in a new high-speed machining spindle was performed to determine critical research areas. The focus is on a hysteresis motor topology using a solid, inherently-balanced ...

  11. FINAL REPORT ON CONTROL ALGORITHM TO IMPROVE THE PARTIAL-LOAD EFFICIENCY OFSURFACE PM MACHINES WITH FRACTIONAL-SLOT CONCENTRATED WINDINGS

    SciTech Connect (OSTI)

    Reddy, P.B.; Jahns, T.M.

    2007-04-30T23:59:59.000Z

    Surface permanent magnet (SPM) synchronous machines using fractional-slot concentrated windings are being investigated as candidates for high-performance traction machines for automotive electric propulsion systems. It has been shown analytically and experimentally that such designs can achieve very wide constant-power speed ratios (CPSR) [1,2]. This work has shown that machines of this type are capable of achieving very low cogging torque amplitudes as well as significantly increasing the machine power density [3-5] compared to SPM machines using conventional distributed windings. High efficiency can be achieved in this class of SPM machine by making special efforts to suppress the eddy-current losses in the magnets [6-8], accompanied by efforts to minimize the iron losses in the rotor and stator cores. Considerable attention has traditionally been devoted to maximizing the full-load efficiency of traction machines at their rated operating points and along their maximum-power vs. speed envelopes for higher speeds [9,10]. For example, on-line control approaches have been presented for maximizing the full-load efficiency of PM synchronous machines, including the use of negative d-axis stator current to reduce the core losses [11,12]. However, another important performance specification for electric traction applications is the machine's efficiency at partial loads. Partial-load efficiency is particularly important if the target traction application requires long periods of cruising operation at light loads that are significantly lower than the maximum drive capabilities. While the design of the machine itself is clearly important, investigation has shown that this is a case where the choice of the control algorithm plays a critical role in determining the maximum partial-load efficiency that the machine actually achieves in the traction drive system. There is no evidence that this important topic has been addressed for this type of SPM machine by any other authors. This topic takes on even greater significance for fractional-slot concentrated-winding SPM machine designs. In particular, maximizing the torque/power density of this class of SPM machines typically leads to machine designs with high numbers of poles. The resulting high electrical frequencies can easily result in high stator core losses unless special care is taken during the machine design process. The purpose of this report is to discuss a modified vector control algorithm for a fractional-slot concentrated winding SPM machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. For purposes of this discussion, a 55 kW (peak) SPM machine designed to meet requirements established in the US FreedomCar program [13] is used as the basis for demonstrating the proposed technique. A combination of closed-form analysis [14] and finite element analysis (FEA) is used during this investigation.

  12. Final Report on Control Algorithm to Improve the Partial-Load Efficiency of Surface PM Machines with Fractional-Slot Concentrated Windings

    SciTech Connect (OSTI)

    McKeever, John W [ORNL; Reddy, Patel [University of Wisconsin; Jahns, Thomas M [ORNL

    2007-05-01T23:59:59.000Z

    Surface permanent magnet (SPM) synchronous machines using fractional-slot concentrated windings are being investigated as candidates for high-performance traction machines for automotive electric propulsion systems. It has been shown analytically and experimentally that such designs can achieve very wide constant-power speed ratios (CPSR) [1,2]. This work has shown that machines of this type are capable of achieving very low cogging torque amplitudes as well as significantly increasing the machine power density [3-5] compared to SPM machines using conventional distributed windings. High efficiency can be achieved in this class of SPM machine by making special efforts to suppress the eddy-current losses in the magnets [6-8], accompanied by efforts to minimize the iron losses in the rotor and stator cores. Considerable attention has traditionally been devoted to maximizing the full-load efficiency of traction machines at their rated operating points and along their maximum-power vs. speed envelopes for higher speeds [9,10]. For example, on-line control approaches have been presented for maximizing the full-load efficiency of PM synchronous machines, including the use of negative d-axis stator current to reduce the core losses [11,12]. However, another important performance specification for electric traction applications is the machine's efficiency at partial loads. Partial-load efficiency is particularly important if the target traction application requires long periods of cruising operation at light loads that are significantly lower than the maximum drive capabilities. While the design of the machine itself is clearly important, investigation has shown that this is a case where the choice of the control algorithm plays a critical role in determining the maximum partial-load efficiency that the machine actually achieves in the traction drive system. There is no evidence that this important topic has been addressed for this type of SPM machine by any other authors. This topic takes on even greater significance for fractional-slot concentrated-winding SPM machine designs. In particular, maximizing the torque/power density of this class of SPM machines typically leads to machine designs with high numbers of poles. The resulting high electrical frequencies can easily result in high stator core losses unless special care is taken during the machine design process. The purpose of this report is to discuss a modified vector control algorithm for a fractional-slot concentrated winding SPM machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. For purposes of this discussion, a 55 kW (peak) SPM machine designed to meet requirements established in the US FreedomCar program [13] is used as the basis for demonstrating the proposed technique. A combination of closed-form analysis [14] and finite element analysis (FEA) is used during this investigation.

  13. August 28, 2012 Page 1 of 2 EEE 473 Electrical Machinery (3) [F

    E-Print Network [OSTI]

    Zhang, Junshan

    speed drives, wind generators and electric vehicles. Lecture. Technical Elective. Prerequisite: EEE 360

  14. Electrical and computer engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electrical and computer engineering COLLEGE of ENGINEERING DepartmentofElectricalandComputerEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electrical

  15. Induction machine

    DOE Patents [OSTI]

    Owen, Whitney H. (Ogden, UT)

    1980-01-01T23:59:59.000Z

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  16. Machine Learning for the New York City Power Grid

    E-Print Network [OSTI]

    Rudin, Cynthia

    1 Machine Learning for the New York City Power Grid Cynthia Rudin, David Waltz, Roger N. Anderson are sufficiently accurate to assist in maintaining New York City's electrical grid. Index Terms--applications of machine learning, electrical grid, smart grid, knowledge discovery, supervised ranking, computational

  17. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    Domestic Electric Storage Water Heater (DESWH) Test Methodsfans, washing machines, water heaters and space heaters.and Space Heating Water heater intensities and electric

  18. Engineering Science AB: Electrical Rev. Aug 2014 1/3

    E-Print Network [OSTI]

    Engineering Science ­ AB: Electrical Rev. Aug 2014 1/3 Plan of Study for the Electrical ­ System Programming & Machine Organization ___________ Sophomore Forum ___________ Electrical Engineering ___________ ___________ ___________ ___________ #12;Engineering Science ­ AB: Electrical Rev. Aug 2014 2/3 Hardware CIRCLE ONE ES 52

  19. Roberts Union DRIVING DIRECTIONS

    E-Print Network [OSTI]

    Wilson, Herb

    the pond onto Bixler Drive, across from the Millwright Steam Plant and just before the outdoor track (Washington Street). Take your first left onto Bixler Drive, after you pass the outdoor track and football

  20. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Drive Electric Week (September 15-21, 2014). As the home of Fiat Chrysler Automobiles, Auburn Hills, Michigan, was inspired to become a frontrunner for the use of PEVs....

  1. Course info Machine Learning

    E-Print Network [OSTI]

    Shi, Qinfeng "Javen"

    info 2 Machine Learning What's Machine Learning? Types of Learning Overfitting Occam's Razor 3 Real's Machine Learning? Types of Learning Overfitting Occam's Razor Machine Learning Using data to uncover Real life problems What's Machine Learning? Types of Learning Overfitting Occam's Razor Formulation

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    charge data using cellularWiFi based network Power and energy data using integral meter Event data using network synchronized clock All data merged and stored at...

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Utilization Data Base Evaluate Infrastructure Effectiveness Develop Sustainable Business Models Develop Models For Future Infrastructure Deployments Relevance MILESTONES...

  4. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    project completion with potential reach of over 100,000 individuals * Project Job Statistics: - Project Year 1 Creation of 17.5 Full Time Employment (FTE) Jobs Retention...

  5. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    AutoExposure * Subcontractor * Outside Industry * Partnered to develop training videos - Eaton Corporation * Subcontractor * Outside Industry * Partnered to develop Infrastructure...

  7. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Education Program Al Ebron, Executive Director National Alternative Fuels Training Consortium West Virginia University June 9, 2010 Project ID: ARRAVT031 This presentation...

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  9. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    vs. Utility Meter Utilize communication strategies to alter EVSE operation - Demand Response demonstration Approach EVSE Utility HARDWARE DEPLOYMENT 7,871 Level 2...

  10. Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. | Department ofInc. |

  11. Advanced Electric Drive Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy

  12. Advanced Electric Drive Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy1

  13. Advanced Electric Drive Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy10

  14. Alpha Channeling in Mirror Machines

    SciTech Connect (OSTI)

    Fisch N.J.

    2005-10-19T23:59:59.000Z

    Because of their engineering simplicity, high-?, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

  15. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15T23:59:59.000Z

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  16. Substantially Parallel Flux Uncluttered Rotor Machines (U-Machine)

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-02-03T23:59:59.000Z

    A general concern based on the supply and demand trend of the permanent magnet (PM) raw materials suggests the need for elimination of these materials from electric motors (and generators) to control future costs. This invention discloses a new motor topology that eliminates the PM. Other innovations include brushless adjustable field excitation for high starting torque, field weakening, and power factor improvement and novel locks for higher peak speed. This novel machine shows promising...

  17. A motor drive control system for the Lidar Polarimeter

    E-Print Network [OSTI]

    Leung, Waiming

    1977-01-01T23:59:59.000Z

    A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

  18. Chapter 18: Variable Frequency Drive Evaluation Protocol

    SciTech Connect (OSTI)

    Romberger, J.

    2014-11-01T23:59:59.000Z

    An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol. Other ASD devices, such as magnetic drive, eddy current drives, variable belt sheave drives, or direct current motor variable voltage drives, are also not addressed. The VFD is by far the most common type of ASD hardware. With VFD speed control on a centrifugal fan or pump motor, energy use follows the affinity laws, which state that the motor electricity demand is a cubic relationship to speed under ideal conditions. Therefore, if the motor runs at 75% speed, the motor demand will ideally be reduced to 42% of full load power; however, with other losses it is about 49% of full load power.

  19. Power Electonics & Electric Machinery | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Areas of expertise include advanced power electronics, electric machines, thermal control for power electronics, and power quality and utility interconnection. For more...

  20. Lakeland Electric- Commercial Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers several incentives for commercial customers to save energy in eligible facilities. Rebates are available for vending machine controllers, facility system upgrades and...

  1. REAL-TIME ROTOR BAR CURRENT MEASUREMENTS USING BLUETOOTH TECHNOLOGY FOR A BRUSHLESS DOUBLY-FED MACHINE (BDFM)

    E-Print Network [OSTI]

    Cambridge, University of

    has attracted attention as a variable speed drive and as a generator in applications where the prime mover speed is variable, such as in wind turbines. For variable speed operation one of the machine)1223 332662 ABSTRACT The Brushless Doubly Fed Machine (BDFM) shows economic promise as a variable speed drive

  2. Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine

    E-Print Network [OSTI]

    Ran, Li

    This paper analyzes the electromechanical inter-action in a flywheel system with a doubly fed induction machine, used for wind farm power smoothing or grid frequency response control. The grid-connected electrical machine ...

  3. Drive System for Traction Applications Using 81-Level Converter

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    of frequency converter. Keywords: vehicle power electronics, vehicle motor drives. I. INTRODUCTION Power Electronics technologies contribute with important part in the development of electric vehicles. On the otherDrive System for Traction Applications Using 81-Level Converter Juan W. Dixon, Micah E. Ortúzar

  4. The All-Electric Commute: An Assessment of the Market Potential for Station Cars in the San Francisco Bay Area

    E-Print Network [OSTI]

    Cervero, Robert; Round, Alfred; Reed, Carma; Clark, Brian

    1994-01-01T23:59:59.000Z

    Sperling, D. 1994. "Electric Cars and the Future." ITSReviewUP HERE TO TEST DRIVE AN ELECTRIC CAR Availability for testtest drives of an electric car. Non-polluting commuting."

  5. Sandia National Laboratories: Resilient Electric Infrastructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its broad access to abundant, reliable, and cheap energy. Today, it is our electric power system (the "grid") that almost singularly drives our digital economy and elevates our...

  6. Flotation machine

    SciTech Connect (OSTI)

    Zlobin, M.N.; Permyakov, G.P.; Nemarov, A.A.; Metsik, V.M.; Medetsky, J.V.; Taraban, N.T.

    1993-08-10T23:59:59.000Z

    A flotation machine is described for beneficiating minerals comprising: a vertical cylindrical chamber for circulating a flotation pulp; a downwardly tapered bottom connected to said vertical cylindrical chamber; feed pipe means for feeding the flotation pulp carrying mineral particles of fine fraction, particles of the useful ingredient of the fine fraction being capable of floating up from the volume of said aerated pulp; discharge pipe means connected to the tapered bottom near its lowest point for discharging gangue; an annular trough for collecting froth concentrate at the top of said chamber; a group of frustoconical shells each having bases of different diameters and a tapered surface secured axially in said chamber and spaced equidistantly from one another height wise of said chamber; aerator means for aerating the flotation pulp secured to the walls of said chamber and communicating therewith to provide aerated water into said chamber; means for feeding mineral particles of coarse fraction, particles of the useful ingredient of the coarse fraction being capable of floating in the froth layer of the flotation pulp, in the form of a hydrocyclone having a cylindrical casing positioned axially over said chamber and a downwardly tapering outlet directed downwardly to feed the coarse particles to said chamber; feed pipe means for feeding the flotation pulp carrying mineral particles of coarse fraction positioned tangentially at said cylindrical casing of the hydrocyclone; and evacuation means for evacuating the liquid phase of the flotation pulp positioned tangentially at said casing of the hydrocyclone over said feed pipe means and connected to said feed pipe means for feeding the flotation pulp carrying mineral particles of the fine fraction.

  7. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, C.A. Jr.

    1999-08-31T23:59:59.000Z

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  8. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, Jr., Charles A. (Raymore, MO)

    1999-08-31T23:59:59.000Z

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  9. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisianaDepartment of HIGH1

  10. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisianaDepartment of HIGH10

  11. US DRIVE Driving Research and Innovation for Vehicle Efficiency...

    Office of Environmental Management (EM)

    More Documents & Publications US DRIVE Fuel Pathway Integration Technical Team Roadmap Hydrogen Program Goal-Setting Methodologies Report to Congress US DRIVE Hydrogen...

  12. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01T23:59:59.000Z

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  13. Stator current demodulation for induction machine rotor faults diagnosis

    E-Print Network [OSTI]

    Boyer, Edmond

    with emphasis on stator current processing [1], [2]. It has been proven that mechanical and electrical faultsStator current demodulation for induction machine rotor faults diagnosis El Houssin El Bouchikhi of the stator currents. Hence, demodulation of the stator currents is of high interest for induction machines

  14. Machine Learning for the New York City Power Grid

    E-Print Network [OSTI]

    Rudin, Cynthia

    Power companies can benefit from the use of knowledge discovery methods and statistical machine learning for preventive maintenance. We introduce a general process for transforming historical electrical grid data into ...

  15. The Accident Externality from Driving

    E-Print Network [OSTI]

    Edlin, Aaron S.; Karaca-Mandic, Pinar

    2007-01-01T23:59:59.000Z

    Sex-Divided Mile- age, Accident, and Insurance Cost DataMandic. 2003. “The Accident Externality from Driving. ”Insurance Res. Council. accident externality from driving

  16. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  17. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  18. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  19. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  20. Machine LearningMachine Learning Stephen Scott

    E-Print Network [OSTI]

    Scott, Stephen D.

    represents if-then rules num-of-wheelsnon-truck hauls-cargo relative-height truck yesno non-truck non-truck about trucks & combines Memorizes: But will he recognize others? #12;1/21/2004 Stephen Scott, Univ is MachineAgain, what is Machine Learning?Learning? Given several labeled examples of a concept ­ E.g. trucks

  1. LISP Machine Progress Report

    E-Print Network [OSTI]

    Bawden, Alan

    1977-08-01T23:59:59.000Z

    This informal paper introduces the LISP Machine, describes the goals and current status of the project, and explicates some of the key ideas. It covers the LISP machine implementation, LISP as a system language, ...

  2. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13T23:59:59.000Z

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  3. Walcot Electric Machines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii:Walbridge, Ohio: EnergyWalcot

  4. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013News Archive News Archive RSS March 3, 2015Resources

  5. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    DOE Patents [OSTI]

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30T23:59:59.000Z

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  6. DRILLING MACHINES GENERAL INFORMATION

    E-Print Network [OSTI]

    Gellman, Andrew J.

    TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

  7. Internal Turing Machines

    E-Print Network [OSTI]

    Ken Loo

    2004-07-28T23:59:59.000Z

    Using nonstandard analysis, we will extend the classical Turing machines into the internal Turing machines. The internal Turing machines have the capability to work with infinite ($*$-finite) number of bits while keeping the finite combinatoric structures of the classical Turing machines. We will show the following. The internal deterministic Turing machines can do in $*$-polynomial time what a classical deterministic Turing machine can do in an arbitrary finite amount of time. Given an element of $\\in HALT$ (more precisely, the $*$-embedding of $HALT$), there is an internal deterministic Turing machine which will take $$ as input and halt in the $"yes"$ state. The language ${}^*Halt$ can not be decided by the internal deterministic Turing machines. The internal deterministic Turing machines can be viewed as the asymptotic behavior of finite precision approximation to real number computations. It is possible to use the internal probabilistic Turing machines to simulate finite state quantum mechanics with infinite precision. This simulation suggests that no information can be transmitted instantaneously and at the same time, the Turing machine model can simulate instantaneous collapse of the wave function. The internal deterministic Turing machines are powerful, but if $P \

  8. Peak thrust operation of linear induction machines from parameter identification

    SciTech Connect (OSTI)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31T23:59:59.000Z

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  9. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 2, FEBRUARY 2008 501 Permanent Magnet Synchronous Machine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Terms--Direct control, hybrid dynamic systems, perma- nent magnet synchronous machine (PMSM), physical magnet synchronous machine (PMSM) and a two-level voltage inverter (Fig. 1). The PMSM constitutes variables) so hybrid control strategies apply adequately. For PMSM drives, vector control has been

  10. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    DOE Patents [OSTI]

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17T23:59:59.000Z

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  11. An equivalent circuit for the Brushless Doubly Fed Machine (BDFM) including parameter estimation

    E-Print Network [OSTI]

    Cambridge, University of

    are presented. The machine is intended for use as a variable speed generator, or drive. A per phase equivalent generator for wind turbines, although the benefits of the BDFM for variable speed drives have also been of operation in a doubly- fed mode, in which the shaft speed has a fixed relationship to the two excitation

  12. Methods, systems and apparatus for synchronous current regulation of a five-phase machine

    DOE Patents [OSTI]

    Gallegos-Lopez, Gabriel; Perisic, Milun

    2012-10-09T23:59:59.000Z

    Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.

  13. lectric Motors are used to drive tools and machines of all sizes. They move huge pots of molten steel in steel mills; they run mixers in the kitchen and drills in the garage.You may have used model cars or trains

    E-Print Network [OSTI]

    Weston, Ken

    model cars or trains powered by electric motors. Electricity for these motors may come from batteries, from house current, or from some special supply. The electric motor in your Discovery Kit is powered by a small battery. 3 E L E C T R I C M O T O R 2Student's Workbook 3IntroductIon Electric Motors are used

  14. Adjustable Speed AC Motor Drives-Applications Problems

    E-Print Network [OSTI]

    Enjeti, P.

    Adjustable Speed AC Motor Drives Applications Problems by Dr. P. Enjeti Power Quality Laboratory Department ofElectrical Engineering Texas A&M University College Station, TX 77843 Tel: 409-845-7466 Fax: 409-845-6259 Email..., it generates side effects, some which have been recognized only recently. This paper presents a comprehensive coverage of application issues of PWM inverter controlled ac motor drives which include damage to motor insulation due to reflected voltages caused...

  15. Drive laser Photocathode

    E-Print Network [OSTI]

    Anlage, Steven

    Drive laser Gun cavity Scale 2" 3"0 1" Photocathode Schematic Overview of a Free Electron Laser Steel Sleeve Compressed Cs2CrO4:Ti Pellet (0.725g) 1.27 cm Nickel-Assisted Hermetic Braze #12;Foundation

  16. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  17. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  18. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  19. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  20. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-05-05T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  1. Green Machine Florida Canyon Hourly Data 20130731

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-08-30T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  2. 20130416_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-04-24T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  3. Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-07-15T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  4. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    standby power, space heaters, and water heating) account forDomestic Electric Storage Water Heater (DESWH) Test Methodswashing machines, water heaters and space heaters. BUENAS

  5. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Desikan Bharathan National Renewable Energy Laboratory Friday May 22, 2009 Air Cooling Technology for Advanced Power Electronics and Electric Machines ape12bharathan This...

  6. Radial-Gap Permanent Magnet Motor and Drive Research FY 2004

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-02-11T23:59:59.000Z

    The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power regardless of speed for relative speeds, n = {omega}/{omega}{sub base} {ge} 2. Performance was also examined with efficiency measurements during the 30-kW PM motor test. Material requirements were examined with finite-element analyses (FEA) to determine the speed and location where yield starts and the corresponding deformations and stresses.

  7. Base drive circuit for a four-terminal power Darlington

    DOE Patents [OSTI]

    Lee, Fred C. (Blacksburg, VA); Carter, Roy A. (Salem, VA)

    1983-01-01T23:59:59.000Z

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  8. Flux-weakening operation of open-end winding drive integrating a cost effective high-power charger

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Flux-weakening operation of open-end winding drive integrating a cost effective high-power charger-end winding drive integrating a cost effective high-power charger Page 1 of 26 IET Review Copy Only IET Inverter (VSI) and an open-end winding Interior Permanent Magnet Synchronous Machine (IPMSM) designed

  9. Machine tool locator

    DOE Patents [OSTI]

    Hanlon, John A. (Los Alamos, NM); Gill, Timothy J. (Stanley, NM)

    2001-01-01T23:59:59.000Z

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  10. Adjustable speed drives: Applications and R&D needs

    SciTech Connect (OSTI)

    Stefanovic, V.R.

    1995-09-01T23:59:59.000Z

    The largest opportunity for the growth of adjustable speed drives (ASDs) during the next 5-6 years is in pump, fan and compressor (PFC) applications where a constant, fixed speed operation is converted to adjustable speed in order to realize energy savings. Inverter supplied induction motors are and will continue to be predominately used in these applications. Over the long term (10-15 years), the greatest ASD growth is expected in large volume consumer applications: first in hybrid electric vehicles (EVs) and in residential heating, ventilation and air-conditioning (HVAC). Both induction and a variety of AC Permanent Magnet motors are expected to be the dominant technology in this new field. The traditional ASD applications in industries which require adjustable speed (such as machine tools, robotics, steel rolling, extruders, paper mill finishing lines, etc.) offer a relatively limited potential for above average ASD growth since most of these applications have already converted to electronic speed control. As a result, ASD growth in this sector will essentially track the growth of the corresponding industries. If realized, both short and long term ASD growth opportunities will result in significant advancements of ASD technology, which will then substantially affect all other, more fragmented, ASD applications. In fact, any single large volume ASD application will serve as a catalyst for improving ASD characteristics in all other ASD applications with the same voltage rating. ASD cost and reliability (defined in the context of application compatibility) are the two most important factors which will determine whether the ASD growth opportunities are realized. Conversely, any technological improvement which carries a cost increase will be restricted to niche applications, at best. Consequently, future R & D efforts should be directed to secure reduction in ASD cost and improvement in ASD reliability. A specific action plan is outlined in this report.

  11. Design of Vitrification Machine

    E-Print Network [OSTI]

    McDonald, Todd William

    2009-11-30T23:59:59.000Z

    ), and if it is capable of reliably and repeatedly controlling the Petri Dish Tray. These tests will serve to evaluate both the machine’s physical design as well as its software design. Along with the machine’s actual function, its overall design will be evaluated... the specimen is then moved through of series of Petri dishes containing cryo-protectant fluids, generally up to four (personal interview, Medical Advisor, Dr. Kim), using tweezers (alternatively, a pipette system may be employed). The technician must monitor...

  12. the 4th Power Electronics, Drive Systems & Technologies Conference, PEDSTC 2013 Simultaneous Sensing cum Actuating Linear Motor

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Sensing cum Actuating Linear Motor Ali Karimi Varkani Tarbiat Modares University Tehran, Iran ali of an electric machine (a linear motor) without using conventional sensors. Tested is a back-drivable linear motor stage which uses the linear motor electric machine as simultaneous sensor cum actuator

  13. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  14. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  15. Abstract Efficiency issues of variable-capacitance micromotors are discussed in context of combined drive and motor

    E-Print Network [OSTI]

    Chapman, Patrick

    of combined drive and motor interaction. It is shown that variable-capacitance motors ideally have nearly, the drive system consisting of both the motor and electronics is not ideal when considering different motors, electric drives, efficiency I. INTRODUCTION An active area of research for commercial

  16. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01T23:59:59.000Z

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  17. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    Abdelkader Merakeb

    2011-04-20T23:59:59.000Z

    Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

  18. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  19. Hybrid-secondary uncluttered induction machine

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  20. Electrical Engineering and Computer Science Department Technical Report

    E-Print Network [OSTI]

    Shahriar, Selim

    Electrical Engineering and Computer Science Department Technical Report NWU-EECS-07-01 March 26, 2007 Blackbox No More: Reconstruction of Internal Virtual Machine State Benjamin Prosnitz Abstract Virtual Machine Monitors (VMM) provide Virtual Machine software which runs on them with a virtual hardware

  1. Machine tool evaluation and machining operation development

    SciTech Connect (OSTI)

    Morris, T.O. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Kegg, R. [Cincinnati Milacron Marketing Co., OH (United States)

    1997-03-15T23:59:59.000Z

    The purpose of this CRADA was to support Cincinnati Milacron`s needs in fabricating precision components, from difficult to machine materials, while maintaining and enhancing the precision manufacturing skills of the Oak Ridge Complex. Oak Ridge and Cincinnati Milacron personnel worked in a team relationship wherein each contributed equally to the success of the program. Process characterization, control technologies, machine tool capabilities, and environmental issues were the primary focus areas. In general, Oak Ridge contributed a wider range of expertise in machine tool testing and monitoring, and environmental testing on machining fluids to the defined tasks while Cincinnati Milacron personnel provided equipment, operations-specific knowledge and shop-floor services to each task. Cincinnati Milacron was very pleased with the results of all of the CRADA tasks. However, some of the environmental tasks were not carried through to a desired completion due to an expanding realization of need as the work progressed. This expansion of the desired goals then exceeded the time length of the CRADA. Discussions are underway on continuing these tasks under either a Work for Others agreement or some alternate funding.

  2. An investigation of irregular switching in three phase adjustable speed motor drives without neutral connection

    E-Print Network [OSTI]

    1990-01-01T23:59:59.000Z

    ELIMINATION OF SWITCHING IRREG ULARITIES . . CHAPTER Page V. l Two Independent Current Controller . . V. 2 Controlling the Duration of Null State 44 V. 3 Applying Hysteresis Control on Error Current V. 4 Elimination oi' Null Switching State 45 V. 5... it possible to overcome these limitations of dc machine, by using a, high performance ac motor drive. Most of these motor drives utilize a, current controller which attempts to switch a pulse width modulated voltage source inverter to force the motor...

  3. Optimization Online - Enclosing Machine Learning

    E-Print Network [OSTI]

    Wei Xunkai

    2007-10-20T23:59:59.000Z

    Oct 20, 2007 ... Abstract: This report introduces a new machine learning paradigm called enclosing machine learning for data mining. This novel method ...

  4. Base drive circuit

    DOE Patents [OSTI]

    Lange, A.C.

    1995-04-04T23:59:59.000Z

    An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.

  5. Base drive circuit

    DOE Patents [OSTI]

    Lange, Arnold C. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).

  6. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

  7. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and Development 2012 DOE...

  8. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01T23:59:59.000Z

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  9. Advances in electric power systems : robustness, adaptability, and fairness

    E-Print Network [OSTI]

    Sun, Xu Andy

    2011-01-01T23:59:59.000Z

    The electricity industry has been experiencing fundamental changes over the past decade. Two of the arguably most significant driving forces are the integration of renewable energy resources into the electric power system ...

  10. Drive torque actuation in active surge control of centrifugal compressors

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Drive torque actuation in active surge control of centrifugal compressors Jan Tommy Gravdahl , Olav to active surge control is presented for a centrifugal compressor driven by an electrical motor. The main is considered to be the control input. The proposed method is simulated on a compressor model using

  11. Some relations between quantum Turing machines and Turing machines

    E-Print Network [OSTI]

    Andrés Sicard; Mario Vélez

    1999-12-06T23:59:59.000Z

    For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and reversible Turing machines.

  12. Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine

    DOE Patents [OSTI]

    Gallegos-Lopez, Gabriel

    2012-10-02T23:59:59.000Z

    Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.

  13. Structural optimisation of permanent magnet direct drive generators for 5MW wind turbines 

    E-Print Network [OSTI]

    Zavvos, Aristeidis

    2013-11-28T23:59:59.000Z

    This thesis focuses on permanent magnet "direct drive" electrical generators for wind turbines with large power output. A variety of such generator topologies is reviewed, tested and optimised in an attempt to increase ...

  14. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    MACHINE AND FOUNDRY COMPANY kt '- : :' ENGINEERING DIVISIOJ ---. Cl FIELD iRIP ,REP@?T ,' i;:z;zy MEETING REPORT : .I.-.-' Y ::,:I :. &, .I7 ENGINEERING REPORT- : T, ...

  15. Machine Translation for Twitter 

    E-Print Network [OSTI]

    Jehl, Laura Elisabeth

    2010-11-24T23:59:59.000Z

    We carried out a study in which we explored the feasibility of machine translation for Twitter for the language pair English and German. As a first step we created a small bilingual corpus of 1,000 tweets. Using this ...

  16. Drive actuation in active control of centrifugal compressors Jan Tommy Gravdahl and Olav Egeland

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Drive actuation in active control of centrifugal compressors Jan Tommy Gravdahl and Olav Egeland-1375 Billingstad NORWAY CompressorShaft Electric drive Active surge control law Shaft speed Compressor compressor surge has been avoided using surge avoidance schemes that use various techniques to keep

  17. Drive-by-Wireless Teleoperation with Network QoS Adaptation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    tele- operation of drive-by-wireless applications, which utilize energy concepts and impose an adaptation scheme for drive- by-wireless teleoperation of an electric vehicle. The performance variation due to the varying time delay and packet losses is investigated and catered for by using an adaptive gain scheduling

  18. Sealing intersecting vane machines

    DOE Patents [OSTI]

    Martin, Jedd N.; Chomyszak, Stephen M.

    2005-06-07T23:59:59.000Z

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  19. Human-machine interactions

    DOE Patents [OSTI]

    Forsythe, J. Chris (Sandia Park, NM); Xavier, Patrick G. (Albuquerque, NM); Abbott, Robert G. (Albuquerque, NM); Brannon, Nathan G. (Albuquerque, NM); Bernard, Michael L. (Tijeras, NM); Speed, Ann E. (Albuquerque, NM)

    2009-04-28T23:59:59.000Z

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  20. Doubly fed induction machine

    DOE Patents [OSTI]

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11T23:59:59.000Z

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  1. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

    2010-10-12T23:59:59.000Z

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  2. Sealing intersecting vane machines

    DOE Patents [OSTI]

    Martin, Jedd N. (Providence, RI); Chomyszak, Stephen M. (Attleboro, MA)

    2007-06-05T23:59:59.000Z

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  3. Machine Learning: Foundations and Algorithms

    E-Print Network [OSTI]

    Ben-David, Shai

    with accident prevention systems that are built using machine learning algorithms. Machine learning is also to us). Machine learning tools are concerned with endowing programs with the ability to "learn if the learning process succeeded or failed? The second goal of this book is to present several key machine

  4. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect (OSTI)

    Villaran, M.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01T23:59:59.000Z

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  5. Could a machine think

    SciTech Connect (OSTI)

    Churchland, P.M.; Churchland, P.S. (Univ. of California, San Diego (USA))

    1990-01-01T23:59:59.000Z

    There are many reasons for saying yes. One of the earliest and deepest reason lay in two important results in computational theory. The first was Church's thesis, which states that every effectively computable function is recursively computable. The second important result was Alan M. Turing's demonstration that any recursively computable function can be computed in finite time by a maximally simple sort of symbol-manipulating machine that has come to be called a universal Turing machine. This machine is guided by a set of recursively applicable rules that are sensitive to the identity, order and arrangement of the elementary symbols it encounters as input. The authors reject the Turing test as a sufficient condition for conscious intelligence. They base their position of the specific behavioral failures of the classical SM machines and on the specific virtues of machines with a more brain-like architecture. These contrasts show that certain computational strategies have vast and decisive advantages over others where typical cognitive tasks are concerned, advantages that are empirically inescapable. Clearly, the brain is making systematic use of these computational advantage. But it need not be the only physical system capable of doing so. Artificial intelligence, in a nonbiological but massively parallel machine, remain a compelling and discernible prospect.

  6. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  7. Electrical Engineering SB Rev. Nov 2013 1/3

    E-Print Network [OSTI]

    Electrical Engineering SB Rev. Nov 2013 1/3 Plan of Study for the Electrical Engineering of Study Form is for a (Circle One): DECLARATION REVISION The S.B. Program in Electrical Engineering must ­ System Programming & Machine Organization 1.00 __________ #12;Electrical Engineering SB Rev. Nov 2013

  8. Electrical Engineering SB Rev. Nov 2014 1/3

    E-Print Network [OSTI]

    Electrical Engineering SB Rev. Nov 2014 1/3 Plan of Study for the Electrical Engineering of Study Form is for a (Circle One): DECLARATION REVISION The S.B. Program in Electrical Engineering must ­ System Programming & Machine Organization 1.00 __________ Sophomore Forum #12;Electrical Engineering SB

  9. Actuator 1-Electric Dr. C. Alex Simpkins

    E-Print Network [OSTI]

    Simpkins, Alex

    -Controller WindowsTM Software #12;Electric Motors · Develop maximum thrust at low speeds ­ Heavy, and laser and mirror positioning. Direct drive, zero backlash stages have no moving cables and are available

  10. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive.1 Optimum Electric-Power Generating Unit . . . . . . . . . . . . . . . . . . . . . . 8.7 Annual Capacity.21 Hydropower Generating Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.23 Largest Units

  11. Planning an itinerary for an electric vehicle

    E-Print Network [OSTI]

    Chale-Gongora, Hugo G.

    The steady increase in oil prices and awareness regarding environmental risks due to carbon dioxide emissions are promoting the current interest in electric vehicles. However, the current relatively low driving range ...

  12. Positional reference system for ultraprecision machining

    DOE Patents [OSTI]

    Arnold, Jones B. (Knoxville, TN); Burleson, Robert R. (Clinton, TN); Pardue, Robert M. (Knoxville, TN)

    1982-01-01T23:59:59.000Z

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  13. Extreme ultraviolet lithography machine

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Haney, Steven J. (Tracy, CA); Sweeney, Donald W. (San Ramon, CA)

    2000-01-01T23:59:59.000Z

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  14. Micro-machined resonator

    DOE Patents [OSTI]

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30T23:59:59.000Z

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  15. Strong mechanical driving of a single electron spin

    E-Print Network [OSTI]

    Arne Barfuss; Jean Teissier; Elke Neu; Andreas Nunnenkamp; Patrick Maletinsky

    2015-03-23T23:59:59.000Z

    Quantum devices for sensing and computing applications require coherent quantum systems which can be manipulated in a fast and robust way. Such quantum control is typically achieved using external electric or magnetic fields which drive the system's orbital or spin degrees of freedom. However, most of these approaches require complex and unwieldy antenna or gate structures, and with few exceptions are limited to the regime of weak driving. Here, we present a novel approach to strongly and coherently drive a single electron spin in the solid state using internal strain fields in an integrated quantum device. Specifically, we study individual Nitrogen-Vacancy (NV) spins embedded in diamond mechanical oscillators and exploit the intrinsic strain coupling between spin and oscillator to strongly drive the spins. As hallmarks of the strong driving regime, we directly observe the energy spectrum of the emerging phonon-dressed states and employ our strong, continuous driving for enhancement of the NV spin coherence time. Our results constitute a first step towards strain-driven, integrated quantum devices and open new perspectives to investigate unexplored regimes of strongly driven multi-level systems and to study exotic spin dynamics in hybrid spin-oscillator devices.

  16. Z Machine | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Programs Research, Development, Test, and Evaluation Inertial Confinement Fusion ICF Facilities Z Machine Z Machine Air-gas breakdown when Z Machine at Sandia...

  17. Homopolar machine for reversible energy storage and transfer systems

    DOE Patents [OSTI]

    Stillwagon, Roy E. (Ruffsdale, PA)

    1981-01-01T23:59:59.000Z

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  18. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, O.T.; Lowry, M.E.

    1999-01-05T23:59:59.000Z

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  19. Intersecting vane machines

    DOE Patents [OSTI]

    Bailey, H. Sterling; Chomyszak, Stephen M.

    2007-01-16T23:59:59.000Z

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through meshing surfaces without the need for external gearing by modifying the function of one or the other of the rotors from that of "fluid moving" to that of "valving" thereby reducing the pressure loads and associated inefficiencies at the interface of the meshing surfaces. The inventions described herein relate to these improvements.

  20. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, Oliver T. (Castro Valley, CA); Lowry, Mark E. (Castro Valley, CA)

    1999-01-01T23:59:59.000Z

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  1. Precision Robotic Assembly Machine

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  2. Multispectral Machine Vision for Improved Undercarriage Inspection of Railroad Rolling Stock

    E-Print Network [OSTI]

    Ahuja, Narendra

    Multispectral Machine Vision for Improved Undercarriage Inspection of Railroad Rolling Stock Railroad Engineering Program - Department of Civil and Environmental Engineering *Computer Vision monitoring, safety, electrical, component 1. INTRODUCTION Current practices for inspection of railroad

  3. A Condition Monitoring Vector Database Approach for Broken Bar Fault Diagnostics of Induction Machines

    E-Print Network [OSTI]

    Povinelli, Richard J.

    to diagnose electric machine faults, such as stator winding inter-turn shorts, broken rotor bars, broken end-stepping Finite-Element method. The CMV consists of the negative sequence components of winding voltages, currents

  4. APPLICATION OF DESIGN METHODOLOGY TO THE COOLING SYSTEM OF AN IN-LINE MACHINE VISION SYSTEM

    E-Print Network [OSTI]

    Shih, Albert J.

    APPLICATION OF DESIGN METHODOLOGY TO THE COOLING SYSTEM OF AN IN-LINE MACHINE VISION SYSTEM ....................................... 8 Figure 3. Cooling System Failure with Respect to Electrical Wiring................................. 8 Figure 4. Cooling System Failure with Respect to QD fitting

  5. Broken Bar Detection in Synchronous Machines Based Wind Energy Conversion System 

    E-Print Network [OSTI]

    Rahimian, Mina Mashhadi

    2012-10-19T23:59:59.000Z

    Electrical machines are subject to different types of failures. Early detection of the incipient faults and fast maintenance may prevent costly consequences. Fault diagnosis of wind turbine is especially important because they are situated...

  6. Fast wave current drive: Experimental status and reactor prospects

    SciTech Connect (OSTI)

    Ehst, D.A.

    1988-03-01T23:59:59.000Z

    The fast wave is one of the two possible wave polarizations which propagate according to the basic theory of cold plasmas. It is distinguished from the other (slow wave) branch by having an electric field vector which is mainly orthogonal to the confining magnetic field of the plasma. The plasma and fast wave qualitatively assume different behavior depending on the frequency range of the launched wave. The high frequency fast wave (HFFW), with a frequency (..omega..2..pi.. )approximately) GHz) much higher than the ion cyclotron frequency (..cap omega../sub i/), suffers electron Landau damping and drives current by supplying parallel momentum to superthermal electrons in a fashion similar to lower hybrid (slow wave) current drive. In the simple theory the HFFW should be superior to the slow wave and can propagate to very high density and temperature without impediment. Experiments, however, have not conclusively shown that HFFW current drive can be achieved at densities above the slow wave current drive limit, possibly due to conversion of the launched fast waves into slow waves by density fluctuations. Alternatively, the low frequency fast wave (LFFW), with frequencies ()approxreverse arrowlt) 100 MHz) only a few times the ion cyclotron frequency, is damped by electron Landau damping and, in a hot plasma ()approxreverse arrowgt) 10 keV), by electron transit time magnetic pumping; current drive is achieved by pushing superthermal electrons, and efficiency is prediocted to be slightly better than for lower hybrid current drive. Most significantly, the slow wave does not propagate in high density plasma when ..omega.. )approximately) ..cap omega../sub i/, so parasitic coupling to the slow wave can be avoided, and no density and temperture limitations are foreseen. Experiments with fast wve current drive invariably find current drive efficiency as good as obtained in lower hybrid experiments at comparable, low temperatures. 45 refs., 4 figs., 1 tab

  7. DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains

    E-Print Network [OSTI]

    Brest, Université de

    DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains Bekheïra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

  8. Laser machining of explosives

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Banks, Paul S. (Livermore, CA); Myers, Booth R. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA)

    2000-01-01T23:59:59.000Z

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  9. Operating the Lisp Machine

    E-Print Network [OSTI]

    Moon, David A.

    This document is a draft copy of a portion of the Lisp Machine window system manual. It is being published in this form now to make it available, since the complete window system manual is unlikely to be finished in the ...

  10. Couple lectromcanique des machines rluctance Vernier excites commutation lectronique

    E-Print Network [OSTI]

    Boyer, Edmond

    reluctance machines including a stator field winding. A Fourier series analysis of electric and magnetic'un point de l'entrefer par rapport au stator (rad . ou 0). B induction magnétique (T). C couple angulaire rotor/stator (rad.). u03B8(03B1) différence de potentiel magnétique scalaire stator/ rotor (A). u0

  11. Performance and Energy Modeling for Live Migration of Virtual Machines

    E-Print Network [OSTI]

    Xu, Cheng-Zhong

    Performance and Energy Modeling for Live Migration of Virtual Machines Haikun Liu , Cheng-Zhong Xu , Hai Jin , Jiayu Gong , Xiaofei Liao School of Computer Science and Technology Huazhong University of Science and Technology Wuhan, 430074, China {hjin, xfliao}@hust.edu.cn Department of Electrical

  12. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2011-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for

  13. Study of Advantages of PM Drive Motor with Selectable Windings for HEVs

    SciTech Connect (OSTI)

    Otaduy, Pedro J [ORNL; Hsu, John S [ORNL; Adams, Donald J [ORNL

    2007-11-01T23:59:59.000Z

    The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

  14. Abstract--Linear electrical loading system (LELS) driven by electrical cylinder with permanent magnet synchronous

    E-Print Network [OSTI]

    Yao, Bin

    magnet synchronous motor (PMSM) offers several advantages of high transmission efficiency and high cylinder driven by permanent magnet synchronous motor (PMSM). Though direct-drive linear motors has some to direct-drive linear motor, the solution of electrical cylinder with PMSM has larger output force

  15. MACHINE MONITORING USING PROBABILITY THRESHOLDS

    E-Print Network [OSTI]

    Pollock, Stephen

    MACHINE MONITORING USING PROBABILITY THRESHOLDS AND SYSTEM OPERATING CHARACTERISTICS Stephen M and Jeffrey M. Alden G.M. R&D Center Warren, MI 48090 IOE Tech Report 95-14 #12;1. Introduction We a discrete-part production machine, with the objective of effectively determining when to shut the machine

  16. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 Grand Challenge Portfolio: Driving Innovations in...

  17. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, A.R.

    1998-03-10T23:59:59.000Z

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  18. Why Machine Learning and Games? Machine Learning in Video Games

    E-Print Network [OSTI]

    Hunt, Galen

    Controller Car Behaviour AI Driving Drivatar Racing Line Behaviour Model Drivatar Learning System Drivatar AI Driving #12;#12;Two phase process: 1. Pre-generate possible racing lines prior to the race from Conclusions #12;Adaptive avatar for driving Separate game mode Basis of all in-game AI Basis of "dynamic

  19. Optimization Online - Machine Learning for Global Optimization

    E-Print Network [OSTI]

    Andrea Cassioli

    2009-07-23T23:59:59.000Z

    Jul 23, 2009 ... We propose to use a Support Vector Machine (although different machine ... Citation: Technical report - Global Optimization Laboratory, ...

  20. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, T.C.

    1994-10-25T23:59:59.000Z

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  1. Anomalous - viscosity current drive

    DOE Patents [OSTI]

    Stix, Thomas H. (Princeton, NJ); Ono, Masayuki (Princeton Junction, NJ)

    1988-01-01T23:59:59.000Z

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  2. Vehicle drive module having improved cooling configuration

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13T23:59:59.000Z

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  3. Vehicle drive module having improved EMI shielding

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28T23:59:59.000Z

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  4. FreedomCAR Advanced Traction Drive Motor Development Phase I

    SciTech Connect (OSTI)

    Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)

    2006-09-01T23:59:59.000Z

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque (magnet-dominant PM machines). This report covers a trade study that was conducted in this phase I program to explore which type of machine best suits the FCVT requirements.

  5. Direct Fusion Drive for a Human Mars Orbital Mission

    SciTech Connect (OSTI)

    Paluszek, Michael [Princeton Satellite Systems; Pajer, Gary [Princeton Satellite Systems; Razin, Yosef [Princeton Satellite Systems; Slonaker, James [Princeton Satellite Systems; Cohen, Samuel [PPPL; Feder, Russ [PPPL; Griffin, Kevin [Princeton University; Walsh, Matthew [Princeton University

    2014-08-01T23:59:59.000Z

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  6. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 ix LIST OF TABLES TABLE Page I Average power with full and no regenerative braking for different drive cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 x LIST OF FIGURES FIGURE Page 1 Electric vehicle structure. A.... . . . . . . . . . . . . . . . . . . . 76 66 The power required to run the vehicle: instantaneous, average with and average without regenerative braking. . . . . . . . . . . . . 77 67 Engine operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 68 Power sent...

  7. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor for fuel cells and advanced heavy-duty hybrid electric vehicles. He also has experience with alternative

  8. Modular Permanent Magnet Machine Based on Soft Magnetic *** Burgess-Norton Mfg.Co.

    E-Print Network [OSTI]

    Lipo, Thomas

    2005-30 Modular Permanent Magnet Machine Based on Soft Magnetic Composite *** Burgess-Norton Mfg of Wisconsin-Madison College of Engineering Wisconsin Power Electronics Research Center 2559D Engineering Hall 1415 Engineering Drive Madison, WI 53706-1691 © 2005 Confidential Research Report W. Ouyang*, S. Huang

  9. Liquid soap film generates electricity

    E-Print Network [OSTI]

    Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

    2014-04-24T23:59:59.000Z

    We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

  10. Beyond Tesla and Edison: Other Luminaries from the Age of Electricity

    Broader source: Energy.gov [DOE]

    From electric chairs to machine guns to Gila monsters, learn more about the great minds and eccentric characters who were contemporaries of Edison and Tesla in the early days of electricity.

  11. Impact of Input Voltage Sag and Unbalance on DC Link Inductor and Capacitor Stress in Adjustable Speed Drives

    E-Print Network [OSTI]

    Lipo, Thomas

    , outages, voltage surges and sags. Power quality problems induced in adjustable-speed drives (ASDs) have (120 Hz for 60 Hz system) that increases the electrical stresses on the dc bus choke inductor (if used

  12. Drive reconfiguration mechanism for tracked robotic vehicle

    DOE Patents [OSTI]

    Willis, W. David (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

  13. FY 2014 Annual Progress Report - Electric Drive Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infineon, HRL, Panasonic, AVX, Freescale, Oak Ridge National Laboratory, and National Renewable Energy Laboratory Start Date: 2011 Projected End Date: 2016 Objectives ...

  14. Equivalent circuit modeling of hybrid electric vehicle drive train

    E-Print Network [OSTI]

    Routex, Jean-Yves

    2001-01-01T23:59:59.000Z

    . . . . Figure 3. 4. 6: The motor shaft at no load. Figure 3. 4. 7: Bond graph for the motor shaft. . . Figure 3. 4. 8: Equivalent circuit of the motor shaft. Figure 3. 5. 1: Concrete example: the elevator Figure 3. 5. 2: Electro-mechanical model... model of the elevator. Figure 3. 5. 8: Final equivalent circuit of the elevator. Figure 4. 1. 1: Mechanical model of a shaft. Figure 4. 1. 2: Equivalent circuit of the shaft. Figure 4. 1. 3: Mechanical model of a gearbox. Figure 4. 1. 4: Equivalent...

  15. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Contractor share: 2.1M * Funding received in FY13: 2.1M * Funding for FY14: 1.3M * Hydro-Qubec (IREQ): - Li anode development - For baseline, interim & final deliverable...

  16. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Contractor share: 2.1M * Funding received in FY11: 0K * Funding for FY12: 1.3M * Hydro-Qubec (IREQ): - Li anode development - For baseline, interim & final deliverable...

  17. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Contractor share: 2.1M * Funding received in FY12: 1.2M * Funding for FY13: 2.0M * Hydro-Qubec (IREQ): - Li anode development - For baseline, interim & final deliverable...

  18. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt028apeboan2011...

  19. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt028apeboan2012...

  20. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. apearravt028boan2010...

  1. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Electric Drive Vehicle Level Control Development Under Various...

    Broader source: Energy.gov (indexed) [DOE]

    Compo. Validate Standalone validation Under different temperature conditions (hotcold) Vehicle Control Supervisory controller Vehicle Validate Under different...

  6. asynchronous electric drive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  7. Charging Up with the Electric Drive Transportation Association | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & ProductionChapter 6 --3078Met-Oceanof

  8. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20,inConsumer/Charging

  9. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20,inConsumer/Charging| Department of

  10. Electric Drive Transportation Association Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30,NEW! EnergyIndustry

  11. Electric Drive Vehicle Level Control Development Under Various...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)...

  12. EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF

  13. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF| Department of Energy

  14. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF| DepartmentDepartment

  15. EV Everywhere Grand Challenge Introduction for Electric Drive Workshop |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF|

  16. Electric Drive Status and Challenges | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4: Efficient Water

  17. Electrical Motor Drive Apparatus and Method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration826Vehicles and Fuels

  18. FY 2014 Annual Progress Report - Electric Drive Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1.Department of Energy3in TargetFY

  19. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices

  20. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada PowerD=22954Department of

  1. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada PowerD=22954Department

  2. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada

  3. US DRIVE Electrical and Electronics Technical Team Roadmap | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E Ambassadors and U.S.MANAGEMENTNotice forFederalofDepartment

  4. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I A

  5. Center for Electric Drive Transportation at the University of Michigan -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert

  6. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing you aEngines

  7. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology | Department of Energy 2

  8. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology | Department of Energy

  9. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology | Department of

  10. Electric Drive Component Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling

  11. Electric Drive Component Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling

  12. Electric Drive Component Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling

  13. Electric Drive Component Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling

  14. Electric Drive Component Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling

  15. Electric Drive Component Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling

  16. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. | Department ofInc.

  17. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. | Department

  18. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. | DepartmentEnergy

  19. Electric Drive Vehicle Climate Control Load Reduction | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. |

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department of

  1. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department of|

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department of||

  3. Electric Drive Vehicle Infrastructure Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department

  4. Electric Drive Vehicle Level Control Development Under Various Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || DepartmentConditions

  5. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. ||

  6. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. ||Department of

  7. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data|Report |TestingProgress Report |

  8. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a rDepartment

  9. AVTA: Battery Testing - Electric Drive and Advanced Battery and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES: AshleyManagerDepartmentTestbed |

  10. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2 DOE

  11. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2 DOE1

  12. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2 DOE10

  13. Advanced Electric Drive Vehicle Education Program: CSU Ventures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2

  14. Advanced Electric Drive Vehicle Education Program: CSU Ventures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy

  15. Advanced Electric Drive Vehicle Education Program: CSU Ventures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy 0

  16. Advanced Electric Drive Vehicles Â… A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of

  17. Advanced Electric Drive Vehicles Â… A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment ofand Outreach

  18. Advanced Electric Drive Vehicles Â… A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment ofand

  19. QER - Comment of Electric Drive Transportation Association | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergyProvidingPumpkin Power:Quality

  20. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011 U.S. DEPARTMENTAssociate Deputy SecretaryIn Tuesday's

  1. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  2. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  3. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  4. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  5. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  6. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  7. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  8. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  9. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  10. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  11. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  12. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  13. 20131101-1130_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-12-02T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  14. 20140501-0531_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-02T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  15. 20131001-1031_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-11-05T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  16. 20130901-0930_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-10-25T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  17. 20140101-0131_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-02-03T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  18. 20140701-0731_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-07-31T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  19. 20140601-0630_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-30T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  20. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-06-18T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013