Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Department Authorizes Dominion's Proposed Cove Point Facility to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion's Proposed Cove Point Dominion's Proposed Cove Point Facility to Export Liquefied Natural Gas Energy Department Authorizes Dominion's Proposed Cove Point Facility to Export Liquefied Natural Gas September 11, 2013 - 1:11pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Dominion Cove Point LNG, LP to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from the Cove Point LNG Terminal in Calvert County, Maryland. Dominion Cove Point previously received approval to export LNG from this facility to FTA countries on October 7, 2011. Subject to environmental review and final regulatory approval, the facility is conditionally authorized to export at a rate of

2

Energy Department Authorizes Dominion's Proposed Cove Point Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department announced today that it has conditionally authorized Dominion Cove Point LNG, LP to export domestically produced liquefied natural gas (LNG) to countries that do...

3

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Trinidad and Tobago (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

4

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Norway (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011...

5

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Nigeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011...

6

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Algeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

7

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

8

Cove Point: A step back into the LNG business  

Science Conference Proceedings (OSTI)

In 1978, ships began unloading LNG from Algeria at Cove Point`s berthing facilities 1.25 miles offshore. An underwater pipeline transported the LNG to land, where it was stored in the terminal`s four 140-foot-high cryogenic storage tanks. When the LNG was needed, the terminals 10 vaporizers converted it back to gas for send out via an 87-mile-long, 36-inch-diameter pipeline linking the terminal with interstate pipelines of CNG Transmission Corp. and Columbia Gas Transmission Corp. in Loudon County, Va. But Cove Point handled only about 80 shiploads of LNG before shutting down in December 1980, after a dispute about gas prices between US customers and Algeria. The plant sat dormant until the natural gas industry`s deregulation under Order 636. Deregulation resulted in major pipelines abandoning their sales service, and gas distributors and large customers found it was now their obligation to ensure that they had adequate gas supplies during winter peak-demand periods. Enter Cove Point`s peaking capabilities. They had to add the liquefaction unit and recommission other parts of the plant, but the timing was right. Cove Point`s new liquefaction unit is liquefying about 15 million cubic feet (MMcf) of LNG per day of domestic gas. It chills the gas to {minus}260 degrees Fahrenheit to turn it into a liquid for injection and storage in one of the facility`s double-walled insulated tanks. During its initial injection season, which ends Dec. 15, Cove Point is expected to produce enough LNG to almost fill one tank, which can store up to 1.25 billion cubic feet (Bcf). Were the gas not intended for peak-shaving purposes, it would be enough to supply 14,000 homes for a year. As it is, most of the gas will be returned as pipeline gas, during next January and February`s expected cold snaps, to the utilities and users who supplied it. Cove Point`s initial daily sendout capacity is about 400 MMcf.

Katz, M.G.

1995-12-31T23:59:59.000Z

9

EA-1942: Cove Point Liquefaction Project, Lusby, MD | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Cove Point Liquefaction Project, Lusby, MD 2: Cove Point Liquefaction Project, Lusby, MD EA-1942: Cove Point Liquefaction Project, Lusby, MD SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA, to analyze the potential environmental impacts of a proposal to add natural gas liquefaction and exportation capabilities to an existing Cove Point LNG Terminal located on the Chesapeake Bay in Lusby, Maryland. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 28, 2012 EA-1942: Notice of Intent to Prepare an Environmental Assessment Cove Point Liquefaction Project, Lusby, MD September 24, 2012 EA-1942: Notice of Intent of to Prepare an Environmental Assessment Cove Point Liquefaction Project, Lusby, MD

10

Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE COVE POINT LNG TERMINAL TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the DCP Application have not demonstrated that the requested authorization will be inconsistent with the public interest and finds that the exports proposed in this Application are likely to yield net economic benefits to the United States. DOE/FE further finds that DCP's proposed exports on behalf of other entities should be conditionally authorized at a volumetric rate not to exceed the

11

Price of Cove Point, MD Natural Gas LNG Imports from Algeria...  

Gasoline and Diesel Fuel Update (EIA)

Algeria (Dollars per Thousand Cubic Feet) Price of Cove Point, MD Natural Gas LNG Imports from Algeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

12

Price of Cove Point, MD Natural Gas LNG Total Imports (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Total Imports (Dollars per Thousand Cubic Feet) Price of Cove Point, MD Natural Gas LNG Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

13

Price of Cove Point, MD Natural Gas LNG Imports from Egypt (Nominal...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Cove Point, MD Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2...

14

MA.+'  

Office of Legacy Management (LM)

MA.+' MA.+' t -@ . ;' OAK RIDGE NATIONAL LABORATORY i OPtRATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITE0 STATES DEPARTMENT OF ENERGY ,,y , - IhI of ORNL/TM-10053 RESULTS OF THE RADIOLOGICAL SURVEY AT THE VENTRON SITE, BEVERLY, MASSACHUSETTS W. D. Cottrell R. F. Carrier -.- _ ..-. - . . . -~~.- ~~- Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: ~06 Microfiche A01 This report was prepared as an account of work sponsored by an agency of the United StatesGovernment. Neither the U nited StatesGovernment nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or

15

Cove Fort Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cove Fort Geothermal Area Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (30) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6,"lon":-112.55,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Cove Fort Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cove Fort Geothermal Area Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (30) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6,"lon":-112.55,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Multispectral Imaging At Cove Fort Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Laney, 2005) Cove Fort Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Cove Fort Area (Laney, 2005) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Vegetalspectral analysis at Cove Fort-Sulphurdale, Utah was tested as a method of detecting hidden faults in exploration efforts. This effort proved to be successful and resulted in the Following published paper: Nash, G. D., J. N. Moore, and T. Sperry, 2003. "Vegetal-spectral anomaly detection at the Cove Fort-Sulphurdale thermal anomaly, Utah, USA: implications for use in geothermal exploration." Geothermics, v. 32, p.

18

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details...

19

Geographic Information System At Cove Fort Area - Vapor (Nash...  

Open Energy Info (EERE)

Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale,...

20

Green Cove Springs, Florida: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Cove Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI...

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Half Moon Cove Tidal Project. Feasibility report  

DOE Green Energy (OSTI)

The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

Not Available

1980-11-01T23:59:59.000Z

22

City of Elfin Cove, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elfin Cove, Alaska (Utility Company) Elfin Cove, Alaska (Utility Company) Jump to: navigation, search Name City of Elfin Cove Place Alaska Utility Id 5721 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Rate Residential Average Rates Residential: $0.3290/kWh Commercial: $0.5250/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Elfin_Cove,_Alaska_(Utility_Company)&oldid=409550

23

Geothermal Resources Exploration And Assessment Around The Cove  

Open Energy Info (EERE)

Geothermal Resources Exploration And Assessment Around The Cove Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Details Activities (4) Areas (1) Regions (0) Abstract: The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the Basin and Range to the west and the Colorado Plateau to the east. We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different

24

MA.2  

Office of Legacy Management (LM)

IS .:,I. ;' IS .:,I. ;' MA.2 0 y-AU Mr. M ichael Matt W a tertown Redevelopment Authority 319 Arlington Street W a tertown, Massachusetts 02172 Dear Mr. Matt: The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District and/or the Atomic Energy C o m m ission in the early years of nuclear energy development to determine whether they need remedial action and whether the Department has authority to perform such action. As you know from information previously sent to you, portions of the W a tertown Arsenal in W a tertown, Massachusetts, were identified as possible sites. The areas investigated included those areas which were the sites of Buildings 34, 41, and 421 and the GSA site. The enclosed documents, which represent the Department's review of the

25

Cove Hot Spring Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Cove Hot Spring Sector Geothermal energy Type Greenhouse Location Cove, Oregon Coordinates 45.2965256°, -117.8079872° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

26

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

27

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

28

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

29

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

(Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

30

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Cove Fort Area (Warpinski, Et Al., Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

31

Sandalfoot Cove, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sandalfoot Cove, Florida: Energy Resources Sandalfoot Cove, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.3392449°, -80.1875461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.3392449,"lon":-80.1875461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Halibut Cove, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Halibut Cove, Alaska: Energy Resources Halibut Cove, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.595°, -151.225° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.595,"lon":-151.225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

MHK Projects/Sandy Cove | Open Energy Information  

Open Energy Info (EERE)

Sandy Cove Sandy Cove < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4776,"lon":-63.5408,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

34

MHK Projects/Deadman Cove | Open Energy Information  

Open Energy Info (EERE)

Deadman Cove Deadman Cove < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1359,"lon":-91.5055,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

35

Shady Cove, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cove, Oregon: Energy Resources Cove, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.61179°, -122.818703° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.61179,"lon":-122.818703,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Hot Springs Cove Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Cove Geothermal Area Hot Springs Cove Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Cove Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.23333333,"lon":-168.35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Points  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Selections Project Selections Announced October 26, 2009 Lead Research Organization (Partner Organizations) DOE Grant Amount Lead Organization Location Project Description 1366 Technologies Inc. (Massachusetts Institute of Technology - Lab for PV Research) $4,000,000 Lexington, MA Renewable Power (solar) "Direct Wafer" technology to form high efficiency "monocrystalline- equivalent" silicon wafers directly from molten silicon, with potential to halve the installed cost of solar photovoltaics. Agrivida, Inc. $4,565,800 Medford, MA Biomass Energy Cell wall-degrading enzymes grown within the plant itself that are activated after harvest, dramatically reducing the cost of cellulosic biofuels and chemicals Arizona State University (Fluidic Energy,

38

Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Cove Fort Area - Liquid (Combs 2006) Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Controlled_Source_Audio_MT_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598122"

39

Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598123

40

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_-_Vapor_(Warpinski,_Et_Al.,_2004)&oldid=598134"

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al.,  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Cove_Fort_Area_-_Liquid_(Warpinski,_Et_Al.,_2004)&oldid=598125" Categories: Exploration Activities

42

Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Warpinski, Et Al., 2004) Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598118" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages

43

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598130" Categories: Exploration Activities DOE Funded Activities

44

Geology of the Cove Fort-Sulphurdale KGRA  

DOE Green Energy (OSTI)

The Cove Fort-Sulphurdale Known Geothermal Resource Area (KGRA) is located on the northwestern margin of the Marysvale volcanic field in southwestern Utah. The geology of the KGRA is dominated by lava flows and ash-flow tuffs of late Oligocene to mid-Miocene age that were deposited on faulted sedimentary rocks of Paleozoic to Mesozoic age. The geothermal system of the Cove Fort-Sulphurdale KGRA is structurally controlled by normal faults. High-angle faults control fluid flow within the geothermal reservoir, while the gravitational glide blocks provide an impermeable cap for the geothermal system in the central part of the field. Surficial activity occurring to the north and south of the glide blocks is characterized by the evolution of hydrogen sulfide and deposition of native sulphur. Intense acid alteration of the aluvium, resulting from downward migration of sulphuric acid, has left porous siliceous residues that retain many of the original sedimentary structures. Detailed logs of Union Oil Company drill holes Forminco No. 1, Utah State 42-7, and Utah State 31-33 are included.

Moore, J.N.; Samberg, S.M.

1979-05-01T23:59:59.000Z

45

DOE - Office of Legacy Management -- Beverly MA Site - MA 04  

Office of Legacy Management (LM)

Beverly MA Site - MA 04 Beverly MA Site - MA 04 FUSRAP Considered Sites Beverly, MA Alternate Name(s): Metal Hydrides, Inc. Ventron Corporation MA.04-1 Location: Congress Street, Beverly, Massachusetts MA.04-4 Historical Operations: Provided uranium metal production under contract with MED. Thorium and radium contamination occurred from non-MED operations. MA.04-6 Eligibility Determination: Eligible MA.04-1 Radiological Survey(s): Assessment Survey, Verification Survey MA.04-4 MA.04-7 Site Status: Certified- Certification Basis, Federal Register Notice included MA.04-5 MA.04-6 MA.04-7 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP Also see Beverly, MA, Site Documents Related to Beverly, MA Beverly Site Aerial Photograph

46

L. Lynn Ma | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

L. Lynn Ma Advanced Applications Engineer Education Xiamen University, B.S., Applied Mathematics Florida Institute of Technology, M.S., Physical Oceanography State University of...

47

Direct-Current Resistivity Survey At Cove Fort Area - Liquid (Combs 2006) |  

Open Energy Info (EERE)

- Liquid (Combs 2006) - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598127"

48

Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) | Open  

Open Energy Info (EERE)

Nash, Et Al., 2002) Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And

49

Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al.,  

Open Energy Info (EERE)

Nash, Et Al., Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management

50

City of Green Cove Springs, Florida (Utility Company) | Open Energy  

Open Energy Info (EERE)

Florida (Utility Company) Florida (Utility Company) Jump to: navigation, search Name City of Green Cove Springs Place Florida Utility Id 7593 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Demand Commercial General Service Non-Demand Commercial Large Service Demand Industrial Master-Metered Industrial Residential Residential Average Rates Residential: $0.1270/kWh Commercial: $0.1240/kWh Industrial: $0.1100/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

51

Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) | Open Energy  

Open Energy Info (EERE)

Warpinski, Et Al., 2002) Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

52

Ground Gravity Survey At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Toksoz, Et Al, 2010) Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

53

Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

54

Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Et Al., 2002) Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a

55

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

56

Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Toksoz, Et Al, 2010) Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

57

2010 DOE National Science Bowl® Photos - Falcon Cove Middle School |  

Office of Science (SC) Website

Falcon Cove Middle School Falcon Cove Middle School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Falcon Cove Middle School Print Text Size: A A A RSS Feeds FeedbackShare Page Falcon Cove Middle School students from Weston, FL tour the National Mall

58

Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Vapor (Warpinski, Et Al., 2002) Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

59

Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Cove Swimming Pool Sector Geothermal energy Type Pool and Spa Location Cove, Oregon Coordinates 45.2965256°, -117.8079872° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

60

Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)  

Open Energy Info (EERE)

2) 2) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a non-equilibrated maximum temperature probably in the range of 157degrees C and a very complicated geologic structure.

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

(Warpinski, Et Al., (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598126" Categories: Exploration Activities DOE Funded Activities What links here

62

EIS-0489: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Jordan Cove Liquefaction Project (Coos County, OR) and 9: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific Connector Pipeline Project (Coos, Klamath, Jackson, and Douglas Counties, OR) EIS-0489: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific Connector Pipeline Project (Coos, Klamath, Jackson, and Douglas Counties, OR) SUMMARY Federal Energy Regulatory Commission (FERC) will prepare an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas facility in Coos County, Oregon, and to construct and operate a natural gas pipeline project that would cross Klamath, Jackson, Douglas, and Coos Counties, Oregon. DOE, along with U.S. Army Corps of Engineers (COE), U.S. Department of Agriculture (Forest Service), and the U.S. Department of the Interior (Bureau of Land Management, Bureau

63

Reflection Survey At Cove Fort Area - Liquid (Toksoz, Et Al, 2010) | Open  

Open Energy Info (EERE)

(Toksoz, Et Al, 2010) (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion provides a detailed model of the Cove Fort geothermal region.

64

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

65

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL...  

U.S. Energy Information Administration (EIA) Indexed Site

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL DEGAS BR OOKWOOD C OAL D EGAS ST AR ROBIN SONS BEND COAL D EGAS BLU FF COR INNE MOU NDVILLE COAL D EGAS BLU EGU T CR...

66

DE-MA0002512  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award No. 2. Modification No. 3. Effective Date Award No. 2. Modification No. 3. Effective Date 4. CFDA No. DE-MA0002512 03/27/2012 ASSISTANCE AGREEMENT 7. Period of Performance 6. Sponsoring Office 5. Awarded To Other Cooperative Agreement Grant test 10. Purchase Request or Funding Document No. 9. Authority 8. Type of Agreement 11. Remittance Address 12. Total Amount 13. Funds Obligated Govt. Share: $0.00 Cost Share : $0.00 Total : $0.00 This action: $0.00 Total : $0.00 test 14. Principal Investigator 15. Program Manager 16. Administrator test 19. Submit Reports To 18. Paying Office 17. Submit Payment Requests To 20. Accounting and Appropriation Data See Schedule 21. Research Title and/or Description of Project For the Recipient For the United States of America 22. Signature of Person Authorized to Sign

67

DOE - Office of Legacy Management -- La Pointe Machine and Tool...  

Office of Legacy Management (LM)

La Pointe Machine and Tool Co - MA 16 FUSRAP Considered Sites Site: LA POINTE MACHINE AND TOOL CO. (MA.16 ) Eliminated from consideration under FUSRAP Designated Name: Not...

68

WIND DATA REPORT FALMOUTH, MA  

E-Print Network (OSTI)

WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

69

Discovery and utilization of sorghum genes (Ma5/Ma6)  

DOE Patents (OSTI)

Methods and composition for the production of non-flowering or late flowering sorghum hybrid. For example, in certain aspects methods for use of molecular markers that constitute the Ma5/Ma6 pathway to modulate photoperiod sensitivity are described. The invention allows the production of plants having improved productivity and biomass generation.

Mullet, John E; Rooney, William L; Klein, Patricia E; Morishige, Daryl; Murphy, Rebecca; Brady, Jeff A

2012-11-13T23:59:59.000Z

70

MHK Projects/Half Moon Cove Tidal Project | Open Energy Information  

Open Energy Info (EERE)

Half Moon Cove Tidal Project Half Moon Cove Tidal Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9062,"lon":-66.99,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

71

The ma Ni Song 1  

E-Print Network (OSTI)

ba sgrol ma Date of recording November 10th 2009. Place of recording Ci jo Village, Phu ma Township, Sde dge County, Dkar mdzes Tibetan Autonomous Prefecture, Sichuan Province, China. Name(s), age, sex, place of birth of performer(s) Bo...

Zla ba sgrol ma

2009-11-10T23:59:59.000Z

72

NREL: Energy Sciences - Jie Ma  

NLE Websites -- All DOE Office Websites (Extended Search)

Jie Ma Jie Ma Postdoctoral Researcher Photo of Jie Ma Phone: (303) 384-6511 Email: jie.ma@nrel.gov At NREL Since: 2010 Dr. Ma graduated from the University of Science and Technology of China in 2004 and received a Ph.D. degree from Institute of Physics, Chinese Academy of Sciences in 2009. Jie joined the Computational Materials Science Team at NREL as a postdoctoral researcher in March, 2010. He is currently working on computational design and characterization of nanoscale materials for doping, water splitting, and solar cells, using quantum mechanical electronic structure calculation and molecular dynamics simulation techniques. Research Interests Low-dimensional systems (quantum dots, nanotube and nanowires, and surfaces) Doping in semiconductors. Solar cell and water splitting.

73

MA Mortenson | Open Energy Information  

Open Energy Info (EERE)

Mortenson Mortenson Jump to: navigation, search Name MA Mortenson Place Minnesota Zip 55440-0710 Sector Solar, Wind energy Product Construction and building firm active in the installation of wind and solar farms. References MA Mortenson[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. MA Mortenson is a company located in Minnesota . References ↑ "MA Mortenson" Retrieved from "http://en.openei.org/w/index.php?title=MA_Mortenson&oldid=348551" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

74

Geothermal reservoir assessment: Cove Fort-Sulphurdale Unit. Final report, September 1977-July 1979  

DOE Green Energy (OSTI)

Three exploratory geothermal wells were drilled in the Cove Fort-Sulphurdale geothermal resource area in southwestern Utah to obtain new subsurface data for inclusion in the US DOE's geothermal reservoir assessment program. Existing data from prior investigations which included the drilling of an earlier exploratory well at the Cove Fort-Sulphurdale area was also provided. Two of the wells were abandoned before reaching target depth because of severe lost circulation and hole sloughing problems. The two completed holes reached depths of 5221 ft. and 7735 ft., respectively, and a maximum reservoir temperature of 353/sup 0/F at 7320 ft. was measured. The deepest well flow was tested at the rate of 47,000 lbs/h with a wellhead temperature of 200/sup 0/F and pressure of 3 psig. Based upon current economics, the Cove Fort-Sulphurdale geothermal resource is considered to be sub-commercial for the generation of electrical power. A synopsis is given of the exploratory drilling activities and results containing summary drilling, testing, geologic and geochemical information from four exploratory geothermal wells.

Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

1979-12-01T23:59:59.000Z

75

M.A. Silva Dias,  

NLE Websites -- All DOE Office Websites (Extended Search)

1 a 260. 1 Modelando o Impacto Climtico Regional e Remoto do Desmatamento M.A. Silva Dias, 1 R. Avissar, 2 e P. Silva Dias 1,3 As observaes e os modelos concordam que os...

76

MA - Office of Management - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA Energy Conservation Plan MA Energy Conservation Plan January 2010 1 Office of Management Office-Level Energy Conservation Plan January 2010 I. BACKGROUND This energy conservation plan represents an effort to reduce energy consumption within Office of Management (MA) office spaces and to increase employee awareness of and participation in energy conservation measures. II. SCOPE The plan and procedures in this document apply to all Office of Management (MA) office suites in the Forrestal and Germantown Facilities as well as the 950 L'Enfant Plaza Building. The actions and procedures set forth in this plan apply to each separate MA office suite as follows: MA-1: 4A-107 MA-43: 1F-039 MA-70: 7E-074 MA-1.1: 7E-028 MA-43: 1F-037 MA-70: 7E-054 MA-30: GH-081 MA-43:

77

Category:Boston, MA | Open Energy Information  

Open Energy Info (EERE)

Boston, MA Boston, MA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Boston, MA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Boston MA Massachusetts Electric Co.png SVFullServiceRestauran... 67 KB SVHospital Boston MA Massachusetts Electric Co.png SVHospital Boston MA M... 65 KB SVLargeHotel Boston MA Massachusetts Electric Co.png SVLargeHotel Boston MA... 65 KB SVLargeOffice Boston MA Massachusetts Electric Co.png SVLargeOffice Boston M... 65 KB SVMediumOffice Boston MA Massachusetts Electric Co.png SVMediumOffice Boston ... 65 KB SVMidriseApartment Boston MA Massachusetts Electric Co.png SVMidriseApartment Bos... 65 KB SVOutPatient Boston MA Massachusetts Electric Co.png SVOutPatient Boston MA...

78

DOE - Office of Legacy Management -- Indian Orchard MA Site - MA 08  

NLE Websites -- All DOE Office Websites (Extended Search)

Indian Orchard MA Site - MA 08 Indian Orchard MA Site - MA 08 FUSRAP Considered Sites Indian Orchard, MA Alternate Name(s): Chapman Valve Manufacturing Company Chapman Valve Site Crane Company MA.08-3 MA.08-4 Location: 203 Hampshire Street, Indian Orchard, Massachusetts MA.08-2 Historical Operations: Machined extruded natural uranium rods and supplied valves and other products to MED and AEC. Also machined natural uranium rods into slugs for Brookhaven National Laboratory. MA.08-6 MA.08-7 MA.08-8 MA.08-14 Eligibility Determination: Eligible MA.08-2 Radiological Survey(s): Assessment Survey, Verification Survey MA.08-11 MA.08-12 Site Status: Certified - Certification Basis, Federal Register Notice included. MA.08-13 MA.08-14 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

79

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

80

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MA  

U.S. Energy Information Administration (EIA)

Status: The State has unbundling programs for its residential gas customers, but participation is quite limited. Overview: Massachusetts used a ...

82

WIND DATA REPORT Chester, MA  

E-Print Network (OSTI)

- Map of Chester wind tower site April 11, 2007 Renewable Energy Research Laboratory Page 5 UniversityWIND DATA REPORT Chester, MA December 2006 ­ February 2007 Prepared for Massachusetts Technology April 11, 2007 Report template version 3.1 Renewable Energy Research Laboratory University

Massachusetts at Amherst, University of

83

WIND DATA REPORT Wellfleet, MA  

E-Print Network (OSTI)

from a given direction and the average wind speed in that May 2, 2007 Renewable Energy Research Wind Speed, December 1, 2006 ­ February 28, 2007 May 2, 2007 Renewable Energy Research Laboratory PageWIND DATA REPORT Wellfleet, MA December 1st , 2006 ­ February 28th , 2007 Prepared

Massachusetts at Amherst, University of

84

U.S. Price of Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 7.07 10.03 4.59 4.94 5.63 4.27 1985-2012 Cameron, LA -- -- 4.78 5.78 8.13 10.54 2007-2012 Cove Point, MD 7.26 9.07 4.05 5.37 5.30 13.82 2003-2012 Elba Island, GA 6.79 9.71 3.73 4.39 4.20 2.78 2003-2012 Everett, MA 7.32 10.33 5.87 4.79 4.77 3.70 2003-2012 Freeport, TX -- 13.83 4.51 6.96 9.27 10.53 2007-2012 Golden Pass, TX -- -- -- 7.90 5.36 -- 2007-2012 Gulf Gateway, LA 8.36 -- -- -- 2004-2010 Gulf LNG, MS -- -- -- -- 12.93 -- 2007-2012 Lake Charles, LA 6.88 7.63 3.32 4.05 4.18 2.10 2003-2012 Neptune Deepwater Port -- -- -- 6.41 -- -- 2007-2012 Northeast Gateway -- 12.54 6.71 5.41 -- -- 2007-2012 Sabine Pass, LA -- 11.82 4.21 5.39 7.58 7.99 2007-2012

85

MA Org Chart, August 01, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA-1 MA-1 Ingrid Kolb, Director Chief Acquisition Officer (Vacant) Laurie Morman, Chief of Staff Office of Resource Management and Planning MA-1.1 Marilyn Dillon, Director Willie Mae Ingram, Dep. Director (Acting) Office of Acquisition & Project Management Paul Bosco, Director David Boyd, Dep. Director Jay Glascock, Senior Advisor Office of Policy MA-63 Berta Schreiber Director Office of Contract Management Patrick Ferraro Director Office of Project Management Michael Peek Director Office of Headquarters Procurement Services Mark Brady Director Office of Property Management Carmelo Melendez Director MA-60 Office of Scheduling and Advance Anthony Rediger, Director James Covey, Dep. Director MA-10 MA-30 MA-40 MA-70 MA-90 Office of Aviation

86

InThrMa | Open Energy Information  

Open Energy Info (EERE)

InThrMa InThrMa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: InThrMa Agency/Company /Organization: InThrMa Sector: Energy Focus Area: - HVAC Resource Type: Software/modeling tools User Interface: Website, Mobile Device Website: www.inthrma.com/ Web Application Link: www.inthrma.com/ Cost: Paid Language: English InThrMa Screenshot References: InThrMa[1] Logo: InThrMa Web based HVAC EMS for Internet connected thermostats, focusing on energy efficiency, including Auto Demand Response capabilities. Harnessing Data & Technology To Derive HVAC Efficiency Overview InThrMa's HVAC Energy Management Suite (EMS) allows users to manage and optimize their HVAC systems from any web browser or mobile phone. The InThrMa EMS provides various tools for programming, monitoring and

87

Multielement geochemistry of three geothermal wells, Cove Fort-Sulphurdale geothermal area, Utah  

DOE Green Energy (OSTI)

Multielement geochemical analysis of drill cuttings from three geothermal wells, Utah State 42-7, Utah State 31-33 and Forminco No. 1, in the Cove Fort-Sulphurdale KGRA, Utah, demonstrates that the distributions of different elements are the result of different chemical processes operating throughout the geologic history of the area. Statistical analysis of geochemical-data distributions confirm the presence of several distinct element associations. Of the 36 elements determined on the samples, 12 (V, Mo, Cd, Ag, Au, Sb, Bi, U, Te, Sn, B and Th) were present in concentrations at or below detection levels. Of the remaining 24 elements, only 3 (Ni, Co and Zr) are lognormally distributed. Distributions for the remaining elements are of aggregate populations which represent background, mineralization or other processes.

Christensen, O.D.

1982-09-01T23:59:59.000Z

88

The Cove Fort-Sulphurdale KGRA, a geologic and geophysical case study  

DOE Green Energy (OSTI)

Geological, geochemical and geophysical data are presented for one of the major geothermal systems in the western United States. Regional data indicate major tectonic structures which are still active and provide the conduits for the geothermal system. Detailed geologic mapping has defined major glide blocks of Tertiary volcanics which moved down from the Tushar Mountains and locally act as a leaky cap to portions of the presently known geothermal system. Mapping and geochemical studies indicate three periods of mineralization have affected the area, two of which are unrelated to the present geothermal activity. The geologic relationships demonstrate that the major structures have been opened repeatedly since the Tertiary. Gravity and magnetic data are useful in defining major structures beneath alluvium and basalt cover, and indicate the importance of the Cove Fort-Beaver graben and the Cove Creek fault in localizing the geothermal reservoir. These structures and a high level of microearthquake activity also suggest other target areas within the larger thermal anomaly. Electrical resistivity surveys and thermal gradient holes both contribute to the delineation of the known reservoir. Deep exploration wells which test the reservoir recorded maximum temperatures of 178 C and almost isothermal behavior beginning at 700 to 1000 m and continuing to a depth of 1800 m. Costly drilling, high corrosion rates and low reservoir pressure coupled with the relatively low reservoir temperatures have led to the conclusion that the reservoir is not economic for electric power production at present. Plans are underway to utilize the moderate-temperature fluids for agribusiness, and exploration continues for a deep high-temperature reservoir.

Ross, Howard P.; Moore, Joseph N.; Christensen, Odin D.

1982-09-01T23:59:59.000Z

89

MA-60 Org chart | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA-60 Org chart MA-60 Org chart Updated May 6,2013 APM Org Chart v12.pptx More Documents & Publications Office of Acquisition and Project Management (APM) Organization Chart Office...

90

Data Update for Blandford, MA November 2006  

E-Print Network (OSTI)

Data Update for Blandford, MA November 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Matthew Lackner Monthly Data Summary for November 2006 This update summarizes the monthly data results for the Blandford monitoring site in Blandford, MA, at 42.223° N, 72

Massachusetts at Amherst, University of

91

Data Update for Paxton, MA September, 2004  

E-Print Network (OSTI)

Data Update for Paxton, MA September, 2004 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for September, 2004 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

92

Data Update for Paxton, MA December, 2004  

E-Print Network (OSTI)

Data Update for Paxton, MA December, 2004 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for December, 2004 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

93

Data Update for Paxton, MA October, 2004  

E-Print Network (OSTI)

Data Update for Paxton, MA October, 2004 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for October, 2004 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

94

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA July, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for July, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

95

Data Update for Paxton, MA November, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA November, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for November, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

96

Data Update for Paxton, MA November, 2004  

E-Print Network (OSTI)

Data Update for Paxton, MA November, 2004 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for November, 2004 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

97

Data Update for Paxton, MA January, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA January, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for January, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

98

Data Update for Paxton, MA August, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA August, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for August, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

99

Data Update for Paxton, MA February, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA February, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for February, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

100

Data Update for Paxton, MA September, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA September, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for September, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA June, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for June, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

102

Data Update for Blandford, MA October 2006  

E-Print Network (OSTI)

Data Update for Blandford, MA October 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Matthew Lackner Monthly Data Summary for October 2006 This update summarizes the monthly data results for the Blandford monitoring site in Blandford, MA, at 42.223° N, 72

Massachusetts at Amherst, University of

103

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA May, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for May, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

104

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA May, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for May, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

105

Data Update for Paxton, MA December, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA December, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for December, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

106

Data Update for Paxton, MA August, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA August, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for August, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

107

Data Update for Paxton, MA October, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA October, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for October, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

108

Data Update for Paxton, MA September, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA September, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for September, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

109

Data Update for Paxton, MA October, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA October, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for October, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

110

Data Update for Paxton, MA February, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA February, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for February, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

111

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA June, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for June, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

112

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA July, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for July, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

113

Data Update for Paxton, MA December, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA December, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for December, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

114

Data Update for Paxton, MA March, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA March, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for March, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

115

Data Update for Paxton, MA January, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA January, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for January, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

116

Data Update for Paxton, MA April, 2005  

E-Print Network (OSTI)

Data Update for Paxton, MA April, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for April, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

117

Data Update for Paxton, MA March, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA March, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for March, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

118

Data Update for Paxton, MA November, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA November, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for November, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per

Massachusetts at Amherst, University of

119

Data Update for Paxton, MA April, 2006  

E-Print Network (OSTI)

Data Update for Paxton, MA April, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for April, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

120

Third-order gas-liquid phase transition and the nature of Andrews critical Tian Ma and Shouhong Wang  

E-Print Network (OSTI)

Third-order gas-liquid phase transition and the nature of Andrews critical point Tian Ma-order gas-liquid phase transition and the nature of Andrews critical point Tian Ma1 and Shouhong Wang2 1 is to study the nature of the Andrews critical point in the gas-liquid transition in a physical

Wang, Shouhong

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

M.A. Silva Dias,  

NLE Websites -- All DOE Office Websites (Extended Search)

1 a 260. 1 a 260. 1 Modelando o Impacto Climático Regional e Remoto do Desmatamento M.A. Silva Dias, 1 R. Avissar, 2 e P. Silva Dias 1,3 As observações e os modelos concordam que os níveis atuais e os padrões de desmatamento da Amazônia de fato intensificam as transferências de massa e energia entre a terra e a atmosfera por meio da criação de circulações impulsionadas termicamente com efeitos significativos sobre a precipitação, mas que variam sazonal e regionalmente. Isso também indicou a necessidade de identificar o limiar onde o aumento do desmatamento realmente implica a diminuição de pluviosidade, conforme apontado pela maioria dos modelos de circulação geral de baixa resolução. Grande parte dos estudos sobre o impacto remoto ainda é exploratória, mas indicam que

122

Energy Information Administration/Natural Gas Annual 2009 25  

Gasoline and Diesel Fuel Update (EIA)

700 800 2005 2006 2007 2008 2009 0 2 4 6 8 10 12 14 16 18 20 22 Everett, MA Elba Island, GA Cove Point, MD Other * "Other" includes the following points of entry: Lake Charles,...

123

Study of well logs from Cove Fort-Sulphurdale KGRA, Millard and Beaver Counties, Utah  

DOE Green Energy (OSTI)

Union Oil Company drilled four geothermal test wells in the Cove Fort-Sulphurdale KGRA between 1975 and 1979. A fairly complete suite of well logs were recorded for the three deeper holes, and these data are presented as composite well log plots in this report. The composite well log plots have facilitated the interpretation of limestone, dolomite, sandstone, quartz-monzonite, serpentine, and volcanic lithologies and the identification of numerous fractures. This has been especially helpful because of the extensive lost circulaton zones and poor cuttings recovery. Intraformational flow was identified by a fluid migration-temperature tracer log at depth in CFSU 31-33. Well log crossplots were computed to assist in lithologic identification and the determination of physical properties for specific depth intervals in a given hole. The presence of hydrous minerals sometimes results in neutron porosity somewhat higher than the true nonfracture porosity, which is generally less than 4%. Permeability is clearly controlled by fractures. A maximum well temperature of 178.9/sup 0/C, low flow rates and low probable percent flash indicate these wells are subeconomic for electric generation at present. The well log study has substantially improved our understanding of the reservoir as presently drilled.

Glenn, W.E.; Ross, H.P.

1982-07-01T23:59:59.000Z

124

Ma'aden Open Mould Casting Machines  

Science Conference Proceedings (OSTI)

The paper will describe Ma'aden experience in ingot casting machines: commissioning and start-up, the challenges faced specially with De-molding machines,...

125

WIND DATA REPORT WBZ Tower, Hull, MA  

E-Print Network (OSTI)

WIND DATA REPORT WBZ Tower, Hull, MA 9/1/06-11/30/06 Prepared for Department of Energy (DOE) Golden the closest tower leg The data from the SecondWind Nomad2 logger is emailed to the Renewable Energy Research Energy Research Laboratory Page 10 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind Speed

Massachusetts at Amherst, University of

126

DOE - Office of Legacy Management -- Shpack Landfill - MA 06  

Office of Legacy Management (LM)

Shpack Landfill - MA 06 Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5 MA.06-6 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MA.06-7 MA.06-8 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shpack Landfill, NY MA.06-1 - DOE Memorandum; Meyers to Hart; Subject: Shpack Landfill,

127

Microsoft Word - Figure_11.doc  

Gasoline and Diesel Fuel Update (EIA)

2006 2007 2008 0 2 4 6 8 10 12 14 16 18 20 22 Everett, MA Cove Point, MD Elba Island, GA Lake Charles, LA * Gulf Gateway, LA, LNG volumes were (in million cubic feet): 5,198...

128

DOE - Office of Legacy Management -- Watertown Arsenal - MA 02  

Office of Legacy Management (LM)

Watertown Arsenal - MA 02 Watertown Arsenal - MA 02 FUSRAP Considered Sites Site: WATERTOWN ARSENAL (MA.02 ) Eliminated from consideration under FUSRAP - Referred to EPA, State of Massachusetts, and the NRC Designated Name: Not Designated Alternate Name: None Location: Building Site 421 , Watertown , Massachusetts MA.02-1 Evaluation Year: 1985 MA.02-2 MA.02-3 Site Operations: Building 421 was used in the late 1940's and early 1950's by M.I.T. under Contract #AT (30-1)-956 for work on African Ores, and a modified ion-exchange technique was developed. Activities at Buildings 34, 41 and the GSA Site were conducted under AEC licensed. MA.02-4 MA.02-5 MA.02-6 Site Disposition: Eliminated - No Authority MA.02-6 MA.02-7 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MA.02-4

129

DOE - Office of Legacy Management -- Englehard Industries - MA...  

Office of Legacy Management (LM)

operations - uranium metal - under AEC license. MA.0-03-1 Site Disposition: Eliminated - NRC licensed MA.0-03-1 Radioactive Materials Handled: Yes Primary Radioactive Materials...

130

DOE - Office of Legacy Management -- Tracerlab Inc - MA 11  

Office of Legacy Management (LM)

Tracerlab Inc - MA 11 Tracerlab Inc - MA 11 FUSRAP Considered Sites Site: TRACERLAB, INC. (MA.11 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 130 High Street , Boston , Massachusetts MA.11-1 Evaluation Year: 1987 MA.11-3 Site Operations: Research and development regarding uranium irradiation and cesium blocks during the early 1950s. MA.11-1 MA.11-3 Site Disposition: Eliminated - NRC licensed MA.11-2 MA.11-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Cesium MA.11-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to TRACERLAB, INC. MA.11-1 - Tracerlab Letter; Epple to Mason; Subject: Steps to Secure

131

Gravity survey of the Cove Fort-Sulphurdale KGRA and the north Mineral Mountains area, Millard and Beaver Counties, Utah  

DOE Green Energy (OSTI)

During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort-Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver Counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km{sup 2}, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid) in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively.

Brumbaugh, W.D.; Cook, K.L.

1977-08-01T23:59:59.000Z

132

DOE - Office of Legacy Management -- Fenwal Inc - MA 14  

Office of Legacy Management (LM)

Fenwal Inc - MA 14 Fenwal Inc - MA 14 FUSRAP Considered Sites Site: Fenwal, Inc. (MA.14 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Ashland , Massachusetts MA.14-1 Evaluation Year: 1994 MA.14-2 MA.14-3 Site Operations: Performed pilot scale explosion suppression tests on uranium contaminated magnesium fluoride powder in the late 1960s. MA.14-1 MA.14-3 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials handled MA.14-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MA.14-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Fenwal, Inc.

133

DOE - Office of Legacy Management -- National Fireworks Ordnance Corp - MA  

Office of Legacy Management (LM)

Fireworks Ordnance Corp - Fireworks Ordnance Corp - MA 13 FUSRAP Considered Sites Site: NATIONAL FIREWORKS ORDNANCE CORP (MA.13) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: American Potash and Chemical Corporation MA.13-3 Location: West Hanover , Massachusetts MA.13-1 Evaluation Year: 1991 MA.13-1 Site Operations: Performed bench scale research and development on uranium forming during the 1960s. MA.13-2 MA.13-3 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials handled MA.13-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal and Powders MA.13-3 Radiological Survey(s): None Indicated MA.13-2 Site Status: Eliminated from consideration under FUSRAP

134

DOE - Office of Legacy Management -- Nuclear Metals Inc - MA 09  

Office of Legacy Management (LM)

Metals Inc - MA 09 Metals Inc - MA 09 FUSRAP Considered Sites Site: NUCLEAR METALS, INC. (MA.09) Eliminated from consideration under FUSRAP - Licensed facility - included in NRC action plan (Site Decommissioning Management Plan) in 1990 for cleanup Designated Name: Not Designated Alternate Name: None Location: 1555 Massachusetts Ave. , Cambridge , Massachusetts MA.09-2 Evaluation Year: 1987 MA.09-1 Site Operations: Produced natural uranium tubes for Savannah River reactor program and fabricated power reactor fuel elements under AEC/NRC license. MA.09-4 MA.09-3 Site Disposition: Eliminated - No Authority under FUSRAP - AEC licensed operation MA.09-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium MA.09-1 Radiological Survey(s): None Indicated

135

DOE - Office of Legacy Management -- Manufacturing Laboratories Inc - MA  

Office of Legacy Management (LM)

Manufacturing Laboratories Inc - MA Manufacturing Laboratories Inc - MA 0-04 FUSRAP Considered Sites Site: MANUFACTURING LABORATORIES, INC. (MA.0-04 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 272 Northampton Street , Boston , Massachusetts MA.0-04-1 Evaluation Year: 1987 MA.0-04-3 Site Operations: Developed a process for making projectiles from depleted uranium during the early 1950s. MA.0-04-3 Site Disposition: Eliminated - Potential for contamination considered remote based on limited scope of operations at the site MA.0-04-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MA.0-04-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

136

DOE - Office of Legacy Management -- Norton Co - MA 12  

Office of Legacy Management (LM)

26, 1987 MA.12-4 - AEC Letter; White to Warde; Subject: Thorium Samples; February 19, 1954 MA.12-5 - AEC Memorandum; Morgan to Epp; Subject: Shipment of Fused Uranium Oxide...

137

MaNDi: the Macromolecular Neutron Diffractometer at SNS | ORNL...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Macromolecular Neutron Diffractometer at SNS MaNDi detector Detector array for the MaNDi instrument before installation. Detector cutaway Cutaway view of detector array for the...

138

Multielement geochemical exploration data for the Cove Fort-Sulphurdale Known Geothermal Resource Area, Beaver and Millard counties, Utah  

DOE Green Energy (OSTI)

Multielement geochemical exploration data have been acquired for the Cove Fort-Sulphurdale Known Geothermal Resource Area (KGRA). This was accomplished by analysis of both whole rock and +3.3 specific gravity concentrate samples from cuttings composites collected from shallow rotary drill holes. Areal distributions are reported for arsenic, mercury, lead and zinc. These are elements indicated by previous studies to be broadly zoned around thermal centers in geothermal systems and thus to be useful for selecting and prioritizing drilling targets. Results from this work suggest that reservoir temperature and/or reservoir to surface permeability, and thus possibly overall potential for a geothermal resource, increase northward beneath the approximately 18 square mile area containing shallow drill holes, possibly to beyond the northern limits of the area. The data provide a basis for development of three principal target models for the geothermal system but do not permit prioritization of these models. It is recommended that geochemical, geological, and temperature gradient surveys be expanded northward from the present survey area to more fully define the area which appears to have the best resource potential and to aid prioritization of the target models.

Bamford, R.W.; Christensen, O.D.

1979-09-01T23:59:59.000Z

139

Geothermal investment analysis with site-specific applications to Roosevelt Hot Springs and Cove Fort-Sulphurdale, Utah  

DOE Green Energy (OSTI)

The analysis and modeling of investment behavior in the development of hydrothermal electric power facilities are reported. This investment behavior reflects a degree of sensitivity to public policy alternatives concerning taxation and regulation of the resource and its related energy conversion facilities. The objective of the current research is to provide a realistic and theoretically sound means for estimating the impacts of such public policy alternatives. A stochastic simulation model was developed which offers an efficient means for site-specific investment analysis of private sector firms and investors. The results of the first year of work are discussed including the identification, analysis, quantification and modeling of: a decision tree reflecting the sequence of procedures, timing and stochastic elements of hydrothermal resource development projects; investment requirements, expenses and revenues incurred in the exploration, development and utilization of hydrothermal resources for electric power generation; and multiattribute investment decision criteria of the several types of firms in the geothermal industry. An application of the investment model to specific resource sites in the state of Utah is also described. Site specific data for the Known Geothermal Resource Areas of Roosevelt Hot Springs and Cove Fort-Sulphurdale are given together with hypothesized generation capacity growth rates.

Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.

1978-12-01T23:59:59.000Z

140

Data Update for Mt. Tom, Holyoke, MA September 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for September 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

142

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for June 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

143

Data Update for Mt. Tom, Holyoke, MA February 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for February 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

144

Data Update for Mt. Tom, Holyoke, MA January 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

145

Data Update for Mt. Tom, Holyoke, MA October 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

146

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

147

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

148

Data Update for Mt. Tom, Holyoke, MA January 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

149

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

150

Data Update for Mt. Tom, Holyoke, MA January 2008  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

151

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

152

Data Update for Mt. Tom, Holyoke, MA September 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for September 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

153

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for July 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

154

Data Update for Mt. Tom, Holyoke, MA August 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA August 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for August 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

155

Data Update for Mt. Tom, Holyoke, MA November 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for November 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

156

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

157

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for July 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

158

Data Update for Mt. Tom, Holyoke, MA November 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for November 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

159

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

160

Data Update for Mt. Tom, Holyoke, MA September 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for September 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

162

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

163

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA May 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for May 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

164

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for June 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

165

Data Update for Mt. Tom, Holyoke, MA October 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

166

Data Update for Mt. Tom, Holyoke, MA February 2008  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

167

Data Update for Mt. Tom, Holyoke, MA August 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

168

Data Update for Mt. Tom, Holyoke, MA November 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for November 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

169

Data Update for Mt. Tom, Holyoke, MA October 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for October 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

170

Data Update for Mt. Tom, Holyoke, MA February 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

171

Data Update for Mt. Tom, Holyoke, MA December 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA December 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

172

KwanliuMa_NERSC2011.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis and Visualization Analysis and Visualization Computing Requirements A Case Study Kwan-Liu Ma University of California, Davis SciDAC Institute for Ultrascale Visualization Outline * SciDAC Institute for Ultrascale Visualization * Visualization Solutions for Turbulent Combustion Simulations * A Case Study on Particle Trajectories Data Visualization Turbulent Combustion Simulations  Jackie Chen, Sandia National Laboratory  Direct numerical simulation tools are being developed Turbulent Combustion Simulations * High fidelity modeling is required to reliably predict efficiency and pollutant emission for new engines and new fuels * The current simulation code running on a supercomputer like the Cray XT5 uses up to 48,000 cores and over 14 million CPU hours per run

173

El Ma Electronic Machining srl | Open Energy Information  

Open Energy Info (EERE)

Ma Electronic Machining srl Ma Electronic Machining srl Jump to: navigation, search Name El.Ma. Electronic Machining srl Place Riva del Garda (TN), Italy Zip 38066 Sector Hydro, Hydrogen, Solar, Wind energy Product String representation "Italy-based, in ... solar sectors." is too long. References El.Ma. Electronic Machining srl[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. El.Ma. Electronic Machining srl is a company located in Riva del Garda (TN), Italy . References ↑ "El.Ma. Electronic Machining srl" Retrieved from "http://en.openei.org/w/index.php?title=El_Ma_Electronic_Machining_srl&oldid=344591" Categories: Clean Energy Organizations Companies Organizations

174

Tensile Properties of Fine Grain MA956 Oxide Dispersion ...  

Science Conference Proceedings (OSTI)

Presentation Title, Tensile Properties of Fine Grain MA956 Oxide Dispersion ... Weld Overlay Claddings by Gas-metal-arc Welding Process for Extending Plant...

175

Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

176

A MaRIE Perspective - Programmaster.org  

Science Conference Proceedings (OSTI)

MaRIE will be an international user facility and will enable unprecedented in-situ, transient measurements of real mesoscale materials in relevant extremes,...

177

Radiation Protection Instrument Manual, Revision 1, PNL-MA-562  

Science Conference Proceedings (OSTI)

PNL-MA-562 This manual provides specific information for operating and using portable radiological monitoring instruments available for use on the Hanford Site.

Johnson, Michelle Lynn

2009-09-23T23:59:59.000Z

178

RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 01 :L RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE: Hull Offshore Wind Research and Development Funding Opportunity Announcement Number Procurement...

179

PNNL-MA-530 PNNL-SA-79982  

E-Print Network (OSTI)

PNNL-MA-530 PNNL-SA-79982 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Flight Operations Manual August 2011 #12;#12;PNNL-MA-530 PNNL-SA-79982 Pacific Northwest National Laboratory Flight Manual August 2011 Prepared for the U

180

U.S. Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 From Canada 0 0 0 88 139 139 2013-2013 Highgate Springs, VT 88 139 139 2013-2013 From Algeria 0 0 0 0 0 0 1973-2013 From Australia 0 0 0 0 0 0 1973-2013 From Brunei 0 0 0 0 0 0 2001-2013 From Egypt 0 0 0 0 0 0 2005-2013 Cameron, LA 2011-2011 Elba Island, GA 2011-2012 Freeport, TX 2011-2011 Gulf LNG, MS 2011-2011 From Equatorial Guinea 0 0 0 0 0 0 2007-2013 From Indonesia 0 0 0 0 0 0 1997-2013 From Malaysia 0 0 0 0 0 0 1999-2013 From Nigeria 0 0 0 0 0 2,590 1997-2013 Cove Point, MD 2,590 2011-2013 From Norway 0 0 0 0 2,709 2,918 2007-2013 Cove Point, MD 2011-2011 Freeport, TX 2,709 2,918 2013-2013 Sabine Pass, LA 2011-2012 From Oman 0 0 0 0 0 0 2000-2013 From Peru

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Everett, MA Liquefied Natural Gas Imports From Yemen (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Everett, MA Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

182

Johnston LFG (MA RPS Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LFG (MA RPS Biomass Facility LFG (MA RPS Biomass Facility Jump to: navigation, search Name Johnston LFG (MA RPS Biomass Facility Facility Johnston LFG (MA RPS Sector Biomass Facility Type Landfill Gas Location Rhode Island Coordinates 41.5800945°, -71.4774291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5800945,"lon":-71.4774291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Price of Everett, MA Natural Gas LNG Imports from Australia ...  

Gasoline and Diesel Fuel Update (EIA)

Australia (Dollars per Thousand Cubic Feet) Price of Everett, MA Natural Gas LNG Imports from Australia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

184

Everett, MA Natural Gas Liquefied Natural Gas Imports from Algeria...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Algeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

185

Everett, MA Natural Gas Liquefied Natural Gas Imports from Egypt...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

186

Everett, MA Liquefied Natural Gas Total Imports (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Total Imports (Million Cubic Feet) Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

187

Everett, MA Natural Gas Liquefied Natural Gas Imports from Australia...  

U.S. Energy Information Administration (EIA) Indexed Site

Australia (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Australia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

188

Gravity survey of the Cove Fort-Sulphurdale KGRA and the North Mineral Mountains area, Millard and Beaver Counties, Utah. Technical report: Volume 77-4  

DOE Green Energy (OSTI)

During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort-Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver Counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km/sup 2/, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid) in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively.

Brumbaugh, W.D.; Cook, K.L.

1977-08-01T23:59:59.000Z

189

Matter-Radiation Interactions in Extremes (MaRIE), Los Alamos...  

NLE Websites -- All DOE Office Websites (Extended Search)

MaRIE: Matter-Radiation Interactions in Extremes Experimental Facility MaRIE Home MaRIE 1.0 Fission, Fusion materials Facility Accelerator Systems Making, Measuring and Modeling...

190

SE-MA-NO Electric Coop | Open Energy Information  

Open Energy Info (EERE)

MA-NO Electric Coop MA-NO Electric Coop Jump to: navigation, search Name SE-MA-NO Electric Coop Place Missouri Utility Id 16851 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Municipal HPS 100 W Lighting Municipal HPS 250 W Lighting Residential Residential Residential/Commercial HPS 100 W Lighting Residential/Commercial HPS 250 W Lighting Average Rates Residential: $0.0804/kWh Commercial: $0.0763/kWh Industrial: $0.0649/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

191

PIA - Management and Administration (MA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Management and Administration (MA) PIA - Management and Administration (MA) PIA - Management and Administration (MA) The E-Government Act of 2002 requires Federal agencies to perform Privacy Impact Assessments (PIAs), an analysis of how information is handled, in order: (i) to ensure handling conforms to applicable legal, regulatory, and policy requirements regarding privacy, (ii) to determine the risks and effects of collecting, maintaining and disseminating information in identifiable form in an electronic information system, and (iii) to examine and evaluate protections and alternative processes for handling information to mitigate potential privacy risks. The DOE PIA process helps to ensure privacy protections are considered and implemented throughout the system life cycle. Following are all PIAs that have been done for Management and

192

DOE - Office of Legacy Management -- Metals and Controls Corp FSM Dept - MA  

Office of Legacy Management (LM)

and Controls Corp FSM Dept - and Controls Corp FSM Dept - MA 21 FUSRAP Considered Sites Site: METALS AND CONTROLS CORP., FSM DEPT. ( MA.21 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: M&C Texas Instruments MA.21-1 Location: Attleboro , Massachusetts MA.21-1 Evaluation Year: Circa 1987 MA.21-4 Site Operations: Nuclear fuel fabrication during the 1950s and 1960s. MA.21-2 Site Disposition: Eliminated - NRC licensed MA.21-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MA.21-3 Radiological Survey(s): Yes MA.21-3 Site Status: Eliminated from consideration under FUSRAP MA.21-2 Also see Documents Related to METALS AND CONTROLS CORP., FSM DEPT. MA.21-1 - Texas Instruments Letter; Veale to Duffy; Subject: Further

193

Microsoft Word - MA HCM Workforce Plan.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HUMAN CAPITAL HUMAN CAPITAL MANAGEMENT WORKFORCE PLAN September 2006 This page left blank intentionally. MA Workforce Plan - September 2006 TABLE OF CONTENTS Table of Contents ........................................................................................................................... i Executive Summary ...................................................................................................................... 1 1.0 Introduction.......................................................................................................................... 3 1.1 Mission and Business Vision .........................................................................................3 1.2 Human Capital Management Strategy ...........................................................................4

194

MA50177: Scientific Computing Nuclear Reactor Simulation Generalised Eigenvalue Problems  

E-Print Network (OSTI)

MA50177: Scientific Computing Case Study Nuclear Reactor Simulation ­ Generalised Eigenvalue of a malfunction or of an accident experimentally, the numerical simulation of nuclear reactors is of utmost balance in a nuclear reactor are the two-group neutron diffusion equations -div (K1 u1) + (a,1 + s) u1 = 1

Scheichl, Robert

195

MaRS: a macro-pipelined reconfigurable system  

Science Conference Proceedings (OSTI)

We introduce MaRS, a reconfigurable, parallel computing engine with special emphasis on scalability, lending itself to the computation-/data-intensive multimedia data processing and wireless communication. Global communication between the processing ... Keywords: 2D-mesh network, MIMD, computer graphics, multimedia, reconfigurable architectures, wireless communication

Nozar Tabrizi; Nader Bagherzadeh; Amir H. Kamalizad; Haitao Du

2004-04-01T23:59:59.000Z

196

Talking Points  

U.S. Energy Information Administration (EIA) Indexed Site

Talking Points Talking Points NATURAL GAS MARKET INTEGRITY: How EIA Helps Presentation by William F. Hederman Congressional Research Service at EIA 30 th Anniversary Conference April 8, 2008 Washington, DC INTRODUCTION 1. Price levels and volatility cause suspicions. 2. Actual integrity and perceived integrity are both important for markets. 3. EIA was created in response to a crisis of confidence in energy market information. CANDIDATE INTEGRITY CRITERIA 1. Transparency 2. Efficiency (gathering, reporting, monitoring data) v. equity 3. Stability/predictability v. dynamism/volatility 4. Clarity (understanding) "DRAFT" TEN COMMANDMENTS/SUGGESTIONS 1. First presented at World Energy Congress, Rome, Nov. 2007 panel on Energy Market Integrity.

197

MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler  

Science Conference Proceedings (OSTI)

This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate's design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance ... Keywords: Grid Scheduling, MaGate Simulator, Simulation, SmartGRID

Ye Huang; Amos Brocco; Michele Courant; Beat Hirsbrunner; Pierre Kuonen

2009-08-01T23:59:59.000Z

198

Detailed gravity and aeromagnetic surveys of the Cove Fort-Sulphurdale KGRA and vicinity, Millard and Beaver Counties, Utah. Topical report  

DOE Green Energy (OSTI)

A detailed gravity survey (comprising 231 stations over about 900 km/sup 2/) was made in the Cove Fort-Sulphurdale Known Geothermal Resource area (KGRA) and vicinity, Millard and Beaver counties, Utah to assist in the appraisal of the potential of this area as a geothermal resource. The survey reinforced the results and information obtained in the previous regional gravity surveys comprising 522 stations. The gravity data from about 700 stations were reduced and compiled as a terrain-corrected (out to 20 km) Bouguer gravity anomaly map with 1-mgal contour interval. In August 1975, an aeromagnetic survey was flown over part of the survey area at a constant barometric elevation of 12,000 ft (3660 m). These aeromagnetic data are used to supplement the interpretation of the gravity data. The aeromagnetic field intensity residual anomaly map and the second-order polynomial residual aeromagnetic map (obtained by removing a second-order polynomial surface) are presented with a 20-gamma contour interval. Two north-south profiles and one east-west profile were selected for magnetic interpretative modeling. The two north-south profiles were also stacked and averaged over 6-km-wide strips and modeled. The occurrences of hydrothermal alteration, hot spring deposits, and flowing hot springs coincide with inferred fault zones. No evidence of extensive alteration can be interpreted from the magnetic data.

Cook, K.L.; Serpa, L.F.; Pe, W.

1980-01-01T23:59:59.000Z

199

Town of Danvers, MA Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Town of Danvers, MA Country United States Headquarters Location Danvers, Massachusetts Recovery Act Funding $8,476,800.00 Total Project Value $16,953,600.00 Coverage Area Coverage Map: Town of Danvers, MA Smart Grid Project Coordinates 42.5750946°, -70.9300507° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

200

Experimental Physical Sciences Vistas: MaRIE (draft)  

Science Conference Proceedings (OSTI)

To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materials science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.

Shlachter, Jack [Los Alamos National Laboratory

2010-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EDeMa (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

EDeMa EDeMa Country Germany Headquarters Location Mülheim, Germany Coordinates 51.427074°, 6.886492° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.427074,"lon":6.886492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

DOE - Office of Legacy Management -- Tufts College - MA 0-05  

Office of Legacy Management (LM)

Tufts College - MA 0-05 Tufts College - MA 0-05 FUSRAP Considered Sites Site: TUFTS COLLEGE ( MA.0-05 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Medford , Massachusetts MA.0-05-1 Evaluation Year: 1987 MA.0-05-1 Site Operations: Research and development using only small quantities of radioactive material. MA.0-05-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantities of material handled MA.0-05-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MA.0-05-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to TUFTS COLLEGE MA.0-05-1 - Aerospace Letter; Young to Wallo; Subject: Elimination

203

Everett, MA Natural Gas Liquefied Natural Gas Imports from Trinidad and  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10,240 11,488 7,086 8,271 8,126 8,150 7,731 7,870 5,199 5,520 9,264 4,691 2012 9,482 8,458 7,661 1,447 4,940 5,465 6,646 10,377 5,634 4,748 2,553 2,581 2013 5,126 5,003 4,629 5,171 5,626 5,173 8,023 5,961 2,995 2,674 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Everett, MA LNG Imports from Trinidad/Tobago

204

Gluonic Higgs Scalar, Abelianization and Monopoles in QCD -- Similarity and Difference between QCD in the MA Gauge and the NAH Theory  

E-Print Network (OSTI)

We study the similarity and the difference between QCD in the maximally abelian (MA) gauge and the nonabelian Higgs (NAH) theory by introducing the ``gluonic Higgs scalar field'' $\\vec \\phi(x)$ corresponding to the ``color-direction'' of the nonabelian gauge connection. The infrared-relevant gluonic mode in QCD can be extracted by the projection along the color-direction $\\vec \\phi(x)$ like the NAH theory. This projection is manifestly gauge-invariant, and is mathematically equivalent to the ordinary MA projection. Since $\\vec \\phi(x)$ obeys the adjoint gauge transformation and is diagonalized in the MA gauge, $\\vec \\phi(x)$ behaves as the Higgs scalar in the NAH theory, and its hedgehog singularity provides the magnetic monopole in the MA gauge like the NAH theory. We observe this direct correspondence between the monopole appearing in the MA gauge and the hedgehog singularity of $\\vec \\phi(x)$ in lattice QCD, when the gluon field is continuous as in the SU($N_c$) Landau gauge. In spite of several similarities, QCD in the MA gauge largely differs from the NAH theory in the two points: one is infrared monopole condensation, and the other is infrared enhancement of the abelian correlation due to monopole condensation.

Hideo Suganuma; Hiroko Ichie

2004-07-07T23:59:59.000Z

205

DOE - Office of Legacy Management -- E B Badger - MA 0-01  

Office of Legacy Management (LM)

E B Badger - MA 0-01 E B Badger - MA 0-01 FUSRAP Considered Sites Site: E.B. Badger (MA.0-01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 75 Pitts Street , Boston , Massachusetts MA.0-01-1 Evaluation Year: 1987 MA.0-01-2 Site Operations: Construction contractor during the mid-1940s; constructed facility to refine pitchblende ore and produce feed materials at another location. MA.0-01-2 Site Disposition: Eliminated - No indication of radioactive materials handled at this site MA.0-01-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None MA.0-01-2 Radiological Survey(s): No Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to E.B. Badger

206

Model for Analysis of Energy Demand (MAED-2) | Open Energy Information  

Open Energy Info (EERE)

Website http:www-pub.iaea.orgMTCDp References MAED 21 "MAED model evaluates future energy demand based on medium- to long-term scenarios of socio-economic,...

207

Fusion materials irradiations at MaRIE's fission fusion facility  

SciTech Connect

Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

Pitcher, Eric J [Los Alamos National Laboratory

2010-10-06T23:59:59.000Z

208

MaGate: An Interoperable, Decentralized and Modular High-Level Grid Scheduler  

Science Conference Proceedings (OSTI)

This work presents the design and architecture of a decentralized grid scheduler named MaGate, which is developed within the SmartGRID project and focuses on grid scheduler interoperation. The MaGate scheduler is modular structured, and emphasizes the ... Keywords: Grid Computing, MaGate Scheduler, Meta-Scheduling, Scheduling, SmartGRID

Ye Huang; Amos Brocco; Michele Courant; Beat Hirsbrunne; Pierre Kuonen

2010-07-01T23:59:59.000Z

209

Rig 'dzin Tshe dbang mchog grub (1761-1829) et la constitution du rNying ma rgyud 'bum de sDe dge  

E-Print Network (OSTI)

les textes en une collection Ug palung, le fief de la ligne Zur3. Un article plus rcent encore de Mi Nyag Thubbstan chos dar fait le point sur les diverses versions existantes, mentionnantdailleurs un certain nombre dentre elles qui ne sont... and the Bai-ro- rgyud-bum, p. 9. 4 Mi nyag Thub bstan chos dar, rNying ma rgyud 'bum gyi mtshams sbyor, passim. 5 Voir Achard, La liste des Tantras du rNying mai rgyud bum selon ldition tablie par Kun mkhyen Jigs med gling pa, Revue d...

Achard, Jean-Luc

2003-01-01T23:59:59.000Z

210

Light-stable-isotope studies of spring and thermal waters from the Roosevelt Hot Springs and Cove Fort/Sulphurdale Thermal areas and of clay minerals from the Roosevelt Hot Springs thermal area  

DOE Green Energy (OSTI)

The isotopic compositions of hydrogen and oxygen have been determined for spring waters and thermal fluids from the Roosevelt Hot Springs and Cove Fort-Sulphurdale thermal areas, for clay mineral separates from shallow alteration of the acid-sulfate type in the Roosevelt Hot Springs area, and for spring and well waters from the Goshen Valley area of central Utah. The water analyses in the Roosevelt Hot Springs thermal area confirm the origin of the thermal fluids from meteoric water in the Mineral Range. The water analyses in the Cove Fort-Sulphurdale thermal area restrict recharge areas for this system to the upper elevations of the Pavant and/or Tushar Ranges. The low /sup 18/O shift observed in these thermal fluids (+0.7 permil) implies either high water/rock ratios or incomplete isotope exchange or both, and further suggests minimal interaction between the thermal fluid and marble country rock in the system. Hydrogen and oxygen-isotope data for clay mineral separates from shallow alteration zones in the Roosevelt Hot Springs thermal system suggest that the fluids responsible for the shallow acid-sulfate alteration were in part derived from condensed steam produced by boiling of the deep reservoir fluid. The isotope evidence supports the chemical model proposed by Parry et al. (1980) for origin of the acid-sulfate alteration at Roosevelt Hot Springs. The isotope analyses of spring and well waters from the Goshen Valley area indicate only a general correlation of isotope composition, salinity and chemical temperatures.

Bowman, J.R.; Rohrs, D.T.

1981-10-01T23:59:59.000Z

211

RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: : Page 1 01 :L RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE: Hull Offshore Wind Research and Development Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number 09EE0000326 DE-EE0000326 GFO-OO00326-001 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply and demand studies), and dissemination (including, but not limited to, document mailings, publication, and distribution; and

212

Forward-Secure Sequential Aggregate Authentication Di Ma, Gene Tsudik  

E-Print Network (OSTI)

different settings, scenarios and applica- tions. Examples abound in all kinds of tracking and monitoring point for human interface. (Some WSNs support user-driven data queries and commands through the sink in critical settings (e.g., radiation, s

213

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNLs Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNLs Electronic Records & Information Capture Architecture (ERICA) database.

Rathbone, Bruce A.

2005-02-25T23:59:59.000Z

214

A rational minor actinide (MA) recycling concept based on innovative oxide fuel with high AM content  

Science Conference Proceedings (OSTI)

A rational MA recycle concept based on high Am content fuel has been proposed. A design study of an Am- MOX fabrication plant, which is a key facility for the MA recycle concept, has been done and the facility concept was clarified from the viewpoint of basic process viability. Preliminary cost estimation suggested that the total construction cost of the MA recycle facilities including Am-MOX, Np-MOX and MA recovery could be comparable with that of the large scale LWR-MOX fabrication plant required for plutonium in LWR fuel cycle. (authors)

Tanaka, Kenya; Sato, Isamu; Ishii, Tetsuya; Yoshimochi, Hiroshi; Asaga, Takeo [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higasiibaraki-gun, Ibaraki-ken, 311-1393 (Japan); Kurosaki, Ken [Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871 (Japan)

2007-07-01T23:59:59.000Z

215

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...  

Open Energy Info (EERE)

.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL...

216

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNLs Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNLs Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

Rathbone, Bruce A.

2009-08-28T23:59:59.000Z

217

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanfords DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNLs Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2.

Rathbone, Bruce A.

2010-04-01T23:59:59.000Z

218

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanfords DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNLs Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2.

Rathbone, Bruce A.

2011-04-04T23:59:59.000Z

219

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNLs Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNLs Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor revision. Updated Chapters 5, 6 and 9 to reflect change in default ring calibration factor used in HEDP dose calculation software. Factor changed from 1.5 to 2.0 beginning January 1, 2007. Pages on which changes were made are as follows: 5.23, 5.69, 5.78, 5.80, 5.82, 6.3, 6.5, 6.29, 9.2.

Rathbone, Bruce A.

2007-03-12T23:59:59.000Z

220

MA57---a code for the solution of sparse symmetric definite and indefinite systems  

Science Conference Proceedings (OSTI)

We introduce a new code for the direct solution of sparse symmetric linear equations that solves indefinite systems with 2 2 pivoting for stability. This code, called MA57, is in HSL 2002 and supersedes the well used HSL code MA27. We describe ... Keywords: Augmented systems, direct sparse factorization, multifrontal method, numerical optimization, sparse definite and indefinite systems

Iain S. Duff

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

VIDEO SEMINAR of Ma Jun's 6/17/02 presentation: China's Water Resources:  

NLE Websites -- All DOE Office Websites (Extended Search)

VIDEO SEMINAR of Ma Jun's 6/17/02 presentation: China's Water Resources: VIDEO SEMINAR of Ma Jun's 6/17/02 presentation: China's Water Resources: Crisis and Opportunity Speaker(s): Ma Jun Date: July 3, 2002 - 12:00pm Location: 90-3122 The rivers in China, and the hundreds of millions who depend on them, are in trouble. A water crisis looms large in most parts of China. In his book, China Water Crisis, Ma Jun traces 4,000 years of the history of China's watersheds, and their mis/management. Armed with scientific data and compelling stories, Ma reveals the causes and character of the looming ecological disaster. His book has been quoted in The Economist and many western media. Limited water resources pose a major threat to social and economic development in the 21st century. Three Gorges Dam and redirecting water from south to north occupy the main focus of the efforts to increase

222

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

223

Hanford External Dosimetry Technical Basis Manual PNL-MA-842  

SciTech Connect

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNLs Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNLs Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Updated Chapters 5, 6 and 9 to reflect change in default ring calibration factor used in HEDP dose calculation software. Factor changed from 1.5 to 2.0 beginning January 1, 2007. Pages on which changes were made are as follows: 5.23, 5.69, 5.78, 5.80, 5.82, 6.3, 6.5, 6.29, and 9.2. Rev 0.2 (8/28/2009) Updated Chapters 3, 5, 6, 8 and 9. Chapters 6 and 8 were significantly expanded. References in the Preface and Chapters 1, 2, 4, and 7 were updated to reflect updates to DOE documents. Approved by HPDAC on 6/2/2009. Rev 1.0 (1/1/2010) Major revision. Updated all chapters to reflect the Hanford site wide implementation on January 1, 2010 of new DOE requirements for occupational radiation protection. The new requirements are given in the June 8, 2007 amendment to 10 CFR 835 Occupational Radiation Protection (Federal Register, June 8, 2007. Title 10 Part 835. U.S., Code of Federal Regulations, Vol. 72, No. 110, 31904-31941). Revision 1.0 to the manual replaces ICRP 26 dosimetry concepts and terminology with ICRP 60 dosimetry concepts and terminology and replaces external dose conversion factors from ICRP 51 with those from ICRP 74 for use in measurement of operational quantities with dosimeters. Descriptions of dose algorithms and dosimeter response characteristics, and field performance were updated to reflect changes in the neutron quality factors used in the measurement of operational quantities.

Rathbone, Bruce A.

2010-01-01T23:59:59.000Z

224

Rock Harbor UNITED STATES  

E-Print Network (OSTI)

Passage Conglomerate Bay Five Finger Bay Lane Cove Stockly Bay Lake Ojibway Siskiwit River Creek Little River Washington Moskey M cCargoe Cove Robinson Bay Amygdaloid Channel Pickerel Cove Chippewa Harbor Crystal Cove Belle Isle Canoe Rocks Caribou Island Saginaw Point Tookers Island The Palisades Raspberry

225

Wind Velocities at the Chajnantor and Mauna Kea Sites and the Effect on MMA Pointing  

E-Print Network (OSTI)

Wind Velocities at the Chajnantor and Mauna Kea Sites and the Effect on MMA Pointing M.A. Holdaway email: (mholdawa, sfoster, demerson, jcheng, fschwab)@nrao.edu August 9, 1996 Abstract We analyze wind April 1996 for the purposes of understanding the effects of the winds on pointing errors. Both

Groppi, Christopher

226

Institutions and Cross-border Mergers and Acquisitions (M&A) Value Creation  

E-Print Network (OSTI)

Cross-border Merger and Acquisitions (M&As) are an increasingly important strategy adopted by firms in order to create value in fiercely competitive global markets. Cross-border M&A value creation, that is, wealth creation for shareholders from cross-border M&As, is therefore of considerable theoretical and practical importance. However, our understanding of the sources of cross-border M&A value creation remains limited. Researchers have found that the most commonly researched variables have little effect on cross-border M&A value creation. We therefore still do not understand the processes behind cross-border M&As. In this is dissertation I examine the main effects of host country regulatory, economic and physical infrastructure institutions on cross-border M&A value creation. I further examine the moderating effects of host country political institutions on the relationship between host country regulatory institutions and cross-border M&A value creation. Moreover, I investigate the effects of institutional distance between host and home country on cross-border M&A value creation. I argue that the effects of institutional distance (regulatory and economic distance) on cross-border M&A value creation are not symmetric, but rather the effects are contingent upon the direction of the distance. My hypotheses are tested on a sample of 6141 cross-border M&As between 1995 and 2003. Results of this analysis show that acquirers are more likely to create value by acquiring targets in countries with less advanced regulatory institutions. Further, my results indicate that host country political institutions positively moderate the relationship between host country regulatory institutions and cross-border M&A value creation. Host country economic institutions have an inverted U-shaped relationship with cross-border M&A value creation, and host country physical infrastructure institutions have a positive relationship with cross-border M&A value creation. Additionally, results show that there is an inverted U-shaped relationship between institutional distance and cross-border M&A value creation. The findings suggest that the effects of regulatory and economic institutional distance on cross-border M&A value creation are not symmetric. The effects are contingent upon the direction of the distance. That is whether the level of host country institutions is higher or lower than that of home country institutions. Implications for management and public policy are discussed.

Zhu, Hong

2008-12-01T23:59:59.000Z

227

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

228

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

229

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

230

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

231

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

232

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

233

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

234

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

235

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

236

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

237

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

238

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

239

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

240

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

242

Microsoft PowerPoint - APM Org Chart v11 (2)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA MA 60 Office of Acquisition and Project Management (APM) MA-60 Paul Bosco Director David Boyd Deputy Director MA-66 D id B MA-65 C l M l d MA-64 B th T i MA-63 Mi h l P k MA-62 P t i k F MA-61 B t S h ib Jay Glascock Senior Technical Advisor David Brown, Director Sys & Prof Dev MA-661 Linda Ott Professional Development Carmelo Melendez, Director Property Mgmt MA-651 Mark Price Real Estate Beth Tomasoni, Acting Director HQ Proc Svs MA-6401 Barry Ross Corporate Services Michael Peek, Director Project Mgmt MA-631 John White Project Assessments Patrick Ferraro, Director Contract Mgmt MA-621 David Leotta Field Assistance & Berta Schreiber, Director Policy MA-611 Jacqueline Kniskern Contract & Financial p Division MA-662 John Makepeace Acting, Systems Division Division MA-652 Monja Vadnais Facilities & Infra. Mgmt

243

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains  

Open Energy Info (EERE)

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Details Activities (0) Areas (0) Regions (0) Abstract: Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical

244

Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues  

E-Print Network (OSTI)

Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues an important solid waste in Florida, i.e., coal combustion residues (CCR) detailed in #2-4 of the current

Ma, Lena

245

Price of Everett, MA Natural Gas LNG Imports from Algeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Dollars per Thousand Cubic Feet) Price of Everett, MA Natural Gas LNG Imports from Algeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

246

Price of Everett, MA Natural Gas LNG Imports from Egypt (Nominal...  

Annual Energy Outlook 2012 (EIA)

Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Everett, MA Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

247

VIDEO SEMINAR of Ma Jun's 6/17/02 presentation: China's Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

Speaker(s): Ma Jun Date: July 3, 2002 - 12:00pm Location: 90-3122 The rivers in China, and the hundreds of millions who depend on them, are in trouble. A water crisis looms...

248

Nanocrystals for Solar Energy MaRIE--A Facility in the Making  

E-Print Network (OSTI)

During the Manhattan Project, Los Alamos National Laboratory's mission was not only secret but very for hominid fossils in Ethiopia. FEATURES MY VIEW JOHN SARRAO, MaRIE PROJECT PROGRAM DIRECTOR 2 10 18 Tiny

249

Oxide-dispersion-strengthened turbine blades, volume 1. [MA6000 alloy  

SciTech Connect

The objective of Project 4 was to develop a high-temperature, uncooled gas turbine blade using MA6000 alloy. The program objectives were achieved. Production scale up of the MA6000 alloy was achieved with a fair degree of tolerance to nonoptimum processing. The blade manufacturing process was also optimized. The mechanical, environmental, and physical property evaluations of MA6000 were conducted. The ultimate tensile strength, to about 704 C (130 F), is higher than DS MAR-M 247 but with a corresponding lower tensile elongation. Also, above 982 C (180 F) MA6000 tensile strength does not decrease as rapidly as MAR-M 247 because the ODS mechanism still remains active. Based on oxidation resistance and diffusional stability considerations, NiCrAlY coatings are recommended. CoCrAly coating should be applied on top of a thin NiCrAlY coating. Vibration tests, whirlpit tests, and a high-rotor-rig test were conducted to ensure successful completion of the engine test of the MA6000 TFE731 high pressure turbine blades. The results of these tests were acceptable. In production quantities, the cost of the Project 4 MA6000 blade is estimated to be about twice that of a cast DS MAR-M 247 blade.

Millan, P.P. Jr.; Mays, J.C.

1986-10-01T23:59:59.000Z

250

Appendix B - Control Points  

NLE Websites -- All DOE Office Websites (Extended Search)

B B Control Points B.1 Injector Control Points Qty Type Device 2 Magnet Bend magnet - DL1 bend 9 Magnet Quad magnet 10 Magnet X-Y Corrector Pair 2 Magnet Solenoid 2 Magnet...

251

Semantic point detector  

Science Conference Proceedings (OSTI)

Local features are the building blocks of many visual systems, and local point detector is usually the first component for local feature extraction. Existing local point detector are designed with target for matching and it may not perform well when ... Keywords: semantic point detector

Kuiyuan Yang; Lei Zhang; Meng Wang; Hong-Jiang Zhang

2011-11-01T23:59:59.000Z

252

U-178: VMware vMA Library Loading Error Lets Local Users Gain Elevated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: VMware vMA Library Loading Error Lets Local Users Gain 8: VMware vMA Library Loading Error Lets Local Users Gain Elevated Privileges U-178: VMware vMA Library Loading Error Lets Local Users Gain Elevated Privileges May 29, 2012 - 7:00am Addthis PROBLEM: A vulnerability was reported in VMware vMA PLATFORM: Version(s): vMA 4.0, 4.1, 5 patch 1 (5.0.0.1) ABSTRACT: A local user can obtain elevated privileges on the target system. Reference Links: SecurityTracker Alert ID: 1027099 CVE-2012-2752 Vendor Advisory IMPACT ASSESSMENT: High Discussion: A local user can exploit a library loading error to cause arbitrary code to be executed on the target system with elevated privileges. Impact: Privilege escalation Solution: The vendor has issued a fix (vSphere Management Assistant 5.0 Patch 2 (5.0.0.2)). Addthis Related Articles T-591: VMware vmrun Utility Lets Local Users Gain Elevated Privileges

253

Microsoft PowerPoint - Cygan  

NLE Websites -- All DOE Office Websites (Extended Search)

log D -6 Mesoscale Modeling Molecular m atoms Waste Repository PA Requirement -9 Mechanics Quantum Mechanics m min year day Ma ms s ns e nm s ka log Time (s) -15 -12 -9...

254

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTED FIBER OPTIC SENSOR FOR ON-LINE MONITORING OF COAL GASIFIER REFRACTORY HEALTH DE-FE0005703 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg,...

255

U.S. Price of Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. Total 4.90 4.51 8.65 4.59 7.42 9.96 1997-2013 From Canada -- -- -- 13.37 13.54 10.52 2013-2013 Highgate Springs, VT 13.37 13.54 10.52 2013-2013 From Algeria -- -- -- -- -- -- 1989-2013 From Australia -- -- -- -- -- -- 1997-2013 From Brunei -- -- -- -- -- -- 2001-2013 From Egypt -- -- -- -- -- -- 2003-2013 Cameron, LA 2011-2011 Elba Island, GA 2011-2012 Freeport, TX 2011-2011 Gulf LNG, MS 2011-2011 From Equatorial Guinea -- -- -- -- -- -- 2007-2013 From Indonesia -- -- -- -- -- -- 1997-2013 From Malaysia -- -- -- -- -- -- 1999-2013 From Nigeria -- -- -- -- -- 15.74 1994-2013 Cove Point, MD 15.74 2011-2013 From Norway -- -- -- -- 14.85 14.85 2007-2013

256

EDeMa (Smart Grid Project) (Krefeld, Germany) | Open Energy Information  

Open Energy Info (EERE)

EDeMa (Smart Grid Project) (Krefeld, Germany) EDeMa (Smart Grid Project) (Krefeld, Germany) Jump to: navigation, search Project Name EDeMa Country Germany Headquarters Location Krefeld, Germany Coordinates 50.652943°, 6.339111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.652943,"lon":6.339111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma  

Open Energy Info (EERE)

Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA Details Activities (0) Areas (0) Regions (0) Abstract: Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to

258

U.S. DEPARTMENT OF ENERGY EERE PROJECT MA.i\IAGE\tiE~TCE~TER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA.i\IAGE\tiE~TCE~TER MA.i\IAGE\tiE~TCE~TER NEPA DETERMINATION Page 1 of2 RECIPIENT:Brayton Energy STATE: MA PROJECT TITLE: High-Efficiency Low-Cost Solar Receiver for use in a Supercritical C02 Recompression Cycle Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000595 DE-EE0005799 GF0-0005799-{)01 G05799 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (including, 'but not limited to, literature surveys, inventories, site vrsits, and audits}, data analysis (including, but not limited to, computer modeling}, document preparation

259

EAMidnightPointMahogany  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon April 2013 Prepared By Bureau of Land Management - Prineville and Burns...

260

PowerPoint Presentation  

National Nuclear Security Administration (NNSA)

y x Main crack surface Dislocation loops Crack initiation point Crack branching (BLJ + thermal motion) Crack embryo 3D view of surface particles Developed crack Crack development...

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

37, p.325, 2012 17 Advanced Manufacturing 18 Permanent magnets and batteries o Molten salt electrolysis process * Use Mg to reduce the melting points of heavy rare...

262

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

A Snipes, 49 A Snipes, 49 th APS Division of Plasma Physics Meeting, Orlando, FL 14 November 2007 Fast Electron Driven Modes in the Current Rise in Alcator C-Mod J A Snipes, R R Parker, P Phillips * , A Schmidt, G Wallace MIT Plasma Science and Fusion Center, Cambridge, MA USA * University of Texas at Austin, Fusion Research Center, Austin, TX USA J A Snipes, 49 th APS Division of Plasma Physics Meeting, Orlando, FL 14 November 2007 Lower Hybrid Generates Fast Electrons in the Current Rise In several discharges, lower hybrid heating was injected in the current rise and coupled well from t = 0.02 - 0.1 s The LH generates a fast electron tail that can be used to study fast electron driven modes as on Compass-D [1] and potentially runaway driven current following disruptions as on FTU [2]

263

PowerPoint Presentation  

National Nuclear Security Administration (NNSA)

«INFLUENCE «INFLUENCE OF DYNAMIC PROPERTIES ON PERTURBATION GROWTH IN TANTALUM» V.V. Igonin, O.N. Ignatova, A.I. Lebedev, M.O. Lebedeva, S.S. Nadezhin, A.M. Podurets, V.A. Raevsky, V.P. Solov'ev (RFNC-VNIIEF 607190, Sarov, Nizhny Novgorod reg., Russia) M.A. Zocher, D. Preston (LANL, Los Alamos, USA) INFLUENCE OF DYNAMIC PROPERTIES ON PERTURBATION GROWTH IN TANTALUM Shockless loading INFLUENCE OF DYNAMIC PROPERTIES ON PERTURBATION GROWTH IN TANTALUM Shock-wave loading INFLUENCE OF DYNAMIC PROPERTIES ON PERTURBATION GROWTH IN TANTALUM Scheme of X-ray radiography INFLUENCE OF DYNAMIC PROPERTIES ON PERTURBATION GROWTH IN TANTALUM INFLUENCE OF DYNAMIC PROPERTIES ON PERTURBATION GROWTH IN TANTALUM Results of tests and calculation of perturbation growth in tantalum. P max

264

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

The EMS Energy Institute and and Department of Energy and Mineral Engineering, The EMS Energy Institute and and Department of Energy and Mineral Engineering, The Pennsylvania State University 209 Academic Projects Building, University Park, PA 16802 Xiaoliang Ma*, Xiaoxing Wang, and Chunshan Song* Concept of MBS Acknowledgment  U.S. Department of Energy, NETL through DOE Grant DE- FC26-08NT0004396.  Pennsylvania Energy Development Authority (PEDA) under Grant PG050021.  U.S. Office Naval Research through OND N00014-08-1-0123 A New Generation of "Molecular Basket" Sorbents (MBS) for Separation of CO 2 and H 2 S from Various Gas Streams Wide Applications * Biogas * Landfill Gas * Coal/biomass Gasification Gas * Natural Gas * Reformate * Syngas Gas cleaning up:  Sorption Capacity of MBS 10 µm 1 µm *In comparison with industrial absorbents and state-of-the-art adsorbents

265

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 campaign statistics 1 campaign statistics and plans presented by R. Granetz Alcator C-Mod quarterly review 2011/05/05 C-Mod FY2011 operation * Budgeted for 15 research run weeks (60 run days) * 14.5 research run weeks have been completed to date * 1719 plasma discharges (I p > 0.1 MA and τ pulse > 0.1 s) > 90% plasma initiation success rate * 54 different miniproposals have received run time so far, with emphasis on: * pedestal studies (FY2011 joint facility research topic, J Hughes) * characterization and optimization of I-mode (E. Marmar) * lower hybrid density limit (G. Wallace) * rotation reversal (J. Rice) * 30 full or half run days led by grad students (i.e. session leaders) 2/5 C-Mod FY2011 operation, cont. * 10 PhD students obtained the bulk of their thesis data and/or completed their research

266

Point-Based Graphics  

Science Conference Proceedings (OSTI)

The polygon-mesh approach to 3D modeling was a huge advance, but today its limitations are clear. Longer render times for increasingly complex images effectively cap image complexity, or else stretch budgets and schedules to the breaking point. Point-based ... Keywords: Computer Graphics, Computers

Markus Gross; Hanspeter Pfister

2007-06-01T23:59:59.000Z

267

Ma, Kockelman & Damien 1 A Multivariate Poisson-Lognormal Regression Model for Prediction  

E-Print Network (OSTI)

Analysis and Prevention, 18(1), pp.1-12. Hauer, E. (1997). Observational Before-After Studies in Road.V., Stewart, J.R., Huang, H.H., and Lagerwey, P.A. (2002). Safety Effects of Marked Vs. Unmarked Crosswalks.S. DOT. #12;Ma, Kockelman & Damien 18 List of Tables Table 1 Summary Statistics of Variables

Kockelman, Kara M.

268

The Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

E-Print Network (OSTI)

to be learned about how consumers will evaluate novel vehicle technologies, such as plug-in hybrid electric vehicles (PHEV), extended-range electric vehicle (EREV), battery electric vehicles (BEV) and fuel cell-- passenger cars and light-duty trucks. MA3 T considers the U.S. household users of light- duty vehicles (LDV

269

ORIGINAL PAPER M.A. Schembri D.W. Ussery C. Workman  

E-Print Network (OSTI)

ORIGINAL PAPER M.A. Schembri ? D.W. Ussery ? C. Workman H. Hasman ? P. Klemm DNA microarray-45-252506 Fax: +45-45-932809 D.W. Ussery ? C. Workman Centre for Biological Sequence Analysis, Bio 276:9924­9930 Pedersen AG, Jensen LJ, Brunak S, Staerfeldt HH, Ussery DW (2000) A DNA structural atlas

Ussery, David W.

270

Alameda County Medical Center Beth Israel Deaconess Medical Center, Boston MA  

E-Print Network (OSTI)

Alameda County Medical Center Beth Israel Deaconess Medical Center, Boston MA California Pacific Medical Center, San Francisco Cedar Sinai Medical Center Los Angeles Children's Hospital Orange Co. City of Hope National Medical Center, Duarte CA Community Regional Medical Center, Fresno Desert Regional

Tsien, Roger Y.

271

Gravity Based Autonomous Calibration for Robot Manipulators Donghai Ma, John M. Hollerbach and Yangming Xu  

E-Print Network (OSTI)

Gravity Based Autonomous Calibration for Robot Manipulators Donghai Ma, John M. Hollerbach, the gravity torque exerted on the joint varies sinusoidally with rotation angle. By means of sinusoidal curve. The gravity vec- tor, expressed in the defined base coordinates, can also be found. Thereafter we determine

Hollerbach, John M.

272

Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman  

E-Print Network (OSTI)

Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman Division and planetary materials easier and faster down to nano-scales. Small but new minerals with important geological significance are being discovered. Nano-features are being discovered in many common minerals and gems, which

Ma, Chi

273

Definition: Point To Point Transmission Service | Open Energy...  

Open Energy Info (EERE)

non-firm basis from the Point(s) of Receipt to the Point(s) of Delivery.1 Related Terms transmission lines, transmission line References Glossary of Terms Used in Reliability...

274

Dew Point and Dogs  

NLE Websites -- All DOE Office Websites (Extended Search)

hounds for hunting. I recently had a situation where the temperature was 68 degrees, humidity was 54% and dew point was 62 degrees. My dogs were not able to perform as well as...

275

ARM - Point Reyes News  

NLE Websites -- All DOE Office Websites (Extended Search)

Takes Off in July June 30, 2005 Guest Instruments to Collect Aerosol Data During Coastal Field Campaign June 15, 2005 Mobile Facility Arrives Safe and Sound in Point Reyes...

276

Team Sand Point (SP)  

E-Print Network (OSTI)

The purpose of this flight report is to summarize the field activities of the ShoreZone aerial video imaging (AVI) survey conducted out of Sand Point and Cold Bay in

Team Cold Bay (cb

2011-01-01T23:59:59.000Z

277

Simulations of the Permian (251 Ma) Monsoon Using CCSM3Simulations of the Permian (251 Ma) Monsoon Using CCSM3 (Community Climate System Model, Version 3)(Community Climate System Model, Version 3)  

E-Print Network (OSTI)

Simulations of the Permian (251 Ma) Monsoon Using CCSM3Simulations of the Permian (251 Ma) Monsoon.A. Shields and J.T.C.A. Shields and J.T. KiehlKiehl NCARNCAR The nature of monsoons has been studied and its impact on society.The nature of monsoons has been studied extensively in the scientific community

278

MA Doping Analysis on Breeding Capability and Protected Plutonium Production of Large FBR  

Science Conference Proceedings (OSTI)

Spent fuel from LWR can be seen as long-live waste if it is not recycled or as a 'new fuel' resource if it is recycled into the reactors. Uranium and plutonium have been used for 'new fuel' resources from LWR spent fuel as MOX fuel type which is loaded into thermal reactor or fast reactor types. Other actinides from the spent fuel such as neptunium, americium and curium as minor actinide (MA) are considered to be loaded into the reactors for specific purposes, recently. Those purposes such as for increasing protected plutonium production and breeding capability for protected plutonium as well as in the same time those amount of MA can be reduced to a small quantity as a burner or transmutation purpose. Some investigations and scientific approaches are performed in order to increase a material ''barrier'' in plutonium isotope composition by increasing the even mass number of plutonium isotope such as Pu-238, Pu-240 and Pu-242 as plutonium protected composition. Higher material barrier which related to intrinsic properties of plutonium isotopes with even mass number (Pu-238, Pu-240 and Pu-242), are recognized because of their intense decay heat (DH) and high spontaneous fission neutron (SFN) rates. Those even number mass of plutonium isotope contribute to some criteria of plutonium characterization which will be adopted for present study such as IAEA, Pellaud and Kessler criteria (IAEA, 1972; Pellaud, 2002; and Kessler, 2007). The present paper intends to evaluate the breeding capability as a fuel sustainability index of the reactors and to analyze the composition of protected plutonium production of large power reactor based on the FaCT FBR as reference (Ohki, et al., 2008). Three dimensional FBR core configuration has been adopted which is based on the core optimization calculation of SRAC-CITATION code as reactor core analysis and JENDL-3.3 is adopted for nuclear data library. Some MA doping materials are loaded into the blanket regions which can be considered as breeding region for protected plutonium production. Breeding capability of the reactor can be increased effectively by increasing MA doping rate while criticality condition of the reactor is reduced by doping MA. Adopting MA cycle is also effective to increase the isotopic Pu-238 production in plutonium vector composition for denaturing purpose of plutonium.

Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke [Japan Atomic Energy Agency, Nuclear Non-proliferation Science and Technology Center, 2-4 Shirane Shirakata, Tokai-mura, Ibaraki, 319-1195 (Japan)

2010-06-22T23:59:59.000Z

279

Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma  

E-Print Network (OSTI)

Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern Abstract We here reconstruct the past change of the East Asian monsoon since 20 Ma using samples from Ocean monsoon evolution. The consistent variation of these independent proxies since 20 Ma shows three profound

Clift, Peter

280

Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies  

E-Print Network (OSTI)

Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Abstract The Utica black shales were deposited in the Taconic Foreland basin 420 Ma ago. The organic matter in these shales is of marine origin and the timing of deposition of these shales has been constrained

Basu, Asish R.

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

u.s. DEPARTIIIENT OF ENERGY EERE PROJECT MA N A GE M E~ T CENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA N A GE M E~ T CENT MA N A GE M E~ T CENT ER NEPA DETERlIlINATION Page 1 of2 RECIPIENT:Power Environmental Energy Research Institute STATE: CO PROJECT TITLE: Novel Multidimensional Tracers for Geolhermallnter-Well Diagnostics Funding Opportunity Announcement Number DE-PS36-09G099018 Procurement Instrument Number OE·EEOOO3032 NEPA Control Number GFO-1 0-345 CID Number G03032 Based on my review orlhe Information concerning the proposed action, as NEPA Compliance Officer (authoriud under DOE Order 4SI.IA),1 have made the following determination: ex, EA, [IS APPENDIX AND NUMBER: Description: 83.1 Onsile and offsite site characterization and environmental monitoring. including siting, construction (or modification), operation, and dismantlement or closing (abandonment) of characterization and monitoring devices and siting,

282

MHK Projects/GCK Technology Cape Cod Canal MA US | Open Energy Information  

Open Energy Info (EERE)

GCK Technology Cape Cod Canal MA US GCK Technology Cape Cod Canal MA US < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7433,"lon":-70.6093,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

283

u.s. DEPARTMENT OF ENERGY EERE PROJECT MA->.IAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA->.IAGEMENT CENTER MA->.IAGEMENT CENTER NEPA DETFRMINATION RECIPIENT;AWS Truepower, LlC Page 1 of2 STATE: NY PROJECT TITLE: National Offshore Wind Energy Resource and Design Data Campaign - Analysis and Collaboration Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CIO Number DE-FOA-0000414 DE-EEOOO5372 GF0-0005372-OO1 0 Based on my review oflhe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (including, but not limited to, literature surveys, inventories, site visits, and audits), data analysis (including, but not limited to, computer modeling), document preparation (including, but not limited to, conceptual design,

284

MHK Projects/GCK Technology Merrimack River Amesbury MA US | Open Energy  

Open Energy Info (EERE)

River Amesbury MA US River Amesbury MA US < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8549,"lon":-70.9267,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

285

u.s. DEPARTMENT OF ENERGY EERE PROJECT MA:-.IAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA:-.IAGEMENT CENTER MA:-.IAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Utah State University PROJECT TITLE: Alternative and Unconventional Energy Research and Development Page 1 of2 STATE: UT Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number COP DE-EEOOO3114 GF0-0003114-OO2 0 Based on my review or the information concerning the proposed action, as NEPA Compliance Officer (authorized under DO E Order 45 1.1A), I have made the following determination: CX, EA, [IS APPENDIX AND NUMBER: Description: B3.6 Siting. oonstruction (or modification), operation. and decommissioning of facilities for indoor bench-scale research projects and oonventionallaboratory operations (for example. preparation of chemical standards and sample analysis):

286

U.S. DEPARTMENT OF ENERGY EERE PROJECT MA>" AGEMENT CENTER NEPA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA>" AGEMENT CENTER MA>" AGEMENT CENTER NEPA DETERMINATION RECIPIENT:Oregon Department of Energy PROJECT TITLE: Oregon EECBG Fonnula - City of Winston Page I of3 STATE: OR Funding Opportunity Announcement Number DE-FOA-OOOOO13 Procurement Instrument Number NEPA Control Number em Number EEO Based on my review crthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4Sl.I A), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description : B1.3 Routine maintenance activities and custodial services for buildings, structures, rights-of-way, infrastructures (e.g .* pathways, roads, and railroads ), vehides and eqUipment, and localized vegetatJon and pest control, dunng which operations may be suspended and resumed. Custodial services are activities to preserve facility appearance, worl

287

U.S. DEPARTMENT OF ENERGY EERE PROJECT MA,"iAGEMENTCENTER NEPADETl!RMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA,"iAGEMENTCENTER MA,"iAGEMENTCENTER NEPADETl!RMINATION RECIPIENT:CU Cfeantech -- University of Colorado PROJECT TITLE: CU Cleantech New Venture Challenge Page 1 of2 STATE: CO Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number elD Number DE-FOAOOOOS70 EE0005600 GFO-OOO5600-OO1 0 Based on my review of the information concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 4Sl.1A), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and disseminatio n Information gathering (including, but not limited to, literature surveys, inventories, site visits, and audits). data analysis (including. but not limited to, computer modeling), document preparation (including. but not limited to, conceptual design,

288

u.s. DEPARTMENT OF ENERGY EERE PROJECT MA..\lAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lAGEMENT CENTER lAGEMENT CENTER NFPA DEl'ERAllNAIION RECIPIENT:MA DEPT. OF ENERGY RESOURCES PROJECT TITLE: STATE ENERGY PROGRAM (SEP) Page 1 of2 STATE: MA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CIO Number DE·FOA.()()()()643 R130372 GF0-0130372-OO1 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authori;.o;ed under DOE Order 45 1.lA), I have made the following de termination : ex, EA, EIS APPENDIX AND NUMBER: Description: A11 Technical advice and as sistance to o rganizations A9 Info rm at ion gathering, analysis, and d issemination Rational for detennination: Technical advice and planning assistance to international, national, state, and local organizations. Information gathering (including, but nollimited to, literature surveys, inventories, site visits, and

289

U.S. DEP.~TMENT OF ENERGY EERE PROJECT MA,\jAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA,\jAGEMENT CENTER MA,\jAGEMENT CENTER NEPA DETERMINATION Page I of2 RECIPIENT: EECBG - American Samoa Government Territorial Energy Office STATE: AS PROJECT TITLE: Improving Recycling Capacity and Solid Waste Education in American Samoa Funding Opportunity Announcement Number PrO(urement Instrument Number DE-EEOOOOB34 NEPA Control Number GFO-OOOO634.Q01 em Number o Based on my review oftbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 81 .31 installation or relocation of machinery and equipment Installation or relocation and operation of machinery and equipment (including, but not limited la, laboratory equipment, electronic hardware, manufacturing machinery, maintenance equipment, and health and safety equipment), provided that

290

MaGe - a Geant4-based Monte Carlo framework for low-background experiments  

E-Print Network (OSTI)

A Monte Carlo framework, MaGe, has been developed based on the Geant4 simulation toolkit. Its purpose is to simulate physics processes in low-energy and low-background radiation detectors, specifically for the Majorana and Gerda $^{76}$Ge neutrinoless double-beta decay experiments. This jointly-developed tool is also used to verify the simulation of physics processes relevant to other low-background experiments in Geant4. The MaGe framework contains simulations of prototype experiments and test stands, and is easily extended to incorporate new geometries and configurations while still using the same verified physics processes, tunings, and code framework. This reduces duplication of efforts and improves the robustness of and confidence in the simulation output.

Yuen-Dat Chan; Jason A. Detwiler; Reyco Henning; Victor M. Gehman; Rob A. Johnson; David V. Jordan; Kareem Kazkaz; Markus Knapp; Kevin Kroninger; Daniel Lenz; Jing Liu; Xiang Liu; Michael G. Marino; Akbar Mokhtarani; Luciano Pandola; Alexis G. Schubert; Claudia Tomei

2008-02-06T23:59:59.000Z

291

On Larkin-Imry-Ma State of 3He-A in Aerogel  

E-Print Network (OSTI)

Superfluid 3He-A shares the properties of spin nematic and chiral orbital ferromagnet. Its order parameter is characterized by two vectors d and l. This doubly anisotropic superfluid, when it is confined in aerogel, represents the most interesting example of a system with continuous symmetry in the presence of random anisotropy disorder. We discuss the Larkin-Imry-Ma state, which is characterized by the short-range orientational order of the vector l, while the long-range orientational order is destroyed by the collective action of the randomly oriented aerogel strings. On the other hand, sufficiently large regular anisotropy produced either by the deformation of the aerogel or by applied superflow suppresses the Larkin-Imry-Ma effect leading to the uniform orientation of the vector l. This interplay of regular and random anisotropy allows us to study many different effects.

G. E. Volovik

2007-04-19T23:59:59.000Z

292

On Larkin-Imry-Ma State of 3He-A in Aerogel  

E-Print Network (OSTI)

Superfluid 3He-A shares the properties of spin nematic and chiral orbital ferromagnet. Its order parameter is characterized by two vectors d and l. This doubly anisotropic superfluid, when it is confined in aerogel, represents the most interesting example of a system with continuous symmetry in the presence of random anisotropy disorder. We discuss the Larkin-Imry-Ma state, which is characterized by the short-range orientational order of the vector l, while the long-range orientational order is destroyed by the collective action of the randomly oriented aerogel strings. On the other hand, sufficiently large regular anisotropy produced either by the deformation of the aerogel or by applied superflow destroys the Larkin-Imry-Ma effect leading to the uniform orientation of the vector l. This interplay of regular and random anisotropy allows us to study many different effects.

Volovik, G E

2007-01-01T23:59:59.000Z

293

Strategic Focus Points  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Focus Points Focus Points June 2011 1. Establish the human capital and organizational foundation to create a high-performing organization. 2. Implement a cyber risk-management and incident response program that ensures effective security of Federal and M&O networks, provides appropriate flexibility, and meets legal requirements and OMB expectations. 3. Improve IT Services (EITS) into a best-in-class provider from both a technical and business perspective. 4. Implement and institutionalize a reformed, integrated information management governance process that respects the goal to treat M&Os distinctively different than true Federal entities. 5. Transition to 5-year planning and programming, using the NNSA Planning, Programming, Budgeting and Evaluation (PPBE) process as a starting point to include resource and requirements validation.

294

Improving Floating Point Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

295

mise jour: 09/12/2009 Rapport de ma mission au Pakistan  

E-Print Network (OSTI)

1 mise à jour: 09/12/2009 Rapport de ma mission au Pakistan ?cole de recherche CIMPA du 22 au 28://www.lums.edu.pk/> pour y donner une conférence dans le cadre de French Science Tour in Pakistan Science Tour in Pakistan. · Samedi 28 février, 8 exposés organisés par Juergen Herzog permettant à des

Waldschmidt, Michel

296

mise jour: 30/03/2009 Rapport de ma mission au Pakistan  

E-Print Network (OSTI)

1 mise à jour: 30/03/2009 Rapport de ma mission au Pakistan ?cole de recherche CIMPA du 22 au 28://www.lums.edu.pk/> pour y donner une conférence dans le cadre de French Science Tour in Pakistan Science Tour in Pakistan. · Samedi 28 février, 8 exposés organisés par Juergen Herzog permettant à des

Waldschmidt, Michel

297

GE PowerPoint Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steels for Steels for Accident Tolera nt Fuel Cla ddings Ferritic Ma rtensitic Alloys a s Accident Tolera nt Fuel (ATF) Cla dding Ma teria l for Light Wa ter Rea ctors Ra ul B. Reba k, GE Globa l Resea rch DOE Integra tion Meeting, Sa lt La ke City 27-August-2013 DE NE 568 2 / GE Reba k - DOE Integra tion Meeting, Sa lt La ke City, 27-August-2013/ GE Project Tea m 3 / GE Reba k - DOE Integra tion Meeting, Sa lt La ke City, 27-August-2013/ Approa ch of GE Resea rch Proposa l * Demonstra te tha t sta inless iron ba sed bulk a lloys or Adva nced Steels ca n be used a s fuel cla dding ma teria ls in commercia l nuclea r rea ctors * The proposed ma teria l should be a s good a s Zr a lloys (or better tha n Zr a lloys) under norma l opera tion conditions 1. Resista nt to genera l corrosion a nd environmenta l cra

298

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercialization of the SuperOPF Commercialization of the SuperOPF Framework: Phase III (Theme: Co- optimization Stochastic SuperOPF- renewables) Performers: PSERC: Hsiao-Dong Chiang - LEAD Cornell University: Ray Zimmerman Bigwood Systems, Inc.: Patrick Causgrove, Bin Wang Phase I: 1.(support industrial model) A commercial-grade core SuperOPF software supporting various industrial-grade power system models such as (i) CIM-compliance; and (ii) PSS/E data format 2. A multi-stage OPF solver with adaptive homotopy-based Interior Point Method for large- scale power systems (PJM: 14,000-bus data) Bigwood Systems Inc., 2013 3 Results: Efficiency and Robustness (Analytical Jacobian matrices) Loading Conditions One-Staged Interior Point Method Multi-Staged Scheme 1 Succeeded Succeeded

299

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupling Between Oceanic Upwelling and Cloud Coupling Between Oceanic Upwelling and Cloud Coupling Between Oceanic Upwelling and Cloud - - Aerosol Properties Aerosol Properties at the AMF Point Reyes Site at the AMF Point Reyes Site Maureen Dunn , Mike Jensen , Pavlos Kollias , Mark Miller , Peter Daum Mary Jane Bartholomew , David Turner , Elisabeth Andrews and Anne Jefferson Introduction Ground based observations from the MASRAD, Pt. Reyes AMF July 1-Sept 15, 2005 indicate a relationship between coastal marine stratus cloud properties, boundary layer cloud condensation nuclei and the upwelling of cool oceanic waters measured at an offshore NOAA buoy. Cloud Drizzle to CCN Atmosphere to Cloud Upwelling SST to Atmosphere Conclusion Coastal marine stratus clouds increase in thickness as the underlying sea surface

300

EAMidnightPointMahogany  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment Assessment Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon April 2013 Prepared By Bureau of Land Management - Prineville and Burns Districts DOI-BLM-OR-P040-2011-0021-EA DOE/EA-1925 Environmental Assessment Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon April 2013 Lead Agency United States Department of the Interior Bureau of Land Management Prineville District 3050 N.E. 3rd Street, Prineville, OR 97754 Tel: 541 416 6700 Burns District 28910 Hwy 20 West, Hines, OR 97738 Tel: 541 573 4400 Cooperating Agency United States Department of Energy Golden Field Office Golden, Colorado 80401 Tel: 720-356-1563 Fax: 720-356-1560 April 2013 Environmental Assessment Table of Contents 1

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluating Point Forecasts  

E-Print Network (OSTI)

Typically, point forecasting methods are compared and assessed by means of an error measure or scoring function, such as the absolute error or the squared error. The individual scores are then averaged over forecast cases, to result in a summary measure of the predictive performance, such as the mean absolute error or the (root) mean squared error. I demonstrate that this common practice can lead to grossly misguided inferences, unless the scoring function and the forecasting task are carefully matched. Effective point forecasting requires that the scoring function be specified ex ante, or that the forecaster receives a directive in the form of a statistical functional, such as the mean or a quantile of the predictive distribution. If the scoring function is specified ex ante, the forecaster can issue the optimal point forecast, namely, the Bayes rule. If the forecaster receives a directive in the form of a functional, it is critical that the scoring function be consistent for it, in the sense that the expect...

Gneiting, Tilmann

2009-01-01T23:59:59.000Z

302

MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design  

SciTech Connect

The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.

Carlsten, Bruce E. [Los Alamos National Laboratory; Barnes, Cris W. [Los Alamos National Laboratory; Bishofberger, Kip A. [Los Alamos National Laboratory; Duffy, Leanne D. [Los Alamos National Laboratory; Heath, Cynthia E. [Los Alamos National Laboratory; Marksteiner, Quinn R. [Los Alamos National Laboratory; Nguyen, Dinh Cong [Los Alamos National Laboratory; Russell, Steven J. [Los Alamos National Laboratory; Ryne, Robert D. [Los Alamos National Laboratory; Sheffield, Richard L. [Los Alamos National Laboratory; Simakov, Evgenya I. [Los Alamos National Laboratory; Yampolsky, Nikolai A. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

303

An Analysis of Wind Power Development in the Town of Hull, MA  

DOE Green Energy (OSTI)

Over the past three decades the Town of Hull, MA has solidified its place in U.S. wind energy history through its leadership in community-based generation. This is illustrated by its commissioning of the first commercial-scale wind turbine on the Atlantic coastline, the first suburban-sited turbine in the continental United States, pursuit of community-based offshore wind, and its push toward creating an energy independent community. The town's history and demographics are briefly outlined, followed by experience in projects to provide wind power, including pre-construction and feasibility efforts, financial aspects, and market/industry factors.

Adams, Christopher

2013-06-30T23:59:59.000Z

304

SIMULATION AND OPTIMISATION OF A 100MA DC PHOTO-INJECTOR  

SciTech Connect

A prototype 100mA injector is presently being designed and manufactured jointly between Thomas Jefferson National Accelerator Facility (JLab) and Advanced Energy Systems (AES). This paper discusses the physics optimization and performance of the injector which has been studied using the space-charge tracking code ASTRA. The objective is to operate the 7MeV injector with 135pC electron bunches at 748.5MHz repetition rate. We show that the longitudinal and transverse electron bunch properties can be realized within the constraints of the design.

Fay Hannon; Carlos Hernandez-Garcia

2006-08-03T23:59:59.000Z

305

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

306

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

307

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

308

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

309

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

310

U.S. LNG Imports from Other Countries  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

311

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

312

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

313

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

314

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

315

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

316

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

317

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

318

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

319

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

320

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Conard Stair Conard Stair Enforcement Program Manager B&W Y-12 March 2012 Enforcement Coordination Working Group Spring 2012 Meeting Y-12 Approach to Enforcement Y-12 Enforcement Program Office (EPO) * Integrated program with a single point of contact for enforcement activities for radiological protection, worker safety and health, and classified information security * Proceduralized and automated process that provides consistent documentation of compliance determinations and reporting * Uses a decentralized approach with Line Management Price- Anderson Officers (LMPOs) assisted by a cadre of subject matter experts to perform screening determinations * Provides policy, direction, guidance, and independent oversight * Serves as chief technical advisor to senior leadership team on

322

Addition-based exponentiation modulo 2k A. Fit-Florea, D.W. Matula and M.A. Thornton  

E-Print Network (OSTI)

Addition-based exponentiation modulo 2k A. Fit-Florea, D.W. Matula and M.A. Thornton A novel method doi: 10.1049/el:20057538 A. Fit-Florea, D.W. Matula and M.A. Thornton (Southern Methodist University', Electron. Lett., 1994, 30, (25), pp. 2115­ 2116 3 Fit-Florea, A., and Matula, D.W.: `A digit

Thornton, Mitchell

323

Elemental characterization of LL-MA radioactive waste packages with the associated particle technique  

Science Conference Proceedings (OSTI)

The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R and D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages with analytical methods and with non-destructive nuclear measurements. This paper concerns fast neutron interrogation with the associated particle technique (APT), which brings 3D information about the waste material composition. The characterization of volume elements filled with iron, water, aluminium, and PVC in bituminized and fibre concrete LL-MA waste packages has been investigated with MCNP [1] and MODAR data analysis software [2]. APT provides usable information about major elements presents in the volumes of interest. However, neutron scattering on hydrogen nuclei spreads the tagged neutron beam out of the targeted volume towards surrounding materials, reducing spatial selectivity. Simulation shows that small less than 1 L targets can be characterised up to the half-radius of a 225 L bituminized drum, the matrix of which is very rich in hydrogen. Deeper characterization in concrete is possible but limited by counting statistics due to photon attenuation in this dense matrix and, unless large inspection volumes are considered, by the lack of spatial selectivity of the tagged neutron beam due to neutron scattering. (authors)

Perot, B.; Carasco, C.; Toure, M.; El Kanawati, W.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)

2011-07-01T23:59:59.000Z

324

A point of order 8  

E-Print Network (OSTI)

A formula expressing a point of order 8 on an elliptic curve, in terms of the roots of the associated cubic polynomial, is given. Doubling such a point yields a point of order 4 distinct from the well-known points of order 4 given in standard references such as "A course of Modern Analysis" by Whittaker and Watson.

Semjon Adlaj

2011-10-03T23:59:59.000Z

325

Cove Fort Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Project Location Information Coordinates 38.6075°, -112.57472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6075,"lon":-112.57472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Impacts of Historical Land Use on Soil Nitrogen Cycles in Falmouth, MA and the Threat of Chronic N Amendment Demonstrated at the  

E-Print Network (OSTI)

Amendment Demonstrated at the Harvard Forest LTER, Petersham, MA Brook Brouwer1 Advisor: Christopher Neill2, in Petersham, MA. At each site I measured: pH, C:N ratios, extractable inorganic nitrogen pools, net N Amendment Demonstrated at the Harvard Forest LTER, Petersham, MA" Brook Brouwer Introduction

Vallino, Joseph J.

327

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Nangle, National Renewable Energy Laboratory (NREL) John Nangle, National Renewable Energy Laboratory (NREL) Tribal Leader Forum, Phoenix, AZ - May 30 - 31, 2013 State Incentives and Project Impacts Main Points - Market Context * State Renewable Portfolio Standards (RPS) - What are they? - How can they help your project? - Potential gap means more market demand for RE projects Starting a Renewable Energy Project * What renewable resources exist? * What sites with resources do you own? * To whom will you sell the electricity? * How will federal and state incentives or policies impact your project? * Access to transmission * Other policies - Interconnection standards - Environmental standards Renewable Portfolio Standard (RPS) * A requirement set by a state for utilities to generate x% of electricity from renewables by a specific date

328

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer Acceptance of Smart Grid Customer Acceptance of Smart Grid DOE Energy Advisory Committee Meeting June 6, 2013 Judith Schwartz, To the Point + INNOVATORS EARLY ADOPTERS EARLY MAJORITY LATE MAJORITY LATE ADOPTERS Indifferents Tech Enthusiasts Green Altruists Comfort Lovers Cost Conscious Doubters Green buildings Simple feedback interface Price incentives Seamless automation Who Are Our Customers? + Why Will They Care About SG? 1. Information, incentives, and automation to easily reduce or defer electricity use 2. Integrate clean generation and transportation 3. Reduce, pinpoint, and restore outages + Fly Under the Radar Active Engagement Slow Build Back end deployment first in sequence AMI rollout in process or pilots are imminent Practice incremental modernization efforts High % of "indifferent"

329

END POINTS MANAGEMENT End Points Management The Need for End Point Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT MANAGEMENT End Points Management The Need for End Point Specifications The Need for a Method to Derive End Points Guiding Principles for Specifying End Points Tailored Approach Headquarters, Field Office, and Contractor Roles End Points Approvals Contractor Organization Functions for End Points Implementation Training and Walkdown Guidance for the Facility Engineers The Need for End Point Specifications The policy of the EM is that a formal project management approach be used for the planning, managing, and conducting of its projects. A fundamental premise of project management for facility deactivation is answering the question: How do you know when the project is complete? Just as the design specifications are essential to a

330

DOE Challenge Home Case Study, Transformation, Inc., Production House, Devens, MA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production House Production House Devens, MA BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

331

DEPART:MENT OF ENERGY EERE PROJECT MA..'JAGEMENT CENTER NEPA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MENT OF ENERGY MENT OF ENERGY EERE PROJECT MA..'JAGEMENT CENTER NEPA DETERMINATION Page 1 of2 RI<:CIPIENT:Wyoming Business Council, State Energy Office STATE: WY PROJECT TITLE: State Energy Program (SEP) PY 2012 Forumla Grant funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000643 DE-FG26-07NT43207 GF(H)()43207-OO1 Based on my review of the information concerning the proposed aetion, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination A11 Technical advice and assistance to organizations Rational for detennination: Information gathering (including, but not limited to, literature surveys, inventories, site visits, and

332

EERE PROJECT MA.NAGEMENT CENTER NEPA DFTFIU.1INATION PROJECT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atchison Atchison u.s. DI!PARThIl1NT OF l?NERGY EERE PROJECT MA.NAGEMENT CENTER NEPA DFTFIU.1INATION PROJECT TITLE: EECBG DE-EEOOOO727 Atchison Library Ground Source Heat Pump Page 1 of2 STATE : KS Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE FOA 0000013 0 Based on my review of the information tORcuning the proposed action, as NEPA Compliam::e Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 8 5.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

333

Procurement Directors FROM: Office of Procurement and Assistance Policy, MA-61  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 25,2008 July 25,2008 Procurement Directors FROM: Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Acquisition Letter 2008-02, Audit Management SUMMARY: Attached is Acquisition Letter (AL) 2008-02, Audit Management. It provides guidance to contracting officers on effective management of contract audits for non-M&O prime ;ontracts as well as subcontracts under management and operating (M&O) contracts. This Acquisition Letter replaces AL 2006-12, Corporate Audit Management Program (CAMP), which is cancelled. This Flash and its attachment will be online within a day, at the following website: http:l/mananernent.ener~.~ov/polic~ guidance/volicv flashes-htm. Questions concerning this policy flash should be directed to Helen Oxberger at (202) 287-1332

334

U.S. DEPARTMENT OF ENERGY EERE PROJECT MA.>.JAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, .* !. , .* !. U.S. DEPARTMENT OF ENERGY EERE PROJECT MA.>.JAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Laram!e County Community College PROJECT TITLE: LeGe Ulilty-Scale Wind Energy Technology Page 1 of2 STATE: WY Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-PS36-09G099OO9 DE-EEOOOO538 GFO-10-052 0 Based on my review of the information concerning the proposed action, as Nt:PA Compliance Officer (autbori7.ed under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathenng (including, but not limited to, literature surveys, Inventones, audits), data analySIS (including computer modeling), document preparation (such as oonceptual des'9n or feasibility studies, analytical energy supply

335

U.S. DEP.'\RTMENT OF ENERGY EERE PROJECT MA.1II AGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'\RTMENT OF ENERGY '\RTMENT OF ENERGY EERE PROJECT MA.1II AGEMENT CENTER NEPA DETERMINATION RECIPIENT :Freshwater Wind I. lLC PROJECT TITLE: Shallow Water Offshore Wind System Optimization for the Great Lakes Page 1 of2 STATE: OH Funding Opportunity Announcement Number Procurement Instl"ument Number NEPA Control Number elD Number DE-FOA.Q000415 DE-EEOOOO5488 GFO-OOO5488-001 0 Based on my nview or the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SUA),. have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathertng, analysis, and dissemination Information gathering (including, but not limited to, literature surveys, inventories, site Visits, and audits). data analysis

336

TO: Procurement Directors FROM: Office of Procurement and Assistance Policy, MA-61  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 23,2010 August 23,2010 TO: Procurement Directors FROM: Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management SUBJECT: Acquisition Templates SUMMARY: On March 29,2010, four draft acquisition templates (Confidentiality Certificate, Conflicts of Interest Certificate, Letter to Unsuccessful Offeror and Letter to Successful Offeror) were distributed for Procurement Director (PD) and Head of Contracting Activity (HCA) review and comment. All comments received were considered and changes were made as appropriate. The final versions of the four aforementioned acquisition templates will be e-mailed directly to the Procurement Directors and made available in the STRIPES Library. This Flash and its attachments will be available online within a day, at the following website:

337

U.S. DEPARTI\lIENT OF ENERGY EERE PROJECT MA."IAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lIENT OF ENERGY lIENT OF ENERGY EERE PROJECT MA."IAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Louisiana State University and A&M College Page 1 of2 STATE: LA PROJECT TITLE: Geothennal Resource Development with Zero Mass Withdrawal, Engineered Free Convection, and Wellbore Energy Conversion Funding Opportunity ADDounc:ement Number Procurement Instrument Number NEPA Control Number CID Number DE-F0-0000336 OE-EEOOO5125 GF0-0005125-001 0 Based on my review (lrtbe infor madOD concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A),1 have' made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (induding, but not limited to, literature surveys, inventories, audits). data analysIs (including

338

U.S. DEPAR.Th.IENT OF ENERGY EERE PROJECT MA'\IAGEME~TCE~TER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Th.IENT OF ENERGY Th.IENT OF ENERGY EERE PROJECT MA'\IAGEME~TCE~TER NEPA DETFID..ITNATION RECIPIENT:Ciemson University PROJECf TITLE: Clemson University 15MW Hardware-In-the-Loop (HIL) Grid Simulator Page 1 of2 STATE: SC Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number N/A (DNFA) DE-EE0005723 GF0-0005723-001 Based on my review of the information concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 45l.1A), l have made tbe foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information Information gathering (including, but not limited to, literature surveys, inventories, site visits, and audits), gathering, analysis, data analysis (including, but not limited to, computer modeling), document preparation (including, but

339

u.s. DEP.-\RTMENT OF ENERGY EERE PROJECT MA. AGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RTMENT OF ENERGY RTMENT OF ENERGY EERE PROJECT MA. AGEMENT CENTER NEPA DETERMINATION RECIPIENT :louisiana Department of Natural Resources PROJECT TITLE: State of louisana ARRA-EECBG-St. James Parish (Tl Page 1 of2 STATE : LA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-OOOOO13 EEOOOO735 0 Based on my review or lhe information concerning tbe proposed action, as NEPA Compliance Officer (autborized under DOE Order 4S1.1A), I bave made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do nol increase the indoor concentrations of potentially harmful substances. These actions may involve financia

340

On Convex Decompositions of Points  

Science Conference Proceedings (OSTI)

Given a planar point set in general position, S, we seek a partition of the points into convex cells, such that the union of the cells forms a simple polygon, P, and every point from S is on the boundary of P. Let f(S) ...

Kiyoshi Hosono; David Rappaport; Masatsugu Urabe

2000-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft PowerPoint - Nucleation-Willit  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Nucleation and Growth of Uranium and Plutonium on Tungsten Electrode from Molten Salts M.M. Tylka, J.L. Willit, M.A. Williamson Chemical Sciences and Engineering...

342

Microsoft PowerPoint - Voltammetry-Willit  

NLE Websites -- All DOE Office Websites (Extended Search)

Electroanalytical Measurements of Uranium and Plutonium in Molten LiCl-KCl Eutectic M.M. Tylka, N. A. Smith, J.L. Willit, M.A. Williamson Chemical Sciences and Engineering Division...

343

MA FI QPR Scoring Elements 4th Qtr FY 2009 Revision v1.xls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reference Reference Due Date Element Measure Critical? Score > ≤ 8/15 8/15 8/22 8/22 95% 100% 80% 95% 0% 80% 2.0% 1.8% 2.0% 0.0% 1.8% 1.0% 0.5% 1.0% 0.0% 0.5% 8/30 8/30 99.9% 0.0% 99.9% 9/30 9/30 9/30 9/30 Program specific elements, negotiated with Programs: Program specific measures, negotiated with Programs: Overall Score: Green * All critical elements green, and * No more then one non-critical element yellow Yellow * Any critical element yellow, or * Any non-critical red, or * Two or more non-critical elements yellow Red * Any critical element red or * Two or more non-critical elements red TYRT September 30, 2009 Input submitted to update TYRT Submission timeliness 1 1 2 2 Enter Date or Percentage Proximity to spending target August 15, 2009 Overall Score: Yes MA F&I Quarterly Performance Report

344

?ot8rh QI ahnloal Corporation In Hart IUnover, Ma86rohusett8,  

Office of Legacy Management (LM)

GE 1 GE 1 ;" qr)-1 s?llq ' p raspy.. c" ifa K. mris I talked with Hr. Wllllm cIF(Iy, Metrllurgist, Wnlon CarbId@ Nuclear cOrp8ny, 08k B&t&$@, Tenne66ee, on April 26, 1961. He informed me th&t the #rtioMl Northern birislon, Ame~ic6.n ?ot8rh QI ahnloal Corporation In Hart IUnover, Ma86rohusett8, la pePfopn1~ lo8lve forming studier for the. ilnion olo)w Wuolem Conpmy "p l7?JHa). The work at National Northern l#rirc.- alon ir under the 6upenl6lon of Ehsll Phillpohuc4~, v of Spealrl Prcbduots. The @ox& to data ha8 been pwfonwd wlth 430 strlnle66 rteel and urma%um metal - both hot snb 0018 wor4c have been performed at pr688u~r fmm 100,000 to 900,000 prl. The shape of the pleu88 na not dlrolored. In 6<lon work ha6 been done with

345

Alcator C-Mod Experiments in Support of the ITER Baseline 15 MA Scenario  

SciTech Connect

Experiments on Alcator C-Mod have addressed several issues for the ITER 15 MA baseline scenario from 2009-2012. Rampup studies show ICRF can save significant V-s, and that an H-mode in the ramp can be utilized to save 50% more. ICRF modifications to li(1) are minimal, although the Te profile is peaked relative to ohmic in the plasma center, and alter sawtooth onset times. Rampdown studies show H-modes can be routinely sustained, avoiding an OH coil over-current associated with the H-L transition, that fast rampdowns are preferred, the density drops with Ip, and that the H-L transition occurs at Ploss/Pthr,LH ~ 1.0-1.3 at n/nGr ~ 0.85. Flattop plasmas targeting ITER baseline parameters have been sustained for 20 ?E or 8-13 ?CR, but only reach H98 ~ 0.6 at n/nGr = 0.85, rising to 0.9 at n/nGr = 0.65.

C Kessel, et al

2013-05-07T23:59:59.000Z

346

Florida Nuclear Profile - Turkey Point  

U.S. Energy Information Administration (EIA) Indexed Site

Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

347

Geochemical records in the South China Sea: implications for East Asian summer monsoon evolution over the last 20 Ma  

E-Print Network (OSTI)

Geochemical records in the South China Sea: implications for East Asian summer monsoon evolution past changes in the East Asian summer monsoon over the last 20 Ma using samples from Ocean Drilling and combined review suggests that the long-term evolution of the East Asian summer monsoon is similar

Clift, Peter

348

On-Demand Information Portals for Disaster Yiming Ma, Dmitri V. Kalashnikov, Ram Hariharan, Sharad Mehrotra, Nalini Venkatasubramanian,  

E-Print Network (OSTI)

, and such information is indeed valuable to disaster managers or even citizens in their response. In this paper we in the response and planning during or after the disaster. This motivates us in the direction of an "InformationOn-Demand Information Portals for Disaster Situations Yiming Ma, Dmitri V. Kalashnikov, Ram

Kalashnikov, Dmitri V.

349

China's Energy Situation and Its Implications in the New by Hengyun Ma, Les Oxley and John Gibson  

E-Print Network (OSTI)

and the energy economy, in particular. Keywords: China; Energy; Fossil fuels; Renewable Energy JEL by an investigation and analysis of China's energy resources, including renewable energy. In the third section we1 China's Energy Situation and Its Implications in the New Millennium by Hengyun Ma, Les Oxley

Hickman, Mark

350

A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft D.F. Smart *, M.A. Shea  

E-Print Network (OSTI)

A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft D.F. Smart *, M.A. Shea Air Geomagnetic cutoff rigidities are a quantitative measure of the shielding provided by the earth?s magnetic field. More precisely, geomagnetic cutoff rigidities predict the energetic charged particle transmission

Shepherd, Simon

351

Decreasing Slip Rates From12.8 Ma to Present on the Solitario Canyon Fault at Yucca Mountain, Nevada  

DOE Green Energy (OSTI)

The Solitario Canyon fault, which bounds the west side of Yucca Mountain, Nevada, is the closest fault with Quaternary offset adjacent to the proposed spent nuclear fuel and high-level radioactive waste repository. Dip-slip offset between 12.8 and 10.7 Ma is determined from lithostratigraphic displacement in boreholes USW H-3 and USW WT-7, drilled in the footwall and hanging wall, respectively. The base of the 12.8-Ma Topopah Spring Tuff is interpreted to have 463.3 m of separation across the fault, an average dip slip rate of 0.036 mm/yr. Previous researchers identified a geothermal system active from 11.5 to 10.0 Ma with peak activity at 10.7 Ma that resulted in pervasive alteration of vitric rock to zeolitic minerals where the rocks were in the ground-water saturated zone. The contact between vitric (V) and pervasively zeolitic (Z) rocks cuts across the lithostratigraphic section and offset of this V-Z boundary can be used to measure slip rates between 12.8 and 10.7 Ma. In H-3, the V-Z boundary is 138.4 m below the base of the vitric, densely welded subzone of the Topopah Spring Tuff (Tptpv3). In WT-7, although the V-Z boundary is identified at the base of the Tptpv3, borehole video, cuttings, and geophysical log data indicate the Tptpv3 has well-developed zeolitic alteration along fractures, and this implies 19.5 m of the total thickness of Tptpv3 (and probably additional overlying crystallized rocks) also were in the saturated zone by 10.7 Ma. The V-Z relations across the Solitario Canyon fault in H-3 and WT-7 indicate a minimum of 157.9 m of separation before 10.7 Ma, which is 34.1 percent of the total slip of the Topopah Spring Tuff, and a minimum dip slip rate of 0.075 mm/yr from 12.8 to 10.7 Ma. These data are consistent with the broader structural history of the area near Yucca Mountain. Previous workers used angular unconformities, tilting of structural blocks, and paleomagnetic data to constrain the main period of extensional faulting between 12.7 and 8.5 Ma. Paleoseismic studies in Quaternary deposits documented slip rates on the Solitario Canyon fault from 0.01 to 0.02 mm/yr since 0.077 and 0.20 Ma. The decrease of extensional activity slip rates data on the Solitario Canyon fault provide evidence of decreasing tectonic activity from the middle Miocene to present.

D. Buesch

2006-07-11T23:59:59.000Z

352

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

SINGLE-CRYSTAL SAPPHIRE OPTICAL SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR DE-FC26-99FT40685 Anbo Wang, Gary Pickrell, Ke Wang, Cheng Ma, Brian Scott Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation & Objective * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan * Project Progress 2 MOTIVATION AND OBJECTIVE 3 Motivation 4 * Temperature sensor for harsh-environments: * Coal gasifier (major focus of prior work). * Gas turbine. * Temperature measurement is critical for: * Gasifier start-up. * Process optimization. * Event/failure detection.

353

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

EMBEDDED ACTIVE FIBER OPTIC SENSING EMBEDDED ACTIVE FIBER OPTIC SENSING NETWORK FOR STRUCTURAL HEALTH MONITORING IN HARSH ENVIRONMENTS DE-FE0007405 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu, cma1@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation, Overview & Objectives * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan 2 MOTIVATION AND OBJECTIVES 3 Motivation * Non-Destructive Evaluation (NDE) of structural health in advanced energy systems. Examples: * Ultra Supercritical (USC) systems: * Steam temperature 760 o C, pressure 5000 psi. * Integrated Gasification Combined Cycle (IGCC):

354

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTED FIBER OPTIC SENSOR FOR DISTRIBUTED FIBER OPTIC SENSOR FOR ON-LINE MONITORING OF COAL GASIFIER REFRACTORY HEALTH DE-FE0005703 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu, cma1@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation, Overview & Objectives * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan * Project Progress 2 MOTIVATION AND OBJECTIVES 3 Motivation * Refractory health monitoring in slagging coal gasifiers: * Rapid corrosion of refractory materials. * High-temperature reducing environment. * Difficult to predict remaining refractory life. * Localized thinning, spallation, cracking.

355

Microsoft PowerPoint - Zr_behavior [Compatibility Mode  

NLE Websites -- All DOE Office Websites (Extended Search)

Agency (JAEA) Pyrochemical Reprocessing for Spent LWR Fuels LWR Reduction product (U-Pu-MA +FP) MO 2 + 4e - M + 2O 2- Electrolytic reduction U-Pu-MA, U metal Spent oxide fuel...

356

Paleogene cooling (55-30 MA) as inferred from oxygen isotope variation within mollusc shells  

E-Print Network (OSTI)

Paleogene cooling (c. 50-30 Ma) started sometime in the early-middle Eocene. This was a time when high-latitude and deep-sea temperatures were significantly warmer than today. This cooling culminated during the earliest Oligocene marked by the sudden appearance of a major continental glacier on Antarctica. We examine this cooling trend by analyzing oxygen isotope variation within mollusc shells from the Gulf Coastal Plain of the southern U.S. Our records show a secular cooling trend of mean annual temperature (MAT) in the Mississippi Embayment from an early Eocene tropical climate (26-27 ?C), with a seasonal temperature range (seasonality) of ~6 ?C, to an Oligocene paratropical climate (22-23?C) with an seasonality of ~8 ?C. These temperature records agree well with terrestrial climate proxies. This secular cooling trend, combined with sea-level change, was likely one of the major causes of molluscan turnover in the Mississippi Embayment to cool-tolerant taxa along the Paleogene cooling. Winter temperatures steadily decreased from the middle Eocene to early Oligocene. This contrasts with the sudden winter cooling at Eocene-Oligocene boundary proposed by Ivany et al. (2000). We examined seasonal temperature distribution of the modern marine shelf of the present northern U.S. Gulf Coast. A deeper water temperature model fits well with isotopic temperature profiles derived from fossils shells of the Red Bluff and Yazoo Formations shells, consistent with the paleobathymetry estimates inferred from independent proxies. This reveals that depth effect is one of the major factors controlling seasonality recorded in mollusc shells, resulting in decreasing MAT estimates when temperature stratification exists as in the present ocean. Warm Eocene low-latitude temperatures derived from molluscan oxygen isotope data agree with computer modeling results incorporating higher greenhouse gas concentrations. This supports the contention that the major reason for warm earth climate is elevated concentration of the greenhouse gases, giving a new insight for future climate response to anthropogenic CO? increase.

Kobashi, Takuro

2001-01-01T23:59:59.000Z

357

Grid Points (GridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (GridSampleSet). ... Name. Grid Points (GridSampleSet) Evaluate data on a rectangular grid of points. Synopsis. ...

2013-08-23T23:59:59.000Z

358

Grid Points (StatGridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (StatGridSampleSet). ... Name. Grid Points (StatGridSampleSet) Evaluate data on a rectangular grid of points. ...

2013-08-23T23:59:59.000Z

359

A Critical Point for Science?  

E-Print Network (OSTI)

, taboo ideas become arespectable part of science? Occult Sciences Tripos? CU Institute of Astrology? Telepathy, memory of water, cold fusion?Scientific theology, intelligent design? Mar. 5, 2008/CUPS A Critical Point for Science / Brian Josephson 32...

Josephson, B D

2008-03-05T23:59:59.000Z

360

U.S. DEPARTMENT OF ENERGY EERE PROJECT MA;"AGEMENT CENTER NEPA DET1!R1.IINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O". )' O". )' U.S. DEPARTMENT OF ENERGY EERE PROJECT MA;"AGEMENT CENTER NEPA DET1!R1.IINATION RECIPIENT:Resolute Marine Energy, Inc. PROJECT TITLE: Wave-Actuated Power Take Off Device for Electricity Generation Page 1 of2 STATE: MA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOO293 DE-EEOOO4565 GFO-OOO4565-001 0 Based on my review orthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Ordtr451.IA), I have made tbe rollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including , but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Asymptotics of Greedy Energy Points  

E-Print Network (OSTI)

For a symmetric kernel $k:X\\times X \\to \\mathbb{R}\\cup\\{+\\infty\\}$ on a locally compact Hausdorff space $X$, we investigate the asymptotic behavior of greedy $k$-energy points $\\{a_{i}\\}_{1}^{\\infty}$ for a compact subset $A\\subset X$ that are defined inductively by selecting $a_{1}\\in A$ arbitrarily and $a_{n+1}$ so that $\\sum_{i=1}^{n}k(a_{n+1},a_{i})=\\inf_{x\\in A}\\sum_{i=1}^{n}k(x,a_{i})$. We give sufficient conditions under which these points (also known as Leja points) are asymptotically energy minimizing (i.e. have energy $\\sum_{i\

A. Lpez Garca; E. B. Saff

2009-01-24T23:59:59.000Z

362

Post LHC8 SUSY benchmark points for ILC physics  

E-Print Network (OSTI)

We re-evaluate prospects for supersymmetry at the proposed International Linear e^+e^- Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with ~5 fb^{-1} of pp collisions at sqrt{s}=7 TeV and LHC8 with ~20 fb^{-1} at \\sqrt{s}=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m_h~125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m_A, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, stau-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at \\sqrt{s}~0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

Howard Baer; Jenny List

2013-07-02T23:59:59.000Z

363

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America LNG Import Terminals Status: Existing Source: Various Public Sources Everett Cove Point Lake Charles Elba Island Gulf Gateway (*Decommissioning) Altamira Existing Terminals...

364

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

contributorsjohn-lippert Download Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT...

365

Environmental Protection Agency Notice of Availability of the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00, Cove Point Expansion Project, Construction and Operation of a Liquefied Natural Gas (LNG) Import Terminal Expansion and Natural Gas Pipeline Facilities, U.S. Army COE Section...

366

Maryland Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Maryland Quick Facts. Dominion Cove Point received authorization on October 7, 2011, from the U.S. Department of Energy to enter into contracts to ...

367

Wellness Program WELLNESS POINTS BANK  

E-Print Network (OSTI)

Wellness Program WELLNESS POINTS BANK Renew your commitment to health. Start again October 1, 2012 to your family and friends, too. Your health and well-being are also important to the University of Minnesota. As your employer, the University recognizes the value of investing in a comprehensive Wellness

Thomas, David D.

368

Final environment impact report supplement: Northeast corridor improvement project electrification: New Haven, CT to Boston, MA. Final report  

SciTech Connect

This document is a supplement to the final environmental impact report (FEIR) published in October 1994 on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electrification from New Haven, CT, to Boston, MA. The purpose of this supplement is to provide additional information relative to: the Roxbury Substation Alternative Analysis; an expanded discussion on mitigation of potential adverse impacts; draft Section 61 findings; the Memorandum of Understanding between Amtrak and the Massachusetts Bay Transportation Authority (MBTA) for Route 128 Station; Amtrak`s draft outreach program; and to address other Massachusetts Environmental Policy Act concerns.

NONE

1995-02-01T23:59:59.000Z

369

BP Cherry Point Congeneration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REVISED 404 (B) (1) REVISED 404 (B) (1) ALTERNATIVES ANALYSIS BP Cherry Point Cogeneration Project Prepared for: BP West Coast Products, LLC Revised June 29, 2004 1501 Fourth Avenue, Suite 1400 Seattle, WA 98101-1616 (206) 438-2700 33749546.05070 i TABLE OF CONTENTS Page 1.0 I NT RODUCTI ON ................................................................................................................... 1 2.0 P URPOSE AND NEE D .......................................................................................................... 1 2.1 RELIABILITY .................................................................................................... 1 2.2 COST-EFFECTIVENESS ................................................................................... 3 2.3 SIZE OF FACILITY............................................................................................

370

Optimization of Core Point Detection in Fingerprints  

Science Conference Proceedings (OSTI)

This paper compares and documents the work of an optimized fingerprint core point determination algorithm. This work focuses to present an efficient and precise way for the extraction of core point. Core Point is detected using least mean square algorithm. ...

Nabeel Younus Khan; M. Younus Javed; Naveed Khattak; Umer Munir Yongjun Chang

2007-12-01T23:59:59.000Z

371

Microsoft PowerPoint - Acumentrics - 11th Annual SECA Poster...  

NLE Websites -- All DOE Office Websites (Extended Search)

CeramicMetallic Heat Exchanger Development Anthony F. Litka Acumentrics Corporation 20 Southwest Park, Westwood MA 02339 www.acumentrics.com Industrial-UPS Commercial...

372

Erratum: Experimental Vibrational Zero-Point Energies ...  

Science Conference Proceedings (OSTI)

Erratum: Experimental Vibrational Zero-Point Energies: Diatomic Molecules J ... error in the calculated zero point energy ZPE for ... All rights reserved. ...

2013-04-16T23:59:59.000Z

373

Convertibility of Function Points into COSMIC Function Points: A study using Piecewise Linear Regression  

Science Conference Proceedings (OSTI)

Background: COSMIC Function Points and traditional Function Points (i.e., IFPUG Function Points and more recent variation of Function Points, such as NESMA and FISMA) are probably the best known and most widely used Functional Size Measurement methods. ... Keywords: COSMIC Function Points, Data analysis, Function Point analysis, Functional Size Measurement, Functional size measure convertibility, Outliers

Luigi Lavazza; Sandro Morasca

2011-08-01T23:59:59.000Z

374

Critical Point Symmetries in Nuclei  

E-Print Network (OSTI)

Critical Point Symmetries (CPS) appear in regions of the nuclear chart where a rapid change from one symmetry to another is observed. The first CPSs, introduced by F. Iachello, were E(5), which corresponds to the transition from vibrational [U(5)] to gamma-unstable [O(6)] behaviour, and X(5), which represents the change from vibrational [U(5)] to prolate axially deformed [SU(3)] shapes. These CPSs have been obtained as special solutions of the Bohr collective Hamiltonian. More recent special solutions of the same Hamiltonian, to be described here, include Z(5) and Z(4), which correspond to maximally triaxial shapes (the latter with ``frozen'' gamma=30 degrees), as well as X(3), which corresponds to prolate shapes with ``frozen'' gamma=0. CPSs have the advantage of providing predictions which are parameter free (up to overall scale factors) and compare well to experiment. However, their mathematical structure [with the exception of E(5)] needs to be clarified.

Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I; Bonatsos, Dennis

2006-01-01T23:59:59.000Z

375

BP Cherry Point Cogeneration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement DOE/EIS-0349 Lead Agencies: Energy Facility Site Evaluation Council Bonneville Power Administration Cooperating Agency: U.S. Army Corps of Engineers August 2004 EFSEC Washington State Energy Facility Site Evaluation Council July 12, 2004 Dear Reader: Enclosed for your reference is the abbreviated Final Environmental Impact Statement (FEIS) for the proposed BP Cherry Point Cogeneration Project. This document is designed to correct information and further explain what was provided in the Draft Environmental Impact Statement (DEIS). The proponent, BP West Coast Products, LLC, has requested to build a 720-megawatt gas-fired combined cycle cogeneration facility in Whatcom County, Washington, and interconnect this facility into the regional

377

U.S. DEPAR.Th:IENT OF ENERGY EERE PROJECT MA1\JAGEME~T CE~TER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Th:IENT OF ENERGY Th:IENT OF ENERGY EERE PROJECT MA1\JAGEME~T CE~TER NEPA DETEin:ITNATION Page 1 of2 RECIPIENT:City of Henderson; Henderson; NV STATE: NV PROJECT TITLE : Henderson Solar Energy Project Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-EE0003166 GF0-0003166-003 G03166 Based on my review ofthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.16 Solar photovoltaic systems The installation, modification, operation, and removal of commercially available solar photovoltaic systems located on a building or other structure (such as rooftop, parking lot or facility, and mounted to s1gnage,

378

u.s. DEP.-illThIl!NT OF ENERGY EERE PROJECT MA"IAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

illThIl!NT OF ENERGY illThIl!NT OF ENERGY EERE PROJECT MA"IAGEMENT CENTER NEPA DE:rJ!IU...lINATION RECIPIENT:TX STATE ENERGY CONSERVATION OFFICE PROJECT TITLE: SHARYLAND ISD Page 1 of2 STATE: TX Funding Opportunity Announcement Number Procurement Instmment Number NEPA Control Number CIO Number DE-EEOOO116 DE-EEOOO116 GFO-OOO0116-032 GOO Based OD my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: 85.16 Solar photovoltaic systems The installation, modification. operation, and removal of commercially avaUable solar photovoltaic systems located on a building or other structure (such as rooftop, par1o:.ing lot or facility, and mounted to signage, lighting, gates, or fences), or if

379

U.S. DFPAR.Tl\IFNT OF ENERGY EERE PROJECT MA:'\1AGE\1ENTCEN rER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tl\IFNT OF ENERGY Tl\IFNT OF ENERGY EERE PROJECT MA:'\1AGE\1ENTCEN rER NEPA DETFRl\.ITNATION Page 1 of2 RECIPIENT:Southwest Research Institute STATE: TX PROJECT TITLE : Optimizing the CSP Tower Air Brayton Cycle System to meet the SunShot Objectives Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000595 DE-EE0005805 GF0-0005805-001 Based on my review oftbe information concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made tbe foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (including, but not limited to, literature surveys, inventories, site visits, and

380

U.S. DEP.-illTUENT OF ENERGY EERE PROJECT MA"AG EM ENT CEN T  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

illTUENT OF ENERGY illTUENT OF ENERGY EERE PROJECT MA"AG EM ENT CEN T ER NEPA DETERl\IINATION RECIPIENT:City of San Antonio PROJECT TITLE: City of San Antonio ARRA·EECBG * Activity #7 (S) Page 1 of2 STATE: TX Funding Opportunity Announcement Number 81.128 Procurement Instrument Number DE·EEOOOO970 NEPA Control Number cm Number o Based on my review ofthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 45 I. IA), I have made the followin g determination: CX, EA , EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. DEPARTI\t.IENT OF ENERGY EERE PROJECT MA.J'\JAGE\ofENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

t.IENT OF ENERGY t.IENT OF ENERGY EERE PROJECT MA.J'\JAGE\ofENT CENTER NEPA DETERMINATION Page 1 of2 RECIPIENT:San Diego State University STATE: CA PROJECT TITLE: A Small Particle Solar Receiver for High Temperature Brayton Power Cycles Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CIO Number DE-SOL-0000595 DE-EE0005800 GF0-0005800-001 G05800 Based on my review oftbe information concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 83.6 Small-scale research and development. laboratory operations, and pilot projects Rational for determination: Siting, construction, modification, operation, and decommissioning of facilities for smallscale research

382

Fixed-Point Cell Mini Workshop  

Science Conference Proceedings (OSTI)

... The ITS-90 Fixed-Point Cell Mini-Workshop is scheduled to be given at ... hands-on" laboratory training in the realization of ITS-90 fixed-point cells. ...

2011-10-03T23:59:59.000Z

383

InitiativesTalkingPoints | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ativesTalkingPoints&0; More Documents & Publications Suggested Talking Points for Hydrogen Road Tour &8220;C-3E&8221; WOMEN&8217;S INITIATIVE: Renewable Energy and a Smart Grid...

384

Function points as a universal software metric  

Science Conference Proceedings (OSTI)

Function point metrics are the most accurate and effective metrics yet developed for software sizing and also for studying software productivity, quality, costs, risks, and economic value. Unlike the older "lines of code" metric function points can be ...

Capers Jones

2013-07-01T23:59:59.000Z

385

Minimal capacity points and the Lowest eigenfunctions  

E-Print Network (OSTI)

We introduce the concept of the point of minimal capacity of the domain, and observe a connection between this point and the lowest eigenfunction of a Laplacian on this domain, in one special case.

Mark Levi; Jia Pan

2011-04-04T23:59:59.000Z

386

Wa s h i n g t o n Ma r r i o t t e n Me t r o C e...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wa s h i n g t o n Ma r r i o t t e n Me t r o C e n t e r F a c u l t a d d e D e r e c h o d e l a U n i v e r s i d a d d e H o w a r d C o n f e r e n c i a y P r o g r a ma d...

387

Microsoft PowerPoint - Zr_behavior [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction Reduction Behaviors of Zirconium Oxide Compounds in LiCl-Li 2 O Melt International Pyroprocessing Research Conference August 29, 2012 Fontana, Wisconsin, USA Y. Sakamura, M. Iizuka and T. Koyama Central Research Institute of Electric Power Industry (CRIEPI) S. Kitawaki, A. Nakayoshi and H. Kofuji Japan Atomic Energy Agency (JAEA) Pyrochemical Reprocessing for Spent LWR Fuels LWR Reduction product (U-Pu-MA +FP) MO 2 + 4e - M + 2O 2- Electrolytic reduction U-Pu-MA, U metal Spent oxide fuel Electrorefining O 2- LiCl (650 o C) O 2 3 V FP(Cs,Sr,etc) U U,Pu MA 液体Cd 陰極 固体陰極 陽極 還元物 U LiCl-KCl (500 o C) U,Pu MA Liquid Cd cathode Solid cathode Anode RE 3+ Pu 3+ U 3+ MA 3+ Metal fuel Pyrochemical Reprocessing for Spent LWR Fuels LWR Reduction product (U-Pu-MA +FP) MO 2 + 4e - M + 2O 2- Electrolytic reduction U-Pu-MA, U metal Spent oxide fuel Electrorefining

388

Microsoft PowerPoint - Lew Shoemaker 2.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing and Applications Processing and Applications Processing and Applications Huntington Alloys Huntington Alloys Special Metals Corporation Special Metals Corporation a PCC Company a PCC Company ODS High Temperature Alloys ODS High Temperature Alloys -Superior strength and creep resistance at highly elevated temperatures -Improved heat resistance over conventional solid solution Ni-Cr alloys -Increase in usage range from 200 to 300°F over conventional solid solution alloys -Fe-Cr-Al alloy offered unique heat resistance, even to sulfidation --- 0.5 0.5 4.5 Bal. 20 --- MA956 W-4; Mo-2 1.1 2.5 4.5 1 15 Bal. MA6000 --- 0.6 0.5 0.3 1 30 Bal. MA758 --- 0.6 0.5 0.3 1 20 Bal. MA754 Others Y 2 O 3 Ti Al Fe Cr Ni Alloy SMC ODS Alloys SMC ODS Alloys Chemical Composition Chemical Composition INCOLOY MA956 Tubing INCOLOY MA956 Tubing Production of INCOLOY MA956 Tubing

389

Dirk Windelberg Nano-point-geometry  

E-Print Network (OSTI)

Dirk Windelberg Nano-point-geometry for use in material science 12. M¨arz 2010, M¨unchen D¨at Hannover #12;D.Windelberg: Nano-point-geometry for use in material science tr1003 e.tex (8. Juli 2010) 1 Nano-point-geometry for use in material science 1 microstructure 2 determination of height of voxels 3

Windelberg, Dirk

390

Selective spatio-temporal interest points  

Science Conference Proceedings (OSTI)

Recent progress in the field of human action recognition points towards the use of Spatio-Temporal Interest Points (STIPs) for local descriptor-based recognition strategies. In this paper, we present a novel approach for robust and selective STIP detection, ... Keywords: Action recognition, Bag-of-words, Complex scenes, Local descriptors, Multiple actors, Spatio-temporal interest points, Support vector machines

Bhaskar Chakraborty; Michael B. Holte; Thomas B. Moeslund; Jordi Gonzlez

2012-03-01T23:59:59.000Z

391

MaSST 2012  

Science Conference Proceedings (OSTI)

... How does the nondeterminism of scheduling ... memory use, parallelism, virtual machines, and cloud ... Jeehyun Hwang, North Carolina State University. ...

2013-05-22T23:59:59.000Z

392

AMF Deployment, Point Reyes National Seashore, California  

NLE Websites -- All DOE Office Websites (Extended Search)

California California Point Reyes Deployment AMF Home Point Reyes Home Data Plots and Baseline Instruments Experiment Planning MASRAD Proposal Abstract and Related Campaigns Outreach Posters Climate Research at Point Reyes National Seashore (horizontal) Climate Research at Point Reyes National Seashore (vertical) News Campaign Images AMF Deployment, Point Reyes National Seashore, California Point Reyes National Seashore, on the California coast north of San Francisco. Shelters: 38° 5' 30.51" N, 122° 57' 19.90" W Instrument Field: 38° 5' 27.6" N, 122° 57' 25.80" W Altitude: 8 meters Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM

393

Analysis of Crossover Points for MVLT Superclass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Crossover Points for MVLT Superclass of Crossover Points for MVLT Superclass 58761v1 Page 1 White Paper - Analysis of Cross-Over Points for Grain-Oriented Electrical Steel and Amorphous Ribbon for the MVLT Superclass Cross-over points for the Medium Voltage Liquid Filled distribution transformer super-class have been analyzed based on the Engineering Analysis provided by the Department of Energy. For the purpose of this white paper, a cross-over point is defined as where the low-cost curve fitted to the point cloud for all of the transformers with M-3 grain-oriented electrical steel core designs crosses the low-cost curve fitted to the point cloud for all of the transformers with amorphous (SA1) core designs. This analysis is based on the data from the DOE Engineering Analysis. It excludes uncorroborated data

394

EA-1942-FERC-NOI-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion Cove Point LNG, LP Docket No. PF12-16-000 Dominion Cove Point LNG, LP Docket No. PF12-16-000 NOTICE OF INTENT TO PREPARE AN ENVIRONMENTAL ASSESSMENT FOR THE PLANNED COVE POINT LIQUEFACTION PROJECT, REQUEST FOR COMMENTS ON ENVIRONMENTAL ISSUES, NOTICE OF ON-SITE ENVIRONMENTAL REVIEW, AND NOTICE OF PUBLIC SCOPING MEETINGS (September 24, 2012) The staff of the Federal Energy Regulatory Commission (FERC or Commission) will prepare an environmental assessment (EA) that will discuss the environmental impacts of the Cove Point Liquefaction Project (Project) involving construction and operation of facilities by Dominion Cove Point LNG, LP (Dominion) in Maryland and Virginia. This EA will be used by the Commission in its decision-making process to determine whether the construction and operation of the proposed facilities is in the

395

Final environmental impact statement/report. Volume 4. Comment letters and public hearing transcripts. Northeast corridor improvement project electrication: New Haven, CT to Boston, MA  

Science Conference Proceedings (OSTI)

This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume IV) reprints the comments received on the DEIS/R.

NONE

1994-10-01T23:59:59.000Z

396

End Points Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Management End Points Management The policy of the EM is that a formal project management approach be used for the planning, managing, and conducting of its projects. Specifying and achieving end points is a systematic, engineering way of proceeding from an existing condition to a stated desired final set of conditions in which the facility is safe and can be economically monitored and maintained. An end point method is a way to translate broad mission statements to explicit goals that are readily understood by engineers and craft personnel who do the work. (It should be recognized that while end points as addressed here are for a final set of conditions for deactivation, they may represent an interim point for the overall EM cleanup goal.) End Points Management

397

Inexact and accelerated proximal point algorithms  

E-Print Network (OSTI)

required, with the sum of total errors that can be possibly infinite. This is a remarkable fact that does not occur in the classical (non accelerated) proximal point...

398

Josephson phase qubit with an optimal point  

SciTech Connect

Current fluctuations in a Josephson phase qubit are considered to be a source of decoherence, especially for pure dephasing. One possible way of evading such decoherence is to employ an optimal operation point as used in flux and charge qubits, where the qubit is insensitive to the bias fluctuations. However, there is no optimal point in a phase qubit since qubit energy splitting becomes monotonically smaller with increasing the bias current. Here we propose a phase qubit with an optimal point by introducing qubit energy splitting that depends nonmonotonically on the current bias realized in capacitively coupled Josephson junctions. The effect of junction asymmetry on the optimal point is also investigated.

Kosugi, Norihito; Fujii, Toshiyuki; Hatakenaka, Noriyuki [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Matsuo, Shigemasa [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

2010-01-01T23:59:59.000Z

399

Approximating the Radii of Point Sets?  

E-Print Network (OSTI)

p and flat F. Computing the radii of point sets is a fundamental problem ...... tributions, and order statistics, Handbook of Combinatorial Optimization. (Vol.

400

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New York Nuclear Profile - Indian Point  

U.S. Energy Information Administration (EIA) Indexed Site

Indian Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

402

Wolf Point Substation, Roosevelt County, Montana  

Science Conference Proceedings (OSTI)

The Western Area Power Administration (Western), an agency of the United States Department of Energy, is proposing to construct the 115-kV Wolf Point Substation near Wolf Point in Roosevelt County, Montana (Figure 1). As part of the construction project, Western's existing Wolf Point Substation would be taken out of service. The existing 115-kV Wolf Point Substation is located approximately 3 miles west of Wolf Point, Montana (Figure 2). The substation was constructed in 1949. The existing Wolf Point Substation serves as a Switching Station'' for the 115-kV transmission in the region. The need for substation improvements is based on operational and reliability issues. For this environmental assessment (EA), the environmental review of the proposed project took into account the removal of the old Wolf Point Substation, rerouting of the five Western lines and four lines from the Cooperatives and Montana-Dakota Utilities Company, and the new road into the proposed substation. Reference to the new proposed Wolf Point Substation in the EA includes these facilities as well as the old substation site. The environmental review looked at the impacts to all resource areas in the Wolf Point area. 7 refs., 6 figs.

Not Available

1991-05-01T23:59:59.000Z

403

FINAL_2013_NBC_Talking-Points  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR National Building Competition Talking Points and Messages Competition Overview * For the fourth consecutive year, EPA's ENERGY STAR program is hosting the 2013...

404

PowerPoint Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation PowerPoint Presentation More Documents & Publications US Department of Energy Office of the Chief Information Officer PARS II User Guide LES' URENCO-USA Facility...

405

End Point Implementation Examples | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Examples End Point Implementation Examples More Documents & Publications Post-Deactivation Surveillance and Maintenance Planning Project Management Plan Examples 1 - 80...

406

Microsoft PowerPoint - Nucleation-Willit  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Nucleation and Growth of Electrochemical Nucleation and Growth of Uranium and Plutonium on Tungsten Electrode from Molten Salts M.M. Tylka, J.L. Willit, M.A. Williamson Chemical Sciences and Engineering Division Argonne National Laboratory Outline Chronoamperometry studies provide insight into the nature of the nucleation. - The time resolution of the data has to be sufficiently high Current transients are used to analyze the data Theoretical models : progressive and instantaneous nucleation modes Nucleation studied at several salt concentration: - Three U 3+ concentrations (0.45wt%, 0.95wt%, and 1.73wt%) - 1.3wt% Pu 3+ - 0.5wt%U 3+ and 1.3wt%Pu 3+ Estimation of the number of nuclei during electrochemical deposition Calculation of additional parameters: - Nucleation rate for instantaneous mode

407

Microsoft PowerPoint - 2007-APS_5  

NLE Websites -- All DOE Office Websites (Extended Search)

L. Lin, M. Porkolab, E.M. Edlund, L. Lin, M. Porkolab, E.M. Edlund, D.R. Ernst, C. Fiore, M. Greenwald, N. Tsujii Plasma Science and Fusion Center, MIT, Cambridge, MA, 02139 *Work supported by U. S. DOE under DE-FG02-94-ER54235 and DE-FC02-99-ER54512. 49 th Annual Meeting of the Division of Plasma Physics November 12-16, 2007 Orlando, Florida Drift Type Turbulence Studies with the Phase Contrast Imaging Diagnostic in Alcator C-Mod * Alcator C-Mod Outline * Phase Contrast Imaging (PCI) Diagnostic - Overview of the PCI system in C-Mod - Localization Upgrade * Turbulence and Transport Studies in ohmic plasmas - Experimental Measurements - Local Transport Analysis with TRANSP - Linear Gyrokinetic Analysis with GS2 * Experimental Identification of TEM in ITB plasmas Alcator C-Mod Principle of Phase Contrast Imaging

408

Microsoft PowerPoint - Voltammetry-Willit  

NLE Websites -- All DOE Office Websites (Extended Search)

Electroanalytical Measurements of Uranium and Electroanalytical Measurements of Uranium and Plutonium in Molten LiCl-KCl Eutectic M.M. Tylka, N. A. Smith, J.L. Willit, M.A. Williamson Chemical Sciences and Engineering Division Argonne National Laboratory Outline Overview of methods used to ensure high precision measurements Improvements in experimental setup Importance of proper cleaning procedure Method used to control working electrode area Selecting a preferred electroanalytical method Results from U 3+ and Pu 3+ concentration measurements - Compare electroanalytical with ICP-MS results Voltammetry at higher concentrations Examination of new techniques to improve data analysis 2 High Precision Measurements Methods and approaches used to improve precision of the measurements: - Developed a pre-treatment protocol to ensure representative solution

409

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

for Regional Characterization Using a Geographic Information System for Regional Characterization Using a Geographic Information System Weifeng Li 1 , Henry Zhang 1 , Howard J. Herzog 1 , Richard Rhudy 2 1 Laboratory for Energy and the Environment, Massachusetts Institute of Technology, Cambridge, MA 02139; 2 EPRI, 3412 Hillview Ave., Palo Alto, CA 94303 Large Stationary CO 2 Sources Table 2 CO 2 Flow Rate by Plant Types, eastern Texas Plant Type Number of Plants 25-year CO 2 Flow (Mt) Power Plant 98 7,904 Ammonia 1 6 Cement 8 166 Gas Processing 8 82 Refinery 15 771 All sources 130 8,929 Potential Sink List and Capacity: California Oil fields with EOR potential 3.2 Gt Non-EOR sinks Non-EOR oil fields 0.2 Gt Gas fields 1.4 Gt Saline aquifers not available Potential Sink List and Capacity: eastern Texas

410

Orange Cove, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

624394°, -119.3137301° 624394°, -119.3137301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.624394,"lon":-119.3137301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Beaver Cove, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

60582°, -69.4606148° 60582°, -69.4606148° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.560582,"lon":-69.4606148,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...  

Open Energy Info (EERE)

geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location....

413

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...  

Open Energy Info (EERE)

geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location....

414

Geothermal Resources Exploration And Assessment Around The Cove...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

415

Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al.,...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal...

416

Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal...

417

Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...  

Open Energy Info (EERE)

useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal...

418

2010 DOE National Science Bowl Photos - Falcon Cove Middle...  

Office of Science (SC) Website

Facebook Facebook External link Share with Twitter Twitter External link Share with Google Bookkmarks Google Bookmarks External link Email a Friend Email link to: send 2010 DOE...

419

Microsoft PowerPoint - GSAEXPO.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Competitive Sourcing/A-76 (MA-20) Office of Competitive Sourcing/A-76 (MA-20) Denny O'Brien (202-586-1690) May 16, 2006 DOE A-76 Status, Lessons Learned & What's Next? GSA EXPO M a n a g e m e n t o f H u m a n C a p i t a l E x p a n d e d E l e c t r o n i c G o v e r n m e n t I m p r o v e d F i n a n c i a l p e r f o r m a n c e B u d g e t a n d P e r f o r m a n c e I n t e g r a t i o n C o m p e t i t i v e S o u r c i n g C o m p e t i t i v e S o u r c i n g P M A 2 Keys for a Successful A-76 Study Start with a well organized approach Effective communications strategy and planning is critical Top-down commitment is essential to set the tone and stay the course Studies are resource intensive Set realistic timelines with achievable milestones Focus on customer requirements 3 Selection of Candidates For Feasibility Reviews FAIR Act Inventory Review, volunteers, holdovers A-76 Competition Process Deputy Secretary

420

New statistical methods for detecting point alignments  

Science Conference Proceedings (OSTI)

Detection of straight-linear point alignments has a number of geological applications. Assessing the statistical significance of such alignments is relatively straightforward in the case of overall lineament orientation, but becomes complicated for non-stationary ... Keywords: Alignment detection, Directional statistics, Point patterns, Spatial analysis

. Hammer

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network (OSTI)

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

422

Definition: Point Absorber | Open Energy Information  

Open Energy Info (EERE)

Point Absorber Point Absorber Jump to: navigation, search Dictionary.png Point Absorber Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front greater than the physical dimension of the device. There are floating and submerged models.[1] Related Terms Wave power; PowerBouy References ↑ http://en.wikipedia.org/wiki/Wave_power Poi LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ntabsorber.jpg Example of a Point Absorber A submerged pressure differential wave energy capturing device, which can be considered a fully submerged point absorber. A pressure differential is induced within the device as the wave passes, driving a fluid pump to create mechanical energy. Retrieved from

423

Environment assessment: allocation of petroleum feedstock, Algonquin SNG Inc. , Freetown SNG Plant, Bristol County, MA. [Effects of 100, 78, 49% allocations  

DOE Green Energy (OSTI)

The proposed administrative action to deny, grant or modify the Algonquin SNG, Inc. (Algonquin) petition for an adjusted allocation of naphtha feedstock may significantly affect the ehuman environment. The volume of feedstock requested is 4,425,571 barrels per year of naphtha to be used in Algonquin's Freetown, MA synthetic natural gas (SNG) plant. Environmental impacts of 100, 78, and 49% allocations were evaluated.

Not Available

1980-01-01T23:59:59.000Z

424

Appendix to the final environmental impact report supplement. Northeast Corridor Improvement Project electrification, New Haven, CT to Boston, MA. Final report  

SciTech Connect

This document is an appendix to the final Environmental Impact Report Supplement, published on February 15, 1995, addressing the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. The purpose of this document is to discuss the selection of the Boston area electrical substation site and the relocation of a paralleling station in East Foxboro.

NONE

1995-05-01T23:59:59.000Z

425

Record of decision: Final environmental impact statement/report and 4(f) statement. Northeast Corridor Improvement Project electrification, New Haven, CT to Boston, MA. Final report  

Science Conference Proceedings (OSTI)

This record of decision (ROD) completes the environmental review by the Federal Administration (FRA) of the proposal by the National Railroad Passenger Corporation (Amtrak) to extend electric train operation from New Haven, CT, to Boston, MA. In this ROD, FRA approves Amtrak`s proposal subject to the inclusion into the project of a number of measures to eliminate or minimize potential adverse environmental impacts.

NONE

1995-05-01T23:59:59.000Z

426

Final environmental impact statement/report and 4(f) statement. Volume 1. Northeast corridor improvement project electrification: New Haven, CT to Boston, MA. Final report  

SciTech Connect

This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume I) is the main body of the FEIS/R and includes a 4(f) Statement on the proposed location of an electrification facility in the Great Swamp Wildlife Management Area.

NONE

1994-10-31T23:59:59.000Z

427

Final environmental impact statement/report. Volume 2. Technical studies. Northeast corridor improvement project electrification: New Haven, CT to Boston, MA  

SciTech Connect

This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume II) presents additional technical studies to supplement Volume III of the DEIS/R issued in October 1993 (PB94-111838).

NONE

1994-10-01T23:59:59.000Z

428

Strategies for sharing a floating point unit between SPEs  

E-Print Network (OSTI)

Floating Point Unit . . . . . . . . . . . . . . . . . . .compliant floating point unit. In DATE 06: Proceedings offor sharing a Floating Point Unit between SPEs A Thesis

Lugo Martinez, Jose E.

2010-01-01T23:59:59.000Z

429

Suggested Talking Points for Hydrogen Road Tour | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Suggested Talking Points for Hydrogen Road Tour Suggested Talking Points for Hydrogen Road Tour Suggested Talking Points for Hydrogen Road Tour More Documents & Publications...

430

Microsoft PowerPoint - Tsinghua Slideshow final for distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PowerPoint - Tsinghua Slideshow final for distribution (2) Microsoft PowerPoint - Tsinghua Slideshow final for distribution (2) Microsoft PowerPoint - Tsinghua Slideshow final for...

431

End Points Specification Methods | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

End Points Specification Methods End Points Specification Methods End Points Specification Methods Two methods to develop end point specifications are presented. These have evolved from use in the field for deactivation projects. The hierarchical method is systematic, comprehensive, and completely defensible as to the basis for each specification. This method may appear complex to the uninitiated, but it is a straightforward application of a systematic engineering approach. It is labor intensive only during the final stage. This method is appropriate to the type of project involving a complex facility that contains process systems and a variety of contaminated areas or other hazards. The checklist method is an approach that is more appropriate to facilities which require less detailed planning, such as for industrial

432

Tribal Points of Contacts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Points of Contacts Points of Contacts Tribal Points of Contacts US DOE-Office of Environmental Management 1000 Independence Avenue, SW Washington, DC 20585 ph: (202) 586-5944 fax: (202) 586-5000 Richland Operations Office- Hanford Indian Nations Program P.O. Box 550- MSIN A7-75 Richland, WA 99352 ph: (509) 376-6332 fax: (509) 376-1563 West Valley Demonstration Project Tribal Government Liaison P.O. Box 191- 10282 Rock Springs Road West Valley, NY 14171 ph: (716) 942-4629 fax: (716) 942-2068 Albuquerque Operations Office Tribal Government Liaison P.O. Box 5400 Albuquerque, NM 87185 ph: (505) 845-5977 fax: (505) 845-4154 Tribal Points of Contact Richland Operations Office: Hanford Albuquerque Operations Office: Yakama Indian Nation Environmental Restoration/ Waste Management Program

433

Star Point Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Point Wind Farm Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Modesto Irrigation District Location Near Moro OR Coordinates 45.474734°, -120.704412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.474734,"lon":-120.704412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Point380 LLC | Open Energy Information  

Open Energy Info (EERE)

Point380 LLC Point380 LLC Jump to: navigation, search Name Point380, LLC Place Boulder, Colorado Zip 80302 Sector Carbon Product Point380 provides carbon consulting and resource management solutions to a broad range of clients seeking energy related risk analysis and policy analysis. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Cedar Point Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Point Wind Farm Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enbridge Inc. Developer RES Americas Energy Purchaser Xcel Energy Location Elbert CO Coordinates 39.219417°, -104.537167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.219417,"lon":-104.537167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Saturation Point Analysis of Moist Convective Overturning  

Science Conference Proceedings (OSTI)

A unified approach to the thermodynamics of cloudy air, cloud-clear air mixing processes, atmospheric thermodynamic equilibrium structure and instability is formulated, using a new concept: the Saturation Point. This permits the representation of ...

Alan K. Betts

1982-07-01T23:59:59.000Z

437

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR ...  

E-Print Network (OSTI)

Nov 4, 2005 ... problem is not convex, the algorithm will be searching for a local optimum. ..... the terms in the barrier objective of our infeasible interior-point method. ..... In order to enter dual feasibility restoration mode, we monitored the...

438

Computing proximal points of nonconvex functions  

E-Print Network (OSTI)

The search direction used in an inexact proximal point algorithm is an .... term is a convex function on an open neighbourhood V of x; see [35, Thm. 10.33, p. ...... (3c

439

Indian Point-2 Flash Photography Event  

Science Conference Proceedings (OSTI)

This report presents the results of an independent assessment by the EPRI Electromagnetic & Radio Frequency Interference Working Group on a flash photography event at the Indian Point-2 (IP-2) nuclear power plant.

2009-03-17T23:59:59.000Z

440

Cloud Thermodynamic Models in Saturation Point Coordinates  

Science Conference Proceedings (OSTI)

One-dimensional thermodynamic models for cloud-environment mixing, evaporation into downdrafts and precipitation from updrafts are presented in a parallel treatment using convective pressure scales and saturation point coordinates. This common ...

Alan K. Betts

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

N=8 Supergravity 4-point Amplitudes  

E-Print Network (OSTI)

We present the explicit expressions in N=8 supergravity for the bosonic 4-particle tree and 1-loop amplitudes including vectors and scalars. We also present the candidate 4-point UV divergences in a form of helicity amplitudes, corresponding to 3-loop manifestly N=8 supersymmetric and Lorentz covariant counterterm. This may shed some light on the 3-loop finiteness of N=8 SG and on a conjectured higher loop finiteness. We perform a supersymmetric deformation to complex momentum of the 4-point generating function including higher-loop counterterms and the 1-loop UV finite amplitudes. Using the explicit form of the scalar part of the 3-loop counterterm and of the 1-loop UV finite scalar 4-point amplitudes we find that they both have an unbroken E7 symmetry. We derive from E7 symmetry the low-energy theorem for the 1-loop n-point amplitudes.

Renata Kallosh; Ching Hua Lee; Tomas Rube

2008-11-20T23:59:59.000Z

442

N=8 Supergravity 4-point Amplitudes  

E-Print Network (OSTI)

We present the explicit expressions in N=8 supergravity for the bosonic 4-particle tree and 1-loop amplitudes including vectors and scalars. We also present the candidate 4-point UV divergences in a form of helicity amplitudes, corresponding to 3-loop manifestly N=8 supersymmetric and Lorentz covariant counterterm. This may shed some light on the 3-loop finiteness of N=8 SG and on a conjectured higher loop finiteness. We perform a supersymmetric deformation to complex momentum of the 4-point generating function including higher-loop counterterms and the 1-loop UV finite amplitudes. Using the explicit form of the scalar part of the 3-loop counterterm and of the 1-loop UV finite scalar 4-point amplitudes we find that they both have an unbroken E7 symmetry. We derive from E7 symmetry the low-energy theorem for the 1-loop n-point amplitudes.

Kallosh, Renata; Rube, Tomas

2009-01-01T23:59:59.000Z

443

Point-Contact Silicon Solar Cells  

Science Conference Proceedings (OSTI)

A new type of silicon photovoltaic cell called the point-contact cell is under development. This report describes the cell and an analytic model developed for use in design optimization. Necessary future cell development work is discussed.

1983-05-01T23:59:59.000Z

444

FortyPoint Seven | Open Energy Information  

Open Energy Info (EERE)

search Name FortyPoint Seven Place England, United Kingdom Zip BH14 8LQ Sector Biofuels Product A Biofuels company founded by John Nicholas, one of Biofuels Corporation...

445

Change-Point Detection in Meteorological Measurement  

Science Conference Proceedings (OSTI)

Statistical methods of change-point detection can be useful for discovering inhomogeneities in precipitation, air pressure, or temperature time series caused by a change in the measurement process such as a relocation of a gauge. The method is ...

Daniela Jarukov

1996-07-01T23:59:59.000Z

446

Microsoft PowerPoint - CRIEPI_R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Pyro-processing Fuel Cycle Technology at CRIEPI Fontana, WI, USA August 28, 2012 Y. Sakamura, M. Iizuka, K. Uozumi, T. Murakami and T. Koyama Central Research Institute of Electric Power Industry (CRIEPI) Concept of Metal Fuel Fast Reactor Cycle Uranium Ore Fuel Fabrication U Enrichment U, Pu PUREX U U U, Pu, MA U, Pu, MA, FP Fresh MOX Metal Fuel Fast Reactor Spent Oxide Fuels LWR U, Pu Spent Metal Fuels Pyroprocessing & Fuel Fabrication CRIEPI has been studying pyroprocessing since 1986 Metal fuel FR cycle has high potential in Proliferation resistance Transmutation of minor actinides High breeding ratio Substantial reduction of fuel cycle cost CRIEPI's R&D Program on Pyroprocessing Process Development -Basic data assessment (electrochemistry, thermodynamics, etc.) -Process test with unirradiated U, Pu, MA or irradiated materials -Process flowsheet

447

Geographic Coordinate System North American Datum 1983  

E-Print Network (OSTI)

SMCA (No-Take)* Batiquitos Lagoon SMCA (No-Take)* San Elijo Lagoon SMCA (No-Take)* Tijuana River Mouth Head Point SMCA Dana Point SMCA Laguna Beach SMR Crystal Cove SMCA Swami's SMCA San Diego

Hampton, Randy

448

Superconductivity, superfluidity and zero-point oscillations  

E-Print Network (OSTI)

Currently it is thought that in order to explain the phenomenon of superconductivity is necessary to understand the mechanism of formation of electron pairs. However, the paired electrons cannot form a superconducting condensate. They perform disorderly zero-point oscillations and there are no attractive forces in their ensemble. To create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. For this reason, the ordering of zero-point oscillations in the electron gas is the cause of superconductivity and the parameters characterizing this order determine the properties of superconductors. The model of condensation of zero-point oscillations creates the possibility to obtain estimates for the critical parameters of elementary superconductors, which are also in the satisfactory agreement with measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained due to the ordering of zero-point fluctuations. Thus it is established that the both related phenomena are based on the same physical mechanism.

B. V. Vasiliev

2010-09-13T23:59:59.000Z

449

Tipping Point Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Tipping Point Renewable Energy Jump to: navigation, search Logo: Tipping Point Renewable Energy Name Tipping Point Renewable Energy Place Columbus, Ohio Zip 43221 Sector Solar Website http://tipenergy.com/ Coordinates 40.0097883°, -83.0683519° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0097883,"lon":-83.0683519,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Midnight Point Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Midnight Point Geothermal Project Midnight Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Midnight Point Geothermal Project Project Location Information Coordinates 43.548333333333°, -119.97611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.548333333333,"lon":-119.97611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Building Green in Greensburg: Prairie Pointe Townhomes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prairie Pointe Townhomes Prairie Pointe Townhomes After a tornado destroyed most of Greensburg, Kansas, in 2007, the residents needed affordable housing. Prairie Pointe Townhomes is a low-income rental development that was completed in July 2008. Eight of the 16 units in this townhome complex were awarded the first residential U.S. Green Building Council Leadership in Energy and Environmental Design (LEED ® ) Platinum rating in Kansas and are estimated to use about 50% less energy than similar buildings built to existing building codes. ENERGY EFFICIENCY FEATURES * Well-insulated 2 x 6 walls use blown-in cellulose insulation with an R-Value of 22.5 to prevent heat loss and save energy * Well-insulated roof with an R-value of R-38 prevents heat loss through the roof and helps keep building cool in summer

452

Nanotexturing of surfaces to reduce melting point.  

DOE Green Energy (OSTI)

This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

2011-11-01T23:59:59.000Z

453

Relative localization of point particle interactions  

E-Print Network (OSTI)

We review the main concepts of the recently introduced principle of relative locality and investigate some aspects of classical interactions between point particles from this new perspective. We start with a physical motivation and basic mathematical description of relative locality and review the treatment of a system of classical point particles in this framework. We then examine one of the unsolved problems of this picture, the apparent ambiguities in the definition of momentum constraints caused by a non-commutative and/or non-associative momentum addition rule. The gamma ray burst experiment is used as an illustration. Finally, we use the formalism of relative locality to reinterpret the well-known multiple point particle system coupled to 2+1 Einstein gravity, analyzing the geometry of its phase space and once again referring to the gamma ray burst problem as an example.

Jos Ricardo Oliveira

2011-10-25T23:59:59.000Z

454

Phase-shifting point diffraction interferometer  

DOE Patents (OSTI)

Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

Medecki, Hector (Berkeley, CA)

1998-01-01T23:59:59.000Z

455

Phase-shifting point diffraction interferometer  

DOE Patents (OSTI)

Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

Medecki, H.

1998-11-10T23:59:59.000Z

456

GreatPoint Energy | Open Energy Information  

Open Energy Info (EERE)

GreatPoint Energy GreatPoint Energy Jump to: navigation, search Name GreatPoint Energy Address 222 Third Street Place Cambridge, Massachusetts Zip 02142 Sector Biomass Product Converts coal, petroleum coke and biomass into natural gas Website http://www.greatpointenergy.co Coordinates 42.3672873°, -71.0814466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3672873,"lon":-71.0814466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Microsoft Word - CX-Harbour_Pointe_130621  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2013 5, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Toni L. Timberman Project Manager - TSE-TPP-2 Proposed Action: Harbour Pointe Small Generator Integration Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic Equipment Location: Mukilteo, Snohomish County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to integrate UniEnergy Technologies' (UET) 1.5-megawatt battery generation project into BPA's balancing authority (BA) in response to a UET small generator interconnection request. The proposed point of interconnection is at Snohomish Public Utility District's (SnoPUD) Harbour Pointe Substation. In order to integrate

458

LIDAR, Point Clouds, and their Archaeological Applications  

SciTech Connect

It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

White, Devin A [ORNL

2013-01-01T23:59:59.000Z

459

Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAO doe mar 10 brief Compatibility Mode Microsoft PowerPoint - Overview Briefing - Tab 1 DOE's Procurement System July 2008 Energy.gov Careers & Internships For Staff &...

460

DIY TIMBER DECKS CHECKLIST POINTS TO CONSIDER  

E-Print Network (OSTI)

DIY TIMBER DECKS CHECKLIST POINTS TO CONSIDER · Local council regulations. · Special regulations and materials you will be using. #12;DIY TIMBER DECKS CHECKLIST LOCATION · Direction of sun. · Best views. #12;DIY TIMBER DECKS CHECKLIST CONSTRUCTION 1. THEBASICSARE: · Stumps/posts or brackets set

Peters, Richard

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Point transformations in invariant difference schemes  

E-Print Network (OSTI)

In this paper, we show that when two systems of differential equations admitting a symmetry group are related by a point transformation it is always possible to generate invariant schemes, one for each system, that are also related by the same transformation. This result is used to easily obtain new invariant schemes of some differential equations.

Francis Valiquette

2005-07-17T23:59:59.000Z

462

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA)

snpt3wi4046 506 3,954 89.2 PWR 512 4,336 96.7 1,018 8,291 93.0 Point Beach Nuclear Plant Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals ...

463

On image reconstruction from multiscale top points  

Science Conference Proceedings (OSTI)

Image reconstruction from a fiducial collection of scale space interest points and attributes (e.g. in terms of image derivatives) can be used to make the amount of information contained in them explicit. Previous work by various authors includes both ...

Frans Kanters; Martin Lillholm; Remco Duits; Bart Janssen; Bram Platel; Luc Florack; Bart ter Haar Romeny

2005-04-01T23:59:59.000Z

464

Ground Vibration Measurements at LHC Point 4  

Science Conference Proceedings (OSTI)

Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

2012-09-17T23:59:59.000Z

465

TA Orientation 2004 Activity #13 (2 points)  

E-Print Network (OSTI)

TA Orientation 2004 Activity #13 (2 points) Page 113 What Questions Would You Ask? Last year and equations on the board. Group #1 Group 2 #12;TA Orientation 2004 Activity 13 (continued) Page 114 Group 3 will be randomly collected from each group for grading. #12;TA Orientation 2004 Manager

Minnesota, University of

466

Microsoft PowerPoint - States Project Map.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Performing Organizations Legend 2 Number of MVA projects Congressional District PTRC Canada 2 2 08 2 15 MA 2 01 1 01 01 15 01 1 PTRC - Canada 4 14 08 1 1 15 2 53 14 53 14 01 14...

467

UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOMINION COVE POINT LNG, LP ) FE DOCKET NO. 11-128-LNG DOMINION COVE POINT LNG, LP ) FE DOCKET NO. 11-128-LNG _______________________________________ ) ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE COVE POINT LNG TERMINAL TO NON-FREE TRADE AGREEMENT NATIONS DOE/FE ORDER NO. 3331 SEPTEMBER 11, 2013 i TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................. 1 II. SUMMARY OF FINDINGS AND CONCLUSIONS ........................................................ 6 III. PUBLIC INTEREST STANDARD ................................................................................... 7 IV. DESCRIPTION OF REQUEST ......................................................................................... 9

468

Point to Point and Flow-based Financial Transmission Rights: Revenue Adequacy and Performance Incen-  

E-Print Network (OSTI)

mechanism for defining transmission rights in North Ameri- can restructured electricity markets is throughCHAPTER 3: Point to Point and Flow-based Financial Transmission Rights: Revenue Adequacy and Performance Incen- tives Shmuel S. Oren1 Abstract We provide an introduction to financial transmission rights

Oren, Shmuel S.

469

First analysis of radiative properties of moderate-atomic-number planar wire arrays on Zebra at UNR at higher current of 1.7 MA.  

Science Conference Proceedings (OSTI)

The analysis of implosions of Cu and Ag planar wire array (PWA) loads recently performed at the enhanced 1.7 MA Zebra generator at UNR is presented. Experiments were performed with a Load Current Multiplier with a 1cm anode-cathode gap (twice shorter than in a standard 1 MA mode). A full diagnostic set included more than ten different beam-lines with the major focus on time-gated and time-integrated x-ray imaging and spectra, total radiation yields, and fast, filtered x-ray detector data. In particular, the experimental results for a double PWA load consisting of twelve 10 {micro}m Cu wires in each row (total mass M {approx} 175 {micro}g) and a much heavier single PWA load consisting of ten 30 {micro}m Ag wires (M {approx} 750 {micro}g) were analyzed using a set of theoretical codes. The effects of both a decreased a-c gap and an increased current on radiative properties of these loads are discussed.

Keim, S. F. (University of Nevada, Reno, NV); Chuvatin, Alexander S. (Ecole Polytechnique, Palaiseau, France); Osborne, Glenn C. (University of Nevada, Reno, NV); Esaulov, Andrey A. (University of Nevada, Reno, NV); Presura, R. (University of Nevada, Reno, NV); Shrestha, I. (University of Nevada, Reno, NV); Kantsyrev, Victor Leonidovich (University of Nevada, Reno, NV); Shlyaptseva, V. (University of Nevada, Reno, NV); Coverdale, Christine Anne; Williamson, K. M. (University of Nevada, Reno, NV); Ouart, Nicholas D. (University of Nevada, Reno, NV); Astanovitsky, A. L. (University of Nevada, Reno, NV); Weller, M. E. (University of Nevada, Reno, NV); Safronova, Alla S. (University of Nevada, Reno, NV); LeGalloudec, B. (University of Nevada, Reno, NV)

2010-11-01T23:59:59.000Z

470

TEPP Points of Contact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Points of Contact TEPP Points of Contact TEPP is a national program managed at a headquarters level and implemented through the TEPP Central Operations Center managed by Technical Resources Group, Inc. For additional information on the TEPP, or to find out how you can obtain TEPP materials or schedule a class, contact either the HQ Program Manager or TEPP Central Operations. EM Contact EM Headquarters Program Manager Ella McNeil, Office of Transportation Ella.McNeil@em.doe.gov U.S. Department of Energy Washington, DC 20585 TEPP Central Operations admin@merrtt.com 208-528-8895 Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing

471

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

to: to: DOE 5 th Annual CCS Conference, Alexandria, VA May 11, 2006 David Ball MRCSP Project Manager (614) 424-4901 balld@battelle.org Managing Climate Change and Securing a Future for the Midwest's Industrial Base DOE Cooperative Agreement No. DE-FC26-05NT42589 The MRCSP Region: The "Nation's Engine Room" has a vested stake in sequestration * One in six Americans * 1/6 of U.S. Economy * 1/5 of U.S. Electricity Generated * ¾ From Coal * One in six Americans * 1/6 of U.S. Economy * 1/5 of U.S. Electricity Generated * ¾ From Coal * ~300 Large Point Sources (>100,000 tonnes/year) * ~800 Million tonnes CO 2 /year * ~300 Large Point Sources (>100,000 tonnes/year) * ~800 Million tonnes CO 2 /year The geological potential of the region is vast and well positioned relative to sources

472

Evaluation of multiple emission point facilities  

SciTech Connect

In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance with specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus.

Miltenberger, R.P.; Hull, A.P.; Strachan, S.; Tichler, J.

1988-01-01T23:59:59.000Z

473

High speed point derivative microseismic detector  

DOE Patents (OSTI)

A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

1998-06-30T23:59:59.000Z

474

High speed point derivative microseismic detector  

DOE Patents (OSTI)

A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

Uhl, James Eugene (Albuquerque, NM); Warpinski, Norman Raymond (Albuquerque, NM); Whetten, Ernest Blayne (Albuquerque, NM)

1998-01-01T23:59:59.000Z

475

Three-dimensional null point reconnection regimes  

Science Conference Proceedings (OSTI)

Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.

Priest, E. R. [Mathematics Institute, St. Andrews University, St. Andrews KY16 9SS (United Kingdom); Pontin, D. I. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

2009-12-15T23:59:59.000Z

476

Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion Derivative-Free Optimization via Proximal  

E-Print Network (OSTI)

Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion Derivative-Free Optimization via Proximal Point Methods Yves Lucet & Warren Hare July 24, 2013 1 / 26 #12;Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion Outline 1

477

Redeveloping or preserving public housing : the future of Columbia Point  

E-Print Network (OSTI)

Columbia Point, Boston's largest and most stigmatized public housing project, has been a focal point for public and private. investment strategies to create a new mixed-income residential community. Columbia Point provided ...

Lee, Sharon Hsueh-Jen

1981-01-01T23:59:59.000Z

478

Microsoft PowerPoint - 05 Okonski final Project Management Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slides O'Konski More Documents & Publications Microsoft PowerPoint - 09 Lehman final 1003 SC PM Workshop Microsoft PowerPoint - ShanasBioSlides121307 Microsoft PowerPoint -...

479

DOE - Office of Legacy Management -- Exxon Ray Point Site - 032  

Office of Legacy Management (LM)

Exxon Ray Point Site - 032 FUSRAP Considered Sites Site: Exxon Ray Point Site (032) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

480

Production and Handling Slide 21: Melting Points of Uranium and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Uranium and Uranium Compounds Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Melting Points of Uranium and Uranium...

Note: This page contains sample records for the topic "ma cove point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Point-line spaces related to Jordan pairs.  

E-Print Network (OSTI)

??A point-line space is an abstract geometric object that consists of a set of points and a set of lines such that on each line (more)

Huggenberger, Simon

2009-01-01T23:59:59.000Z

482

Microsoft PowerPoint - IGCA Training 2011-OPAM | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IGCA Training 2011-OPAM Microsoft PowerPoint - IGCA Training 2011-OPAM IGCA Inventory Data Collection Tool Training 2011 Microsoft PowerPoint - IGCA Training 2011-OPAM More...

483

Microsoft PowerPoint - Overview Briefing - Tab 1 DOE's Procurement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Microsoft PowerPoint - Overview Briefing - Tab 1 DOE's Procurement System July 2008 Microsoft PowerPoint - Overview Briefing - Tab 1...

484

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon...

485

PRECISION POINTING OF IBEX-Lo OBSERVATIONS  

SciTech Connect

Post-launch boresight of the IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor observations. Accurate information on the boresight of the neutral gas camera is essential for precise determination of interstellar gas flow parameters. Utilizing spin-phase information from the spacecraft attitude control system (ACS), positions of stars observed by the Star Sensor during two years of IBEX measurements were analyzed and compared with positions obtained from a star catalog. No statistically significant differences were observed beyond those expected from the pre-launch uncertainty in the Star Sensor mounting. Based on the star observations and their positions in the spacecraft reference system, pointing of the IBEX satellite spin axis was determined and compared with the pointing obtained from the ACS. Again, no statistically significant deviations were observed. We conclude that no systematic correction for boresight geometry is needed in the analysis of IBEX-Lo observations to determine neutral interstellar gas flow properties. A stack-up of uncertainties in attitude knowledge shows that the instantaneous IBEX-Lo pointing is determined to within {approx}0.{sup 0}1 in both spin angle and elevation using either the Star Sensor or the ACS. Further, the Star Sensor can be used to independently determine the spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct the spin phase when the Star Tracker (used by the ACS) is disabled by bright objects in its field of view. The Star Sensor can also determine the spin axis during most orbits and thus provides redundancy for the Star Tracker.

Hlond, M.; Bzowski, M. [Space Research Centre of the Polish Academy of Sciences, 18A Bartycka, 00-716 Warsaw (Poland); Moebius, E.; Kucharek, H.; Heirtzler, D.; Schwadron, N. A.; Neill, M. E. O'; Clark, G. [Space Science Center and Department of Physics, University of New Hampshire, Morse Hall, 8 College Road, Durham, NH 03824 (United States); Crew, G. B. [Haystack Observatory, Massachusetts Institute of Technology, Route 40, Westford, MA 01886 (United States); Fuselier, S. [Lockheed Martin, Space Physics Lab, 3251 Hanover Street, Palo Alto, CA 94304 (United States); McComas, D. J., E-mail: mhlond@cbk.waw.pl, E-mail: eberhard.moebius@unh.edu, E-mail: gbc@haystack.mit.edu, E-mail: stephen.a.fuselier@linco.com, E-mail: DMcComas@swri.edu, E-mail: DMcComas@swri.edu [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States)

2012-02-01T23:59:59.000Z

486

Set point calculations for RAPID project  

Science Conference Proceedings (OSTI)

This change modifies accuracies of the water skid temperature indicators and controllers TIC-410. TI-412, TI-413, TIC-413, TIC-414, TIC-415. Acknowledges ability to calibrate PQIT-367 and modifies the accuracy of that instrument loop. Adjusts the allowable dilution dater temperature from 110-130F to 102-130F based on PCP Rev.2 and adjusts alarm and other points to reflect that change. Removes revision numbers for all references. Numerous additional changes (fixing typos, more detailed explanations etc.) throughout.

HICKMAN, G.L.

1999-11-19T23:59:59.000Z

487

Sklyanin algebras and Hilbert schemes of points  

E-Print Network (OSTI)

We construct projective moduli spaces for torsion-free sheaves on noncommutative projective planes. These moduli spaces vary smoothly in the parameters describing the noncommutative plane and have good properties analogous to those of moduli spaces of sheaves over the usual (commutative) projective plane P^2. The generic noncommutative plane corresponds to the Sklyanin algebra S constructed from an automorphism sigma of infinite order on an elliptic curve E < P^2. In this case, the fine moduli space of line bundles over S with first Chern class zero and Euler characteristic (1-n) provides a symplectic variety that is a deformation of the Hilbert scheme of n points on P^2 - E.

T. A. Nevins; J. T. Stafford

2003-10-03T23:59:59.000Z

488

CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION  

DOE Patents (OSTI)

A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

Pappas, W.S.

1963-03-19T23:59:59.000Z

489

Volumes of symmetric spaces via lattice points.  

E-Print Network (OSTI)

In this paper we show how to use elementary methods to prove that the volume of Sl_k R / Sl_k Z is zeta(2) * zeta(3) * ... * zeta(k) / k. Using a version of reduction theory presented in this paper, we can compute the volumes of certain unbounded regions in Euclidean space by counting lattice points and then appeal to the machinery of Dirichlet series to get estimates of the growth rate of the number of lattice points appearing in the region as the lattice spacing decreases. We also present a proof of the closely related result that the Tamagawa number of Sl_k Q is 1 that is somewhat simpler and more arithmetic than Weil's. His proof proceeds by induction on k and appeals to the Poisson summation formula, whereas the proof here brings to the forefront local versions of the formula, one for each prime p, which help to illuminate the appearance of values of zeta functions in formulas for volumes.

Henri Gillet; Daniel R. Grayson.

490

Kinetic and stationary point-set embeddability for plane graphs  

Science Conference Proceedings (OSTI)

We investigate a kinetic version of point-set embeddability. Given a plane graph G(V,E) where |V|=n, and a set P of n moving points where the trajectory of each point is an algebraic function of constant ... Keywords: kinetic algorithm, kinetic graph drawing, plane graph, point-set embeddability

Zahed Rahmati; Sue H. Whitesides; Valerie King

2012-09-01T23:59:59.000Z

491

Deferred blending: Image composition for single-pass point rendering  

Science Conference Proceedings (OSTI)

In this paper, we propose novel GPU accelerated algorithms for interactive point-based rendering (PBR) and high-quality shading of transparent point surfaces. By introducing the concept of deferred blending we are able to formulate the smooth point interpolation ... Keywords: Alpha blending, GPU processing, Hardware acceleration, Point based rendering, Transparency

Yanci Zhang; Renato Pajarola

2007-04-01T23:59:59.000Z