Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lyle Falls Fish Passage Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lyle Falls Fish Passage Project Lyle Falls Fish Passage Project Draft Environmental Impact Statement DOE/EIS-0397 March 2008 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Lyle Falls Fish Passage Project Draft Environmental Impact Statement (DOE/EIS-0397) Responsible Agencies: U.S. Department of Energy, Bonneville Power Administration (BPA); Confederated Tribes and Bands of the Yakama Nation (Yakama Nation); Washington Department of Fish and Wildlife (WDFW); U.S. Department of Agriculture, Forest Service (USFS), Title of Proposed Project: Lyle Falls Fish Passage Project State Involved: Washington (WA) Abstract: BPA proposes to fund modification of the existing Lyle Falls Fishway on the lower Klickitat River in

2

DOE/EIS-0397: Mitigation Action Plan for the Lyle Falls Fish...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MITIGATION ACTION PLAN Lyle Falls Fish Passage Project Bonneville Power Administration Confederated Tribes and Bands of the Yakama Nation Washington Department of Fish and...

3

Lyle Falls Fish Passage Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonneville Power Administration Bonneville Power Administration S-1 Executive Summary S.1 Chapter 1: Purpose of and Need for Action The Confederated Tribes and Bands of the Yakama Nation (YN) have requested funding from the Bonneville Power Administration (BPA) to modify the existing Lyle Falls Fishway located on the lower Klickitat River in Klickitat County, Washington. This fishway is owned by the Washington Department of Fish and Wildlife (WDFW) and operated by the YN. The US Forest Service (USFS) administers portions of the Klickitat River and its corridor under the National Wild and Scenic Rivers Act). Lyle Falls, at river mile (RM) 2.2 of the Klickitat River, prevents some upstream migrating fish from reaching the upper watershed, especially when flows are low. The

4

DOE/EIS-0397: Lyle Falls Fish Passage Project Final Environmental Impact Statement (November 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lyle Falls Fish Passage Project Lyle Falls Fish Passage Project Final Environmental Impact Statement DOE/EIS-0397 November 2008 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BON N E V I L L E POW E R AD M I N I S T R A T I O N DOE/BP-3957 November 2008 Lyle Falls Fish Passage Facility Lyle Falls Fish Passage Project Final Environmental Impact Statement Bonneville Power Administration Confederated Tribes and Bands of the Yakama Nation Washington Department of Fish and Wildlife U.S.D.A. Forest Service November 2008 Lyle Falls Fish Passage Facility Lyle Falls Fish Passage Project Final Environmental Impact Statement (EIS) DOE/EIS-0397

5

DOE/EIS-0397: Record of Decision for the Lyle Falls Fish Passage Project Final Environmental Impact Statement (2/20/09)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION NATIONAL ENVIRONMENTAL POLICY ACT RECORD OF DECISION Lyle Falls Fish Passage Project SUMMARY The Bonneville Power Administration (BPA) has decided to fund modifications to the existing Lyle Falls Fishway on the lower Klickitat River in Klickitat County, Washington. In addition to improving fish passage to the upper part of the Klickitat River watershed, the modifications will facilitate collection and monitoring of biological information for future fishery management and enhance opportunities for adult salmonids to access and utilize habitat in the upper Klickitat River. This decision implements the Proposed Action and Preferred Alternative identified in the Lyle Falls Fish Passage Project (Lyle Falls) EIS (DOE/EIS-0397, November 2008). BPA was

6

Cowlitz Falls Fish Passage.  

DOE Green Energy (OSTI)

The upper Cowlitz was once home to native salmon and steelhead. But the combined impacts of overharvest, farming, logging and road building hammered fish runs. And in the 1960s, a pair of hydroelectric dams blocked the migration path of ocean-returning and ocean-going fish. The lower Cowlitz still supports hatchery runs of chinook, coho and steelhead. But some 200 river miles in the upper river basin--much of it prime spawning and rearing habitat--have been virtually cut off from the ocean for over 26 years. Now the idea is to trap-and-haul salmon and steelhead both ways and bypass previously impassable obstacles in the path of anadromous fish. The plan can be summarized, for the sake of explanation, in three steps: (1) trap and haul adult fish--collect ocean-returning adult fish at the lowermost Cowlitz dam, and truck them upstream; (2) reseed--release the ripe adults above the uppermost dam, and let them spawn naturally, at the same time, supplement these runs with hatchery born fry that are reared and imprinted in ponds and net pens in the watershed; (3) trap and haul smolts--collection the new generation of young fish as they arrive at the uppermost Cowlitz dam, truck them past the three dams, and release them to continue their downstream migration to the sea. The critical part of any fish-collection system is the method of fish attraction. Scientists have to find the best combination of attraction system and screens that will guide young fish to the right spot, away from the turbine intakes. In the spring of 1994 a test was made of a prototype system of baffles and slots on the upriver face of the Cowlitz Falls Dam. The prototype worked at 90% efficiency in early tests, and it worked without the kind of expensive screening devices that have been installed on other dams. Now that the success of the attraction system has been verified, Harza engineers and consultants will design and build the appropriate collection part of the system.

NONE

1995-09-01T23:59:59.000Z

7

Tate & Lyle | Open Energy Information  

Open Energy Info (EERE)

Tate & Lyle Tate & Lyle Jump to: navigation, search Logo: Tate & Lyle Name Tate & Lyle Address 2200 East Eldorado Street Place Decatur, Illinois Zip 62521 Sector Biofuels Year founded 1900 Number of employees 5001-10,000 Phone number 217-421-2953 Website http://www.tateandlyle.com/ Coordinates 39.8467343°, -88.9262177° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8467343,"lon":-88.9262177,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

EIS-0397: Final Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Statement EIS-0397: Final Environmental Impact Statement Lyle Falls Fish Passage Project BPA proposes to fund modifications to the existing Lyle Falls Fishway...

9

Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.  

DOE Green Energy (OSTI)

This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing waterfalls than males. The study also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 3,971 kcals (34% anaerobic and 66% aerobic) for a sample of five fish. A bioenergetics example was run, which estimated that fall chinook salmon would expend an estimated 1,208 kcal to pass from the mouth of the Columbia River to Bonneville Dam and 874 kcals to pass Bonneville Dam and pool and the three falls on the Lower Klickitat River, plus an additional 2,770 kcals above the falls to reach the spawning grounds, leaving them with approximately 18% (1,089 kcals) of their original energy reserves for spawning. Results of the bioenergetics example suggest that a delay of 9 to 11 days along the lower Klickitat River may deplete their remaining energy reserves (at a rate of about 105 kcal d{sup -1}) resulting in death before spawning would occur.

Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

2002-08-30T23:59:59.000Z

10

Fish Health Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010  

Science Conference Proceedings (OSTI)

On December 22, 2008, over 4 million cubic meters of fly ash slurry was released into the Emory River when a dike surrounding a solid waste containment area at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant ruptured. One component of TVA's response to the spill is a biological monitoring program to assess short- and long-term ecological responses to the ash and associated chemicals, including studies on fish health and contaminant bioaccumulation. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure to metals and health effects on fish, (4) evaluating, along with information from other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology information transfer or model study focused on how to best evaluate the environmental effects of fly ash (and related environmental stressors), not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report presents the results of the first two years of the fish health study. To date, fish health and bioaccumulation studies have been conducted from Spring 2009 though Fall 2011 and includes 6 seasonal studies: Spring 2009, Fall 2009, Spring 2010, Fall 2010, Spring 2011, and Fall 2011. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to fish health and bioaccumulation, the Spring investigations also included reproductive integrity studies on the same fish used for bioaccumulation and fish health. In this report, results of the fish health studies from Spring 2009 through Fall 2010 are presented while an associated report will present the fish reproductive studies conducted during Spring 2009 and Spring 2010. A report on fish bioaccumulation was submitted to TVA in June 2011. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health.

Adams, Marshall [ORNL; Fortner, Allison M [ORNL

2012-05-01T23:59:59.000Z

11

White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume I..  

DOE Green Energy (OSTI)

Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developed to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost ratio of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. 28 figs., 23 tabs.

Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

1985-06-01T23:59:59.000Z

12

FIA-13-0037 - In the Matter of Sam Lyle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - In the Matter of Sam Lyle 7 - In the Matter of Sam Lyle FIA-13-0037 - In the Matter of Sam Lyle On June 27, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Privacy Act determination issued by the Department of Energy's Oak Ridge Office (ORO). Specifically, the Appellant, Sam Lyle contested the adequacy of the ORO's search in response to his Privacy Act request, contending that additional records should have been provided. The OHA reviewed the ORO's description of its search and determined that the ORO conducted an adequate search for responsive documents. Therefore, the OHA denied the Appeal. FIA-13-0037.pdf More Documents & Publications FIA-13-0068 - In the Matter of Clarence Dorsey FIA-13-0023 - In the Matter of Glen Bowers

13

FIA-13-0037 - In the Matter of Sam Lyle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FIA-13-0037 - In the Matter of Sam Lyle FIA-13-0037 - In the Matter of Sam Lyle FIA-13-0037 - In the Matter of Sam Lyle On June 27, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Privacy Act determination issued by the Department of Energy's Oak Ridge Office (ORO). Specifically, the Appellant, Sam Lyle contested the adequacy of the ORO's search in response to his Privacy Act request, contending that additional records should have been provided. The OHA reviewed the ORO's description of its search and determined that the ORO conducted an adequate search for responsive documents. Therefore, the OHA denied the Appeal. FIA-13-0037.pdf More Documents & Publications FIA-13-0068 - In the Matter of Clarence Dorsey FIA-12-0065 - In the Matter of Advanced Technology Corporation

14

Evaluation of Juvenile Fish Bypass and Adult Fish Passage Facilities at Three-Mile Falls Dam; Umatilla River, Oregon, 1989 Annual Report.  

DOE Green Energy (OSTI)

We report on our progress from October 1989 through September 1990 on evaluating juvenile fish bypass and adult fish passage facilities at Three Mile Falls Dam on the Umatilla River. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). Study objectives addressed by ODFW and CTUIR are: (1) ODFW (Report A): Operate and evaluate the juvenile fish bypass system in the West Extension Irrigation District canal at Three Mile Falls Dam; and (2) CTUIR (Report 8): Examine the passage of adult salmonids at Three Mile Falls Dam. The study is part of a program to rehabilitate anadromous fish stocks in the Umatilla River Basin that includes restorations of coho salmon Oncorhynchus Wsutch and chinook salmon 0. tshawytscha and enhancement of summer steelhead 0. mytiss.

Nigro, Anthony A.

1990-09-01T23:59:59.000Z

15

Natural Propagation and Habitat Improvement, Washington, Volume IIA, Tumwater Falls and Dryden Dam Fish Passage, 1983 Final Report.  

DOE Green Energy (OSTI)

This engineering feasibility and predesign report on the Tumwater Falls and Dryden Dam Fish Passage Project provides BPA with information for planning purposes and will serve as a discussion document for interested agencies. Tumwater Falls and Dryden Dams, both on the Wenatchee River, were built in the early 1900's as diversions for hydropower, and irrigation and hydropower, respectively. The present fishway facilities at both sites are inadequate to properly pass the anadromous fish runs in the Wenatchee River. These runs include spring and summer chinook salmon, sockeye salmon, coho salmon and steelhead trout. Predesign level drawings are provided in this report that represent fishway schemes capable of adequately passing present and projected fish runs. The effects of present passage facilities on anadromous fish stocks is addressed both quantitatively and qualitatively. The quantitative treatment assesses losses of adult migrants due to the structures and places an estimated value on those fish. The dollar figure is estimated to be between $391,000 and $701,000 per year for both structures. The qualitative approach to benefits deals with the concept of stock vigor, the need for passage improvements to help ensure the health of the anadromous fish stock. 29 references, 27 figures, 5 tables.

Unknown Author

1984-05-01T23:59:59.000Z

16

Movement of Fall Chinook Salmon Fry Oncorhynchus Tshawytscha : A Comparison of Approach Angles for Fish Bypass in a Modular Rotary Drum Fish Screen.  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory (PNNL) performed tests to determine whether a significant difference in fish passage existed between a 6-ft screening facility built perpendicularly to canal flow and an identical screening facility with the screen mounted at a 45-degree angle to the approach channel. A modular drum screen built by the Washington Department of Fish and Wildlife was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fall chinook salmon fry were introduced into the test system, and their movements were monitored. A total of 14 tests (400 fish per test) that lasted 20 hours were completed during April and May, 1996. There was no significant difference in fish passage rate through the two approach configurations. Attraction flow to the bypass across the face of the screen was more evident for the angled approach, although this did not appear to play a significant role in attracting fish to the bypass. Approach velocities at the face of the screen did not exceed the 0.4 fps criteria for either approach configuration and posed not threat to fish. No fish passed over, around, or through the drum screen during any test.

Neitzel, D.A.; Blanton, S.L.; Abernethy, C. Scott; Daly, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

1996-08-01T23:59:59.000Z

17

EIS-0397: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental Impact Statement Lyle Falls Fish Passage Project To Improve Fish Passage to Habitat in the Upper Part of the Watershed,...

18

Hatchery Evaluation Report/Spring Creek National Fish Hatchery - Tule Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures.  

DOE Green Energy (OSTI)

This report presents the findings of the independent audit of the Spring Creek National Fish Hatchery (Tule Fall Chinook). The hatchery is located along the Columbia River at Underwood, Washington, approximately 30 miles upstream of Bonneville Dam. The hatchery is used for adult collection, egg incubation, and rearing of Tule Fall chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, Montgomery

1996-05-01T23:59:59.000Z

19

Fish Passage Improvements at Three Mile Falls Diversion Dam, Umatilla River, Oregon, Final Completion Report.  

DOE Green Energy (OSTI)

This report contains the results and conclusions from the biological assessment and outlines several alternative plans for solving fish passage problems at the dam. A recommended plan, based on consensus of the fisheries agencies and the tribes, is described, and the rationale for that decision is discussed. Data needs for final designs, a tentative construction schedule, and a discussion of operation and maintenance needs are presented.

Unknown Author

1985-05-01T23:59:59.000Z

20

EIS-0397: Mitigation Action Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation Action Plan EIS-0397: Mitigation Action Plan Lyle Falls Fish Passage Project This Mitigation Action Plan identifies measures that are intended to avoid, reduce, or...

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIS-0397: DOE Notice of Availability of the Record of Decision...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Availability of the Record of Decision Bonneville Power Administration Lyle Falls Fish Passage Project This notice announces the availability of the Record of Decision to...

22

Lyle Levine  

Science Conference Proceedings (OSTI)

... in the measurement of dynamic material properties, leading to the first ever stress-strain measurements at high strain-rate and heating-rate. ...

2012-10-02T23:59:59.000Z

23

Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.  

DOE Green Energy (OSTI)

The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

Cousins, Katherine [Idaho Department of Fsh and Game

2009-04-03T23:59:59.000Z

24

Microsoft PowerPoint - smu presentation lyle johnson.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water from NPR-3 Oil & Gas Wells for Produced Water from NPR-3 Oil & Gas Wells for Low-Temperature Geothermal Application Lyle A. Johnson, PE, RMOTC & Daniel N. Schochet, Ormat Nevada, Inc. 2 RMOTC Location 3 Potential Geothermal Supply Wells 17-WX-21 M di d T l Madison and Tensleep Possibly 35 MBWPD flowing 57 WX 3 57-WX-3 Madison and Tensleep Possibly 10 MBWPD flowing TENSLEEP PRODUCING AREA OTHER POSSIBLE TENSLEEP SOURCE WELLS AND DEEPENING CANDIDATES Precambrian granitic basement structure 4 5 6 7 Projected Geothermal Potential Well Zone Rate, MBWPD Comments Low High 17-WX-21 Madison 20 25 Flowing 17-WX-21 Tensleep 4 10 Needs perforating 41-2-X-3 Tensleep 1 3 Flowing p g 41-2-X-3 Madison 6 12 Needs deeping 48-X-28 Tensleep 2 6 Flowing 61-2-X-15 Tensleep 2 6 Flowing 61 2 X 15 Tensleep 2 6 Flowing 61-2-X-15 Madison 6 12 Needs deeping 57-WX-3 Madison 2

25

White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume III, Appendix B, Fisheries Report; Appendix C, Engineering Alternative Evaluation; Appendix D, Benefit/Cost Analysis.  

DOE Green Energy (OSTI)

Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developd to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. This volume contains appendices of habitat survey data, potential production, resident fish population data, upstream passage designs, and benefit/cost calculations. (ACR)

Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

1985-06-01T23:59:59.000Z

26

EIS-0397: Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Record of Decision 7: Record of Decision EIS-0397: Record of Decision Lyle Falls Fish Passage Project The Bonneville Power Administration (BPA) has decided to fund modifications to the existing Lyle Falls Fishway on the lower Klickitat River in Klickitat County, Washington. In addition to improving fish passage to the upper part of the Klickitat River watershed, This decision implements the Proposed Action and Preferred Alternative identified in the Lyle Falls Fish Passage Project (Lyle Falls) EIS (DOE/EIS-0397, November 2008). Record of Decision for the Lyle Falls Fish Passage Project Final Environmental Impact Statement, EIS-0397 (February 2009) More Documents & Publications EIS-0397: Mitigation Action Plan EIS-0397: Draft Environmental Impact Statement EIS-0397: Final Environmental Impact Statement

27

Jumping fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Jumping fish Name: Roy Bates Age: NA Location: NA Country: NA Date: NA Question: Why do fish jump more in the summer than in the fall? Replies: One reason may be the number of...

28

EIS-0397: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0397: Draft Environmental Impact Statement Lyle Falls Fish Passage Project The underlying need for the project is to improve fish passage to habitat in the upper part of the watershed. Funding from BPA would serve to provide off-site mitigation for the effects of the federal Columbia River hydroelectric facilities on fish populations by improving fish passage at Lyle Falls. While the fish passage issues at Lyle Falls were not caused by the hydroelectric facilities, this project would help BPA meet its mitigation responsibilities and potentially increase overall fish production in the Columbia Basin by enhancing fish passage into the Klickitat subbasin. EIS-0397-DEIS-Summary-2008.pdf EIS-0397-DEIS-2008.pdf More Documents & Publications

29

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 6, 2008 November 6, 2008 EIS-0183: Record of Decision Columbia Basin Fish Accord MOA with the Shoshone-Banock Tribes November 1, 2008 EIS-0397: Final Environmental Impact Statement Lyle Falls Fish Passage Project September 26, 2008 EIS-0222: Amended Record of Decision Hanford Comprehensive Land-Use Plan June 10, 2008 EIS-0378: Record of Decision Port Angeles-Juan de Fuca Transmssion Proj June 2, 2008 EIS-0222-SA-01: Supplement Analysis Hanford Comprehensive Land-Use Plan Environmental Impact Statement March 28, 2008 EIS-0397: EPA Notice of Availability of the Draft Environmental Impact Statement Lyle Falls Fish Passage Project March 1, 2008 EIS-0397: Draft Environmental Impact Statement Lyle Falls Fish Passage Project February 5, 2008 EIS-0378-SA-01: Supplement Analysis Port Angeles-Juan de Fuca Transmssion Project

30

Notice of Intent to prepare and Environmental Impact Statement and Notice of Floodplain and Wetlands Involvement for the Lyle Falls Fishway Project (DOE/EIS-0397) (06/26/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

329 Federal Register 329 Federal Register / Vol. 71, No. 122 / Monday, June 26, 2006 / Notices other technological collection techniques or other forms of information technology, e.g., permitting electronic submission of responses. Procurement Contracts, OMB Control No. 3038-0031-Extension The information collection consists of procurement activities relating to solicitation, amendments to solicitations, requests for quotations, construction contracts, awards of contracts, performance bonds, and payment information for individuals (vendors) or contracts engaged in providing supplies or services. The Commission estimates the burden of this collection of information as follows: ESTIMATED ANNUAL REPORTING BURDEN Annual number of respondents Frequency of response Total annual

31

Flying fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Flying fish Name: Prairie View Location: NA Country: NA Date: NA Question: How does the flying fish get speed to fly? Replies: The "flying fish", like most fishes, gets its...

32

Falls Creek Hydroelectric Project  

DOE Green Energy (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

33

Fish breathing  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish breathing Name: Bob W Whitbeck Age: NA Location: NA Country: NA Date: NA Question: What factors make it harder for fish to breathe? Replies: Fish "breathe" with gills and...

34

Glowing fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Glowing fish Name: Nicholas L Walker Age: NA Location: NA Country: NA Date: NA Question: Why do certain fish glow??? Replies: Some fish are able to produce light by a chemical...

35

FDST 8010 (Fall 2003)  

Science Conference Proceedings (OSTI)

FDST 8010 (Fall Semester 2007) FOOD LIPIDS Instructor: C. C. Akoh Objective: After completion of this course, students will know: 1. How the chemical composition and structure can influence the analysis, processing, deterioration, nutrit

36

Color of fall leaves  

NLE Websites -- All DOE Office Websites (Extended Search)

Color of fall leaves Color of fall leaves Name: macmillan Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do leaves change color in the fall? Is the cold a contributing factor? What determines the ultimate color of a leaf? Is the change due to an absence of chlorophyll or the presence of something else? Replies: This will be a partial answer. The colors are due to chemicals called carotenes, the same chemicals that give rise to color of carrots. There are several and they have different colors. They are present in the leaves all of the time. We see them in the fall because the chlorophyll production in the leaves stops. I think it is due to the cooling, not directly the presence of freezing temperatures, it seems to depend on the plant. It would be a good experiment to see what events contribute to the changes. Clearly the amount of water in the plant contributes to the quality of the color.

37

Spawning fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Spawning fish Name: Jeffrey M Ulmer Age: NA Location: NA Country: NA Date: NA Question: What signals some fish to travel up a waterfall? Replies: Good question, Jeff Much is...

38

Gulping fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulping fish Name: Jason S Kay Status: NA Age: NA Location: NA Country: NA Date: NA Question: Dear Mr. or Ms. Scientist, why do fish come to the surface and gulp like they're...

39

Fish breathing  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish breathing Name: lennartz Location: NA Country: NA Date: NA Question: How do fish get their oxygen under water? Replies: Not so differently from the way we get it from air....

40

Fish Scales  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish Scales Name: Kaylee Location: NA Country: NA Date: NA Question: Do all fish have scales? Replies: No, some like catfish and bullheads, have smooth skins. J. Elliott No,...

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Little Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish Nature Bulletin No. 258-A February 25, 1967 Forest Preserve District of Cook County Richard B, Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation LITTLE FISH It is...

42

Fish eating  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish eating Name: Rex P Frost Location: NA Country: NA Date: NA Question: From the students in my grade 7 science class who are doing a an assignment on marine fish: What stops...

43

Internet Fish  

E-Print Network (OSTI)

I have invented "Internet Fish," a novel class of resource-discovery tools designed to help users extract useful information from the Internet. Internet Fish (IFish) are semi-autonomous, persistent information brokers; ...

LaMacchia, Brian A.

1996-08-01T23:59:59.000Z

44

Impact Statements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Freedom of Information Act » Reading Freedom of Information Act » Reading Room » Impact Statements Impact Statements Reading Room / Final Environment Impact Statements Record of Decision on Bonneville Power Administration's Lyle Falls Fish Passage Project (DOE/EIS-3790, November 2008). February 2009. Records of Decision on Bonneville Power Administration's (BPA0 Leaning Juniper II Wind Project and Jones Canyon Substation Expansion tiered to BPA's Business Plan Environmental Impact Statement (DOE/EIS-0183, June 1995). April 9, 2009. Final EIS on Bonneville Power Administration's Lyle Falls Fish Passage Project (DOE/EIS-0397, November 2008). December 10, 2008. BPA's Record of Decision 2008 Columbia Basin Fish Accords with the Shshone-Bannock Tribes tiered to the (DOE/EIS -0312, April 2003) and ROD

45

Falling film evaporator  

DOE Patents (OSTI)

A falling film evaporator including a vertically oriented pipe heated exteriorly by a steam jacket and interiorly by a finned steam tube, all heating surfaces of the pipe and steam tube being formed of a material wet by water such as stainless steel, and packing within the pipe consisting of Raschig rings formed of a material that is not wet by water such as polyvinylidene fluoride.

Bruns, Lester E. (Kennewick, WA)

1976-01-01T23:59:59.000Z

46

Edible Fall Fruits  

NLE Websites -- All DOE Office Websites (Extended Search)

Fall Fruits Fall Fruits Nature Bulletin No 161-A September 19, 1948 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EDIBLE FALL FRUITS Autumn is the favorite season for many people, and especially those who have the hobby of harvesting wild fruits for home use. In the forest preserves they, and you too, can have the fun of hunting, finding and gathering them. You can have the added satisfaction of making -- for enjoyment by your family and friends -- jellies, jam, preserves, pickles, and beverages that are "different". One of the most abundant, but least used of all wild fruits in the Chicago region are those of the hawthorns, We have perhaps 200 species, hybrids and varieties, most of them along woodland borders and in thickets that have taken over many old fields and clearings. Their fruits, called haws, vary widely in size and color when ripe. Most of them are small and many are dull red; some are yellow and some are spotted. Only a few bear the mealy, bright scarlet fruits, from 3/4 inch to more than an inch in diameter, which are most desirable and known as "red haws". Some folks, mostly boys, eat them raw. Others use them to make a unique jelly.

47

Temporary Restoration of Bull Trout Passage at Albeni Falls Dam  

DOE Green Energy (OSTI)

This study was designed to monitor movements of bull trout that were provided passage above Albeni Falls Dam, Pend Oreille River. Electrofishing and angling were used to collect bull trout below the dam. Tissue samples were collected from each bull trout and sent to the U. S. Fish and Wildlife Service Abernathy Fish Technology Center Conservation Genetics Lab, Washington. The DNA extracted from tissue samples were compared to a catalog of bull trout population DNA from the Priest River drainage, Lake Pend Oreille tributaries, and the Clark Fork drainage to determine the most probable tributary of origin. A combined acoustic radio or radio tag was implanted in each fish prior to being transported and released above the dam. Bull trout relocated above the dam were able to volitionally migrate into their natal tributary, drop back downstream, or migrate upstream to the next dam. A combination of stationary radio receiving stations and tracking via aircraft, boat, and vehicle were used to monitor the movement of tagged fish to determine if the spawning tributary it selected matched the tributary assigned from the genetic analysis. Seven bull trout were captured during electrofishing surveys in 2008. Of these seven, four were tagged and relocated above the dam. Two were tagged and left below the dam as part of a study monitoring movements below the dam. One was immature and too small at the time of capture to implant a tracking tag. All four fish released above the dam passed by stationary receivers stations leading into Lake Pend Oreille and no fish dropped back below the dam. One of the radio tags was recovered in the tributary corresponding with the results of the genetic test. Another fish was located in the vicinity of its assigned tributary, which was impassable due to low water discharge at its mouth. Two fish have not been located since entering the lake. Of these fish, one was immature and not expected to enter its natal tributary in the fall of 2008. The other fish was large enough to be mature, but at the time of capture its sex was unable to be determined, indicating it may not have been mature at the time of capture. These fish are expected to enter their natal tributaries in early summer or fall of 2009.

Paluch, Mark; Scholz, Allan; McLellan, Holly [Eastern Washington University Department of Biology; Olson, Jason [Kalispel Tribe of Indians Natural Resources Department

2009-07-13T23:59:59.000Z

48

Primitive Fishes  

NLE Websites -- All DOE Office Websites (Extended Search)

Fishes Fishes Nature Bulletin No. 322-A November 23, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation PRIMITIVE FISHES The history of fish covers such a vast stretch of time that the mind simply cannot grasp its immensity. The beginnings of fish -- or at least the earliest known forms -- and of the fish-like animals that existed before them, are found as fossils in rocks that geologists say were formed 400 million years ago. Sea scorpions, worms, mollusks and all of the other main types of lower animals had already lived in the sea for ages before that. It is a question which of them, if any, gave rise to fish. These older animals had a digestive tube and beneath it, on the side next to the ground, was the brain and nerve cord. The forerunners of fish, however, had the brain and nerve cord above the digestive tube, with a slender rod of gristle in between -- something that no other animal ever had had before. The theory is that this rod later developed into the backbone that is found in all of their modern descendants: fish, amphibians, reptiles, birds and mammals.

49

Granite Falls Energy | Open Energy Information  

Open Energy Info (EERE)

search Name Granite Falls Energy Place Granite Falls, Minnesota Zip 56241 Product Bioethanol producer using corn as feedstock References Granite Falls Energy1 LinkedIn...

50

W:WPGRAPHSCCTCCTODAY_fall  

NLE Websites -- All DOE Office Websites (Extended Search)

PSDF and Vision 21 PSDF and Vision 21 ..................... 1 Project News Bytes ..................... 1 Barge-Mounted PFBC ................. 4 PM 2.5 Monitoring Efforts ............. 6 NETL's PM 2.5 Research .............. 8 Upcoming Events ......................... 8 Advanced Turbine Program ......... 9 International Initiatives .............. 10 R&D Milestones ........................ 12 Specialty NO x Conferences ....... 13 Status of CCT Projects .............. 14 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION PROJECT NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOE/FE-0215P-41 ISSUE NO. 41, FALL 2000 See "News Bytes" on page 7... See "PSDF" on page 2... SGI International, owner of the Liquids-From-Coal ® technology used in the ENCOAL Mild Coal

51

2009, Webbers Falls Open  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern and its Southwestern and its customers, the May 27, 2009, Webbers Falls Open House hosted by the Tulsa District of the U.S. Army Corps of Engineers (Corps) was just one more example of what can be accomplished when partners in Federal hydropower work together. The event, which was designed to publicize the upcoming rehabilitation of the project, drew staff members from several congressional offices as well as a healthy contingent of Corps, Southwestern, and customer representatives. Colonel Anthony Funkhouser, Commander of the Tulsa District, welcomed the attendees and emphasized the importance of working together to accomplish common goals. Southwestern's Administrator, Jon Worthington, spoke of the importance of hydropower, both regionally and nationally, and quantified its benefits by citing the average 5,570

52

2003 Fall TOPICS 1  

U.S. Energy Information Administration (EIA) Indexed Site

SUMMARY of the SUMMARY of the Fall Meeting of the American Statistical Association (ASA) Committee on Energy Statistics with the Energy Information Administration 1000 Independence Ave., SW. Washington, D.C. 20585 October 16 and 17, 2003 Thursday, October 09, 2003 Background: EIA's Strategic Plan and Performance Goals for 2003-2008 (Plenary Session): Session emphasis was on the action plan for Goal 1, the first of the three EIA Goals: Goal 1: EIA's information program is relevant, reliable and consistent with changing industry structures, and EIA's information products are high quality and timely. Goal 2: EIA's resource base is sufficient to accomplish its mission Goal 3: EIA employees rate EIA high in the areas of leadership management, and meaningful work; and they rate themselves high in motivation and

53

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

54

Ice Fishing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ice Fishing Ice Fishing Nature Bulletin No. 327-A January 11, 1969 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation ICE FISHING We have a peculiar class of people known as the "Frosty-toed Tribe". As soon as winter comes and the ice permits, they put on all the clothes they own and what they can borrow, pack their automobiles with equipment, and start early in the morning for some inland body of water or a bay along one of the Great Lakes. Usually, two or three go together and they may drive 50 or 100 miles. For hours, even in below zero weather, they huddle around holes cut in the ice, fishing patiently, sustained by hope, hot coffee, and a lot of conversation. Some days a man may catch nothing. Other days he may bring home all the law allows. Sometimes he fishes vainly until almost sundown and then begins to haul them in, all of the same kind and size, as fast as he can re-bait his hook. In the meantime, other anglers have rushed over, cut holes, and are fishing all around him -- usually in vain, because one of the strange things about ice fishing is that, although you may catch fish out of one hole, you may get nothing out of another only a few feet from it, using the same kind of bait at the same depth. There are a lot of hotly contested theories but nobody knows why. After watching and questioning scores of ice fishermen, some of them noted for their prowess, we find that although each has his own secret techniques and favorite spots, good catches seem more a matter of luck than skill. Although they are sluggish and don't fight, fish caught in winter have the firmest flesh and finest flavor. The biggest thrill comes from the skillet.

55

PNNL: Breakthroughs Magazine - Fall 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

0 issue Sensor fish make a splash Breakthroughs Magazine Breakthroughs Archive In this issue... Cover Editor's Screen Contents At A Glance Solutions Update Science of Doing...

56

Fish Bait  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish Bait Fish Bait Nature Bulletin No. 70 June 15, 1946 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation FISH BAIT The bass season opens June 15 in the northern zone. Then the number of fishermen doubles because it will no longer be necessary to throw back a bass caught while fishing for crappies, bluegills, bullheads or carp. That breaks a fellow's heart. Fancy tackle is very hard to get this year. But black bass do take worms and minnows, as well as frogs, hellgramites, grasshoppers, crickets and other live baits. The fly-casters and bait-casters, who carry around a tackle box filled with gadgets made of wood, feathers, fur, paint and assorted hardware, have no better luck -- on the average -- than the live bait fishermen at whom they turn up their noses.

57

Richard Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 62R0203 Berkeley CA 94720 Office Location: 62-0339J (510) 486-4850 RHFish@lbl.gov...

58

Richard Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard Fish Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 62R0203 Berkeley CA 94720 Office Location: 62-0339J (510) 486-4850...

59

A FISH called WANDA  

Science Conference Proceedings (OSTI)

... 1 A FISH called WANDA, 2013 A FISH called WANDA WANDA: A Measurement Tool for ... Stefan Giesler, Freiburg, Germany FISH-new: ...

2013-06-05T23:59:59.000Z

60

ARM - Measurement - Hydrometeor fall velocity  

NLE Websites -- All DOE Office Websites (Extended Search)

fall velocity fall velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor fall velocity Fall velocity of hydrometeors (e.g. rain, snow, graupel, hail). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments DISDROMETER : Impact Disdrometer LDIS : Laser Disdrometer WSACR : Scanning ARM Cloud Radar, tuned to W-Band (95GHz) Field Campaign Instruments DISDROMETER : Impact Disdrometer PDI : Phase Doppler Interferometer

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

LBNL/ Adopt Fall Protection Program  

NLE Websites -- All DOE Office Websites (Extended Search)

is the Company Letter Certification Template to address if your company has decided to work under LBNL fall protection program. See attached Chapter 30 of our program of PUB...

62

Twin Falls District | Open Energy Information  

Open Energy Info (EERE)

Falls District Jump to: navigation, search Name BML Twin Falls District Office Address 2536 Kimberly Road Place Twin Falls, ID Zip 83301 Phone number 208-736-2350 Website http:...

63

Fall 2005 Meeting of the ASA  

U.S. Energy Information Administration (EIA) Indexed Site

of EIA's fall 2005 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these...

64

Kettle Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Kettle Falls Biomass Facility Jump to: navigation, search Name Kettle Falls Biomass Facility Facility...

65

Cooperative fish-rearing programs in Hanford Site excess facilities  

Science Conference Proceedings (OSTI)

In, 1993, two successful fish-rearing pilot projects were conducted in Hanford Site 100 K Area water treatment pools (K Pools) that are excess to the US Department of Energy needs. Beginning this spring, two larger cooperative fish programs will be undertaken in the K Pools. One program will involve the Yakama Indian Nation, which will rear, acclimate, and release 500,000 fall chinook salmon. The other program involves the Washington Department of Fish and Wildlife, which will rear warm-water specie (walleye and channel catfish) for planting in state lakes. Renewed economic vitality is the goal expected from these and follow-on fish programs.

Herborn, D.I.; Anderson, B.N.

1994-05-01T23:59:59.000Z

66

Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.  

DOE Green Energy (OSTI)

This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

Rondorf, Dennis W.; Miller, William H.

1994-03-01T23:59:59.000Z

67

falls-city2.cdr  

Office of Legacy Management (LM)

Falls City Disposal Site Falls City Disposal Site Uranium ore was processed near Falls City, Texas, between 1961 and 1982. The milling operations created process-related waste and tailings, a sandlike waste containing radioactive material and other contaminants. The U.S. Department of Energy (DOE) encapsulated the tailings in an engineered disposal cell in 1994. DOE established the LTSM Program in 1988 to provide stewardship of disposal cells that contain low-level radioactive material after completion of environmental restoration activities. The mission of the LTSM Program is to ensure that the disposal cells continue to prevent release of contaminated materials to the environment. These materials will remain potentially hazardous for thousands of years. As long as the cells function as

68

Fall 2007 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

7 Meeting of the 7 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's fall 2007 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place October 18 and 19, 2007 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All of the plenary and three of the break-out sessions were in 8E-089. The three remaining break-out sessions were in 5E-069. The fall meeting agenda, papers, presentation slides and other materials

69

Augmented Fish Health Monitoring; Volume II of II, Completion Report.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Participating agencies included: Washington Department of Fisheries (WDF), Oregon Department of Fish and Wildlife, Idaho Department of Fish and Game, and the US Fish and Wildlife Service (USFWS). This is the final data report for the Augmented Fish Health Monitoring project. Data collected and sampling results for 1990 and 1991 are presented within this report. An evaluation of this project can be found in Augmented Fish Health Monitoring, Volume 1, Completion Report.'' May, 1991. Pathogen detection methods remained the same from methods described in Augmented Fish Health Monitoring, Annual Report 1989,'' May, 1990. From January 1, 1990 to June 30, 1991 fish health monitoring sampling was conducted. In 1990 21 returning adult stocks were sampled. Juvenile pre-release exams were completed on 20 yearling releases, and 13 sub-yearling releases in 1990. In 1991 17 yearling releases and 11 sub-yearling releases were examined. Midterm sampling was completed on 19 stocks in 1990. Organosomatic analysis was performed at release on index station stocks; Cowlitz spring and fall chinook, Lewis river early coho and Lyons Ferry fall chinook.

Michak, Patty

1991-12-01T23:59:59.000Z

70

Diesel prices continue to fall  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to fall The U.S. average retail price for on-highway diesel fuel fell to 4.09 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly...

71

Fall Orientation Schedule Kresge College  

E-Print Network (OSTI)

1 2011 Fall Orientation Schedule Kresge College University of California Santa Cruz September 16 - 26 60 05 1 25 30 35 40 45 50 55 Kresge College our time is now #12;#12;3 1 Orientation Week Planner your first several days on campus. This Orientation Schedule is designed to help guide you. Use

California at Santa Cruz, University of

72

Temporary Restoration of Bull Trout Passage at Albeni Falls Dam, 2008 Progress Report.  

DOE Green Energy (OSTI)

The goal of this project is to provide temporary upstream passage of bull trout around Albeni Falls Dam on the Pend Oreille River, Idaho. Our specific objectives are to capture fish downstream of Albeni Falls Dam, tag them with combination acoustic and radio transmitters, release them upstream of Albeni Falls Dam, and determine if genetic information on tagged fish can be used to accurately establish where fish are located during the spawning season. In 2007, radio receiving stations were installed at several locations throughout the Pend Oreille River watershed to detect movements of adult bull trout; however, no bull trout were tagged during that year. In 2008, four bull trout were captured downstream of Albeni Falls Dam, implanted with transmitters, and released upstream of the dam at Priest River, Idaho. The most-likely natal tributaries of bull trout assigned using genetic analyses were Grouse Creek (N = 2); a tributary of the Pack River, Lightning Creek (N = 1); and Rattle Creek (N = 1), a tributary of Lightning Creek. All four bull trout migrated upstream from the release site in Priest River, Idaho, were detected at monitoring stations near Dover, Idaho, and were presumed to reside in Lake Pend Oreille from spring until fall 2008. The transmitter of one bull trout with a genetic assignment to Grouse Creek was found in Grouse Creek in October 2008; however, the fish was not found. The bull trout assigned to Rattle Creek was detected in the Clark Fork River downstream from Cabinet Gorge Dam (approximately 13 km from the mouth of Lightning Creek) in September but was not detected entering Lightning Creek. The remaining two bull trout were not detected in 2008 after detection at the Dover receiving stations. This report details the progress by work element in the 2008 statement of work, including data analyses of fish movements, and expands on the information reported in the quarterly Pisces status reports.

Bellgraph, Brian J. [Pacific Northwest National Laboratory

2009-03-31T23:59:59.000Z

73

Fish Tales  

SciTech Connect

This talk is about fishing and the friendships that have resulted in its pursuit. It is also about theoretical physics, and the relationship of imagination and fantasy to the establishment of ideas about nature. Fishermen, like theoretical physicists, are well known for their inventive imaginations. Perhaps neither are as clever as sailors, who conceived of the mermaid. If one doubts the power of this fantasy, one should remember the ghosts of the many sailors who drowned pursuing these young nymphs. An extraordinary painting by J. Waterhouse is shown as Fig. 1. The enchantment of a mermaid must reflect an extraordinary excess of imagination on the part of the sailor, perhaps together with an impractical turn of mind. A consummated relationship with a mermaid is after all, by its very nature a fantasy incapable of realization. To a theoretical physicist, she is symbolic of many ideas we develop. There are many truths known to fisherman in which one might also find parallels to the goals of scientists: (1) A fish is the only animal that keeps growing after its death; (2) Nothing makes a fish bigger than almost being caught; (3) ''...of all the liars among mankind, the fisherman is the most trustworthy.'' (William Sherwood Fox, in Silken Lines and Silver Hooks); and (4) Men and fish are alike. They both get into trouble when they open their mouths. These quotes may be interpreted as reflecting skepticism regarding the honesty of fisherman, and probably do not reflect adequate admiration for a creative imagination. Is it fair to criticize a person for believing a falsehood that he or she sincerely believes to be true? The fisherman simultaneously invents the lie, and believes in it himself. The parallel with theoretical physics is perhaps only approximate, although we physicists may invent stories that we come to believe, on some rare occasions our ideas actually correspond to a more or less true descriptions of nature. These minor philosophical differences are not really the central issue, however. It is more to the point that both fishermen and scientists enjoy creating a good story, and we also enjoy a story well told. The correct mixture of truth, lie, fantasy and excitement is a witches brew.

McLerran, L.

2010-07-06T23:59:59.000Z

74

Do fish sleep?  

NLE Websites -- All DOE Office Websites (Extended Search)

Do fish sleep? Name: Tom M Dechand Status: NA Age: NA Location: NA Country: NA Date: NA Question: Is it true that fish do not sleep? Replies: Most all fish spend time in an...

75

Fish scales and growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish scales and growth Name: Belinda Clark Location: NA Country: NA Date: NA Question: In my daughter's book about fish, it states that fish continue to get bigger as they age...

76

Safe Fall: Humanoid robot fall direction change through intelligent stepping and inertia shaping  

E-Print Network (OSTI)

Although fall is a rare event in the life of a humanoid robot, we must be prepared for it because its consequences are serious. In this paper we present a fall strategy which rapidly modifies the robot's fall direction in ...

Yun, Seung-kook

77

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

78

Sixth Northwest Conservation and Electric Power Plan Appendix M: Integrating Fish & Wildlife and  

E-Print Network (OSTI)

below Libby Dam. The reservoir operation in spring largely works toward project refill while otherwise operations in the mid-Columbia River to support fall Chinook spawning and rearing in the Hanford Reach to fish. Action item F&W-2 (see the Action Plan) calls for the Council to work with fish and wildlife

79

Meredith Rainey BIO515 Fall 2009  

E-Print Network (OSTI)

Meredith Rainey BIO515 Fall 2009 Using graph theory to compare least cost path and circuit theory;Meredith Rainey BIO515 Fall 2009 Fahrig 2000; With et al. 1997). Many of the metrics developed with the FunConn v1 (Theobald et al. 2006) network #12;Meredith Rainey BIO515 Fall 2009 analysis package

Hansen, Andrew J.

80

Free-fall core sampler  

SciTech Connect

The described free-fall corer apparatus consists of an expendable, elongated casing having an annular-shaped ballast member secured to it. A cylindrical housing surmounts this ballast member and accommodates a float which is tied to the core liner. During descent of the apparatus, the float is latched to the ballast element, but when the apparatus strikes bottom, a pilot weight suspended from the float latching means moves upward and allows the float to freely ascend within the ocean. This ascent unlatches the core liner from the expendable casing and the liner is thereafter raised to the surface. (13 claims)

Raymond, S.O.; Sachs, P.L.

1968-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hatchery Evaluation Report / Bonneville Hatchery - Tule Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures : Final Report.  

DOE Green Energy (OSTI)

This report presents the findings of the independent audit of the Bonneville Hatchery (Tule Fall Chinook). The hatchery is located on the Columbia River just west of Cascade Locks, Oregon. The hatchery is used for adult collection, egg incubation, and rearing of Tule Fall Chinook and URB Fall Chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S. Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, Montgomery

1996-05-01T23:59:59.000Z

82

Hatchery Evaluation Report / Bonneville Hatchery - Urb Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures : Final Report.  

DOE Green Energy (OSTI)

This report presents the findings of the independent audit of the Bonneville Hatchery (Upriver bright [URB] Fall Chinook). The hatchery is located on the Columbia River just west of Cascade Locks, Oregon. The hatchery is used for adult collection, egg incubation, and rearing of Tule Fall Chinook and URB Fall Chinook. The audit was conducted in April 1996 as part of at two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S. Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, Montgomery

1996-05-01T23:59:59.000Z

83

Semi-supervised fall detection algorithm using fall indicators in smartphone  

Science Conference Proceedings (OSTI)

Fall injury is a health-threatening incident that may cause instant death. There are many research interests aimed to detect fall incidents as early as possible. Fall detection is envisioned critical on ICT-assisted healthcare future. In this paper, ... Keywords: accelerometer, algorithm, decision tree, fall detection, indicators, orientation sensor, smartphone, thresholds

P. N. Ali Fahmi; Vo Viet; Choi Deok-Jai

2012-02-01T23:59:59.000Z

84

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

McLeod, Bruce

2004-01-01T23:59:59.000Z

85

Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.  

DOE Green Energy (OSTI)

This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

2009-09-15T23:59:59.000Z

86

Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving delisting goals established by National Marine Fisheries Service (NMFS). Complete returns for all three acclimation facilities will not occur until the year 2002. Progeny (which would then be natural origin fish protected under the Endangered Species Act) from those returns will be returning for the next five years. In 2001, a total of 2,051,099 fish weighing 59,647 pounds were released from the three acclimation facilities. The total includes 318,932 yearling fish weighing 31,128 pounds and 1,732,167 sub-yearling fish weighing 28,519 pounds. Yearling fish numbers were reduced by Bacterial Kidney Disease (BKD) and sub-yearling acclimation time was limited by record low river water flows.

McLeod, Bruce

2004-01-01T23:59:59.000Z

87

JGI - Why Sequence Cichlid Fish?  

NLE Websites -- All DOE Office Websites (Extended Search)

Cichlid Fish? photo of chichlid fish The sequencing of several Lake Malawi cichlid fish will contribute to major advances in our understanding of evolution in Lake Malawi cichlids....

88

FUPWG Fall 2009 Washington Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilit P Utilit P Program Name or Ancillary Text eere.energy.gov Federal Energy Management Program FUPWG Fall 2009 David McAndrew November 18 & 19, 2009 Utility Program Sailing into Energy Efficiency President Obama Signing E.O. 13514 Signing of Executive Order 13514 - Federal Leadership in Environmental, Energy & Economic Performance Federal Energy Management Program femp.energy.gov 4 E.O. 13514 SUMMARY  Transf formative shif ft in the way the government operates  Establishes GHGs as the integrating metric for tracking progress in federal sustainability  Requires a deliberative planning process  Links goal achievement to budget allocations Links goal achievement to budget allocations and OMB scorecards.  Establishes numerous additional goals for  Establishes numerous additional goals for

89

Acoustic Doppler Current Profiler Surveys of Velocity Downstream of Albeni Falls Dam  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers (USACE), Seattle District, is studying the potential to locate fish bypass systems at Albeni Falls Dam. The USACE requested Pacific Northwest National Laboratory (PNNL) to survey velocity magnitude and direction in the dam tailrace. The empirical data collected will be used to support future numerical modeling, physical modeling, and evaluation of fish bypass system alternatives. In May 2010, PNNL conducted velocity surveys of the Albeni Falls Dam using a boat-mounted acoustic Doppler current profiler. The surveys were conducted over three days (May 25 through 27). During the survey period, total river discharge at the dam varied between 30.2 and 31.0 kcfs. A small amount of spill discharge, 2 kcfs, was present on two days (May 26 and 27). This report presents data plots showing measured velocity direction and magnitude averaged over the entire depth and over 5-ft depth increments from 5 to 30 ft.

Perkins, William A.; Titzler, P. Scott; Richmond, Marshall C.; Serkowski, John A.; Kallio, Sara E.; Bellgraph, Brian J.

2010-09-30T23:59:59.000Z

90

2000 TMS Fall Extraction and Process Metallurgy Meeting ...  

Science Conference Proceedings (OSTI)

TMS Logo. 2000 TMS Fall Extraction and Process Metallurgy Meeting: Registration Information. 2000 TMS FALL EXTRACTION AND PROCESS METALLURGY...

91

Center for Emergent Superconductivity 2013 Fall Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Emergent Superconductivity (CES) 2013 Fall Workshop Homepage Registration pulldown Talks pulldown CES Workshop Talks CES Jr. Research Talks Programs pulldown Contact Us...

92

Center for Emergent Superconductivity 2013 Fall Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

main gate, please inform the guard you are attending the Center for Emergent Superconductivity 2013 Fall Workshop workshop. You may be requested to check in at the security...

93

About the TMS Fall Meeting '98  

Science Conference Proceedings (OSTI)

David Bourell, MPMD, University of Texas, Austin, Texas ; Dr. Richard Wright, MPMD, INEEL, Idaho Falls, Idaho; Dr. Walter Milligan, ASM/MSCTS, Michigan...

94

2001 TMS Fall Meeting: Student Information  

Science Conference Proceedings (OSTI)

2001 TMS Fall Meeting: Student Information ... graduate students. For more information, contact Tara Oprosky, Membership Coordinator at toprosky@tms.org

95

2006 TMS Fall Extraction and Processing Meeting  

Science Conference Proceedings (OSTI)

2006 TMS Fall Extraction & Processing Meeting: Sohn Int'l Symposium ... Sold out. Hyatt Regency Islandia Hotel In the heart of Mission Bay Park, the Hyatt has ...

96

Idaho Falls Power- Residential Weatherization Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

97

Energy Specialist Info Sheet- Fall Session  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIALIST TRAINING PROGRAM ORENTATION FOR THE FALL SESSION BEGINS OCTOBER 27th This program is sponsored by the Central Florida Energy Efficiency Alliance (CFEEA) to provide...

98

Ice Fall Doctors 5, Changing Route  

E-Print Network (OSTI)

Base Camp. The recordings span a wide variety of topics from making and drinking chang to the work of Mount Everest's 'ice fall doctors'....

Loomis, Molly

99

Summary of the Fall Meeting of the  

U.S. Energy Information Administration (EIA) Indexed Site

data, extraction loss, liquefied natural gas operations, and consumption volumes and prices. Some of these efforts were part of the Fall 2002 forms clearance project, while...

100

VERTEBRATES OF FISH LAKE  

E-Print Network (OSTI)

VERTEBRATES OF FISH LAKE CAUTION! FISH LAKE SCAVANGER HUNT RED HEADED in large dead trees. Males and females both have the majestic red head the mound. Damselflies sit with their wings folded down, which differs them

Minnesota, University of

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reviving Frozen Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviving Frozen Fish Name: Frank Location: NA Country: NA Date: NA Question: Is there a way that a fish can be frozen and then revived? Replies: I have not specifically heard of...

102

Pen Rearing and Imprinting of Fall Chinook Salmon, 1989 Annual Report.  

DOE Green Energy (OSTI)

The goal of this project is to compare net-pen rearing methods to traditional hatchery methods of rearing upriver bright fall chinook salmon (Oncorhynchus tshawvtscha). Fish were reared at several densities in net pens at three Columbia River backwater sites during 1984-1987, and in a barrier net at one site during 1984-1986; methods included both fed and unfed treatments. The purpose of this report is to summarize the results obtained from the unfed treatments and the current return of adults from all fed treatments and the barrier net. Zooplankton were the primary food item of unfed fish. Fish reared in net pens utilized insects colonizing the nets as an additional food source, whereas those reared in the barrier net did not. Growth and production of fish reared in the unfed treatments were low. Instantaneous growth rates of unfed fish were much lower than those of the fed treatments and hatchery controls except when zooplankton densities were high and chironomid larvae were important in the diet of unfed fish reared in pens. Only fish in the barrier net treatment resulted in consistent net gains in growth and production over the rearing periods. Adult returns of fish from all fed and unfed treatments are lower than those of control fish reared at the hatchery. Returns appear to be inversely related to rearing density. Even though adult returns are lower than those of traditional hatchery methods, a cost-benefit analysis, as return data becomes more complete, may prove these methods to be an economical means of expanding current hatchery production, particularly if thinning releases were used.

Beeman, John W.; Novotny, Jerry F.

1990-02-01T23:59:59.000Z

103

Klamath Falls geothermal field, Oregon  

DOE Green Energy (OSTI)

Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

Lienau, P.J.; Culver, G.; Lund, J.W.

1989-09-01T23:59:59.000Z

104

Fish and Tetrapods Geology 331  

E-Print Network (OSTI)

, and ostracoderms (armored jawless fish) Gnathostomes: jawed fish (an evolutionary grade, not a taxon) Class Placoderms: armored fish Class Chondrichthyes: cartilaginous fish Class Osteichthyes: bony fish Subclass the armored fish of the Paleozoic. Grew up to 10 m in length. #12;Placoderm, Dunkleosteus, Devonian of Ohio

Kammer, Thomas

105

Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.  

DOE Green Energy (OSTI)

The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

Soults, Scott [Kootenai Tribe of Idaho

2009-08-05T23:59:59.000Z

106

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM FALL 2010 Fall Term Spring Term EGGG 101 Introduction to Chemical Engineering 3 MATH 242 Analytic Geometry & Calculus B 4 MATH 243 Analytic Geometry & Calculus C 4 Critical Reading and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering

Lee, Kelvin H.

107

Learning to fall: Designing low damage fall sequences for humanoid soccer robots  

Science Conference Proceedings (OSTI)

A methodology for the analysis and design of fall sequences of robots that minimize joint/articulation injuries, and the damage of valuable body parts is proposed. These fall sequences can be activated/triggered by the robot in case of a detected unintentional ... Keywords: Complex humanoid robots simulation, Fall management, Full-body motion control, Humanoid soccer robots, Nao humanoid robots

J. Ruiz-del-Solar; R. Palma-Amestoy; R. Marchant; I. Parra-Tsunekawa; P. Zegers

2009-07-01T23:59:59.000Z

108

Gone Fishing Aquaculture Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Gone Fishing Aquaculture Low Temperature Geothermal Facility Gone Fishing Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Gone Fishing Aquaculture Low Temperature Geothermal Facility Facility Gone Fishing Sector Geothermal energy Type Aquaculture Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

109

Artificial fishes: Physics, locomotion, perception, behavior  

E-Print Network (OSTI)

physics-based modeling Abstract: This paper proposesa framework for animation that can achieve the intricacy of motion evident in certain natural ecosystems with minimal input from the animator. The realistic appearance, movement, and behavior of individual animals, as well as the patterns of behavior evident in groups of animals fall within the scope of the framework. Our approach to emulating this level of natural complexity is to model each animal holistically as an autonomous agent situated in its physical world. To demonstrate the approach, we develop a physics-based, virtual marine world. The world is inhabited by artificial fishes that can swim hydrodynamically in simulated water through the motor control of internal muscles that motivate fins. Their repertoire of behaviors relies on their perception of the dynamic environment. As in nature, the detailed motions of artificial fishes in their virtual habitat are not entirely predictable because they are not scripted. 1

Xiaoyuan Tu; Demetri Terzopoulos

1994-01-01T23:59:59.000Z

110

Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010  

SciTech Connect

In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including four seasonal collections: Spring 2009, Fall 2009, Spring 2010, and Fall 2010. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to bioaccumulation studies, the Spring investigations also included evaluation of fish health and reproductive integrity on the same fish used for bioaccumulation. Two associated reports present the fish health (Adams et al 2012) and reproductive studies (Greeley et al 2012) conducted in 2009 and 2010. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health. This report emphasizes evaluation of arsenic and selenium bioaccumulation in fish and consists of four related studies (Sections 2-5) including, (1) bioaccumulation in liver and ovaries, (2) bioaccumulation in whole body gizzard shad (Dorosoma cepedianum), (3) bioaccumulation in muscle tissue or fillets, and (4) a reconstruction analysis which establishes the relationship between selenium in muscle tissue and that of the whole body of bluegill (Lepomis machrochirus). Metals other than arsenic and selenium are evaluated separately in Section 6. This report focuses on selenium and arsenic for the following reasons: (1) based on baseline studies conducted in early 2009 in the Emory and Clinch River, only two potentially fly-ash related metals, selenium and arsenic, appeared to be elevated above background or reference levels, (2) selenium and arsenic are two of the metals in coal ash that are known to bioaccumulate and cause toxicity in wildlife, and (3) based on bioaccumulation studies of bluegill and carp (Cyprinus carpio) in the Stilling Pond during Spring 2009, which would represent a worst case situation for metal bioaccumulation, selenium and arsenic were the only two metals consistently elevated above background levels in fish. E

Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

2012-05-01T23:59:59.000Z

111

Hatchery Evaluation Report / Lyons Ferry Hatchery - Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Teams (IHOT) Performance Measures : Final Report.  

SciTech Connect

This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Fall Chinook). The audit is being conducted as a requirement of the Northwest Power Planning Council (NPPC) ``Strategy for Salmon`` and the Columbia River Basin Fish and Wildlife Program. Under the audit, the hatcheries are evaluated against policies and related performance measures developed by the Integrated Hatchery Operations Team (IHOT). IHOT is a multi-agency group established by the NPPC to direct the development of new basinwide standards for managing and operating fish hatcheries. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, Montgomery

1996-05-01T23:59:59.000Z

112

Fish elevator and method of elevating fish  

DOE Patents (OSTI)

A means and method for transporting fish from a lower body of water to a higher body of water. The means comprises a tubular lock with a gated entrance below the level of the lower body of water through which fish may enter the lock and a discharge passage above the level of the upper body of water. The fish raising means in the lock is a crowder pulled upward by a surface float as water from the upper body of water gravitationally flows into the closed lock filling it to the level of the upper body. Water is then pumped into the lock to raise the level to the discharge passage. The crowder is then caused to float upward the remaining distance through the water to the level of the discharge passage by the introduction of air into a pocket on the underside of the crowder. The fish are then automatically discharged from the lock into the discharge passage by the out of water position of the crowder. The movement of the fish into the discharge passage is aided by the continuous overflow of water still being pumped into the lock. A pipe may be connected to the discharge passage to deliver the fish to a selected location in the upper body of water.

Truebe, Jonathan (Mirror Lake, NH); Drooker, Michael S. (Sanbornville, NH)

1984-01-01T23:59:59.000Z

113

Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

In 2002 a total of 364 adult fall chinook and 472 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 290 fall chinook and 403 chum samples. The peak redd count for fall chinook was 214. The peak redd count for chum was 776. Peak spawning time for fall chinook was set at approximately 15 November. Peak spawning time for chum occurred approximately 6 December. There were estimated to be a total of 1,881 fall chinook spawning below Bonneville Dam in 2002. The study area's 2002 chum population was estimated to be 4,232 spawning fish. Temperature unit data suggests that below Bonneville Dam 2002 brood bright stock, fall chinook emergence began on February 3 2003 and ended 7 May 2003, with peak emergence occurring 20 April. 2002 brood juvenile chum emergence below Bonneville Dam began 27 January and continued through 6 April 2003. Peak chum emergence took place 1 March. A total of 10,925 juvenile chinook and 1,577 juvenile chum were sampled between the dates of 24 January and 21 July 2003 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2003 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2002 and 2003 the majority of fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock of fall chinook. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration suggests chum spawning and rearing below Bonneville dam are similar to stocks of chum found in Hamilton and Hardy creek and are part of the Lower Columbia River Chum ESU.

van der Naald, Wayne; Clark, Roy; Brooks, Robert (Oregon Department of Fish and Wildlife, Columbia River Section, John Day, OR)

2004-01-01T23:59:59.000Z

114

HANDLING FRESH FISH REFRIGERATION OF FISH -PART 2  

E-Print Network (OSTI)

(Fishery Leaflet 427) Cold-Storage Design and Refrigeration Equipment Part 3 (Fisher y Leaflet 429) FactorsHANDLING FRESH FISH REFRIGERATION OF FISH - PART 2 UNITED STATES DEPARTMENT OF THE INTERIOR FISH 428 Washington 25, D, C. December 1956 REFRIGERATION OF FISH - PART TWO HANDLING FRESH FISH By Charles

115

Primitive Fishing Tackle  

NLE Websites -- All DOE Office Websites (Extended Search)

Fishing Tackle Fishing Tackle Nature Bulletin No. 752-A April 19, 1980 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation PRIMITlVE FISHING TACKLE Fishing is one of man's oldest occupations and the gear used for catching fish has changed but little over the ages. The basic methods in use today -- spearing, trapping, netting and angling -- had their origin among primitive peoples back in prehistoric times. Our modern steel fishhooks have gradually evolved from early crude hooks made from flint, bone, ivory, shell, horn or wood. Thousands of years ago, the Swiss Lake Dwellers and the ancient Egyptians used bronze wire bent into a shape like a youngster's pin hook. Much later some inventive fisherman added a barb to those bronze hooks to hold the fish more securely.

116

Fall 2012 Composite Data Products - Backup Power  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes 15 composite data products (CDPs) produced in Fall 2012 for fuel cell backup power systems.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-10-01T23:59:59.000Z

117

River Falls Municipal Utilities - Business Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will match Focus on Energy incentive to 5,000 Commercial Central AC Tune-Up: 50 LED Exit Signs: Free Installation River Falls Municipal Utility (RFMU) offers a variety of...

118

Cedar Falls Utilities - Residential New Construction Program...  

Open Energy Info (EERE)

Water Heater: Natural Gas 0.67 EF or greater; Electric 0.93 EF or greater Windows: 0.35 U-value or less Program Administrator Cedar Falls Utilities Website http:www.cfu.net...

119

DOE - Office of Legacy Management -- Falls  

Office of Legacy Management (LM)

Texas Texas Falls City, Texas, Disposal Site This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site Data Validation Package-April 2013 Groundwater Sampling Ground Water Compliance Action Plan Long-Term Surveillance Plan for the U.S. Department of Energy Falls City Uranium Mill Tailings Disposal Site Falls City, Texas Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon

120

Gasoline prices continue to fall (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline decreased for the second week in a row to 3.71 a gallon on Monday. That's down...

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gasoline prices continue to fall (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline fell to 3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on...

122

Precipitation Rate and Extinction in Falling Snow  

Science Conference Proceedings (OSTI)

Visible and infrared atmospheric transmittances measured through falling snow have shown a wavelength dependence in which extinction is greater for longer wavelengths. The diffraction component of the energy scattered by the snow crystals causes ...

Mary Ann Seagraves

1984-06-01T23:59:59.000Z

123

CHEMICAL ENGINEERING Fall 2013-Winter 2014  

E-Print Network (OSTI)

ADVANCED CHEMICAL ENGINEERING Fall 2013-Winter 2014 Certificate Program CONTINUING AND PROFESSIONAL EDUCATIONCONTINUING AND PROFESSIONAL EDUCATION #12;About the Advanced Chemical Engineering Certificate Program The new Advanced Chemical Engineering Certificate Program offers professionals in chemi- cal engineering

California at Davis, University of

124

TMS Fall Meeting '99 Registration Form  

Science Conference Proceedings (OSTI)

Nov 4, 1999 ... Focusing on physical metallurgy and materials, the 1999 TMS Fall Meeting will ... Print out this form, complete it, and fax or mail it to the TMS...

125

TMS Fall Meeting '99: General Information  

Science Conference Proceedings (OSTI)

Nov 4, 1999 ... Focusing on physical metallurgy and materials, the TMS Fall ... Don't miss out on this opportunity for a one-year trial membership in TMS and...

126

Quantifying Temperature Effects on Fall Chinook Salmon  

SciTech Connect

The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

Jager, Yetta [ORNL

2011-11-01T23:59:59.000Z

127

Fish-Eating Birds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish-Eating Birds Nature Bulletin No. 307-A May 18, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation...

128

Anglers' fishing problem  

E-Print Network (OSTI)

The considered model will be formulated as related to "the fishing problem" even if the other applications of it are much more obvious. The angler goes fishing. He uses various techniques and he has at most two fishing rods. He buys a fishing ticket for a fixed time. The fishes are caught with the use of different methods according to the renewal processes. The fishes' value and the inter arrival times are given by the sequences of independent, identically distributed (i.i.d.) random variables with the known distribution functions. It forms the marked renewal--reward process. The angler's measure of satisfaction is given by the difference between the utility function, depending on the value of the fishes caught, and the cost function connected with the time of fishing. In this way, the angler's relative opinion about the methods of fishing is modelled. The angler's aim is to have as much satisfaction as possible and additionally he has to leave the lake before a fixed moment. Therefore his goal is to find two...

Karpowicz, Anna

2011-01-01T23:59:59.000Z

129

Acoustic Method for Fish Counting and Fish Sizing in Tanks  

E-Print Network (OSTI)

basis without harm for the fish. Acknowledgments We areregarding the handling of the fish. We also would like toE. , Lagardre, J.P. , 1995. Fish telemetry in aquaculture :

Roux, Philippe; Conti, Stphane; Demer, David; Maurer, Benjamin D.

2005-01-01T23:59:59.000Z

130

Fish, fishing, diving and the management of coral reefs  

E-Print Network (OSTI)

things? What is the largest fish you ever caught in a trap?Year? What is the largest fish you ever caught with line?Kg? Year? What is the largest fish you ever caught with

Johnson, Ayana Elizabeth

2011-01-01T23:59:59.000Z

131

Acoustic Method for Fish Counting and Fish Sizing in Tanks  

E-Print Network (OSTI)

A-123: 3.01.20042.28.2005 Acoustic Method for Fish Countingand Fish Sizing in Tanks W.A. Kuperman and Philippe Rouxlower the costs of raising fish to marketable size. Water,

Kuperman, William A.; Roux, Philippe

2004-01-01T23:59:59.000Z

132

Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.  

DOE Green Energy (OSTI)

In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

Vreeland, Robert R.

1989-10-01T23:59:59.000Z

133

BLM Twin Falls District Office | Open Energy Information  

Open Energy Info (EERE)

Twin Falls District Office Jump to: navigation, search Name BLM Twin Falls District Office Address 2536 Kimberly Road Place Twin Falls, ID Zip 83301 Phone number 208-735-2060...

134

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found t

Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

2009-03-02T23:59:59.000Z

135

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2002, a total of 2,877,437 fish weighing 47,347 pounds were released from the three acclimation facilities. The total includes 479,358 yearling fish weighing 33,930 pounds and 2,398,079 sub-yearling fish weighing 19,115 pounds. This is the largest number of fish ever released in one year from the acclimation facilities.

McLeod, Bruce

2003-01-01T23:59:59.000Z

136

Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

In 2003 a total of 253 adult fall chinook and 113 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 221 fall chinook and 109 chum samples. The peak redd count for fall chinook was 190. The peak redd count for chum was 262. Peak spawning time for fall chinook was set at approximately 24 November. Peak spawning time for chum occurred approximately 24 November. There were estimated to be a total of 1,533 fall chinook spawning below Bonneville Dam in 2003. The study area's 2003 chum population was estimated to be 688 spawning fish. Temperature unit data suggests that below Bonneville Dam 2003 brood bright stock, fall chinook emergence began on January 6, 2004 and ended 28 April 2004, with peak emergence occurring 13 April. 2003 brood juvenile chum emergence below Bonneville Dam began 22 February and continued through 15 April 2004. Peak chum emergence took place 25 March. A total of 25,433 juvenile chinook and 4,864 juvenile chum were sampled between the dates of 20 January and 28 June 2004 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2004 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2003 all of the fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration suggests chum spawning and rearing below Bonneville dam are similar to stocks of chum found in Hamilton and Hardy creek and are part of the Lower Columbia River Chum ESU.

van der Naald, Wayne; Duff, Cameron; Brooks, Robert (Oregon Department of Fish and Wildlife, Columbia River Section, John Day, OR)

2005-01-01T23:59:59.000Z

137

One Fish, Two Fish, Small Fish, Huge Fish: Utilizing Zebrafish as a Model for Studying Mitochondrial Function  

E-Print Network (OSTI)

353-367 Laelle, H. (1977) J Fish Biol 10, 121-174 Koerber,arrow). (I) The heart rates of MitoBloCK-6 treated fish andmorpholino-injected fish were markedly reduced compared with

Johnson, Meghan Elizabeth

2012-01-01T23:59:59.000Z

138

Climate Variability, Fish, and Fisheries  

Science Conference Proceedings (OSTI)

Fish population variability and fisheries activities are closely linked to weather and climate dynamics. While weather at sea directly affects fishing, environmental variability determines the distribution, migration, and abundance of fish. ...

P. Lehodey; J. Alheit; M. Barange; T. Baumgartner; G. Beaugrand; K. Drinkwater; J.-M. Fromentin; S. R. Hare; G. Ottersen; R. I. Perry; C. Roy; C. D. van der Lingen; F. Werner

2006-10-01T23:59:59.000Z

139

Pages that link to "American Falls, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "American Falls, Idaho" American Falls, Idaho Jump to: navigation, search What links here Page: American...

140

Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline Exports...

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline...

142

2000 TMS Fall Extraction and Process Metallurgy Meeting  

Science Conference Proceedings (OSTI)

TMS Logo. 2000 TMS Fall Extraction and Process Metallurgy Meeting: New Technologies for the Next Millennium. 2000 TMS FALL EXTRACTION AND...

143

2000 TMS Fall Extraction and Process Metallurgy Meeting: US Air  

Science Conference Proceedings (OSTI)

TMS Logo. 2000 TMS Fall Extraction and Process Metallurgy Meeting: U.S. Airways. 2000 TMS FALL EXTRACTION AND PROCESS METALLURGY MEETING:...

144

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Handled: Radiological Survey(s): Site Status: Also see Falls City, Texas, Disposal Site Documents Related to Falls City Mill Site Data Validation Package for...

145

2000 TMS Fall Meeting: Technical Events and Sessions  

Science Conference Proceedings (OSTI)

TMS Logo. 2000 TMS Fall Meeting: Technical Events & Sessions. October 812, 2000 TMS FALL MEETING 2000 St. Louis, Missouri. Focusing on physical...

146

Fish at Night  

NLE Websites -- All DOE Office Websites (Extended Search)

at Night at Night Nature Bulletin No. 264-A April 8, 1967 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F, Eisenbeis, Supt. of Conservation FISH AT NIGHT Most people take it for granted that fish are creatures of perpetual motion and go swimming day and night. On the contrary, it appears that each kind has a rather definite daily routine with certain hours for quiet rest or sleep, and other hours for moving about in search of food. As a rule, fish active in daylight rest at night as if they were asleep. Sometimes they lean against rocks, with their fins folded, or creep into holes and among vegetation. Fish scientists have learned that almost every kind of fish makes regular daily trips between shallow and deep water. Lampreys, suckers, smelt, redhorses, wall-eyed pike and a few other kinds are known to make their spawning migrations and lay their eggs at night.

147

Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.  

DOE Green Energy (OSTI)

This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

Rondorf, Dennis W.; Miller, William H.

1993-07-01T23:59:59.000Z

148

China's forest products trade falls nearly 18% China's forest products trade falls nearly 18%  

E-Print Network (OSTI)

China's forest products trade falls nearly 18% China's forest products trade falls nearly 18% 11/08/2009 - 09:05 According to China's latest Customs statistics, foreign trade of China's forest products in the first five months showed a year-on-year general downturn. The total value of foreign trade of China

149

Fall 2005 Meeting of the ASA  

Gasoline and Diesel Fuel Update (EIA)

6 Meeting of the 6 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you may find unedited transcripts of EIA's fall 2006 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings may be found to the right of the Thursday and Friday transcripts. The public meeting took place October 6 and 7, 2006 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All of the plenary and two of the break-out sessions were in 8E-089. The two remaining break-out sessions were in 5E-069. The fall meeting agenda, papers, presentation slides and other materials

150

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Klamath Falls Geothermal Area Klamath Falls Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Klamath Falls Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.23333333,"lon":-121.7666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

REDUCTION OF THE MOMENTUM OF FALLING BODIES  

DOE Patents (OSTI)

A means for catching free falling bodies that may be damaged upon impact is given. Several layers of floating gas-filled rubber balls are contained within a partially compartmented tank of liquid. The compartment extends from beneath the surface of the liquid to that height necessary to contain the desired number of layers of the balls. The balls and the liquid itself break the force of the fall by absorbing the kinetic energy of falling body. The body may then be retrieved from the floor of the tank by a rake that extends from outside of the tank through the free surface area and underneath the compartment wall. This arrangement is particularly useful in collecting irradiated atomic fuel rods that are discharged from a reactor at considerable height without damaging the thin aluminum jacket of the rods.

Kendall, J.W.; Morrison, I.H.

1954-09-21T23:59:59.000Z

152

Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.  

DOE Green Energy (OSTI)

Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

Rondorf, Dennis W.; Tiffan, Kenneth F.

1994-12-01T23:59:59.000Z

153

Study of falling-jet flash evaporators  

DOE Green Energy (OSTI)

Experimental results of flash evaporation from sheets of water, 3.2 mm and 6.3 mm thick and 27.9 cm wide, falling freely in the presence of their own vapor, are reported. With no flashing the jets fall in coherent sheets, but with flashing the jets were observed to spread and break up into droplets. Flashing was characterized by an effectiveness parameter, which was found to increase with increasing water temperature and jet length. Variations in water flow rate and heat flux did not influence the effectiveness appreciably.

Kreith, F.; Olson, D.A.; Bharathan, D.; Green, H.J.

1982-11-01T23:59:59.000Z

154

The Growth of Fishes  

NLE Websites -- All DOE Office Websites (Extended Search)

Growth of Fishes Growth of Fishes Nature Bulletin No. 272-A June 3, 1967 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F, Eisenbeis, Supt. of Conservation THE GROWTH OF FISHES Baby fish, by the millions, are hatching now every day in our lakes, streams and ponds. Some kinds come from eggs sown broadcast among water plants; others from eggs laid in clusters or nests; some from masses of eggs hidden in underwater holes; while the eggs of many little fish, such as minnows and darters, are attached in neat patches to the underside of rocks or sunken logs. For some time before hatching, the young fish can be seen wriggling inside the eggs. Newly hatched baby fish -- or fry, as they should be called -- look much alike, regardless of the size or appearance of their parents. Each is almost transparent except for the large dark eyes and a bulging stomach which encloses yolk from the egg. Under a magnifying glass, the pumping red heart can be seen and the mouth gulping water. The tiny fins are beginning to form, a few dots of dark pigment may show in the skin, but there is little or no sign of scales. They vary from an eighth to a half inch or more in length, depending upon the species and the size of the egg.

155

Mercury and Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Fish Mercury and Fish Name: donna Location: N/A Country: N/A Date: N/A Question: how does mercury get into fish in rivers. what is the ecological process involved which could produce toxic levels of mercury in fish and eventually get into humans? Replies: Hi Donna! Nowadays mercury or its compounds are used at a high scale in many industries as the manufacture of chemicals, paints, household itens, pesticides and fungicides. These products can contaminate humans (and mamals) by direct contact, ingestion or inhalation. Besides the air can become contaminated also, and since mercury compounds produce harmful effects in body tissues and functions, that pollution is very dangerous. Now for your question: Efluent wastes containing mercury in various forms sometimes are dropped in sea water or in rivers or lakes. There the mercury may be converted by bacteria, that are in the muddy sediments, into organic mercurial compounds particularly the highly toxic alkyl mercurials ( methyl and di-methyl mercury), which may in turn be concentrated by the fishes and other aquatic forms of life that are used as food by men. The fishes dont seem to be affected but they are able to concentrate mercury in high poisoning levels, and if human beings, mamals or birds eat these containing mercury fishes, algae, crabs or oysters they will be contaminated and poisoned.

156

EIS-0312: Fish & Wildlife Implementation Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Fish & Wildlife Implementation Plan 2: Fish & Wildlife Implementation Plan EIS-0312: Fish & Wildlife Implementation Plan SUMMARY In this final environmental impact statement (FEIS), with the benefit of public comment and participation, BPA has developed and proposes a Preferred Alternative (PA 2002) that substantially combines elements of the Weak Stock and Sustainable Use alternatives and that falls within the established range of potential Policy Direction alternatives. This FEIS evaluates the environmental consequences of BPA's implementation and funding of sample actions that could emerge from any of the Policy Directions. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 26, 2012 EIS-0312: Notice of Availability of the Bonneville Power Administration

157

20 Summer/Fall 2012 Children and Libraries Author is ......  

E-Print Network (OSTI)

- garten. Sobering evidence from multiple sources indicates that children who fall behind in reading

158

Fall 2011 Composite Data Products: National FCEV Learning Demonstration  

DOE Green Energy (OSTI)

This technical presentation describes Fall 2011 composite data products: national FCEV learning demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2011-11-01T23:59:59.000Z

159

Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.  

Science Conference Proceedings (OSTI)

This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

Tiffan, Kenneth F.; Rondorf, Dennis W.

2001-01-01T23:59:59.000Z

160

California Environmental Law & Policy Issues (Fall 2008)  

E-Print Network (OSTI)

Law 273.71 California Environmental Law & Policy Issues (Fall 2008) Units: 2 CCN (2Ls/3Ls): 49696:00 a.m.-12:00 p.m. Instructor's Profile: Mr. Frank is the Executive Director of the California Center from the University of California at Davis in 1974. Following positions as a staff attorney

Kammen, Daniel M.

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The rise and fall of surfactants lore  

Science Conference Proceedings (OSTI)

Significant changes have occurred in the surfacThe rise and fall of surfactants lore tants industry in the past 30 years, both in terms of what we consider to be important and in the paradigms that we operate under. The following discussion highlights my v

162

Better Plants Fall 2013 Progress Update  

Energy.gov (U.S. Department of Energy (DOE))

The Fall 2013 Progress Update chronicles the Better Buildings Programs efforts to capture these cost-effective, energy-saving opportunities and demonstrate that strong energy management practices are good for business, good for the economy, and good for the environment.

163

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering Thermodynamics 3 CHEG 325

Lee, Kelvin H.

164

Ice Fall Doctors 6, Long Conversation  

E-Print Network (OSTI)

Ang Nima and Ang Kami discuss different elements of their lives as Ice Fall Doctors: what they like about the job; safety; what their wives think of the work; religion and how it keeps them safe in the ice; spirits in the Icefall and the surrounding...

Loomis, Molly

165

Book reviews, Fall 2011 Christian P. Robert  

E-Print Network (OSTI)

Book reviews, Fall 2011 Christian P. Robert Universit´e Paris-Dauphine, CEREMADE, IUF, and CREST of three book reviews of Lange (2010), Vasishth and Broe (2011), and Stephenson (2008), respectively is irrelevant." (page iii) I had missed the first edition of this book and thus I started reading

Paris-Sud XI, Université de

166

Fish in electrical storms  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish in electrical storms Name: Kelly A Krugeger Age: NA Location: NA Country: NA Date: NA Question: I have always been told to stay out of water during an electrical storm...

167

Continental Shelf Fishing  

NLE Websites -- All DOE Office Websites (Extended Search)

Location: NA Country: NA Date: NA Question: Why do most commercial fisherman don't fish beyond the continental shelf? Replies: The deep waters of the ocean offer little food...

168

Fish and Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish and Temperature Name: Christopher Location: NA Country: NA Date: NA Question: Dear Sirs, I am doing a project on a sand tiger shark and i was wondering if temperature...

169

Fish, Weather and People  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish, Weather and People Fish, Weather and People Nature Bulletin No. 241-A October 22, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation FISH, WEATHER AND PEOPLE. Fishing can be one of the cheapest and most satisfying forms of recreation for people of all ages and both sexes. The proudest moment for many a boy is when he comes home with a big catfish or a string of bluegills caught with a can of worms for bait, and a cane pole or a willow cut from a thicket. Fishing can also be an expensive sport when the fisherman, laden with gadgets and high-priced tackle, journeys long distances to northern waters. The time of year, the sign of the moon, the barometric pressure, the direction and velocity of wind, rainfall, the amount of fishing and other conditions are some of the reasons given by credulous fisherman to bolster up their alibis. None of them can be proved. We do know that, in general, in the streams, ponds and inland lakes of Illinois, the principal fish caught in early spring are bullheads and, after them, the crappies. In summer the catches are mostly bluegills and largemouth black bass. In autumn, often, we again get good strings of crappies. But beyond that, as far as we know, in only one body of water has there been kept sufficient records over a long term of years, and a scientific study of such records, to throw any light upon the theories about why and when fish bite or don't bite.

170

Fish Protection Technology Manual  

Science Conference Proceedings (OSTI)

This report provides an updated review of the state of knowledge on fish protection technologies for use at power plant cooling water intake structures (CWISs) to meet requirements of 316(b) of the Clean Water Act (CWA). While it is not possible to know with certainty how the 316(b) Final Rule will look (it is scheduled to be issued on or before June 27, 2013), it is anticipated that power generating facilities will have some flexibility in selecting fish protection technologies. The ...

2013-02-12T23:59:59.000Z

171

Fish Scales and Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish Scales and Science Fish Scales and Science Name: Amanda Location: N/A Country: N/A Date: N/A Question: In special education class.Science project time.Topic choosen is HOW DO SCALES HELP FISH? Any suggestions or information would be of help. Replies: Wait a minute. Why do you think the scales help the fish? How do you know they do? Have you talked to a fish lately? Maybe they are useless, or even a problem. Maybe the fish wishes it didn't have scales! I say this only to emphasize two things: First of all, when you think scientifically, the MOST IMPORTANT thing is to be very careful not to assume you know something when you really don't. What I mean by that is: don't think you know the answer before you are dead positive absolutely for-sure 100% certain that you do. Why? Why make a big fuss over being so very careful? Well, I hate to tell you this (but you probably already know it), it's just SO EASY for human beings to fool themselves, to think they know the answers when they really don't know AT ALL what they are talking about. If you have a brother or sister, you know EXACTLY what I mean, I expect.

172

MACM 202 Assignment 5, Fall 2005 - CECM  

E-Print Network (OSTI)

Michigan 4.9. 158. Erie. 0.46. 175. Ontario. 1.6. 209. 2. Let x(t) denote a fish population at time t. Consider models of the form x (t) = G(x) ? H(x, t) where G(x)...

173

Improved techniques for studying the temporal and spatial behavior of fish in a fixed location  

E-Print Network (OSTI)

. Special Scientific Report--Fisheries Number 179. United States Fish and Wildlife Service, Washington, DC (Timko et al., 2001), Cowlitz Falls Dam on the Cowlitz River, and Chittendon Locks on the Washington Ship. Each vertical scan in the plot shows the detected arrivals in a time window equal to the programmed

174

Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River.  

DOE Green Energy (OSTI)

Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat.

Geist, David R.

2001-10-01T23:59:59.000Z

175

Developing an Instrument for Counting Fish Eggs  

E-Print Network (OSTI)

anchovy (Engraulis mordax) eggs. Fish. Oceanogr. In Press.Cummings. 1997. A continuous, underway fish egg sampler.Fish. Oceanogr. 6(2):5873). Biologist David Checkley

Checkley, David

2004-01-01T23:59:59.000Z

176

More Supply Possible This Fall than Forecast  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: Increased distillate fuel production sure seems to explain some of the January 2001 stock increase. This graph shows the distillate yield pattern over the 1990's. Generally yields rise in the fall to build stocks for winter distillate use. On average, the yield during the fourth quarter is about 2% higher than the average of the lowest yield months of June, July and August. (Recognize that a 1% change in yield is about a 150 MB/D change in distillate production, which is about 4% of winter demand.) During the fall of 1996, the winter season began with very low stocks, but refiners pushed yields to very high levels and regained some of the lost ground. As we saw earlier, we entered last winter in a similar situation as 1996 with low stock levels. At last year's SHOPP conference, Joanne Shore

177

Why are gasoline prices falling so rapidly?  

Gasoline and Diesel Fuel Update (EIA)

Why are gasoline prices falling so rapidly? Why are gasoline prices falling so rapidly? As of October 29, 2001, the national average retail price of regular gasoline was $1.235 per gallon, its lowest level since November 8, 1999 (Figure 1). The average price has fallen 29 cents in 6 weeks since September 17, with further declines perhaps to come. The sharpest decline has been in the Midwest (Petroleum Administration for Defense District 2), where the average has dropped 57 cents in 8 weeks since Labor Day (September 3). Additionally, this decline comes on the heels of a 33-cent drop in the national average in 10 weeks from Memorial Day through August 6, interrupted only by a brief 17-cent rise in August. In total, the national average retail gasoline price has fallen nearly 48 cents from its peak on May 14. This is already the widest one-year range in retail prices

178

cctoday_fall_2005_Final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

491 * ISSUE NO. 64, FALL 2005 491 * ISSUE NO. 64, FALL 2005 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEW DOE PROGRAM TO ADVANCE FUEL CELL CENTRAL POWER STATIONS Recent advances in technology have precipitated movement of fuel cells into the central power arena in support of FutureGen - coal-based central power plants capable of co-producing electricity and clean fuels (including hydrogen), enabling carbon sequestration, and producing near-zero emis- sions. While the initial focus of the Offi ce of Fossil Energy (FE) stationary fuel cell research and development program has been on distributed genera- tion applications, the strategy has always included eventual integration with central power plants. The central power element of the strategy is now being implemented under the Fuel Cell Coal-Based Systems program.

179

Great Falls lineament, Idaho and Montana  

Science Conference Proceedings (OSTI)

The name Great Falls lineament is given to a northeast-trending zone of diverse geologic features that can be traced northeastward from the Idaho batholith in the cordilleran miogeocline of the United States, across thrust belt structures and basement rocks of west-central and southwestern Montana, through the cratonic rocks of central Montana, and into southwesternmost Saskatchewan, Canada. The zone is well represented in east-central Idaho and west-central Montana where geologic mapping has outlined northeast-trending, high-angle faults and shear zones that: (1) extend more than 150 km (93 mi) from near Salmon, Idaho, northeastward toward Anaconda, Montana; (2) define a nearly continuous zone of faulting that shows recurrent movement from middle Proterozoic to Holocene time; (3) controlled the intrusion and orientation of some Late Cretaceous to early Tertiary batholithic rocks and early Tertiary dike swarms; and (4) controlled the uplift and orientation of the Anaconda-Pintlar Range. The boundary is also characterized by: high-angle faults, shear zones, and topographic lineaments; pronounced linear gravity and magnetic anomalies; igneous intrusions; and fault controlled depositional patterns and mineralization. That the Great Falls lineament is controlled by a similar Precambrian boundary between the Archean Wyoming province of southwestern Montana and early Proterozoic terrane to the north is speculative; however, the geologic features found along the Great Falls lineament share many common characteristics with features present along the Archean-Proterozoic boundary in Canada.

O'Neil, J.M.; Lopez, D.A.

1983-08-01T23:59:59.000Z

180

Fishing | OpenEI  

Open Energy Info (EERE)

Fishing Fishing Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three datasets: electricity energy balance (2005 - 2009), electricity market snapshot (2009), and market competition statistics (2004 - 2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago) Keywords Agriculture Commercial electricity demand electricity supply Fishing Forestry Industrial Residential Data application/vnd.ms-excel icon Electricity Energy Balance (2005 - 2009) (xls, 42.5 KiB) application/vnd.ms-excel icon Electricity Market Snapshot (2009) (xls, 49.7 KiB) application/vnd.ms-excel icon Market Competition Statistics (xls, 46.1 KiB)

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

BLM Idaho Falls District Office | Open Energy Information  

Open Energy Info (EERE)

Falls District Office Address 1405 Hollipark Drive Place Idaho Falls, ID Zip 83401 Phone number 208-524-7500 Website http:www.blm.govidstenin References Office Directory1...

182

AWEA Wind Energy Fall Symposium | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Fall Symposium AWEA Wind Energy Fall Symposium November 6, 2013 8:00AM EST to November 8, 2013 5:00PM EST Colorado Springs, Colorado To learn about the Symposium, visit...

183

Test 2 PURE MATHEMATICS 2320 Fall 2001 Name MUN Number  

E-Print Network (OSTI)

Test 2 PURE MATHEMATICS 2320 Fall 2001 Name MUN Number Marks [9] 1. Let A = f1; 2; 3; 4; 5; 10; 11 that (A; #22;) is a poset. (this question continues...) #12; Pure Mathematics 2320 {2{ Test 2, Fall 2001(s)? iii. minimum element(s)? iv. minimal element(s)? #12; Pure Mathematics 2320 {3{ Test 2, Fall 2001 [4

deYoung, Brad

184

Experiments with computer vision methods for fall detection  

Science Conference Proceedings (OSTI)

The goal of a fall detection system is to automatically detect cases where a human falls and may have been injured. A natural application of such a system is in home monitoring of patients and elderly persons, so as to automatically alert relatives and/or ... Keywords: Gaussian model, fall detection, non-parametric model

Zhong Zhang; Eric Becker; Roman Arora; Vassilis Athitsos

2010-06-01T23:59:59.000Z

185

01_fall_rev1.p65  

NLE Websites -- All DOE Office Websites (Extended Search)

China Meeting on Fossil R&D China Meeting on Fossil R&D ..... 1 News Bytes ................................... 1 DOE CCT Conference ................... 2 Sequestration Conference ............ 3 APFBC Repowering ...................... 4 R&D Milestones ........................... 6 Thermal Barrier Coatings .............. 7 Mined Land a Carbon Sink ........... 8 Upcoming Events .......................... 8 UCR Advances Coal Science ....... 9 NAS Validates FE R&D .............. 10 Lasers to Enhance Gasifiers ....... 11 International Initiatives ............... 12 Status of CCT Projects ................ 14 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOE/FE-0215P-46 ISSUE NO. 46, FALL 2001 See "News Bytes" on page 5 ...

186

04_fall_CCToday_AAs_fixed.pmd  

NLE Websites -- All DOE Office Websites (Extended Search)

Wabash Coal-Fired Fuel Cell Wabash Coal-Fired Fuel Cell ...... 1 News Bytes .................................... 1 Hydrates Capture CO 2 ................... 3 Controlling Zebra Mussels ............ 4 Upcoming Events ........................... 5 Mercury Speciation Data ............... 6 Advanced Membranes ................... 7 Internship Program ......................... 9 International Initiatives ................ 10 Status Report ............................... 14 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOE/FE-0476* ISSUE NO. 59, FALL 2004 See "News Bytes" on page 9... See "Wabash" on page 2 ... WORLD'S LARGEST CLEAN COAL-POWERED FUEL CELL A FuelCell Energy, Inc. (FCE) 2-megawatt (MW) carbonate fuel cell -

187

Fish passage and protection  

DOE Green Energy (OSTI)

This report consists of reprints on fish passage and protection topics from: American Fisheries Society; American Society of Civil Engineers; Harza Engineering Company; Hydro Review Magazine; Idaho National Engineering Laboratory; Independent Energy Magazine; National Hydropower Association; Northwest Hydroelectric Association; United States Army Corps of Engineers; United States Committee on large dams; and the United States Department of the Interior.

Rinehart, B.N.

1993-11-01T23:59:59.000Z

188

Idaho Falls Power - Commercial Energy Conservation Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Falls Power - Commercial Energy Conservation Loan Program Idaho Falls Power - Commercial Energy Conservation Loan Program Idaho Falls Power - Commercial Energy Conservation Loan Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate General: $50,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount General: up to $50,000 Provider Idaho Falls Power Idaho Falls Power is offering a zero interest loan program to qualifying commercial customers to install efficient lighting and other energy

189

River Falls Municipal Utilities - Renewable Energy Finance Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program < Back Eligibility Residential Savings Category Other Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Wisconsin Program Type PACE Financing Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU) offers loans of $2,500 - $50,000 to its residential customers for the installation of photovoltaic (PV), solar thermal, geothermal, wind electric systems. The program will also support the installation of energy efficiency measures in connection with a qualifying renewable energy project, provided that the renewable energy

190

Freshwater fish in salt water  

NLE Websites -- All DOE Office Websites (Extended Search)

Freshwater fish in salt water Freshwater fish in salt water Name: Shannon Location: N/A Country: N/A Date: N/A Question: What would actually happen if a fresh water fish had to live in salt water? Replies: For most fish, they would die. But some, like eels and salmon, can move freely between the two at certain stages of their lives. To do this they have special mechanisms of excretion and absorption of salt and water. --ProfBill If you put a freshwater fish into saltwater, most fish would lose weight (from losing water from its body) and eventually die. Approximately 2% of all 21000 species of fish actually move from freshwater to saltwater or from salt to fresh at some point in their lives, the move would kill any other fish. But even with these special varieties of fish, the move must be gradual so their bodies can adjust, or they too, will die from the change. If you want to learn more about why the freshwater fish will lose water, (or why a saltwater fish in freshwater would gain water), look up the words "diffusion" and "osmosis"

191

Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics  

E-Print Network (OSTI)

systems and rock fall source and impact areas, it possible to a rock fall source area in the possible to a rock fall source area. There are

Zimmer, Valerie Louise

2011-01-01T23:59:59.000Z

192

Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.  

DOE Green Energy (OSTI)

In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish ({approx}95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging. Detection probabilities of radio-tagged subyearlings were generally high ranging from 0.60 (SE=0.22) to 1.0 (SE=0) in the different study reaches and months. Lower detection probabilities were observed in the confluence and upper reservoir reaches where fewer fish were detected. Detection probabilities of acoustic-tagged subyearlings were also high and ranged from 0.86 (SE=0.09) to 1.0 (SE=0) in the confluence and upper reservoir reaches during August through October. Estimates of the joint probability of migration and survival generally declined in a downstream direction for fish released from June through August. Estimates were lowest in the transition zone (the lower 7 km of the Clearwater River) for the June release and lowest in the confluence area for July and August releases. The joint probability of migration and survival in these reaches was higher for the September and October releases, and were similar to those of fish released in May. Both fish weight and length at tagging were significantly correlated with the joint probability of migrating and surviving for both radio-tagged and acoustic-tagged fish. For both tag types, fish that were heavier at tagging had a higher probability of successfully passing through the confluence (P=0.0050 for radio-tagged fish; P=0.0038 for acoustic-tagged fish). Radio-tagged fish with greater weight at tagging also had a higher probability of migrating and surviving through both the lower free-flowing reach (P=0.0497) and the transition zone (P=0.0007). Downstream movement rates of radio-tagged subyearlings were highest in free-flowing reaches in every month and decreased considerably with impoundment. Movement rates were slowest in the transition zone for the June and August release groups, and in the confluence reach for the July release group. For acoustic-tagged subyearlings, the slowest movement rates through the confluence and upper reservoir reaches were observed for the September release group. Radio-tagged fish released in August showed the greatest delay in the transition zone, while acoustic-tagged fish released in September showed the greatest delay in the transition zone and confluence reaches. Across the monthly release groups from July through September, the probability of delaying in the transition zone and surviving there declined throughout the study. All monthly release groups of radio-tagged subyearlings showed evidence of mortality within the transition zone, with final estimates (across the full 45-d detection period) ranging from 0.12 (SE not available) for the May release group to 0.58 (SE = 0.06) for the June release group. The May and September release groups tended to have lower mortality in the transition zone than the June, July, and August release groups. Live fish were primarily detected away from shore in the channel, whereas all dead fish were located along shorelines with most being located in the vicinity of the Memorial Bridge and immediately upstream. During the May detection period, before the implementation of summer flow augmentation, temperatures in the Clearwater River and Snake River arms of Lower Granite Reservoir and the downstream boundary of the confluence ranged from 8 to 17 C. During the June-August detection periods, however, temperatures in

Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

2009-08-21T23:59:59.000Z

193

ARM - Field Campaign - Fall 1997 Aerosol IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol IOP Aerosol IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the Gulfstream-1 aircraft flying clear-sky aerosol missions over the Central Facility to study the effect of aerosol loading on clear sky radiation fields, with weather particularly favorable for these flights during the first and third weeks of the IOP. A secondary but important goal of this IOP was to fly cloudy-sky missions over the Central Facility to study the effect of aerosol loading on cloud microphysics, and the effect of the microphysics on cloud optical properties. The Gulfstream obtained aerosol data in support of some of the

194

ARM - Field Campaign - Fall 1995 UAV IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

UAV IOP UAV IOP Campaign Links ARM UAV Program Science Plan Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1995 UAV IOP 1995.09.01 - 1995.09.30 Lead Scientist : John Vitko For data sets, see below. Description ARESE, the ARM Enhanced Shortwave Experiment, concluded a very successful deployment to Oklahoma on November 1, 1995. The purpose of this five week long campaign was to conduct a series of instrumented flights to measure the interaction of solar energy with clear and cloudy skies to provide additional insight into recent observations of enhanced absorption in cloudy atmospheres.As such, ARESE focused on two scientific objectives: (1) the direct measurement of the absorption of solar radiation by clear

195

ARM - Field Campaign - Fall 1997 Shortwave IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortwave IOP Shortwave IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Shortwave IOP 1997.09.15 - 1997.10.05 Lead Scientist : Graeme Stephens For data sets, see below. Summary The Shortwave Radiation IOP, the first in a series of three such IOPs, was devoted to exploring the measurement of broadband and spectral radiation with an array of ground-based ARM and guest instrumentation, including the RCF suite, and with airborne radiometric sensors on all of the IOP aircraft. Whereas much of the debate on solar radiative transfer has centered on the topic of clouds, there are also a significant number of issues related to clear sky transfer that this IOP hoped to address. Two key aspects of the underlying problem relate to the baseline measurement of solar radiation

196

Cedar Falls Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Cedar Falls Utilities Place Iowa Utility Id 3203 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All-Electric Residential Service Residential Demand Space Heating Service Commercial Electric Street Lighting Service Lighting

197

Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day and McNary Dams; 1999-2000 Annual Report.  

DOE Green Energy (OSTI)

This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1999 to 30 September 2000. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates.

van der Naald, Wayne; Spellman, Bryant; Clark, Roy (Oregon Department of Fish and Wildlife, Portland, OR)

2001-10-01T23:59:59.000Z

198

Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume VIII; New Model for Estimating Survival Probabilities and Residualization from a Release-Recapture Study of Fall Chinook Salmon Smolts in the Snake River, 1995 Technical Report.  

SciTech Connect

Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake River fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging.

Lowther, Alan B.; Skalski, John R. (University of Washington, School of Fisheries, Fisheries Research Institute, Seattle, WA)

1997-09-01T23:59:59.000Z

199

Category:International Falls, MN | Open Energy Information  

Open Energy Info (EERE)

MN MN Jump to: navigation, search Go Back to PV Economics By Location Media in category "International Falls, MN" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVFullServiceRestauran... 88 KB SVHospital International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVHospital Internation... 84 KB SVLargeHotel International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVLargeHotel Internati... 85 KB SVLargeOffice International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVLargeOffice Internat... 83 KB SVMediumOffice International Falls MN Northern States Power Co (Minnesota) Excel Energy.png

200

Fall and Winter Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips October 21, 2013 - 8:44am Addthis Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. This article will help you find strategies to help you save energy during the cool fall and cold winter months. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the winter. If you haven't already, conduct an energy assessment to find out where you

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fall and Winter Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips October 21, 2013 - 8:44am Addthis Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. This article will help you find strategies to help you save energy during the cool fall and cold winter months. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the winter. If you haven't already, conduct an energy assessment to find out where you

202

How Will You Save Energy This Fall? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will You Save Energy This Fall? Will You Save Energy This Fall? How Will You Save Energy This Fall? September 10, 2009 - 3:00am Addthis While summer is officially in full swing until later this month, Labor Day has come and gone and-for many Americans-the fall season has unofficially started. Fewer hours of sunlight and cooler temperatures mean you may already be thinking about how you'll save energy this fall. How will you save energy this fall? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Do You Save Energy in Your Apartment or Rental? How Should Energy Savers Use Facebook? How Do You Light Your Home Efficiently

203

Saving Energy as a Renter this Fall | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy as a Renter this Fall Saving Energy as a Renter this Fall Saving Energy as a Renter this Fall September 19, 2013 - 9:38am Addthis If you live in an apartment, you can still take some energy-saving steps this fall. | Photo courtesy of ©iStockphoto.com/buzbuzzer If you live in an apartment, you can still take some energy-saving steps this fall. | Photo courtesy of ©iStockphoto.com/buzbuzzer Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program How can I participate? Take some small actions, like using fans and unplugging electronics, to save energy this fall. A couple of weeks ago, my friend Rutherford told me that this month's electric bill for his three-bedroom apartment was $300. It was August, so I'm sure that was part of it, but, still - $300 for just one month?

204

Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1991 Annual Report.  

DOE Green Energy (OSTI)

The Umatilla habitat improvement program targets the improvement of water quality and restoration of riparian areas, holding, spawning,and rearing habitats of steelhead, spring and fall Chinook and coho salmon. This report covers work accomplished by the Confederated Tribes of the Umatilla Indian Reservation from April 1991 through May 1992. This program is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (Measure 704 (d)(1) 34.02) as partial mitigation for construction of hydroelectric dams and the subsequent losses of anadromous fish throughout the Columbia River system.

Scheeler, Carl A.

1993-01-01T23:59:59.000Z

205

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

206

American Falls, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon American Falls, Idaho: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

207

DOE - Office of Legacy Management -- Niagara Falls Storage Site...  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

208

The rise and fall of presidential power in Iran.  

E-Print Network (OSTI)

??This project explores the power dynamics within the Iranian political system, asking what accounts for the rise and fall of a president's power relative to (more)

Jacobsen, Donavan.

2008-01-01T23:59:59.000Z

209

Big Falls, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigFalls,Wisconsin&oldid227753" Categories: Places Stubs Cities What links here Related...

210

Big Falls, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigFalls,Minnesota&oldid227752" Categories: Places Stubs Cities What links here Related...

211

DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Ore Stockpile - TX 04A FUSRAP Considered Sites Site: Falls City Uranium Ore Stockpile (TX.04A ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations:...

212

Idaho Falls Power- Commercial Energy Conservation Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

In addition to loan programs, Idaho Falls Power offers rebates for customers meeting certain criteria. An energy audit will inspect the following measures and recommend upgrades as needed:...

213

,"International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

214

Oak Ridge Reservation Fishes (2006)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge Reservation Fishes (2006) 1 Family 2 Genus Species Common Name Petromyzontidae Ichthyomyzon castaneus Girard Chestnut lamprey Polyodontidae Polyodon spathula (Walbaum)...

215

Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.  

DOE Green Energy (OSTI)

Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2001 fishing season has been especially successful with great fishing for both rainbow and kokanee throughout Lake Roosevelt. The results of the Two Rivers Fishing Derby identified 100 percent of the rainbow and 47 percent of the kokanee caught were of hatchery origin.

Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

2002-01-01T23:59:59.000Z

216

Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging  

SciTech Connect

Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to Department of Energy's Hydropower Program, we identified three major research areas of interest: free swimming, the boundary layer over fish, and kinematic response of fish. We propose that the highest priority is to characterize the kinematic response of fish to different turbulent environments such as high shear/turbulence and hydrodynamic disturbances created by solid structures such as deflector and turbine runner blade; the next priority is to map the boundary layer over swimming fish; the last is to document the behavior of freely swimming fish, focusing on fish of our interest. Grid turbulence and Karman vortex street will be employed to map the boundary layers over fish and investigate the effects of environmental disturbances on the swimming performance of fish, because they are well established and documented in engineering literature and are representative of fish's swimming environments. Extreme conditions characteristic of turbine environments, such as strong shear environment and collision, will be investigated. Through controlled laboratory studies, the fish injury mechanism from different sources will be evaluated in isolation. The major goals are to: gain first-hand knowledge of the biological effects under such extreme hydraulic environments in which fish could lack the capability to overcome the perturbations and be vulnerable to injury; Better understand field results by integrating the laboratory studies with the responses of sensor fish device; More importantly, provide well-defined validation cases and boundary conditions for geometry-based computational fluid-structure interaction modeling in order to simulate the complex hydraulic environments in advanced hydropower systems and their effects on fish, greatly enhancing the potential to use CFD as a bio-hydraulic design alternative.

Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

2004-10-23T23:59:59.000Z

217

Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging  

DOE Green Energy (OSTI)

Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to Department of Energy's Hydropower Program, we identified three major research areas of interest: free swimming, the boundary layer over fish, and kinematic response of fish. We propose that the highest priority is to characterize the kinematic response of fish to different turbulent environments such as high shear/turbulence and hydrodynamic disturbances created by solid structures such as deflector and turbine runner blade; the next priority is to map the boundary layer over swimming fish; the last is to document the behavior of freely swimming fish, focusing on fish of our interest. Grid turbulence and Karman vortex street will be employed to map the boundary layers over fish and investigate the effects of environmental disturbances on the swimming performance of fish, because they are well established and documented in engineering literature and are representative of fish's swimming environments. Extreme conditions characteristic of turbine environments, such as strong shear environment and collision, will be investigated. Through controlled laboratory studies, the fish injury mechanism from different sources will be evaluated in isolation. The major goals are to: gain first-hand knowledge of the biological effects under such extreme hydraulic environments in which fish could lack the capability to overcome the perturbations and be vulnerable to injury; Better understand field results by integrating the laboratory studies with the responses of sensor fish device; More importantly, provide well-defined validation cases and boundary conditions for geometry-based computational fluid-structure interaction modeling in order to simulate the complex hydraulic environments in advanced hydropower systems and their effects on fish, greatly enhancing the potential to use CFD as a bio-hydraulic design alternative.

Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

2004-10-23T23:59:59.000Z

218

Fish Smother Under Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Smother Under Ice Smother Under Ice A BULLETIN FOR THE CHICAGO PUBLIC SCHOOLS DESIGNED FOR INCLUSION IN THE WEEKLY ANNOUNCEMENT SENT OUT FROM THE OFFICE OF SUPT. WILLIAM H. JOHNSON Clayton F. Smith, President Roberts Mann, Superintendent of Conservation February 1, 1945 Nature Bulletin No. 1 FOREST PRESERVE NOTES Grown-ups, who used to kive on a farm or in a small town, are fond of talking about the old-fashioned winters "when I was a boy" and the winters that grandpa used to tell about. Well, one would have to go back a long, long time to find a winter as severe as this one. FISH SMOTHER UNDER ICE Lakes and streams breathe the same as living things. When they are covered with ice and snow they cannot get air and they much hold their breath until the ice thaws. While they are holding their breath the oxygen in the water is gradually used up by the living things sealed up in it -- fish, plants "bugs", snails, and hosts of microscopic life. If the ice lasts long enough, these living things die one after another as each kind reaches the point where it cannot stand any further oxygen starvation. Sometimes temporary relief is given by rains and melting snow that bring fresh, serated water under the ice, but no method of artificial respiration has been found that works. Sometimes, too, when water plants get enough sunlight through clear ice they produce small amounts of oxygen and delay the suffocation of the fish, etc.; but when snow and cloudy ice cuts off the light this does not happen.

219

Fish Passage: A New Tool to Investigate Fish Movement: JSATS  

SciTech Connect

A new system is being used to determine fish mortality issues related to hydroelectric facilities in the Pacific Northwest. Called the juvenile salmon acoustic telemetry system (JSATS), this tool allows researchers to better understand fish movement, behavior, and survival around dams and powerhouses.

McMichael, Geoffrey A.; Harnish, Ryan A.; Weiland, Mark A.; Deng, Zhiqun; Eppard, Matthew B.

2011-04-20T23:59:59.000Z

220

The Fall 2004 SDSS Supernova Survey  

E-Print Network (OSTI)

In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of ~2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05 - 0.35,...

Sako, M; Frieman, J A; Adelman-McCarthy, J; Becker, A; De Jongh, F; Dilday, B; Estrada, J; Hendry, J; Holtzman, J; Kaplan, J; Kessler, R; Lampeitl, H; Marriner, J P; Miknaitis, G; Riess, A; Tucker, D; Barentine, J; Blandford, R D; Brewington, H; Dembicky, J; Harvanek, M; Hawley, S; Hogan, C; Johnston, D; Kahn, S; Ketzeback, B; Kleinman, S; Krzesnski, J; Lamenti, D; Long, D; McMillan, R; Newman, P; Nitta, A; Nichol, R; Scranton, R; Sheldon, E S; Snedden, S A; Stoughton, C; York, D; Sako, Masao; Romani, Roger; Frieman, Josh; Carthy, Jen Adelman-Mc; Becker, Andrew; Jongh, Fritz De; Dilday, Ben; Estrada, Juan; Hendry, John; Holtzman, Jon; Kaplan, Jared; Kessler, Rick; Lampeitl, Hubert; Marriner, John; Miknaitis, Gajus; Riess, Adam; Tucker, Douglas

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Making the Most of Fish Farms  

E-Print Network (OSTI)

T he effect of rice - seeding rate and fish stocking on thefloodwater ecology of rice - fish system . B S J the trenchmost people hear the word fish, they think of food. In

Zhu, Julian

2011-01-01T23:59:59.000Z

222

Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.  

DOE Green Energy (OSTI)

Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agency program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated with kokanee production. Fish food, materials, and other supplies associated with this program are also funded by BPA. Other funds from BPA will also improve water quality and supply at the Ford Hatchery, enabling the increased fall kokanee fingerling program. Monitoring and evaluation of the Ford stocking programs will include existing WDFW creel and lake survey programs to assess resident trout releases in trout managed waters. BPA is also funding a creel survey to assess the harvest of hatchery kokanee in Banks Lake.

Lovrak, Jon; Ward, Glen

2004-01-01T23:59:59.000Z

223

The Fall Rate of the T-7 XBT  

Science Conference Proceedings (OSTI)

A theoretical model of expendable bathythermograph (XBT) fall rate is reviewed, and a new form of fall-rate equation is proposed to include new-surface transient effects. Comparisons are made of T-7 XBT and CTD (conductivity, temperature, and ...

Zachariah R. Hallock; William J. Teague

1992-08-01T23:59:59.000Z

224

Master of Social Work Program Application Instructions for Fall 2012  

E-Print Network (OSTI)

Master of Social Work Program Application Instructions for Fall 2012 Admission Admission to the Master of Social Work (MSW) program is limited to the Fall semester only. Application materials may-year program. The full-time MSW program is administered by the Department of Social Work and delivered

de Lijser, Peter

225

Master of Social Work Program Application Instructions for Fall 2011  

E-Print Network (OSTI)

Master of Social Work Program Application Instructions for Fall 2011 Admission Admission to the Master of Social Work (MSW) program is limited to the Fall semester only. Application materials may-year program. The full-time MSW program is administered by the Department of Social Work and delivered

de Lijser, Peter

226

Master of Social Work Program Application Instructions for Fall 2013  

E-Print Network (OSTI)

Master of Social Work Program Application Instructions for Fall 2013 Admission Admission to the Master of Social Work (MSW) program is limited to the Fall semester only. Application materials may by the Department of Social Work; all classes are conducted on Fullerton's main campus. The MSW program (3 year

de Lijser, Peter

227

River Falls Municipal Utilities - Distributed Solar Tariff | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.30/kWh Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special rate, $0.30/kilowatt-hour (kWh), is available to all the RFMU customers on a first-come, first-served basis for systems up to 4 kilowatts (kW). The RFMU

228

Idaho Falls Power - Residential Energy Efficiency Loan Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Falls Power - Residential Energy Efficiency Loan Program Idaho Falls Power - Residential Energy Efficiency Loan Program Idaho Falls Power - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Heat Pumps: $7,500 Weatherization: $5000 Appliances: $2,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount $100-$7500 Provider Idaho Falls Power Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the actual cost of eligible measures for qualifying customers. Electric appliances eligible for financing include, but are not limited to, the following:

229

Cedar Falls Utilities - Residential New Construction Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedar Falls Utilities - Residential New Construction Program Cedar Falls Utilities - Residential New Construction Program Cedar Falls Utilities - Residential New Construction Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Iowa Program Type Utility Rebate Program Rebate Amount 25% electric rate discount for 4 years (if home is heated with natural gas) 25% electric rate discount for 2 years (if home is heated with electricity) Provider Cedar Falls Utilities Cedar Falls Utilities offers incentives to residential customers who construct new energy efficient homes. A rate discount of 25% is available to customers who meet the 5 Star Home Program criteria for new home

230

Open cycle OTEC system with falling jet evaporator and condenser  

DOE Green Energy (OSTI)

A configuration for the open cycle (OC) Ocean Thermal Energy Conversion (OTEC) system is presented incorporating a countercurrent falling jet evaporator and a concurrent falling jet condenser. The parameters governing performance of the proposed configuration are discussed and the sizing of equipment for a 100-MWe net power output OC OTEC plant is performed, based on recent experimental falling jet heat and mass transfer results. The performance of an OC OTEC plant with falling jet evaporator-condenser is compared with the Westinghouse conceptual design that uses an open-channel evaporator and a surface condenser. Preliminary calculations indicate that falling jet heat and mass transfer, when applied in the proposed configuration, leads to a very simple and compact plant assembly resulting in substantial capital cost savings.

Kogan, A.; Johnson, D. H.; Green, H. J.; Olson, D. A.

1980-07-01T23:59:59.000Z

231

The Fall 2004 SDSS Supernova Survey  

E-Print Network (OSTI)

In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of ~2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05 - 0.35, the so-called 'redshift desert', in the Hubble diagram. Detailed investigation of the spectral properties of these moderate-redshift SNe Ia will also provide a bridge between local SNe and high-redshift objects, and will help us understand the systematics for future cosmological applications that require high photometric precision. Finally, the large survey volume also provides the opportunity to select unusual supernovae for spectroscopic study that are poorly sampled in other surveys. We report on some of the early results from this program and discuss potential future applications.

Masao Sako; Roger Romani; Josh Frieman; Jen Adelman-McCarthy; Andrew Becker; Fritz DeJongh; Ben Dilday; Juan Estrada; John Hendry; Jon Holtzman; Jared Kaplan; Rick Kessler; Hubert Lampeitl; John Marriner; Gajus Miknaitis; Adam Riess; Douglas Tucker; J. Barentine; R. Blandford; H. Brewington; J. Dembicky; M. Harvanek; S. Hawley; C. Hogan; D. Johnston; S. Kahn; B. Ketzeback; S. Kleinman; J. Krzesinski; D. Lamenti; D. Long; R. McMillan; P. Newman; A. Nitta; R. Nichol; R. Scranton; E. Sheldon; S. Snedden; C. Stoughton; D. York; the SDSS Collaboration

2005-04-20T23:59:59.000Z

232

7Falling Into a Black Hole An object that falls into a black hole will cross the  

E-Print Network (OSTI)

7Falling Into a Black Hole An object that falls into a black hole will cross the Event Horizon. Astronomers have determined the mass of this companion to be 8.7 times the sun. As a black hole, its Event determined the mass of this companion to be 8.7 times the sun. As a black hole, its Event Horizon radius

233

Evolution of blind cave fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Evolution of blind cave fish Evolution of blind cave fish Name: rudeeric Location: N/A Country: N/A Date: N/A Question: I am a biology teacher, now starting a unit on evolution. Just about every book on the topic mentions the blind and albino cave fish. But I've always been bothered by this example. Why is being blind and white an advantage for animals in a cave? I understand that they have no use for eyes or pigment, but this sounds like we're back to Lamarck's law of use and disuse. Wouldn't there first have to be the mutations to cause these? And in order for the changes to become common, they would have to be advantageous. Although there is no use for the eyes or pigment, what is the advantage to losing them? Replies: I can think of one important use for the loss of pigment in fish. It has been documented with the early breeding of black mollies and black angelfish, that the fry were extremely hard to keep alive. The breeders found that these fish required much greatly quantities of protein to produce the pigment melanin, and therefore supplementing the fry with protein quantities that were many times higher than those required by less pigmented fish kept them alive. Imagine then, a situation where a random mutation of albinism in a cave dwelling fish results in a population that can use the protein that it consumes for growth and reproduction, rather than for pigment production. The albino fish could quickly out-produce the pigmented fish. What the "real" explanation would be as described by an evolutionary biologist, I have no idea.

234

River Falls Municipal Utilities - Business Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Business Energy Efficiency Rebate River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) < Back Eligibility Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Manufacturing Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Shared Savings Program: $2,500 - $50,000 Energy Improvement Incentive: Varies, Contact WPPI RFP for Energy Efficiency: Varies, Contact WPPI Efficient Lighting Program: Will match Focus on Energy incentive to $5,000

235

Fish Oil Industry in South America  

E-Print Network (OSTI)

Fish Oil Industry in South America UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE FISHERIES, H. E. Crowther, Director Fish Oil Industry in South America By -J. R. SANCHEZ TORRES Chief, "Fish Oils, " M. E. Stansby, editor, Avi Publishing Company, Westport, Connecticut, 1967. Circular 282

236

Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) Near Ives and Pierce Island of the Columbia River, 2000.  

DOE Green Energy (OSTI)

Fall chinook salmon (Oncorhynchus tshawytscha), thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas included gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997), and 554 fish in 1998 (Van der Naald et al. 1999). These estimates were based on carcass surveys and visual observation of redds by boat near the shoreline. Pacific Northwest National Laboratory (PNNL) conducted underwater video surveys in the fall of 1999 and 2000 to determine the extent of the fall chinook salmon spawning and to estimate the number of redds occurring in deeper water. Estimates of redds occurring in water depths exceeding 2.2 m at 143,000 cubic feet per second (kcfs) were 499 in 1999 (Mueller and Dauble 1999) and 567 redds >2.2 m at 127 kcfs in 2000 (this study). The majority of the redds found were confined near the main river channel adjacent to Pierce Island. Chum salmon (O. keta) also have been documented using the mouth of Hamilton Creek and portions of Hamilton Slough for spawning. The majority of chum salmon were found to spawn in shallow water at the mouth of Hamilton Creek adjacent to Ives Island. Estimates of the natural chum salmon spawning population for 1998 were 226 (Van der Naald et al. 1999). Chum salmon spawning near Ives Island are part of the Columbia River evolutionary significant unit (ESU), and are included in the Endangered Species Act of 1973 (ESA) listing in March 1999. Our main objective of this study was to locate deep water spawning locations of fall chinook salmon in the main Columbia River channel and to collect additional data on physical habitat parameters at spawning sites. The secondary objective was to map any chum salmon redds located in the deep sections of Hamilton Slough. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e., surface elevations) are necessary to ensure their long-term survival. This objective is consistent with the high priority placed by the Northwest Power Planning Council's Independent Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin.

Mueller, Robert P.

2001-10-01T23:59:59.000Z

237

Fish of the Great Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation FISH OF THE GREAT LAKES As you stand at the top of one of the tallest buildings in downtown...

238

Fall River Rural Elec Coop Inc (Montana) | Open Energy Information  

Open Energy Info (EERE)

Montana) Jump to: navigation, search Name Fall River Rural Elec Coop Inc Place Montana Utility Id 6169 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

239

Fall River Rural Elec Coop Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Jump to: navigation, search Name Fall River Rural Elec Coop Inc Place Wyoming Utility Id 6169 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

240

Boralex Beaver Livermore Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Livermore Falls Biomass Facility Livermore Falls Biomass Facility Jump to: navigation, search Name Boralex Beaver Livermore Falls Biomass Facility Facility Boralex Beaver Livermore Falls Sector Biomass Location Androscoggin County, Maine Coordinates 44.1912416°, -70.1707037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1912416,"lon":-70.1707037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Office of Indian Energy Newsletter: Fall 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Indian Energy Newsletter: Fall 2012 Office of Indian Energy Newsletter: Fall 2012 Office of Indian Energy Newsletter: Fall 2012 Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Fall 2012 Issue: DOE Office of Indian Energy Provides Tribes with Hands-On Support to Advance Tribal Energy Projects Message from the Director Sharing Knowledge: DOE Office of Indian Energy Commissions Regional Transmission and Renewable Energy Analysis Opening Doors: Seminole Tribe to Host Grant Proposal Writing Workshop Crow Nation Students Participate in Algae Biomass Research Project Building Bridges: ICEIWG Quarterly Meeting Held in Portland DOE-IE Sponsors Two Sandia Student Interns Tribal Energy Transmission Webinars Leading the Charge: Women in Power Andrea Alexander Kathy Mayo

242

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho Summary DOE's Bonneville Power Administration and the U.S. Army Corps of Engineers, as co-lead Federal agencies, prepared this EA to evaluate the potential environmental impacts of a proposal to operate Albeni Falls dam during the winter months (approximately December 15th to March 31st) and determine whether the existing Columbia River System Operation Review EIS (DOE/EIS-0170) is adequate or a supplemental or new EIS is required. For more information about this project, see: http://efw.bpa.gov/environmental_services/Document_Library/AFD-FWPO/ http://efw.bpa.gov/environmental_services/Document_Library/System_Operation/ (Link

243

River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Non-Profit Energy Efficiency River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate Program (Wisconsin) River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate Program (Wisconsin) < Back Eligibility Nonprofit Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Appliances & Electronics Sealing Your Home Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate 60% of project cost, up to $5,000 Program Info Funding Source POWERful Choices Initiative Expiration Date 12/31/2012 State Wisconsin Program Type Utility Rebate Program Rebate Amount Incentive equal to Focus on Energy Incentive River Falls Municipal Utility (RFMU) provides matching rebates to

244

Fall: Energy Saving Changes with the Season | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fall: Energy Saving Changes with the Season Fall: Energy Saving Changes with the Season Fall: Energy Saving Changes with the Season October 18, 2011 - 6:42am Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I'm sure you've noticed the change in seasons by now. Fall brings cooler weather, and with it my thoughts turn to warm things like putting blankets on the couch, enjoying my fireplace, and adjusting my thermostat (as little as possible, of course). One thing we did over the weekend is we insulated our water heater. Depending on how efficient your water heater tank is, adding insulation can reduce standby heat losses by 25%-45% and save you around 4%-9% in water heating costs. Since water heating contributes an average of 18% to the typical home utility bill, it's definitely worth it to add insulation!

245

Accident Investigation of the Fall Injury at the Savannah River...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Office of Environmental Management Accident Investigation Report Fall Injury Accident at the Savannah River Site on July 1, 2011 August 8, 2011 Disclaimer...

246

TOPS: A Free-Fall Velocity and CTD Profiler  

Science Conference Proceedings (OSTI)

A free-fall instrument, TOPS, measures vertical profiles of horizontal ocean velocity, conductivity and temperature. Profiling capability extends throughout the full water column (6000 db pressure limitation). Larger vertical wavelength (water ...

S. P. Hayes; H. B. Milburn; E. F. Ford

1984-09-01T23:59:59.000Z

247

A New Free-Fall Profiler for Measuring Biophysical Microstructure  

Science Conference Proceedings (OSTI)

This paper evaluates the performance of a newly developed free-falling microstructure profiler. The instrument is equipped with standard turbulence sensors for measuring turbulent velocity shear and temperature gradient, as well as bio-optical ...

Fabian Wolk; Hidekatsu Yamazaki; Laurent Seuront; Rolf G. Lueck

2002-05-01T23:59:59.000Z

248

HONEY: A Multimodality Fall Detection and Telecare System  

E-Print Network (OSTI)

to provide home-based telecare instead of institutionalized healthcare. Falling is one of the most common. To facilitate a reliable, safe and real-time home-based healthcare environment, we propose the HONEY system

Shi, Weisong

249

2000 TMS Fall Extraction and Process Metallurgy Meeting: Hertz ...  

Science Conference Proceedings (OSTI)

2000 TMS Fall Extraction and Process Metallurgy Meeting: Hertz Rent-a-Car ... Hertz has been selected as the official car rental company for the Lead-Zinc 2000 ...

250

Department of Electrical Engineering Fall 2009 Electridyne Motor  

E-Print Network (OSTI)

PENNSTATE Department of Electrical Engineering Fall 2009 Electridyne Motor Overview Our sponsored project was to design an elecrtic motor for an urban transportation vehicle, the challenges involved included research into motor design, consideration of the materials, and the electromagnetic parameters

Demirel, Melik C.

251

International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

252

Niagara Falls, NY Natural Gas Pipeline Imports From Canada ...  

U.S. Energy Information Administration (EIA)

Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011: 9,497: 6,894: 4,421: 2,459 ...

253

International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

254

Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.  

DOE Green Energy (OSTI)

Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one adult Pacific lamprey was trapped and released above the Westland ladder this year. The Threemile Dam west bank juvenile bypass was opened on March 11, 2008 in conjunction with water deliveries and continued through the summer. West Extension Irrigation District (WEID) discontinued diverting live flow on June 24, 2008 but the bypass remained open throughout the project year. The juvenile trap was not operated this project year.

Bronson, James P.; Loffink, Ken; Duke, Bill

2008-12-31T23:59:59.000Z

255

Fish & Wildlife Annual Project Summary, 1983.  

Science Conference Proceedings (OSTI)

BPA's Division of Fish and Wildlife was created in 1982 to develop, coordinate and manage BPA's fish and wildlife program. Division activities protect, mitigate, and enhance fish and wildlife resources impacted by hydroelectric development and operation in the Columbia River Basin. At present the Division spends 95% of its budget on restoration projects. In 1983, 83 projects addressed all aspects of the anadromous fish life cycle, non-migratory fish problems and the status of wildlife living near reservoirs.

United States. Bonneville Power Administration.

1984-07-01T23:59:59.000Z

256

Use of a Fish Transportation Barge for Increasing Returns of Steelhead Imprinted for Homing, Final Report.  

DOE Green Energy (OSTI)

The objective of this 7-year National Fisheries Service study, which began is 1982, was to determine if transporting juvenile steelhead (Oncorhynchus mykiss) by truck and barge from Dworshak National Fish Hatchery (NFH), on the Clearwater River, to a release site on the Columbia River below Bonneville Dam would result in increased returns of adults to the various fisheries and to the hatchery homing site. During 1982 and 1983, over 500,000 marked juvenile steelhead were serially released as controls from the hatchery or barged as test fish to below Bonneville Dam. Recoveries of marked adults to various recovery sites are complete. Fish released in 1983 showed a stronger homing ability and more rapid upstream migration than test fish released in 1982. Most adults from both control and test releases in 1983 and control releases in 1982 migrated a considerable distance upstream and overwintered in the Snake and Clearwater Rivers--behavior similar to Clearwater River fish previously transported from Lower Granite Dam. In contrast, many of the adults from test releases in 1982 failed to migrate upstream during the fall, overwintered in the Columbia River, and migrated upstream the following spring. Survival of control fish released at Dworshak NFH in late April 1982 was substantially higher than survival of those released in mid-May. Survival and homing of control fish released in late April and early May 1983 were over 10 times that for fish released in late May. Return of adults from normal hatchery releases in 1982 was the highest ever observed at Dworshak NFH.

Harmon, Jerrel R.

1989-08-01T23:59:59.000Z

257

Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day, and McNary Dams; 2000-2001 Annual Report.  

DOE Green Energy (OSTI)

This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 2000 to 30 September 2001. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations. (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6; (9) Documentation of entrapment in low-lying areas of juvenile fall chinook and chum rearing in the area described in Task 6; and (10) Investigation of feasibility of determining juvenile to adult survival rate from coded-wire tagged juvenile fall chinook captured and tagged in the area described in Task 6.

van der Naald, Wayne; Clark, Roy; Spellman, Bryant (Oregon Department of Fish and Wildlife, Portland, OR)

2002-09-17T23:59:59.000Z

258

Evaluation of Fall Chinook and Chum Salmon below Bonneville, The Dalles, John Day and McNary Dams; 1998-1999 Annual Report.  

DOE Green Energy (OSTI)

This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1998 to 30 September 1999. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6; (9) Documentation of stranding and entrapment in low-lying areas of juvenile fall chinook and chum rearing in the area described in Task 6; and (10) Investigation of feasibility of coded-wire tagging juvenile fall chinook captured in the area described in Task 6 to determine juvenile to adult survival rate.

van der Naald, Wayne; Clark, Roy; Spellman, Bryant

1999-12-01T23:59:59.000Z

259

Fish Bulletin No. 97. A Descriptive Study of Certain Tuna-like Fishes  

E-Print Network (OSTI)

97 A Descriptive Study of Certain Tuna-like Fishes By H. C.of a number of species of tuna-like fishes and an evaluationof the tunas and the tuna-like fishes has long been a

Godsil, H C

1953-01-01T23:59:59.000Z

260

Fish Bulletin No. 91. Common Ocean Fishes of the California Coast  

E-Print Network (OSTI)

W. L. 1952. The Tomales Bay herring fishery. Calif. Fish andno. 3, p. 351. 1951b. Round herring off Central California.THE BONY FISHES 3.4.1. THE HERRING-LIKE FISHES The bonefish,

Roedel, Phil M

1953-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.  

DOE Green Energy (OSTI)

This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. M

Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

2007-11-13T23:59:59.000Z

262

Studies of fish passage through culverts in Montana  

E-Print Network (OSTI)

and biological criteria. Fish Passage Development andHeritage Program and Montana Fish, Wildlife and Parks,G.M. 1995. Nonanadromous fish passage in highway culverts.

Blank, Matt; Cahoon, Joel; Burford, Drake; McMahon, Tom; Stein, Otto

2005-01-01T23:59:59.000Z

263

Temporal Variation in Fish Communities off Santa Cruz Island, California  

E-Print Network (OSTI)

blacksmith, Chromis punctipinnis, a planktivorous reef fish.U.S. Fish Bull Brooks AJ, Schmitt RJ, Holbrook SJ.2002. Declines in regional fish populations: have species

Graves, Michelle R.; Larson, Ralph J.; Alevizon, William S.

2006-01-01T23:59:59.000Z

264

Structure and Mechanical Behavior of Fish Scales - Programmaster ...  

Science Conference Proceedings (OSTI)

The scales of two large fish, Arapaima gigas (a large Amazon basin fish) and Atractosteus spatula (the largest North American fresh water fish) are characterized...

265

Culvert test bed: fish-passage research facility  

E-Print Network (OSTI)

of juvenile salmonids and other fish through culverts is aappropriate hydraulic and fish-passage designs forWashington Department of Fish and Wildlife (WDFW), Alaska

Pearson, Dr. Walter H.; May, Christopher

2005-01-01T23:59:59.000Z

266

DOE - Office of Legacy Management -- Niagara Falls Vicinity Properties NY -  

Office of Legacy Management (LM)

Niagara Falls Vicinity Properties Niagara Falls Vicinity Properties NY - NY 17 FUSRAP Considered Sites Niagara Falls Vicinity Properties, NY Alternate Name(s): Lake Ontario Ordnance Works (LOOW) Niagara Falls Storage Site (NFSS) DOE-Niagara Falls Storage Site NY.17-1 NY.17-3 Location: Lewiston , New York NY.17-5 Historical Operations: Stored, shipped, and buried radioactive equipment and waste for MED and AEC containing uranium, radium, and thorium. Portions of the former site are privately owned, creating a "site" for the vicinity properties. NY.17-1 NY.17-2 NY.17-14 Eligibility Determination: Eligible NY.17-4 Radiological Survey(s): Assessment Surveys, Verification Surveys NY.17-3 NY.17-5 NY.17-6 NY.17-7 NY.17-8 NY.17-9 NY.17-10 NY.17-11 NY.17-12 NY.17-14 Site Status: Certification Basis, including Federal Register Notice for 23 properties. Cleanup in progress for additional 3 VPs. NY.17-13

267

Trends in radionuclide concentrations in Hanford Reach fish, 1982 through 1992  

SciTech Connect

Environmental monitoring has been conducted at the US Department of Energy`s Hanford Site in southeast Washington State since 1945. Fish from the Hanford Reach of the Columbia River, which borders the Site, are monitored annually. The two objectives of this report were (1) to evaluate trends in the concentrations of radionuclides [e.g., {sup 90}Sr and {sup 137}Cs] in two species of Columbia River fish [smallmouth bass and mountain whitefish] sampled from the Hanford Reach from 1982 through 1992; and (2) to determine the impact of Hanford Site releases on these two species and carp and fall chinook salmon collected during this time frame. The evaluation found gradual reductions of {sup 137}Cs in bass muscle and {sup 90}Sr in bass and whitefish carcass from 1982 through 1992. Concentrations of {sup 90}Sr in bass and whitefish followed the pattern established by reported Hanford Site releases from 1982 through 1992 and was supported by significant regression analyses comparing annual releases to sample concentration. Because data for carp have been collected only since 1990, the data base was inadequate for determining trends. Moreover, fall chinook salmon were only sampled once in this 11-year period. Concentrations of {sup 90}Sr and {sup 137}Cs in fish samples collected from distant background locations exceeded concentrations in Hanford Reach fish. Estimates of the dose from consumption of Hanford Reach fish were less than 0.001 times the National Council on Radiation Protection and Measurements and the US Department of Energy guideline of 100 mrem/yr.

Poston, T.M.

1994-06-01T23:59:59.000Z

268

Umatilla River Fish Passage Operations Program, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 19, 2003 to July 8, 2004. A total of 3,388 summer steelhead (Oncorhynchus mykiss); 1,482 adult, 638 jack, and 2,150 subjack fall chinook (O. tshawytscha); 8,319 adult and 667 jack coho (O. kisutch); and 2,965 adult and 270 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 34 summer steelhead and 31 adult and 9 jack spring chinook were hauled upstream from Threemile Dam. There were 3,166 summer steelhead; 1,076 adult, 554 jack and 2,026 subjack fall chinook; 8,213 adult and 647 jack coho; and 2,152 adult and 174 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 121 summer steelhead; 388 adult and 19 jack fall chinook; and 561 adult and 29 jack spring chinook were collected for brood. In addition, 239 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. There were also 25 pair hatchery steelhead adults collected for the progeny maker study. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 184 days between January 12 and July 6, 2004. During that period, fish were bypassed back to the river 173 days and were trapped 10 days. An estimated 44 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 84% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on February 10, 2004 for outmigration sampling and continued until July 7, 2004 when sampling was discontinued. The juvenile bypass ran at the 5 cfs level until the initiation of Phase I on August 15, 2004. The juvenile trap was operated by the Oregon Department of Fish and Wildlife (ODFW) under the Evaluation of Umatilla Juvenile Salmonid Outmigration Project.

Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

2005-08-01T23:59:59.000Z

269

Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) near Ives and Pierce Island of the Columbia River, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size from 7.6 to 15.2 cm in diameter. Near-bed water velocity readings taken in the secondary search ranged from 0.04 to 0.98 m/s (median 0.45 m/s). No chum salmon redds were found in a limited area within the relatively deeper sections of Hamilton Slough below Hamilton Creek. No additional salmon or chum redds were found in other areas searched, including near Woodward, Tanner, and McCord Creeks.

Mueller, Robert [Pacific Northwest National Laboratory

2005-10-01T23:59:59.000Z

270

Redwood Falls Public Utilities - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Redwood Falls Public Utilities - Residential Energy Efficiency Redwood Falls Public Utilities - Residential Energy Efficiency Rebate Program Redwood Falls Public Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: See program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus bonus for efficiency ratings above 14.5 SEER Air Source Heat Pump: $100 - $200, plus bonus for efficiency ratings above 14.5 SEER Geothermal Heat Pump: $200/ton, plus $25/ton for each 1 EER above minimum requirement Refrigerators: $25, plus $50 for recycling an old, working unit

271

Are You Ready for Fall? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Ready for Fall? Are You Ready for Fall? Are You Ready for Fall? October 21, 2011 - 6:38am Addthis This week, Andrea talked about insulating her water heater tank in preparation for cooler weather (of course, that's something you can do any time of year to save money and energy at home). She also listed many other ways to reduce your water heating costs. Erin blogged about something we don't often think about: the historical perspective of using renewable energy. For example, Leonardo da Vinci had designed a solar powered water heater among other things. As for geothermal energy, archaeological evidence shows that the first human use of geothermal resources in North America occurred more than 10,000 years ago. Whether you're using renewables or energy efficiency (or both), what are

272

Idaho Falls Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Falls Power - Residential Energy Efficiency Rebate Program Idaho Falls Power - Residential Energy Efficiency Rebate Program Idaho Falls Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount General Weatherization: $0.25/kWh Air Source Heat Pumps Upgrade (Ducts Sealed): $850 Air Source Heat Pumps Upgrade (Ducts Not Sealed): $450 Air Source Heat Pumps Conversion (Ducts Sealed): $1,600 Air Source Heat Pumps Conversion (Ducts Not Sealed): $1,200 Ground Source Heat Pumps: $2,500

273

Are You Ready for Fall? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Ready for Fall? Are You Ready for Fall? Are You Ready for Fall? October 21, 2011 - 6:38am Addthis This week, Andrea talked about insulating her water heater tank in preparation for cooler weather (of course, that's something you can do any time of year to save money and energy at home). She also listed many other ways to reduce your water heating costs. Erin blogged about something we don't often think about: the historical perspective of using renewable energy. For example, Leonardo da Vinci had designed a solar powered water heater among other things. As for geothermal energy, archaeological evidence shows that the first human use of geothermal resources in North America occurred more than 10,000 years ago. Whether you're using renewables or energy efficiency (or both), what are

274

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

275

City of River Falls, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Falls, Wisconsin (Utility Company) Falls, Wisconsin (Utility Company) Jump to: navigation, search Name City of River Falls Place Wisconsin Utility Id 16082 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

276

Village of Enosburg Falls, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Enosburg Falls, Vermont (Utility Company) Enosburg Falls, Vermont (Utility Company) Jump to: navigation, search Name Village of Enosburg Falls Place Vermont Service Territory Vermont Website www.villageofenosburgfall Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 5915 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Demand Rate - Rate 04 Industrial

277

City of Thief River Falls, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Thief River Falls, Minnesota (Utility Company) Thief River Falls, Minnesota (Utility Company) Jump to: navigation, search Name City of Thief River Falls Place Minnesota Utility Id 18820 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100% controlled electric heat separate meter Residential Commercial - 100% controlled electric heat Commercial Commercial general service rate Commercial Commercial service rate with Standby Generation Commercial Geothermal Heating Residential

278

City of Klamath Falls Snowmelt Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Snowmelt Low Temperature Geothermal Facility Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls Snowmelt Low Temperature Geothermal Facility Facility City of Klamath Falls Sector Geothermal energy Type Snowmelt Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

279

Idaho Falls, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Falls, Idaho: Energy Resources Falls, Idaho: Energy Resources (Redirected from Idaho Falls, ID) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4665808°, -112.0341374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4665808,"lon":-112.0341374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

City of Black River Falls, Wisconsin (Utility Company) | Open Energy  

Open Energy Info (EERE)

Black River Falls, Wisconsin (Utility Company) Black River Falls, Wisconsin (Utility Company) Jump to: navigation, search Name City of Black River Falls Place Wisconsin Utility Id 1776 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - Gs-1 Single Phase Commercial General Service - Gs-1 Single Phase with Parallel Generation(20kW or less) Commercial General Service - Gs-1 Three Phase Commercial

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

River Falls Municipal Utilities - Energy Star Appliance Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Energy Star Appliance Rebates River Falls Municipal Utilities - Energy Star Appliance Rebates River Falls Municipal Utilities - Energy Star Appliance Rebates < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Other Program Info Start Date 05/01/2010 Expiration Date 12/31/12 State Wisconsin Program Type Utility Rebate Program Rebate Amount Tree Planting: 50% of cost up to $50 (limit 3 trees) Freezer Recycling: $30 Refrigerator Recycling: $30 Energy Star Home Performance: 33.3% up to $1,500 15% Energy Savings from Installed Measures: $200

282

UNION CARBIDE MZALS DIVISION tiiAGARA FALLS, NEW YDRK  

Office of Legacy Management (LM)

PRELIF",INARY SURVEY 0' PRELIF",INARY SURVEY 0' ELECTRDMET iORPDF.&TiCIN UNION CARBIDE MZALS DIVISION tiiAGARA FALLS, NEW YDRK Work performed by the Health and Safety Research Division Dak Ridge National Laboratory Oak Ridge, Tennessee 37830 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Fornierly Utilized Sites-- Remedial Action Program ,ELECTRD?'ISi 60RPOR:TION UNiON CARBIDE METALS DIVlSIOti NiASARA FALLS, NEA YORK At the requests o f the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the former Electromet Plant (cur- rently Union Carbide Corporation - Metals Division plant) in Niagara Falls, Neh' York (see Fig. l), on August 24, 1976, to assess the radio- logical status 0 f those facilities utilized under~Manhattan Engineer

283

Menomonee Falls, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Menomonee Falls, Wisconsin: Energy Resources Menomonee Falls, Wisconsin: Energy Resources (Redirected from Menomonee Falls, WI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1788967°, -88.1173132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1788967,"lon":-88.1173132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Albeni Falls Wildlife Mitigation Project, 2001 Annual Report.  

DOE Green Energy (OSTI)

The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres ({approx}4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002.

Terra-Burns, Mary (Idaho Department of Fish and Game, Albeni Falls Interagency Work Group, Boise, ID)

2002-02-11T23:59:59.000Z

285

Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.

Mueller, Robert (Pacific Northwest National Laboratory)

2003-09-01T23:59:59.000Z

286

Sensing bending in a compliant biomimetic fish  

E-Print Network (OSTI)

This thesis examines the problem of sensing motion in a compliant biomimetic device. Specifically, it will examine the motion of a tail in a biomimetic fish. To date, the fish has been an open-loop system, the motion of ...

Kaczmarek, Adam S

2006-01-01T23:59:59.000Z

287

Benefits vs. risks of fish consumption  

Science Conference Proceedings (OSTI)

The benefits of fish consumption outweigh the risks, according to a joint expert consultation released in October 2011 by two United Nations agencies. Benefits vs. risks of fish consumption News Inform Magazine Inform Archives Health Nutrition Omega

288

Fish Meal Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Fish Meal to test Acid Value, Crude Protein, Moisture, Oil, Ash, Pepsin Digestibility, Ammonia Nitrogen. Fish Meal Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified

289

Conceptual model of the Klamath Falls, Oregon geothermal area  

DOE Green Energy (OSTI)

Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has stymied researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Recently, the large quantity of available temperature data have been re-evaluated, revealing new information on subsurface heat flow and locations of faults in the system. These inferences are supported by borehole, geochemical, geophysical, and hydrologic data. Based on re-evaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed.

Prucha, R.H.; Benson, S.M.; Witherspoon, P.A.

1987-01-01T23:59:59.000Z

290

Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day, and McNary Dams; 2001-2002 Annual Report.  

DOE Green Energy (OSTI)

In 2001 a total of 309 adult fall chinook and 264 chum were sampled in the Ives and Pierce islands area below Bonneville Dam. The peak redd count for fall chinook was 48. The peak redd count for chum was 181. Peak spawning time for fall chinook was set at approximately 16 November. Peak spawning time for chum occurred approximately 26 November. There were estimated to be a total of 721 fall chinook spawning below Bonneville Dam in 2001. The 2001 chum population below Bonneville Dam was estimated to be 532 spawning fish. Temperature unit data suggests that below Bonneville Dam 2001 brood chinook emergence began on 11 March 2002 and ended 18 May 2002, with peak emergence occurring 26 April. 2001 brood juvenile chum emergence below Bonneville Dam began 29 January and continued through 31 March 2002. Peak chum emergence took place 25 February. A total of 5,487 juvenile chinook and 678 juvenile chum were sampled between the dates of 22 January and 30 July 2002 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place from mid June through early July 2002 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, GSI analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2001 and 2002 the majority of fall chinook using the area below Bonneville Dam were of a late-spawning bright stock of fall chinook. Observed spawning times, adult age and sex composition, GSI analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration suggests chum spawning and rearing below Bonneville dam are similar to stocks of chum found in Hamilton and Hardy creek and are part of the Lower Columbia River Chum ESU.

van der Naald, Wayne; Clark, Roy; Spellman, Bryant (Oregon Department of Fish and Wildlife, Portland, OR)

2003-04-01T23:59:59.000Z

291

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 3040 of 28,905 results. 31 - 3040 of 28,905 results. Article Congratulations, 2013 National Science Bowl Winners The team from Sacramento's Mira Loma High School won the 2013 National Science Bowl in dramatic fashion -- pulling ahead as the clock expired in the final round. http://energy.gov/articles/congratulations-2013-national-science-bowl-winners Download EIS-0397: Final Environmental Impact Statement Lyle Falls Fish Passage Project http://energy.gov/nepa/downloads/eis-0397-final-environmental-impact-statement Page PART 708-- DOE CONTRACTOR EMPLOYEE PROTECTION PROGRAM Criteria and Procedures for DOE Contractor Employee Protection Program http://energy.gov/oha/part-708-doe-contractor-employee-protection-program Download EIS-0218: Revised Record of Decision Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign

292

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 17060 of 28,905 results. 51 - 17060 of 28,905 results. Download CX-009162: Categorical Exclusion Determination Development of a Low Cost Method to Estimate the Seismic Signature of a Geothermal Field from Ambient Seismic Noise Analysis CX(s) Applied: A9, B3.1 Date: 09/11/2012 Location(s): Nevada Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009162-categorical-exclusion-determination Download AUDIT REPORT: OAS-L-13-10 Fiscal Year 2011 Audit of the Work Performed Under the Work for Others Program at the Lawrence Berkeley National Laboratory http://energy.gov/ig/downloads/audit-report-oas-l-13-10 Download EIS-0397: EPA Notice of Availability of the Draft Environmental Impact Statement Lyle Falls Fish Passage Project http://energy.gov/nepa/downloads/eis-0397-epa-notice-availability-draft-environmental-impact-statement

293

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91 - 30200 of 31,917 results. 91 - 30200 of 31,917 results. Download EIS-0183: DOE Notice of Availability of the Record of Decision Long-Term Regional Dialogue Policy http://energy.gov/nepa/downloads/eis-0183-doe-notice-availability-record-decision-7 Download EIS-0397: DOE Notice of Availability of the Record of Decision Bonneville Power Administration Lyle Falls Fish Passage Project http://energy.gov/nepa/downloads/eis-0397-doe-notice-availability-record-decision Download EIS-0349: DOE Notice of Availability of the Record of Decision BP Cherry Point Cogeneration Project, Washington and Oregon http://energy.gov/nepa/downloads/eis-0349-doe-notice-availability-record-decision Page Twitter Editor's note: Since the Twitter platform is always evolving, so are our best practices for using it. We welcome feedback and suggestions to keep

294

Notices of Availability (NOA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 24, 2008 October 24, 2008 EIS-0236-S4: DOE Notice of Availability of the Supplemental Programmatic Environmental Impact Statement Complex Transformation October 17, 2008 EIS-0396: DOE Notice of Availability of the Draft Programmatic Environmental Impact Statement Global Nuclear Energy Partnership May 16, 2008 EIS-0380: EPA Notice of Availability of the Final Site-Wide Environmental Impact Statement Continued Operation of Los Alamos National Laboratory, Los Alamos, New Mexico March 28, 2008 EIS-0397: EPA Notice of Availability of the Draft Environmental Impact Statement Lyle Falls Fish Passage Project February 15, 2008 EIS-0399: EPA Notice of Availability of the Draft Environmental Impact Statement Montana Alberta Tie Ltd. 230-kV Transmission Line January 11, 2008 EIS-0236-S4: DOE Notice of Availability of the Draft Supplemental

295

Document  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91 Federal Register 91 Federal Register / Vol. 74, No. 39 / Monday, March 2, 2009 / Notices Counsel, LP-7, Bonneville Power Administration, P.O. Box 3621, Portland, OR 97208-3621; via e-mail at pjburger@bpa.gov; or by telephone at 503-230-4148. Mr. Bennett may be contacted as follows: by U.S. Mail at Mr. Barry Bennett, Office of General Counsel, LC-7, Bonneville Power Administration, P.O. Box 3621, Portland, OR 97208-3621; via e-mail at bbennett@bpa.gov; or by telephone at 503-230-4053. Issued this 20 day of February, 2009. Stephen J. Wright, Administrator and Chief Executive Officer. [FR Doc. E9-4323 Filed 2-27-09; 8:45 am] BILLING CODE 6450-01-P DEPARTMENT OF ENERGY Bonneville Power Administration Lyle Falls Fish Passage Project AGENCY: Bonneville Power Administration (BPA), Department of

296

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 24770 of 26,764 results. 61 - 24770 of 26,764 results. Download EIS-0397: DOE Notice of Availability of the Record of Decision Bonneville Power Administration Lyle Falls Fish Passage Project http://energy.gov/nepa/downloads/eis-0397-doe-notice-availability-record-decision Download Slide 1 http://energy.gov/downloads/slide-1-54 Download EIS-0472: Notice of Public Scoping Meetings and Extension of Scoping Period Uranium Leasing Program Programmatic Environmental Impact Statement http://energy.gov/nepa/downloads/eis-0472-notice-public-scoping-meetings-and-extension-scoping-period Download Audit Report: OAS-RA-11-11 The Advanced Research Projects http://energy.gov/ig/downloads/audit-report-oas-ra-11-11 Download Audit Report: OAS-RA-11-15 Los Alamos National Laboratory Environmental Management Activities Funded

297

A Small-Area Study of Environmental Risk Assessment of Outdoor Falls  

Science Conference Proceedings (OSTI)

Falls in public places are an issue of great health concern especially for the elderly. Falls among the elderly is also a major health burden in many countries. This study describes a spatial approach to assess environmental causes of outdoor falls using ... Keywords: Environmental risk assessment, GIS, Outdoor falls, Small-area study, Spatial clustering

Poh-Chin Lai; Wing-Cheung Wong; Chien-Tat Low; Martin Wong; Ming-Houng Chan

2011-12-01T23:59:59.000Z

298

Idaho Fish Screening Improvements Final Status Report.  

DOE Green Energy (OSTI)

This project funds two Idaho Department of Fish and Game (IDFG) fish habitat biologists to develop, secure funding for, and implement on-the-ground fish habitat improvement projects in the lower Clearwater River drainage and the upper Salmon River drainage. This report summarizes project activity during the first year of funding. The Clearwater Region fish habitat biologist began work on January 28, 2008 and the Salmon Region habitat biologist began on February 11, 2008.

Leitzinger, Eric J.

2008-11-12T23:59:59.000Z

299

Fish Passage Center 2007 Annual Report.  

DOE Green Energy (OSTI)

The January-July runoff volume above the Dalles Dam in 2007 was 89% of the average runoff volume for the 1971-2000 historical record. The April-July runoff volume at Lower Granite Dam was 68% of the 1971-2000 historical record. Over the 79 year historical record from 1929 through 2007, the 2007 January-July runoff volume at the Dalles was the 50th lowest year out of the 79th year record. The January through July runoff volume at Lower Granite was the 65th lowest runoff year out of 79 on record. This year can be characterized by steadily decreasing snowpack which was below average in the Columbia Basin by the end of April. The combination of runoff volume, decreasing snowpack and reservoir operations resulted in spring migration flows at McNary Dam averaging 239 Kcfs, slightly above the Biological Opinion flow objective of 237 Kcfs. However the spring period migration flows in the Snake River averaged 61 Kcfs at Lower Granite Dam, substantially below the Biological Opinion flow objective of 85 Kcfs. Summer migration period Biological Opinion flow objectives averaged 163 Kcfs at McNary Dam, substantially below the summer flow objective of 200 Kcfs. Summer migration period flows in the Snake River at Lower Granite Dam averaged 29 Kcfs, also substantially below the Biological Opinion flow objective of 50 Kcfs. Overall spring migrants in the Columbia River experienced better migration flows than spring migrants in the Snake River reach. Summer migration flow objectives were not achieved in either the Columbia or Snake rivers. The 2007 FCRPS Operations Agreement represents an expanded and improved spill program that goes beyond the measures contained in the 2004 Biological Opinion. During the spring period, spill now occurs for twenty-four hours per day at all projects, except for John Day Dam where the daily program remains at 12 hours. A summer spill program provides spill at all the fish transportation collector projects (Lower Granite, Little Goose, Lower Monumental and McNary dams), whereas prior to 2005 spill was terminated at these projects after the spring period. In addition, the 2007 operations agreement provided regardless of flow conditions. For the first time spill for fish passage was provided in the low flow conditions that prevailed in the Snake River throughout the spring and summer migration periods. Gas bubble trauma (GBT) monitoring continued throughout the spill period. A higher incidence of rank 1, GBT signs were observed in late arriving steelhead smolts arriving after the 95% passage date had occurred. During this time dissolved gas levels were generally below the 110% water quality standard in the forebay where fish were sampled. This occurrence was due to prolonged exposure and extended travel times due to low migration flows. The 2007 migration conditions differed from any year in the historic record. The migration conditions combined low river flows in the Snake River with spill throughout the spring and summer season. The juvenile migration characteristics observed in 2007 were unique compared to past years in that high levels of 24 hour spill for fish passage were provided in low flow conditions, and with a delayed start to the smolt transportation program a smaller proportion of the total run being transported. This resulted in relatively high spring juvenile survival despite the lower flows. The seasonal spring average flow in the Snake River was 61 Kcfs much lower than the spring time average of 120 Kcfs that occurred in 2006. However juvenile steelhead survival through the Lower Granite to McNary reach in 2007 was nearly 70% which was similar to the juvenile steelhead survival seen in 2006 under higher migration flows. The low flows in the May-July period of 2007 were similar to the 2001 low flow year, yet survival for fall chinook juveniles in this period in 2007 was much higher. In 2001 the reach survival estimate for juvenile fall Chinook from Lower Granite to McNary Dam ranged from 0.25-0.34, while survival in the same reach ranged between 0.54-0.60 in 2007. In addition travel time estimat

DeHart, Michele [Fish Passage Center of the Columbia Basin Fish & Wildlife Authority

2008-11-25T23:59:59.000Z

300

Development of multiple robotic fish cooperation platform  

Science Conference Proceedings (OSTI)

This article presents the development of a multiple robotic fish cooperation platform, which is established by employing a group of radio-controlled, multi-link fish-like robots. This work is inspired by the observation from nature that the capability ... Keywords: Multi-agent system, Multiple robot cooperation, Platform, Robotic fish

Jinyan Shao; Long Wang; Junzhi Yu

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

302

Western Association of Fish and Wildlife Agencies  

E-Print Network (OSTI)

Fish and wildlife agencies are facing the challenge of balancing the known and potential impacts to wildlife from lead in spent ammunition and sport fishing tackle with the public perception of the lead issue. Reports about the effect of lead on wildlife, the environment, and/or human health whether real or perceived create social, political and legal pressure to act. Fish and

unknown authors

2010-01-01T23:59:59.000Z

303

Dynamics of a fishing model  

Science Conference Proceedings (OSTI)

In this paper, the authors give sufficient conditions for the existence and global attractivity of a positive periodic solution of the first order nonlinear differential equation N?(t) = -a(t)N(t) +b(t) N(t)/1+(N(t)/p(t))? ... Keywords: attractivity, fishing model, periodic solution, population model

John R. Graef; Seshadev Padhi; Shilpee Srivastava

2010-03-01T23:59:59.000Z

304

Suites Catering Menu --Fall 2011 ScholarshipSuites  

E-Print Network (OSTI)

, horseradish sauce, stone ground mustard, and vegetable garnish Nacho Bar $50 Start with seasoned ground beef and ranch dip Assorted Cheese Tray $40 (Local and Imported) Garnished with berries and grapes, served garnish St. Louis Style Ribs $25 Fall-off-the-bone tender and slathered with carmelized BBQ sauce, a slab

Peterson, Blake R.

305

Seeding Tests on Supercooled Stratus Using Vertical Fall Pyrotechnics  

Science Conference Proceedings (OSTI)

In Michigan in early 1977, an experiment was conducted to test the ability of silver iodide (AgI) ice nucleus curtains generated by vertical-fall pyrotechnics to produce clearings in supercooled stratus. A second objective of the experiment was ...

Joe L. Sutherland; John R. Thompson; Don A. Griffith; Bruce Kunkel

1982-02-01T23:59:59.000Z

306

Energy and Resources Group Fall 2013 Colloquium Series (ER295)  

E-Print Network (OSTI)

with Sidley & Austin, where he primarily worked on energy issues, before joining the University of IllinoisEnergy and Resources Group Fall 2013 Colloquium Series (ER295) October 23, 2013 In the wake, Berkeley. He is also the Co-Director of the Center for Law, Energy, and the Environment. Professor Farber

Kammen, Daniel M.

307

Fast fall-time ion beam in neutron generators  

Science Conference Proceedings (OSTI)

Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

2008-08-10T23:59:59.000Z

308

Energy and Resources Group Fall 2012 Colloquium Series (ER295)  

E-Print Network (OSTI)

Energy and Resources Group Fall 2012 Colloquium Series (ER295) September 12, 2012 Severin Borenstein E.T. Grether Chair in Business Administration and Public Policy Co-Director, Energy Institute at Haas Director, U.C. Energy Institute U.C. Berkeley "An Economic Framework for Analyzing Energy

Kammen, Daniel M.

309

Proceedings of the 33rd annual ACM SIGUCCS fall conference  

Science Conference Proceedings (OSTI)

The Conference Planning and Program Committees are pleased to publish the Proceedings for the 33rd Annual ACM SIGUCCS User Services Conference, held in Monterey, California, November 6-9, 2005.The SIGUCCS Fall Conference is your chance to tell your colleagues ...

Cynthia Murnan; Kelly Wainwright; Chris Jones

2005-11-01T23:59:59.000Z

310

Proceedings of the 35th annual ACM SIGUCCS fall conference  

Science Conference Proceedings (OSTI)

We welcome you to the 35th SIGUCCS 2007 Fall Conference in Lake Buena Vista, Florida. Now, more than any time in the past, this year of "Inspiring Magical Outcomes" has transformed our approach to teaching and learning. Even as 2007 brought an end to ...

Jayne Ashworth; Lynnell Lacy; Lisa Brown; Carol Rhodes

2007-10-01T23:59:59.000Z

311

Physics 5555 Solid State Physics, Part I Syllabus Fall 2003  

E-Print Network (OSTI)

Physics 5555­ Solid State Physics, Part I Syllabus ­ Fall 2003 Instructor: Massimiliano Di Ventra. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Principles" · Harrison, "Solid State Theory" · Kittel, "Quantum Theory of Solids" · Kittel and Kroemer, "Thermal Physics

Di Ventra, Massimiliano

312

Physics 5555 Solid State Physics, Part I Syllabus Fall 2001  

E-Print Network (OSTI)

Physics 5555­ Solid State Physics, Part I Syllabus ­ Fall 2001 Instructor: Massimiliano Di Ventra. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Principles" · Harrison, "Solid State Theory" · Kittel, "Quantum Theory of Solids" · Kittel and Kroemer, "Thermal Physics

Di Ventra, Massimiliano

313

A Tethered Free-Fall Glider to Measure Ocean Turbulence  

Science Conference Proceedings (OSTI)

A tethered free-fall microstructure glider, designed to make quasi-horizontal profiles of the ocean mixed layer, was tested at Emerald Bank on the Scotian Shelf in June 1996. The vehicle attained a 4:1 gliding ratio with the angle of attack close ...

B. J. W. Greenan; N. S. Oakey

1999-11-01T23:59:59.000Z

314

Bachelor of Science in Wind Energy Fall Spring  

E-Print Network (OSTI)

Bachelor of Science in Wind Energy FIRST YEAR Fall Spring WE 1300, Introduction to Wind Energy 3, Analytical Meth. in Wind Energy 3 WE 1311, Prin. of Wind Power Conversion 3 WE 2300, Social Impacts of Wind Energy 3 WE 2310, Meth. for Wind Res. Character. 3 ENGL 2000-Level Literature^ 3 HIST 2301, History of U

Gelfond, Michael

315

Comment on Origin of Groundwater Discharge at Fall River Springs  

SciTech Connect

I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the

Rose, T

2006-10-20T23:59:59.000Z

316

Comment on Origin of Groundwater Discharge at Fall River Springs  

Science Conference Proceedings (OSTI)

I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the

Rose, T

2006-10-20T23:59:59.000Z

317

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per day (rkm/d) for Captain John Rapids to 14.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Big Canyon to 15.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-12 days to Lower Granite Dam and 25-30 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 20-28. Median arrival dates at McNary Dam for the FCAP groups were all May 11. The objectives of this project are to quantify and evaluate pre-release fish health, condition and mark retention as well as post-release survival, migration timing, migration rates, travel times and movement patterns of fall Chinook salmon from supplementation releases at the FCAP facilities, then provide feedback to co-managers for project specific and basin wide management decision-making.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

318

Fish Protection: Cooperative research advances fish-friendly turbine design  

SciTech Connect

Renewable hydropower is a tremendous resource within the Pacific Northwest that is managed with considerable cost and consideration for the safe migration of salmon. Recent research conducted in this region has provided results that could lower the impacts of hydro power production and make the technology more fish-friendly. This research is now being applied during a period when a huge emphasis is being made to develop clean, renewable energy sources.

Brown, Richard S.; Ahmann, Martin L.; Trumbo, Bradly A.; Foust, Jason

2012-12-01T23:59:59.000Z

319

Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.  

DOE Green Energy (OSTI)

Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

Rondorf, Dennis W.; Tiffan, Kenneth F.

1996-08-01T23:59:59.000Z

320

Using Advanced Imaging to Study Fish  

E-Print Network (OSTI)

Although mammals are the most commonly utilized laboratory animal, laboratory animal medicine continually seeks to replace them with animals of lower phylogenic classification. Fish are becoming increasingly important as investigators seek alternative animal models for research. Fish can provide an economical and feasible alternative to typical mammalian models; moreover, many fish, which have comparatively short life spans, can easily reproduce in the laboratory. One key area of animal health research in which fish have been underutilized is the field of advanced imaging. Although many images of fish have been captured through the use of computed tomography (CT), radiography, and ultrasonography, these images have been primarily utilized for anatomical study. In addition, fish have never before been studied with positron emission tomography/ computed tomography (PET/CT). My objectives were to determine if these imaging techniques can be used to obtain physiological information from fish, therefore making it more likely that fish can be utilized as replacement animals using these new imaging techniques (CT, PET/CT). I performed two different types of studies to assess the potential application of advanced imaging techniques to fish. In the first experiment, microCT was used to characterize otolith deformity in vitamin C deficient captive-raised red drum and relate the deformity to behavioral and physiological changes. I found that the normal and abnormal fish had statistically significant differences in behavior, cortisol levels, and otolith volume and density. MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, and several types of otolith malformations. Therefore, the affected fish had not only an abnormal skeletal appearance but also significantly abnormal behavior and cortisol responses. In the second experiment, fluorodeoxyglucose-positron emission tomography/ computed tomography (FDG-PET/CT) was used to quantify glucose uptake in select organs prior to carcinogenesis studies in fish. The quantified glucose uptake was compared to published data on humans, mice, and dogs. Rapid, quantifiable glucose uptake was demonstrated, particularly in brain, kidneys, and liver in all imaged fish species. Glucose uptake in the major organ systems of fish was closer to that in humans than uptake in mice or dogs, indicating that fish may serve as an effective alternative animal model for tumor studies using this technology. Other applications for this technique in fish may include metabolism studies and screening for environmental carcinogenesis. I found that both microCT and PET/CT imaging provided useful and meaningful results. In addition, the use of non-invasive scanning allows for re-use of fish, thus reducing the number of animal models used in experiments. These experiments suggest that fish will be good replacement models for mammals using these advanced imaging techniques.

Browning, Zoe Swezy

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Umatilla River Fish Passage Operations Program, 2001-2002 Annual Report.  

DOE Green Energy (OSTI)

Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, Oregon is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 22, 2001 to September 12, 2002. A total of 5,519 summer steelhead (Oncorhynchus mykiss); 1,146 adult, 1,158 jack, and 970 subjack fall chinook (O. tshawytscha); 22,792 adult and 80 jack coho (O. kisutch); and 5,058 adult and 188 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 261 adult and 14 jack spring chinook were hauled upstream from Threemile Dam for release. There were 5,359 summer steelhead; 622 adult, 1,041 jack and 867 subjack fall chinook; 22,513 adult and 76 jack coho; and 4,061 adult and 123 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. In addition, 110 summer steelhead; 462 adult and 24 jack fall chinook; and 560 adult and 28 jack spring chinook were collected for brood. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 141 days between February 22 and July 12, 2002. During that period, fish were bypassed back to the river 134 days and were trapped 5 days. An estimated 200 pounds of juvenile fish were transported from Westland. Approximately 90% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened August 16, 2002. The bypass was run until October 31, 2001 with the exception of the period from August 29 to September 16. The bypass was reopened March 7, 2002 and ran until July 8. The juvenile trap was operated from July 8 to July 12 by the Umatilla Passage Evaluation project.

Zimmerman, Brian C. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

2003-02-01T23:59:59.000Z

322

Umatilla River Fish Passage Operations Program, 2000-2001 Annual Report.  

DOE Green Energy (OSTI)

Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 17, 2000 to July 7, 2001. A total of 3,662 summer steelhead (Oncorhynchus mykiss); 643 adult, 437 jack, and 4,948 subjack fall chinook (O. tshawytscha); 4,654 adult and 1,276 jack coho (O. kisutch); and 4,382 adult and 185 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 14 summer steelhead and 847 adult and 74 jack spring chinook were hauled upstream from Threemile Dam. There were 3,433 summer steelhead; 71 adult, 298 jack and 4,647 subjack fall chinook; 4,435 adult and 1,180 jack coho; and 2,873 adult and 55 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. In addition, 116 summer steelhead; 565 adult and 38 jack fall chinook; and 646 adult and 31 jack spring chinook were collected for brood. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 147 days between February 5 and July 26, 2001. During that period, fish were bypassed back to the river 127 days and were trapped 18 days. An estimated 350 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 92% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was open throughout the summer of 2000 and continued to run until October 27, 2000. The bypass was reopened March 8, 2001 and ran until July 9, 2001. The juvenile trap was not operated this year.

Zimmerman, Brian C. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

2003-02-01T23:59:59.000Z

323

Umatilla River Fish Passage Operations Program, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 17, 2002 to September 29, 2003. A total of 3,080 summer steelhead (Oncorhynchus mykiss); 1716 adult, 617 jack, and 1,709 subjack fall chinook (O. tshawytscha); 3,820 adult and 971 jack coho (O. kisutch); and 3,607 adult and 135 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 6 summer steelhead and 330 adult and 49 jack spring chinook were hauled upstream from Threemile Dam. There were 2,882 summer steelhead; 1161 adult, 509 jack and 1,546 subjack fall chinook; 3,704 adult and 915 jack coho; and 2,406 adult and 31 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 109 summer steelhead; 532 adult and 32 jack fall chinook; and 560 adult and 28 jack spring chinook were collected for brood. In addition, 282 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 159 days between January 27 and July 4, 2003. During that period, fish were bypassed back to the river 145 days and were trapped 11 days. An estimated 205 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 82% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on September 16, 2002. and continued until November 1, 2002. The bypass was reopened March 3, 2003 and ran until July 3, 2003. The juvenile trap was operated by the Umatilla Passage Evaluation Project.

Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

2004-03-01T23:59:59.000Z

324

Assessment of impacts from water level fluctuations on fish in the Hanford Reach, Columbia River  

DOE Green Energy (OSTI)

Observations on the effects of water level fluctuations in the Hanford Reach of the Columbia River, Washington, were made in 1976 and 1977. The two years provided contrasting flow regimes: high water and fluctuations of greater magnitude prevailed in 1976; low water and higher temperatures prevailed in 1977. Situations where fish and other aquatic organisms were destroyed by changing water levels were observed and evaluated each year in three study areas: Hanford, F-Area, and White Bluffs sloughs. Losses primarily were due to stranding, entrapment (with or without complete dewatering), and predation. Juvenile fish were more susceptible to entrapment and stranding than were adult fish. Estimates of actual losses were biased and conservative because relatively few fish could be found after each decline of water level and dewatering. The most valued species of fish affected by water level fluctuations at Hanford were the anadromus fall chinook salmon (Oncorhynchus tshawytscha) and the resident smallmouth bass (Micropterus dolomieui). Crucial periods for chinook salmon occurred during winter when incubating eggs were in the gravel of the main channel, and before and during seaward migration in the spring when fry were abundant in shoreline zones. The crucial period for smallmouth bass was during spring and early summer when adults were spawning in warmed sloughs and shoreline zones. Chinook salmon and smallmouth bass fry were vulnerable to stranding and entrapment, and smallmouth bass nests were susceptible to exposure and temperature changes resulting from repeated water level fluctuations. Thus, flow manipulation may be crucial to their survival. The extent to which other species of riverine fish were affected by water level fluctuations depended upon their use of shoreline zones for spawning and rearing young.

Becker, C.D.; Fickeisen, D.H.; Montgomery, J.C.

1981-05-01T23:59:59.000Z

325

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2004 Annual Report.  

DOE Green Energy (OSTI)

Redd counts were used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U.S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2004; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2004 was funded by the Bonneville Power Administration, Idaho Power Company, and Bureau of Land Management.

Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

2005-10-01T23:59:59.000Z

326

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2005 Annual Report.  

DOE Green Energy (OSTI)

Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2005; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U.S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2005 was funded by the Bonneville Power Administration and Idaho Power Company.

Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

2006-10-01T23:59:59.000Z

327

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2007 Annual Report.  

DOE Green Energy (OSTI)

Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2007; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches counted upstream of Lower Granite Dam into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2007 was funded by the Bonneville Power Administration and Idaho Power Company.

Garcia, A.P.; Bradbury, S. [U.S. Fish and Wildlife Service; Arnsberg, B.D. [Nez Perce Tribe; Groves, P.A. [Idaho Power Company

2008-11-25T23:59:59.000Z

328

Augmented Fish Health Monitoring in Idaho, 1992 Annual Report.  

DOE Green Energy (OSTI)

This report documents the progress of Idaho Department of Fish and Game`s fish health monitoring during the past five years and will serve as a completion report for the Augmented Fish Health Monitoring Project. Anadromous fish at twelve IDFG facilities were monitored for various pathogens and organosomatic analyses were performed to anadromous fish prior to their release. A fish disease database has been developed and data is presently being entered. Alternate funding has been secured to continue fish health monitoring.

Munson, A.Douglas

1993-12-01T23:59:59.000Z

329

Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2002 Annual Report.  

DOE Green Energy (OSTI)

The runoff volumes in 2002 were near average for the January to July period above Lower Granite Dam (80%) and The Dalles Dam (97%). The year 2002 hydrosystem operations and runoff conditions resulted in flows that were less than the seasonal Biological Opinion (Opinion) flow objectives at Lower Granite Dam for both the spring and summer period. The seasonal flow objectives for Priest Rapids and McNary dams were exceeded for the spring period, but at McNary Dam summer flow objectives were not met. While seasonal flow objectives were exceeded for the spring at McNary Dam, the 2002 season illustrated that Biological Opinion management to seasonal flow targets can result in conditions where a major portion of the juvenile fish migration migrates in conditions that are less than the flow objectives. The delay in runoff due to cool weather conditions and the inability of reservoirs to augment flows by drafting lower than the flood control elevations, resulted in flows less than the Opinion objectives until May 22, 2002. By this time approximately 73% of the yearling chinook and 56% of steelhead had already passed the project. For the most part, spill in 2002 was managed below the gas waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. The exception was at Lower Monumental Dam where no Biological Opinion spill occurred due to the need to conduct repairs in the stilling basin. Survival estimates obtained for PIT tagged juveniles were similar in range to those observed prior to 2001. A multi-year analysis of juvenile survival and the factors that affect it was conducted in 2002. A water transit time and flow relation was demonstrated for spring migrating chinook and steelhead of Snake River and Mid Columbia River origin. Returning numbers of adults observed at Bonneville Dam declined for spring chinook, steelhead and coho, while summer and fall chinook numbers increased. However, all numbers were far greater than observed in the past ten years averaged together. In 2002, about 87 million juvenile salmon were released from Federal, State, Tribal or private hatcheries into the Columbia River Basin above Bonneville Dam. This represents an increase over the past season, when only 71 million juvenile fish were released into the same area.

DeHart, Michele; Berggren, Thomas J.; Filardo, Margaret (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

2003-09-01T23:59:59.000Z

330

Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.  

DOE Green Energy (OSTI)

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival, provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water quality issues including dissolved oxygen and/or turbidity. Regardless, angler fishing experience was the highest at Lake Billy Shaw. Trout in Mountain View Reservoir were in the best condition of the three reservoirs and anglers reported very good fishing there. Water quality (specifically dissolved oxygen and temperature) remain the main limiting factors in the fisheries, particularly in late August to early September.

Sellman, Jake; Perugini, Carol [Department of Fish, Wildlife, and Parks, Shoshone-Paiute Tribes

2009-02-20T23:59:59.000Z

331

City of Idaho Falls, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Idaho Falls City of Idaho Falls City of Place Idaho Utility Id 9187 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Large Industrial (over 2000 kW/month) Industrial Residential Residential Security Lighting HPS 100 Watt Lighting Security Lighting HPS 200 Watt Lighting Security Lighting Metal Halide Floodlight 400 Watt Lighting Small Industrial (over 275 kW/month) Industrial

332

Chagrin Falls, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chagrin Falls, Ohio: Energy Resources Chagrin Falls, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4361644°, -81.3865012° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4361644,"lon":-81.3865012,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

City of Sheboygan Falls, Wisconsin (Utility Company) | Open Energy  

Open Energy Info (EERE)

Sheboygan Falls Sheboygan Falls Place Wisconsin Utility Id 17028 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Three Phase Commercial Cp-1 Service Commercial Cp-2 Service Commercial Cp-3 Service Commercial Cp-4 Service Commercial Residential Residential Average Rates Residential: $0.0915/kWh Commercial: $0.0909/kWh Industrial: $0.0810/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

334

Ludlow Falls, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ludlow Falls, Ohio: Energy Resources Ludlow Falls, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9981082°, -84.3388362° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9981082,"lon":-84.3388362,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Sioux Falls, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sioux Falls, SD) Sioux Falls, SD) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5499749°, -96.700327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5499749,"lon":-96.700327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

City of Falls City, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Falls City Falls City Place Nebraska Utility Id 6175 Utility Location Yes Ownership M NERC Location MRO NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Demand Charges Commercial Commercial- No Demand Charges Non-Tax Commercial Commercial- No Demand Charges Tax Commercial Industrial- Demand Charges Industrial Industrial- No Demand Charges Non-Tax Industrial Industrial- No Demand Charges Tax Industrial Large Power Service Industrial Residential Residential

337

Niagara Falls, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Niagara Falls, NY) Niagara Falls, NY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0944999°, -79.0567111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0944999,"lon":-79.0567111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Turners Falls, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Turners Falls, Massachusetts: Energy Resources Turners Falls, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6042523°, -72.5564777° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6042523,"lon":-72.5564777,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Oconto Falls Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Oconto Falls Water & Light Comm Oconto Falls Water & Light Comm Place Wisconsin Utility Id 13965 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering Discount Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount

340

City of Cuyahoga Falls, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cuyahoga Falls Cuyahoga Falls Place Ohio Utility Id 4683 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSD- GENERAL SERVICE, DISTRIBUTION Industrial GSL - GENERAL SERVICE, LARGE Industrial GSM- GENERAL SERVICE, MEDIUM, THREE PHASE Commercial GSS- GENERAL SERVICE, SMALL, SINGLE PHASE Commercial RS-RESIDENTIAL SERVICE. Residential RS/AE-RESIDENTIAL SERVICE/ALL ELECTRIC. Residential Average Rates Residential: $0.0848/kWh Commercial: $0.0937/kWh Industrial: $0.1220/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL Publications: NETL-RUA Fall Conference: Energy and Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL-RUA Fall Conference: Energy and Innovation NETL-RUA Fall Conference: Energy and Innovation November 28-29, 2012 Held November 28-29, 2012 at the Southpointe Hilton Garden Inn in Canonsburg, Pennsylvania, the second Annual Energy & Innovation Conference brought together business and industry leaders from Pennsylvania, West Virginia, Ohio, and Virginia as well as members National Energy Technology Laboratory Regional University Alliance (NETL-RUA, or the Alliance). The Alliance hosted the event in collaboration with Catalyst Connection to highlight, demonstrate, and exhibit NETL-RUA research capabilities to the region's manufacturing sector and facilitate the development of new partnerships which will be instrumental in future collaborative research and economic development. Conference Program and Agenda

342

Hampton Falls, New Hampshire: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Falls, New Hampshire: Energy Resources Falls, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9162011°, -70.8636648° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9162011,"lon":-70.8636648,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Wichita Falls, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wichita Falls, Texas: Energy Resources Wichita Falls, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9137085°, -98.4933873° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9137085,"lon":-98.4933873,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Little Falls-South Windham, Maine: Energy Resources | Open Energy  

Open Energy Info (EERE)

Falls-South Windham, Maine: Energy Resources Falls-South Windham, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7333197°, -70.4270734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7333197,"lon":-70.4270734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Butte Falls, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Falls, Oregon: Energy Resources Falls, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.5431843°, -122.5655886° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5431843,"lon":-122.5655886,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Brasher Falls-Winthrop, New York: Energy Resources | Open Energy  

Open Energy Info (EERE)

Brasher Falls-Winthrop, New York: Energy Resources Brasher Falls-Winthrop, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8025706°, -74.79545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8025706,"lon":-74.79545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

City of Newton Falls, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Newton Falls Newton Falls Place Ohio Utility Id 13563 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMM city owned equip inside city limits Commercial COMM city owned equip inside city limits interuptible electric service Commercial COMM city owned equip outside city limits Commercial COMM cust owned equip inside city limits Commercial COMM cust owned equip inside city limits interuptible electric service Commercial COMM cust owned equip outside city limits

348

Falling House Prices and Rising Time on the Market  

E-Print Network (OSTI)

Much of the current trouble in the housing market has been attributed to the fact that house price appreciationstrong for many yearsis finally slowing; indeed, in many markets now, house prices are falling.The mere fact that falling house prices are considered newsworthy is interesting in its own right. In other asset markets, such as the stock and bond markets, prices routinely fluctuate up and down every day. In this Economic Letter I argue that the main reason for this difference reflects differences in the liquidity of houses and financial assets as investments. I review the ways in which residential real estate prices and liquidity vary over time and over different states of the economy, discuss the implications of this price and liquidity behavior

unknown authors

2008-01-01T23:59:59.000Z

349

Green Mountain Falls, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Falls, Colorado: Energy Resources Falls, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9349905°, -105.0169263° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9349905,"lon":-105.0169263,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Town of Granite Falls, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Granite Falls Town of Granite Falls Town of Place North Carolina Utility Id 7496 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL ALL ELECTRIC - E13 Commercial COMMERCIAL ALL ELECTRIC - E14 Commercial COMMERCIAL ALL ELECTRIC - E9 Commercial COMMERCIAL ELECTRIC - E6 Commercial COMMERCIAL ELECTRIC - E8 Commercial CP 98-1C Industrial CP 98-1I Industrial CP 98-2C Industrial CP 98-2I Industrial CP 98-3C Industrial CP 98-3I Industrial CP TOU Industrial INDUSTRIAL ELECTRIC - E10 Industrial

351

Munroe Falls, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Munroe Falls, Ohio: Energy Resources Munroe Falls, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1445006°, -81.4398342° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1445006,"lon":-81.4398342,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Clean Cities Drive Vol 3 Issue 4 - Fall 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fall 1996 Fall 1996 N ot all news from Congress is bad for alternative fuels. "The more you build a constituency, the better off you are," Matthew Brown, senior policy specialist for the National Conference of State Legislatures, told Clean Cities Conference-goers last June in Atlanta. "Clean Cities is a natural constituency." Brown recommended performing the necessary education when it is not a legislative emergency; and there are at least two new groups in Washington, D.C. designed to do just that: Home Renewable Enew C a w - At press time, 97 members of the House of Representatives had joined the House Renewable Energy Caucus to support research and development of renewable energy sources. Last April the bipartisan group sponsored a

353

Sustainable alternatives to fish meal and fish oil in fish nutrition: Effects on growth, tissue fatty acid composition and lipid metabolism.  

E-Print Network (OSTI)

??Traditionally, fish meal (FM) and fish oil (FO) have been used extensively in aquafeeds, mainly due to their excellent nutritional properties. However, various reasons dictate (more)

Karalazos, Vasileios

2007-01-01T23:59:59.000Z

354

Characterization of Fish Passage Conditions through the Fish Weir and Turbine Unit 1 at Foster Dam, Oregon, Using Sensor Fish, 2012  

SciTech Connect

This report documents investigations of downstream fish passage research involving a spillway fish weir and turbine passage conditions at Foster Dam in May 2012.

Duncan, Joanne P.

2013-02-01T23:59:59.000Z

355

Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2000 Annual Report.  

DOE Green Energy (OSTI)

The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were done to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear 200,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake.

Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

2001-03-01T23:59:59.000Z

356

Turbine Blade Shape Favorable for Fish Survival  

Science Conference Proceedings (OSTI)

Various mechanisms associated with turbine design and operation injure fish passing through hydro turbines. Pilot-scale tests with various fish species and sizes showed that most turbine passage injury and mortality are caused by blade strike. Leading edge blade strike is particularly important for turbines with numerous blades. Very little information and data are available on the mechanics of fish struck by turbine blades and the resulting injury and mortality rates. Determining what leading edge blade...

2008-05-29T23:59:59.000Z

357

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money September 21, 2009 - 3:04pm Addthis Allison Casey...

358

An Optical Array Instrument for Shape and Fall Velocity Measurements of Hydrometeors  

Science Conference Proceedings (OSTI)

A ground-based optical array instrument for the measurement of shapes, sizes, and fall velocities of freely falling hydrometeors is presented. The instrument, the Hydrometeor Velocity and Shape Detector (HVSD), is designed to accurately measure ...

E. Barthazy; S. Gke; R. Schefold; D. Hgl

2004-09-01T23:59:59.000Z

359

SunShot Initiative: High-Temperature Falling-Particle Receiver  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Temperature Falling-Particle High-Temperature Falling-Particle Receiver to someone by E-mail Share SunShot Initiative: High-Temperature Falling-Particle Receiver on Facebook Tweet about SunShot Initiative: High-Temperature Falling-Particle Receiver on Twitter Bookmark SunShot Initiative: High-Temperature Falling-Particle Receiver on Google Bookmark SunShot Initiative: High-Temperature Falling-Particle Receiver on Delicious Rank SunShot Initiative: High-Temperature Falling-Particle Receiver on Digg Find More places to share SunShot Initiative: High-Temperature Falling-Particle Receiver on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

360

Fight Fall Allergies and Save Energy by Checking Your HVAC System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fight Fall Allergies and Save Energy by Checking Your HVAC System Fight Fall Allergies and Save Energy by Checking Your HVAC System October 15, 2012 - 3:19pm Addthis Change your...

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Effects of Fouling and Debris on Larval Fish Within a Fish Return System  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has funded laboratory studies on the biological efficacy of fish return systems for larval and early juvenile fish survival removed from fine-mesh traveling water screens. This report presents results of additional testing that investigated the effects of fish return biofouling and debris on their survival. This project is generating additional data necessary to determine the overall biological efficacy of fish collection and return systems used with cooling w...

2012-04-24T23:59:59.000Z

362

Migration of Insects, Fish and Mammals  

NLE Websites -- All DOE Office Websites (Extended Search)

Insects, Fish and Mammals Nature Bulletin No. 148 March 27, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation...

363

Relating muscle telomerase to fish growth.  

E-Print Network (OSTI)

???Fish growth is one of the important indicators for individual fitness as well as population health. Telomerase is a protein complex that is closely linked (more)

Mok, Oi Lam Helen (???)

2008-01-01T23:59:59.000Z

364

Fish and Wildlife | OpenEI Community  

Open Energy Info (EERE)

Notices My stuff Energy blogs Login | Sign Up Search Facebook icon Twitter icon Fish and Wildlife Home Kyoung's picture Submitted by Kyoung(150) Contributor 4 September,...

365

Applications of the Sensor Fish Technology  

Science Conference Proceedings (OSTI)

The Sensor Fish is an autonomous device developed at Pacific Northwest National Laboratory for U.S. Department of Energy (DOE) and Army Corps of Engineers (COE) to better understand the physical conditions fish experience during passage through hydro-turbines and other dam bypass alternatives. Since its initial development in 1997, the Sensor Fish has undergone several design changes to improve its function and extend the range of its use. The most recent Sensor Fish design, the six-degree-of-freedom (6DOF) device, has been deployed successfully to characterize the environment fish experience when they pass through several hydroelectric projects along main stem Columbia and Snake Rivers in the Pacific Northwest. Just as information gathered from crash test dummies can affect automobile design with the installation of protective designs to lessen or prevent human injury, having sensor fish data to quantify accelerations, rotations, and pressure changes, helps identify fish injury mechanisms such as strike, turbulent shear, pressure, and inertial effects, including non-lethal ones such as stunning or signs of vestibular disruption that expose fish to a higher risk of predation by birds and piscivorous fish downstream following passage.

Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.

2007-08-28T23:59:59.000Z

366

Time management in a Poisson fishing model  

E-Print Network (OSTI)

The aim of the paper is to extend the model of "fishing problem". The simple formulation is following. The angler goes to fishing. He buys fishing ticket for a fixed time. There are two places for fishing at the lake. The fishes are caught according to renewal processes which are different at both places. The fishes' weights and the inter-arrival times are given by the sequences of i.i.d. random variables with known distribution functions. These distributions are different for the first and second fishing place. The angler's satisfaction measure is given by difference between the utility function dependent on size of the caught fishes and the cost function connected with time. On each place the angler has another utility functions and another cost functions. In this way, the angler's relative opinion about these two places is modeled. For example, on the one place better sort of fish can be caught with bigger probability or one of the places is more comfortable. Obviously our angler wants to have as much sati...

Karpowicz, Anna

2008-01-01T23:59:59.000Z

367

Precision Biochemistry Tracks DNA Damage in Fish  

Science Conference Proceedings (OSTI)

... Like coal-mine canaries, fish DNA can serve as a measure of the biological impact of water and sediment pollutionor pollution clean-up. ...

2012-10-17T23:59:59.000Z

368

Fish and hydroelectricity; Engineering a better coexistence  

Science Conference Proceedings (OSTI)

This paper reports on the problems that hydroelectric plants have regarding fish populations. The utilities that operate these plants are finding that accommodating migrating fish presents unique engineering challenges, not the least of which involves designing and building systems to protect fish species whose migratory behavior remains something of a mystery. Where such systems cannot be built, the status of hydroelectric dams may be in doubt, as is now the case with several dams in the United States. A further twist in some regions in the possibility that certain migratory fish will be declared threatened or endangered-a development that could wreak havoc on the hydroelectric energy supply in those regions.

Zorpette, G.

1990-12-01T23:59:59.000Z

369

Mesolithic fishing and seafaring in the Aegean  

E-Print Network (OSTI)

Melian obsidian and fish bones unearthed at Franchthi cave confirm the existence of seafaring in the Aegean Sea since the Late Paleolithic. By the Mesolithic, an increase in the quantity of obsidian occurs contemporaneously with the appearance of bones from bluefin tuna weighing up to 200 kg. Even though direct archaeological evidence which reflects the type of boats and fishing practices used to acquire these fish does not exist, evidence in the form of migration theory and fish preservation suggests that the Aegean sailors had a sophisticated technology capable of building planked hulls and preserving tuna.

Webb, Thanos Aronis

1999-01-01T23:59:59.000Z

370

Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched, including near Woodward, Tanner, and McCord creeks.

Mueller, Robert

2004-10-01T23:59:59.000Z

371

Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2004 Annual Report.  

SciTech Connect

The runoff volume for 2004 was below average throughout the Columbia Basin. At The Dalles the January-July runoff volume was 77% of average or 83.0 MAF. Grand Coulee, Hungry Horse, and Libby were below their Biological Opinion reservoir target elevations on April 10 at the beginning of the spring salmon migration season. All major storage reservoirs except Libby, Grand Coulee, Hungry Horse, Dworshak, and Brownlee were within a few feet of full by the end of June and early July. Overall, NOAA Biological Opinion seasonal flow targets were not met at any project for either spring or summer migrations of salmon and steelhead. Overall, spill was reduced in 2004. Implementation of Biological Opinion spill for fish passage measures was wrought with contention in 2004, particularly for summer spill which was finally the subject of litigation. The spring migration spill season began with debate among the fishery mangers and tribes and action agencies regarding spill at Bonneville Dam for the Spring Creek Hatchery release. The USFWS agreed to a spill test versus a corner collector operation to determine the best route for survival for these fish. The USFWS agreement includes no spill for early Spring Creek Hatchery releases for the next two years. Spring spill at Snake River transportation sites was eliminated after April 23, and transportation was maximized. The federal operators and regulators proposed to reduce Biological Opinion summer spill measures, while testing the impact of those reductions. This proposal was eventually rejected in challenges in the Federal Ninth Circuit Court. The Corps of Engineers reported that spill at Bonneville Dam in the 2002 to 2004 period was actually lower than reported due to a spill calibration error at the project. Because flows were low and spill levels were easily controlled few fish were observed with any signs of Gas Bubble Trauma. The annual Smolt Monitoring Program was implemented and provided in-season timing and passage characteristics for management purposes and also travel time and survival analyses. These analyses showed consistent significant relationships between flow and spill percent versus survival for Steelhead in each reach analyzed. These results point to the importance of maintain high flows and spill for steelhead survival through the hydrosystem. A significant relation between either travel time or spill percent and survival for yearling Chinook was found. Given the high correlation between the variables it is not surprising that only one is retained in these models. Again the findings show the importance of flows and spill in spring Chinook survival through the hydrosystem. Survival trends in the Lower Snake River have been steadily declining for in-river migrants over the past several years with two notable exceptions. The lowest survivals were measured in 2001 when low flows and very little or no spill was provided led to poor migration conditions. Also survival increased in 2003 when Biological Opinion spill was provided despite moderate to low flows. Reach survivals in 2004 in the Snake River were the second lowest following 2001. Sub-yearling survival in the mid-Columbia in 2004 between Rock Island and McNary Dam were very low compared to other recent years. The general run-at-large migration timing of sub-yearling fall Chinook in the Snake River has changed with the increasing releases of hatchery supplementation production in the Snake River.

DeHart, Michele (Columbia Basin Fish and Wildlife Authority, Portland, OR)

2005-07-01T23:59:59.000Z

372

1 EIND 371 Introduction to CIM Fall 2011 I&ME 371 Syllabus  

E-Print Network (OSTI)

1 EIND 371 ­ Introduction to CIM ­ Fall 2011 I&ME 371 Syllabus Introduction to Computer Integrated of their proposed solutions to open-ended problems. #12;2 EIND 371 ­ Introduction to CIM ­ Fall 2011 Rules: 1 to the scale below. #12;3 EIND 371 ­ Introduction to CIM ­ Fall 2011 If the average class grade

Dyer, Bill

373

ADDENDUM TO ACTION DESCRIPTION MEMORANDUM NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

ADDENDUM TO ADDENDUM TO ACTION DESCRIPTION MEMORANDUM NIAGARA FALLS STORAGE SITE PROPOSED INTERIM REMEDIAL ACTIONS FOR FY 1983-85 ACCELERATED PROGRAM (1984 VICINITY PROPERTIES CLEANUP) Prepared by Environmental Research Division Argonne National Laboratory Argonne, Illinois July 1984 Prepared for U.S. Department of Energy Oak Ridge Operations Technical Services Division Oak Ridge, Tennessee CONTENTS Page SUMMARY OF PROPOSED ACTION AND RELATED ACTIVITIES ........... 1 HISTORY AND ENVIRONMENTAL SETTING ........................ 4 RADIOLOGICAL CONTAMINATION AND NEED FOR PROPOSED ACTION ........ 4 Property A .. . . . . . . . . . . . . . . . .. . . . . . . 6 Property C' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Property H ...... ............. ... 7 Property H' . . . . . . . . . . . . . . . . . . .. . . . . . . . . 7 Property L ..... ...... .

374

Cedar Falls Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Appliance Recycling: 2 rebates per residential account, per appliance type annually Ceiling Fan Light Kits: $20 per light kit; 6 per account per year Central A/C: $400 Air Source Heat Pump: $600 Attic/Ceiling Insulation: $1,000 Air Sealing/Caulking/Weather Stripping: $200 CFL: 50% of cost, up to $5 (10 per customer per year)

375

Buildings for the 21st Century, Fall 2001  

DOE Green Energy (OSTI)

The Buildings for the 21st Century newsletter is produced by the Office of Building Technology, State and Community Programs and contains information on building programs, events, products, and initiatives, with a focus on energy efficiency and renewable energy. The fall issue includes information on weatherization, Boise's geothermal heating system, the BTS Core Databook, the Solar Decathlon, a Rebuild America partnership, the BigHorn Home Improvement Center, AIA's Top Ten Buildings, a sub-CFL procurement program, the U.S. investment in energy efficient research, new efficiency standards, PNNL's building software, and a calendar of meetings and conferences.

Not Available

2001-10-01T23:59:59.000Z

376

Kalispel Resident Fish Project : Annual Report, 2002.  

DOE Green Energy (OSTI)

In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

Andersen, Todd; Olson, Jason

2003-03-01T23:59:59.000Z

377

Fish and hydroelectricity: engineering a better coexistence  

Science Conference Proceedings (OSTI)

Steps being taken by US utilities, under pressure from a Federal licensing agency, to restore once-vast populations of migratory fish are described. Waterways designed to help migrating fish get past dams to upstream spawning areas have been used on ...

G. Zorpette

1990-12-01T23:59:59.000Z

378

Native Fish Society Molalla, OR 97308  

E-Print Network (OSTI)

are the state, federal and tribal fish management agencies that have limited authority over habitat conditions for its detail and comprehensive approach, I recommend a few improvements. The implementation agencies in the basin. That authority resides with other agencies, but the fish management agencies can certainly

379

DIRECTING THE MOVEMENT OF FISH WITH ELECTRICITY  

E-Print Network (OSTI)

DIRECTING THE MOVEMENT OF FISH WITH ELECTRICITY Marine Biological Laboratory APR 21 1953 WOODS HOLE, Albert M. Day, Director DIRECTING THE MOVH-IENT OF FISH WITH ELECTRICITY by Alberton L. McLain Fishery of an electrical leading device 21 Literature cited. ..,...,..,..........·· 2k ILLUSTRATIONS Figure Page 1. Diagram

380

EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: K Pool Fish Rearing, Hanford Site, Richland, Washington EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts of...

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

382

Behavior and survival of fish migrating downstream in regulated rivers.  

E-Print Network (OSTI)

??Dams present obstacles to fish migrating between freshwater and marine habitats. This thesis evaluated downstream migrations of fish in five rivers in Sweden and North (more)

Ferguson, John

2008-01-01T23:59:59.000Z

383

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

384

Jackson National Fish Hatchery Aquaculture Low Temperature Geothermal...  

Open Energy Info (EERE)

National Fish Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson National Fish Hatchery Aquaculture Low Temperature Geothermal...

385

Fish Flu: Genetics Approach May Lead to Treatment  

Science Conference Proceedings (OSTI)

Fish Flu: Genetics Approach May Lead to Treatment. From ... supports. Salmon swimming within a netted pen at a fish farm in Maine. ...

2012-10-15T23:59:59.000Z

386

California Desert Fish Farm Aquaculture Low Temperature Geothermal...  

Open Energy Info (EERE)

California Desert Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name California Desert Fish Farm Aquaculture Low Temperature Geothermal...

387

EPA Fish Consumption Advisories Website | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA Fish Consumption Advisories Website Safety DataTools Apps Challenges Resources Blogs Let's Talk Safety You are here Data.gov Communities Safety Data EPA Fish...

388

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

389

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

390

Niagara Falls Storage Site Vicinity Properties in Lewiston, New York,  

Office of Legacy Management (LM)

Niagara Falls Storage Site Vicinity Niagara Falls Storage Site Vicinity Properties in Lewiston, New York, from 7983 through 7986 Depatfment of Energy Former Sites Restoration Division Oak Ridge Field Office July 7 992 I I I I I I I I I I I I I I I I I I I CONTENTS Figures .......................... Tables .......................... Abbreviations ....................... Acronyms ......................... 1.0 Introduction ..................... 2.0 Site History ..................... 3.0 Property Descriptions ................ 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 Property A ............ Property B ............ PropertyC' ........... Property D ............ Property F ........ .' ... PropertyH' ...........

391

The hydrothermal system in central Twin Falls County, Idaho  

DOE Green Energy (OSTI)

This report describes the results of a study to define the areal extent and thickness of the hydrothermal reservoir in Twin Falls County and to propose a generalized conceptual model of the system. Specific objectives of the study, done in cooperation with the Idaho Department of Water Resources, were to evaluate the existing resource as to its volume, temperature, pressure, and water chemistry, and to determine the effects of present development on the resource. The study was limited to Twin Falls County. Some geologic, geochemical, and hydrologic data for the hydrothermal system were available from earlier studies. However, information about the subsurface at depths greater than 1000 feet was sparse. One well for which data were available was drilled to 2525 feet; several others were drilled to depths between 1200 and 2200 feet. Direct-current electrical resistivity soundings conducted during the summer of 1985 as part of the study provided valuable information about the subsurface at depths less than about 6000 feet. Interpretation of computer-generated subsurface profiles constructed from the soundings provided the basis for determining the thickness of the Idavada Volcanics over much of the study area. 42 refs., 9 figs., 3 tabs.

Lewis, R.E.; Young, H.W.

1989-01-01T23:59:59.000Z

392

Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlings at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of the 1,253 PIT tagged fish released, a total of 719 unique tags were detected at mainstem Snake and Columbia River dams. A total of 2,420 yearlings were PIT tagged and released at Lyons Ferry Hatchery. PIT tagged yearlings had a mean fork length of 159.0 mm and mean condition factor of 1.10. Of the 2,420 PIT tagged fish released, a total of 979 unique tags were detected at mainstem Snake and Columbia River dams (Lower Monumental and McNary). Median travel times, based on all detections, of PIT tagged fish released from Pittsburg Landing were 10.5 days to Lower Granite Dam, 21.7 days to McNary Dam and 29.8 days to Bonneville Dam. Median migration rates were 16.4 rkm/d to Lower Granite Dam, 18.3 rkm/d to McNary Dam and 18.9 rkm/d to Bonneville Dam. The median arrival dates were April 25 at Lower Granite Dam, May 6 at McNary Dam and May 14 at Bonneville Dam. The 90% passage dates were May 5 at Lower Granite Dam, May 20 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 9.5 fpp yearlings released from Big Canyon were 13.3 days to Lower Granite Dam, 26.0 days to McNary Dam and 30.8 days to Bonneville Dam. Median migration rates were 13.0 rkm/d to Lower Granite Dam, 15.3 rkm/d to McNary Dam and 18.3 rkm/d to Bonneville Dam. The median arrival dates were April 27 at Lower Granite Dam, May 11 at McNary Dam and May 15 at Bonneville Dam. The 90% passage dates were May 9 at Lower Granite Dam, May 24 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 30 fpp yearlings released from Big Canyon were 20.8 days to Lower Granite Dam, 37.6 days to McNary Dam and 43.5 days to Bonneville Dam. Median migration rates were 8.3 rkm/d to Lower Granite Dam, 10.6 rkm/d to McNary Dam and 12.9 rkm/d to Bonneville Dam. The median arrival dates were May 5 at Lower Granite Dam, May 23 at McNary Dam and May 28 at Bonneville Dam. The 90% passage dates were May 22 at Lower Granite Dam, May 31 at McNary Dam and June 5 at Bonneville Dam. Median arrival dates, based on all detections, of PIT tagge

Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

393

Stocking of Offsite Waters for Hungry Horse Dam Mitigation Creston National Fish Hatchery, FY 2006 Annual Report.  

Science Conference Proceedings (OSTI)

A total of 350,000, M012 strain, westslope cutthroat trout (WCT) eggs were received from Montana Fish Wildlife & Parks (MFWP), Washoe Park State Fish Hatchery in June of 2005 to accomplish this fishery management objective. These eggs were incubated, hatched and reared entirely inside the hatchery nursery building using a protected well water supply. Fish grew according to schedule and survival was excellent. The hatchery achieved a 0.78 feed fed to pounds gained conversion ratio for this group of WCT. Not all of the progenies from this fish lot were used for Hungry Horse Dam Fishery Mitigation Implementation. Some were used for other regional fishery management projects. Westslope cutthroat trout were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook and also utilizing a regimen adapted for hatchery specific site conditions. The fish health for these WCT was very good. Survival from first feeding fry stage to stocking was 79%. The hatchery had an annual fish health inspection performed by the USFWS Bozeman Fish Health Center in mid March of 2006. This inspection found all fish lots at Creston to be disease free. The Montana State Fish Health Board has placed the hatchery under a limited quarantine since May of 2005 due to an epizootic of Furunculosis. This classification has allowed the Creston NFH to stock disease free fish in locations approved by regional fish managers. The hatchery has been working with the State Fish Pathologist to remove the limited quarantine classification from the facility. Although fish health for all station fish lots remains disease free, MFWP has asserted it will not remove the limited quarantine until the new influent water treatment system, including the ultraviolet disinfection unit, is running full time, year round. The USFWS is working to secure the additional funding necessary to operate the treatment building year round. Distribution of the WCT took place from March through June. The stocking locations on the Flathead Reservation and State managed waters were identified by Confederated Salish and Kootenai Tribe (CSKT) and MFWP fishery biologists. Post release survival and angler success is monitored routinely by CSKT and MFWP fishery technicians. Stocking numbers and locations vary annually based on the results of biological monitoring, creel evaluations and adaptive management decisions. A total of 99,126 WCT were stocked during nine distribution trips in management approved waters (see Table 1). The average size of WCT at stocking was 3.91-inches. A total of 101,600, Arlee strain, rainbow trout (RBT) eggs were received from the Ennis National Fish Hatchery, Ennis, Montana, in December of 2005 and 35,000 Kamloops strain eggs were received from Murray Springs SFH, Eureka, Montana, in March of 2006 to accomplish this fishery management objective. The RBT were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook. There was no fish health related problems associated with this lot of fish. Survival from swim up fry stage to stocking was 93% for the Arlee's and 79% for the Kamloops. The hatchery achieved a 0.68 feed fed to pounds gained conversion ratio for the Arlee and 0.97 for the Kamloops RBT. The excellent feed conversion ratio can be attributed to refined feeding techniques and the use of an extruded high performance fry feed made with premium fish meal and marine fish oil. The Arlee strain of rainbow trout is requested for this fishery mitigation objective because the chosen stocking locations are terminal basin reservoirs or lakes, habitat conditions prevent natural spawning runs and returns to the creel are more favorable then for native westslope cutthroat trout. MFWP also requested a fall plant of Kamloops strain RBT and they will be evaluated for performance and future fall stockings in Echo Lake. Post release survival and angler success is monitored routinely by the Confederated Salish and Kootenai Tribe (CSKT) and Montana Fish Wildlife & Parks (MFWP) fishery techn

Hooley, Sharon

2009-03-20T23:59:59.000Z

394

S:\\Registration & Records\\Term Communications\\2012 Fall\\Fall 2012 Freshmen Registration Document.docx 1 of 1 JOHNS HOPKINS UNIVERSITY  

E-Print Network (OSTI)

. Sign in with your JHED ID and enter your password 3. Under Registration, select Search for Classes 4 and enter your password 3. Under Registration, select Search for Classes/Registration 4. Ensure the AcademicS:\\Registration & Records\\Term Communications\\2012 Fall\\Fall 2012 Freshmen Registration Document

Connor, Ed

395

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at Pittsburg Landing to 1.23 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.8% (82.1-93.4%) for Big Canyon Surplus to 94.1% (90.1-98.1%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 58.7% (49.3-68.1%) for Big Canyon Surplus to 71.3% (60.1-82.5%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 9.3 river kilometers per day (rkm/d) for Captain John Rapids to 18.7 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 9.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 7-10 days to Lower Granite Dam and 21-23 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, were all from April 23-25. The median arrival date for Big Canyon Surplus was May 4. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 7-8. Median arrival dates at McNary Dam were May 17 for Big Canyon Surplus and April 26 for Lyons Ferry Hatchery.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

396

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 65.8% (58.5-73.1%) for Lyons Ferry Hatchery to 84.0% (76.2-91.8%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 10.1 river kilometers per day (rkm/d) for Captain John Rapids to 19.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 6.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-10 days to Lower Granite Dam and 22-25 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 21-22. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 5-6. The median arrival date at McNary Dam was April 24 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

397

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 37.9% (36.0-40.0%) for Pittsburg Landing to 57.9% (53.0-62.8%) for Lyons Ferry Hatchery. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 6.3 river kilometers per day (rkm/d) for Big Canyon to 10.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 5.2 rkm/d for Lyons Ferry Hatchery to 10.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-17 days to Lower Granite Dam and 31-37 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 26-27. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 14-18. The median arrival date at McNary Dam was May 13 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

398

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain John Rapids to 16.2 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 11.7 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 8-15 days to Lower Granite Dam and 22-27 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 23-25. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 4-10.

Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-07-01T23:59:59.000Z

399

Yakima Basin Fish Passage Project, Phase 2  

DOE Green Energy (OSTI)

Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

400

Simulated Passage Through A Modified Kaplan Turbine Pressure Regime: A Supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"  

DOE Green Energy (OSTI)

Migratory and resident fish in the Columbia River basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage and dissolved gas supersaturation (resulting from the release of water from the spillway). The responses of fall Chinook salmon and bluegill sunfish to these two stresses, both singly and in combination, were investigated in the laboratory. A previous test series (Abernethy et al. 2001) evaluated the effects of passage through a Kaplan turbine under the ?worst case? pressure conditions. For this series of tests, pressure changes were modified to simulate passage through a Kaplan turbine under a more ?fish-friendly? mode of operation. The results were compared to results from Abernethy et al. (2001). Fish were exposed to total dissolved gas (TDG) levels of 100%, 120%, or 135% of saturation for 16-22 hours at either surface (101 kPa) or 30 ft (191 kPa) of pressure, then held at surface pressure at 100% saturation for a 48-hour observation period. Sensitivity of fall Chinook salmon to gas supersaturation was slightly higher than in the previous test series, with 15% mortality for surface-acclimated fish at 120% TDG, compared to 0% in the previous tests.

Abernethy, Cary S.; Amidan, Brett G.; Cada, G. F.

2002-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Field Campaign - Fall 1995 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Single Column Model IOP Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1995 Single Column Model IOP 1995.09.01 - 1995.10.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

402

City of Rock Falls, Illinois (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Illinois (Utility Company) Illinois (Utility Company) Jump to: navigation, search Name City of Rock Falls Place Illinois Utility Id 16198 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Economic Development Rate Rider Irrigation System: Off-Peak Rider Commercial Rate C (Commercial) Commercial Rate GS: municipal and governmental entities Commercial Rate GS: other than municipal or governmental entities Commercial Rate R (Residential) Residential

403

Save with Solar, Vol. 3, No. 2 (Fall 2000)  

DOE Green Energy (OSTI)

This is the second issue of the third volume (Fall 2000) of a technical bulletin produced for the Department of Energy's (DOE's) Federal Energy Management Program (FEMP). It is intended for Federal solar energy champions, that is, energy officers, contracting officials, facility managers, and others who participate in projects in which solar and other renewable energy technologies are installed in Federal government facilities in order to meet the directives of Executive Order 13123 and the President's Million Solar Roofs Initiative. This issue recognizes the contributions of the Federal agencies and specific individuals who enabled the government to meet its goal of installing 2,000 solar energy systems (and related systems) on Federal roofs by the year 2000. Although only about 30 solar energy champions were given awards, they represent hundreds of government employees who are working to save energy, money, and the environment through energy efficiency and renewable energy.

Eiffert, P.

2000-11-08T23:59:59.000Z

404

Marketing the Klamath Falls Geothermal District Heating system  

DOE Green Energy (OSTI)

The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

Rafferty, K.

1993-06-01T23:59:59.000Z

405

City of Sioux Falls, South Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Dakota (Utility Company) Dakota (Utility Company) Jump to: navigation, search Name City of Sioux Falls Place South Dakota Utility Id 17265 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Service Rate Industrial Large Commercial Service Rate Commercial Night Watch Flood Service Rate HPS 100W Lighting Night Watch Flood Service Rate HPS 250W Lighting Night Watch Flood Service Rate HPS 400W Lighting Residential Service Rate Residential Small Commercial Service Rate Commercial

406

City of Crystal Falls, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Michigan (Utility Company) Michigan (Utility Company) Jump to: navigation, search Name City of Crystal Falls Place Michigan Utility Id 4604 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial 1 Phase Commercial Commercial 2 Phase Commercial Large Commercial/Industrial Commercial Residential Residential Average Rates Residential: $0.1490/kWh Commercial: $0.1220/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

407

Falls Church, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Church, Virginia: Energy Resources Church, Virginia: Energy Resources (Redirected from Falls Church, VA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.882334°, -77.1710914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.882334,"lon":-77.1710914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Federal Utility Partnership Working Group Fall 2006 Meeting Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOVEMBER 1-2, 2006 NOVEMBER 1-2, 2006 SAN FRANCISCO, CA INTRODUCTION The Federal Utility Partnership Working Group (FUPWG) held its Fall 2006 meeting in San Francisco, CA, on November 1-2. The meeting was hosted by Pacific Gas & Electric's (PG&E). A total of 80 individuals attended the meeting, including 28 new members. Organizations represented included 25 utility officials, 8 Federal Energy Management Program (FEMP) representatives, 22 Federal agency representatives, 6 National Laboratory representatives, and 18 representatives from energy-related organizations (see attached list of participants and corresponding organizations). The working group is a joint effort between FEMP and the utility industry to stimulate the exchange of information among participants and foster energy efficiency projects in

409

ARM - Field Campaign - Fall 1997 Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor IOP Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Water Vapor IOP 1997.09.15 - 1997.10.05 Lead Scientist : Henry Revercomb For data sets, see below. Summary The Water Vapor IOP was conducted as a follow-up to a predecessor IOP on water vapor held in September 1996. This IOP relied heavily on both ground-based guest and CART instrumentation and in-situ aircraft and tethered sonde/kite measurements. Primary operational hours were from 6 p.m. Central until at least midnight, with aircraft support normally from about 9 p.m. until midnight when available. However, many daytime measurements were made to support this IOP. The first Water Vapor IOP primarily concentrated on the atmosphere's lowest

410

Redwood Falls Public Util Comm | Open Energy Information  

Open Energy Info (EERE)

Public Util Comm Public Util Comm Jump to: navigation, search Name Redwood Falls Public Util Comm Place Minnesota Utility Id 15793 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area lighting 100 watt Lighting Area lighting 1000 watt Lighting Area lighting 150 watt Lighting Area lighting 250 watt Lighting Area lighting 400 watt Lighting Industrial service rate Industrial Large commercial service rate Commercial

411

City of Klamath Falls, Oregon Geothermal Power Plant Feasibility Study  

DOE Green Energy (OSTI)

The purpose of the Klamath Falls project is to demonstrate the effectiveness of a combined thermal distribution system and power generation facility. The city of Klamath Falls operates a geothermal district heating system which would appear to be an attractive opportunity to install a power generation system. Since the two wells have operated reliably and consistently over many years, no new sources or resource exploration would be necessary. It appears that it will cost more to construct, operate, maintain and amortize a proposed geothermal facility than the long?term value of the power it would produce. The success of a future project will be determined by whether utility power production costs will remain low and whether costs of construction, operations, or financing may be reduced. There are areas that it would be possible to reduce construction cost. More detailed design could enable the city to obtain more precise quotes for components and construction, resulting in reduction in contingency projections. The current level of the contingency for uncertainty of costs is between $200,000 and $300,000. Another key issue with this project appears to be operation cost. While it is expected that only minimal routine monitoring and operating expenses will occur, the cost of water supply and waste water disposal represents nearly one quarter of the value of the power. If the cost of water alone could be reduced, the project could become viable. In addition, the projected cost of insurance may be lower than estimated under a city?wide policy. No provisions have been made for utilization of federal tax incentives. If a transaction with a third-party owner/taxpayer were to be negotiated, perhaps the net cost of ownership could be reduced. It is recommended that these options be investigated to determine if the costs and benefits could be brought together. The project has good potential, but like many alternative energy projects today, they only work economically if the federal tax incentives come into play.

Brian Brown, PE; Stephen Anderson, PE, Bety Riley

2011-07-31T23:59:59.000Z

412

Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2001 Annual Report.  

DOE Green Energy (OSTI)

Extremely poor water conditions within the Columbia River Basin along with extraordinary power market conditions created an exceptionally poor migration year for juvenile salmon and steelhead. Monthly 2001 precipitation at the Columbia above Grand Coulee, the Snake River above Ice Harbor, and the Columbia River above The Dalles was approximately 70% of average. As a result the 2001 January-July runoff volume at The Dalles was the second lowest in Columbia River recorded history. As a compounding factor to the near record low flows in 2001, California energy deregulation and the resulting volatile power market created a financial crisis for the Bonneville Power Administration (BPA). Power emergencies were first declared in the summer and winter of 2000 for brief periods of time. In February of 2001, and on April 3, the BPA declared a ''power emergency'' and suspended many of the Endangered Species Act (ESA) and Biological Opinion (Opinion) measures that addressed mainstem Columbia and Snake Rivers juvenile fish passage. The river and reservoir system was operated primarily for power generation. Power generation requirements in January through March coincidentally provided emergence and rearing flows for the Ives-Pierce Islands spawning area below Bonneville Dam. In particular, flow and spill measures to protect juvenile downstream migrant salmon and steelhead were nearly totally suspended. Spring and summer flows were below the Opinion migration target at all sites. Maximum smolt transportation was implemented instead of the Opinion in-river juvenile passage measures. On May 16, the BPA Administrator decided to implement a limited spill for fish passage at Bonneville and The Dalles dams. On May 25, a limited spill program was added at McNary and John Day dams. Spill extended to July 15. Juvenile migrants, which passed McNary Dam after May 21, experienced a noticeable, improved survival, as a benefit of spill at John Day Dam. The suspension of Biological Opinion measures resulted in very poor in-river migration conditions in 2001. Up to 99% of Snake River yearling chinook and steelhead were transported from the Snake River collection projects. Approximately 96% of Snake River juvenile sub-yearling fall chinook were transported. Of Mid-Columbia origin yearling chinook, 35% were transported, of steelhead 30% were transported and of sub yearling chinook, 59% were transported. Based upon data collected on the run-at-large, the juvenile survival to Lower Granite Dam of wild and hatchery yearling chinook and wild and hatchery steelhead were the lowest observed in the last four years. In 2001, as the result of the lowest observed flows in recent years, travel times through the hydro system for spring chinook yearlings and steelhead was approximately twice as long as has been observed historically. Juvenile survival estimates through each index reach of the hydro system for steelhead and chinook juveniles was the lowest observed since the use of PIT tag technology began for estimating survival.

DeHart, Michele (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

2002-07-01T23:59:59.000Z

413

Evaluation of Fish Passage Conditions for Juvenile Salmonids Using Sensor Fish at Detroit Dam, Oregon  

DOE Green Energy (OSTI)

Fish passage conditions through two spillways at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions through Spillbay 3 and Spillbay 6 at 1.5- and 3.5-ft gate openings, identifying potential fish injury regions of the routes. The study was performed in July 2009, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish and live fish were deployed at elevations approximately 3 ft above structure at depths determined using a computational fluid dynamics model. Data collected were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates.

Duncan, Joanne P.

2010-01-29T23:59:59.000Z

414

Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2003 Annual Report.  

DOE Green Energy (OSTI)

Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operation and evaluation. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribes form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery. The LRHCT also serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. Since 1994 the kokanee fingerling program has changed to yearling releases. By utilizing both the hatcheries and additional net pens, up to 1,000,000 kokanee yearlings can be reared and released. The construction and operation of twenty net pens in 2001 enabled the increased production. Another significant change has been to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native tributary stocks where available for propagation into Upper Columbia River Basin waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The investigations on the lake also suggest that the hatchery and net pen programs have enhanced the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2003 Fourth Annual Two Rivers Trout Derby was again a great success. The harvest and data collection were the highest level to date with 1,668 rainbow trout and 416 kokanee salmon caught. The fishermen continue to praise the volunteer net pen program and the hatchery efforts as 90% of the rainbows and 93% of the kokanee caught were of hatchery origin (Lee, 2003).

Lovrak, Jon (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Ford, WA); Combs, Mitch (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Kettle Falls, WA)

2004-01-01T23:59:59.000Z

415

Lollipops and Ice Fishing: Molecular Rulers Used to Probe ...  

Science Conference Proceedings (OSTI)

Lollipops and Ice Fishing: Molecular Rulers Used to Probe Nanopores. For Immediate Release: April 27, 2010. ...

2011-10-03T23:59:59.000Z

416

Development of Fish-like Swimming Behaviours for an Autonomous Robotic Fish  

E-Print Network (OSTI)

In this paper, we propose a modular approach to decompose the fish movement into several basic behaviours, namely straight cruise, cruise in turn and sharp turn, to mimic carangiform swimming of a real fish. To test these behaviours, a robotic fish is designed and built at Essex. It has 6 joints (R/C servo motors) and controlled by an efficiency control method. The experimental results show its feasibility and good performance. 1

Jindong Liu; Ian Dukes; Rob Knight; Huosheng Hu

2004-01-01T23:59:59.000Z

417

Fish behavior in relation to modeling fish passage through hydropower turbines: A review  

DOE Green Energy (OSTI)

We evaluated the literature on fish behavior as it relates to passage of fish near or through hydropower turbines. The goal was to foster compatibility of engineered systems with the normal behavior patterns of fish species and life stages such that entrainment into turbines and injury in passage are minimized. We focused on aspects of fish behavior that could be used for computational fluid dynamics (CFD) modeling of fish trajectories through turbine systems. Downstream-migrating salmon smolts are generally surface oriented and follow flow. Smolts orient to the ceilings of turbine intakes but are horizontally distributed more evenly, except as affected by intake-specific turbulence and vortices. Smolts often enter intakes oriented head-upstream. Non-salmonids are entrained episodically, suggesting accidental capture of schools (often of juveniles or in cold water) and little behavioral control during turbine passage. Models of fish trajectories should not assume neutral buoyancy throughout the time a fish passes through a turbine, largely because of pressure effects on swim bladders. Fish use their lateral line system to sense obstacles and change their orientation, but this sensory-response system may not be effective in the rapid passage times of turbine systems. A Effects of pre-existing stress levels on fish performance in turbine passage are not well known but may be important. There are practical limits of observation and measurement of fish and flows in the proximity of turbine runners that may inhibit development of information germane to developing a more fish-friendly turbine. We provide recommendations for CFD modelers of fish passage and for additional research. 20 refs., 2 figs.

Coutant, C.C. [Oak Ridge National Lab., TN (United States); Whitney, R.R.

1997-06-01T23:59:59.000Z

418

Fish Bulletin No. 91. Common Ocean Fishes of the California Coast  

E-Print Network (OSTI)

perch, button perch, blue bass, green- fish. 3.4.3.15. THEButton, 118 Catalina, 118, 119 Dwarf, 113 Forktail, 106, 108 Green,

Roedel, Phil M

1953-01-01T23:59:59.000Z

419

A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote  

Science Conference Proceedings (OSTI)

Accidental falls of our elderly, and physical injuries resulting, represent a major health and economic problem. Falls are the most common cause of serious injuries and are a major health threat in the stratum of older population. Early detection of ... Keywords: Accelerometer, Activities of daily living, Fall detection, Falls in the elderly, Wireless sensor network

Roberto Paoli; Francisco J. Fernndez-Luque; Gins Domnech; Flix Martnez; Juan Zapata; Ramn Ruiz

2012-04-01T23:59:59.000Z

420

Perceptual Modeling for Behavioral Animation of Fishes  

E-Print Network (OSTI)

The realistic animation of animal behavior by autonomous animate agents requires that the agents able to perceive their virtual worlds. We have created a virtual marine world inhabited by artificial fishes which can swim hydrodynamically in simulated water through the motor control of internal muscles. Artificial fishes exploit a rudimentary model of fish perception. Complex individual and group behaviors, including target tracking, obstacle avoidance, feeding, preying, schooling, and mating, result from the interplay between the internal cognitive state of the artificial fish and its perception of the external world. 1 Introduction Considerable research has focused on the computer animation of animals, such as insects, reptiles, birds, horses, and humans. 1 Unlike their natural counterparts, the earliest graphics models of animals had no autonomy and their motions had to be laboriously keyframed like animated cartoons. Subsequently, researchers developed kinematic and then dynamic...

Xiaoyuan Tu; Demetri Terzopoulos

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Temperature requirements of Pacific coastal fishes  

E-Print Network (OSTI)

and sampling tubes were tightly f i t t e d on each jar.fish was placed in each jar, a stopper secured in place, andof oxygenated water through each jar At prevented oxygen

Moyle, Peter B; Knight, Ned K

1984-01-01T23:59:59.000Z

422

Planktivorous Fish Link Coral Reef and Oceanic Food Webs: Causes and Consequences of Landscape-Scale Patterns in Fish Behavior, Diet and Growth  

E-Print Network (OSTI)

and E. Morize. 1994. Reef fish communities and fisherySparisoma viride. Journal of Fish Biology Parker, R. P. andof growth in fishes. J. Fish. Res. Board Can. 16:721-745.

Hanson, Katherine Mary W.

2011-01-01T23:59:59.000Z

423

The Conscious Landscape: Reinterpreting and Reinhabiting the La Colle Falls Hydro Dam.  

E-Print Network (OSTI)

??The ruins of the La Colle Falls Hydro Dam encompass two very distinct topographies: the physical landscape of the vast Canadian Northwest, and the complex (more)

Hurd, Jason John

2007-01-01T23:59:59.000Z

424

Geothermal: Sponsored by OSTI -- Study of falling-jet flash evaporator...  

Office of Scientific and Technical Information (OSTI)

Study of falling-jet flash evaporators Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

425

PUB-3000 Chapter 30 | FALL PROTECTION PROGRAM | Revised 10/12  

NLE Websites -- All DOE Office Websites (Extended Search)

(PFPS) A system used to control fall hazards by means other than wearing personal protective equipment (PPE). Examples are guardrails, safety nets, warning lines, etc. Personal...

426

Flow fields and heat transfer of liquid falling film on horizontal cylinders.  

E-Print Network (OSTI)

??A liquid film flowing over horizontal cylinders is of great importance as a high rate of heat transfer exists between the falling liquid film and (more)

Jafar, Farial A

2011-01-01T23:59:59.000Z

427

Multiphysics CFD Modeling of a Free Falling Jet during Melt-Blowing ...  

Science Conference Proceedings (OSTI)

Presentation Title, Multiphysics CFD Modeling of a Free Falling Jet during Melt- Blowing Slag Fiberization ... A Micro-Macro Model of a PEM Fuel Cell System.

428

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-16 days to Lower Granite Dam and 23-29 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, ranged from April 18-29. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 1-8.

Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

2005-07-01T23:59:59.000Z

429

Augmented Fish Health Monitoring, 1988 Annual Report.  

DOE Green Energy (OSTI)

Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. Second year activities focused on full implementation of disease surveillance activities and histopathological support services to participating state agencies. Persistent and sometimes severe disease losses were caused by infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho and in spring chinook salmon at hatcheries on the lower Columbia River. Diagnostic capability was enhanced by the installation, for field use, of enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center for the detection and assay of bacterial kidney disease and by a dot-blot'' training session for virus identification at the Lower Columbia Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River basin National Fish hatcheries. Case history data was fully documented in a computerized data base for storage and analysis. This report briefly describes work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin. It also summarizes the health status of fish reared at those hatcheries and provides a summary of case history data for calendar year 1988. 2 refs., 4 tabs.

Warren, James W.

1989-08-15T23:59:59.000Z

430

Fish Passage Through a Simulated Horizontal Bulb Turbine Pressure Regime: A Supplement to"Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"  

DOE Green Energy (OSTI)

Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Both fish species were acclimated for 16-22 hours at either surface (101 kPa; 1 atm) or 30 ft (191 kPa; 1.9 atm) of pressure in a hyperbaric chamber before exposure to a pressure scenario simulating passage through a horizontal bulb turbine. The simulation was as follows: gradual pressure increase to about 2 atm of pressure, followed by a sudden (0.4 second) decrease in pressure to either 0.7 or 0.95 atm, followed by gradual return to 1 atm (surface water pressure). Following the exposure, fish were held at surface pressure for a 48-hour post exposure observation period. No fall chinook salmon died during or after exposure to the horizontal bulb turbine passage pressures, and no injuries were observed during the 48-hour post exposure observation period. As with the previous test series, it cannot be determined whether fall chinook salmon acclimated to the greater water pressure during the pretest holding period. For bluegill sunfish exposed to the horizontal bulb turbine turbine-passage pressures, only one fish died and injuries were less severe and less common than for bluegills subjected to either the"worst case" pressure or modified Kaplan turbine pressure conditions in previous tests. Injury rates for bluegills were higher at 0.7 atm nadir than for the 0.95 atm nadir. However, injuries were limited to minor internal hemorrhaging. Bluegills did not suffer swim bladder rupture in any tested scenarios. Tests indicated that for most of the cross-sectional area of a horizontal bulb turbine, pressure changes occurring during turbine passage are not harmful to fall chinook salmon and only minimally harmful to bluegill. However, some areas within a horizontal bulb turbine may have extreme pressure conditions that would be harmful to fish. These scenarios were not tested because they represent a small cross-sectional area of the turbine compared to the centerline pressures scenarios used in these tests.

Abernethy, Cary S. (BATTELLE (PACIFIC NW LAB)); Amidan, Brett G. (BATTELLE (PACIFIC NW LAB)); Cada, G F. (ORNL)

2003-07-31T23:59:59.000Z

431

Geothermal resource analysis in Twin Falls County, Idaho  

DOE Green Energy (OSTI)

Thermal water is prevalent throughout central Twin Falls County. Most wells and springs that occur in the area produce thermal water from fractures in the Idavada Volcanics. However, in an area east of Hollister, thermal water issues from fractures in the Paleozoic rocks. In an attempt to explain the hydrothermal relationship between these two reservoir rocks, one composite model for the entire geothermal system in the area is proposed. As with other conceptual models of the system, available geologic, hydrologic, and geochemical data were used to develop the model. The chemistry of the thermal water appears to be strongly governed by the chemical composition of the rocks that it comes in contact with and the length of time that it is exposed to them. The shorter flow paths to the south appear to occur entirely within the Paleozoic rocks, according to the calcium bicarbonate chemistry of the thermal water. As the flow paths become progressively longer toward the north, the thermal waters apparently encounter the silicic volcanics during their ascent. The chemistries of the thermal waters gradually equilibrate to the new host rock conditions and lose their Paleozoic signatures as exposure time increases. Ultimately, the chemistry of the thermal water changes to a sodium bicarbonate type.

Baker, S.J.; Castelin, P.M.

1990-10-01T23:59:59.000Z

432

Evaluation of city well 1, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

A city-wide geothermal space heating project is currently under development at Klamath Falls, Oregon. The first phase of the project will require two production wells. Geothermally heated water will be used to heat 14 city, county, state, and federal buildings. At peak load the heating system will require approximately 750 gpm of 200{sup 0}F (or greater) geothermal brine. The first production well was spudded on August 29, 1979. During drilling a major lost circulation zone was encountered between 340 and 360 ft depth. At this time the well was cleaned, reamed, cased to 300 ft, and then pump tested. The well was pumped for a total of 15 1/2 hr. A maximum flow rate of 680, with 77 ft of drawdown, was held constant for 7 1/2 hr. Discharge temperature was approximately 218{sup 0}F. Three observation wells were monitored to determine the impact of producing large quantities of brine on the many private geothermal wells already in use for space heating. Preliminary indications are that the water level decline in the area will be small (2 to 3 ft). However, further testing is recommended to determine the effects of reservoir heterogeneity on the water level decline.

Benson, S.M.; Goranson, C.B.; Schroeder, R.C.

1980-04-01T23:59:59.000Z

433

CALIFORNIA FISH AND GAME California Fish and Game 94(4): 180-193 2008  

E-Print Network (OSTI)

CALIFORNIA FISH AND GAME California Fish and Game 94(4): 180-193 2008 PACIFIC HARBOR SEAL CENSUS IN CALIFORNIA DURING MAY-JULY 2002 AND 2004 MARK S. LOWRY1, JAMES V. CARRETTA1, AND KARIN A. FORNEY2 1 National census of Pacific harbor seals, Phoca vitu lina richardsi, was conducted in California from May to July

434

Asthma patients with specific genotypes identified for fish oil treatment trial  

E-Print Network (OSTI)

genotypes identified for fish oil treatment trial Thecommon chronic disease. Fish oils containing omega-3 fattyinflammatory diseases. Fish oil inhibits the production of

2011-01-01T23:59:59.000Z

435

The Tragedy of Enclosure: Fish, Fisheries Science, and U.S. Foreign Policy, 1920-1960  

E-Print Network (OSTI)

Perch (Sebastes Alutus)." J. Fish. Res. Bd. Can. 36, no. . (and Spatial Distribution of Fish Populations." Fisheries 29,no. Graham, Michael. The Fish Gate. London: Faber and Faber

Finley, Mary C.

2007-01-01T23:59:59.000Z

436

Department of Chemical Engineering ChE 210A University of California, Santa Barbara Fall 2011  

E-Print Network (OSTI)

Inside this issue: 350: An Interna- tional Day of Cli- mate Change 1-3 Fall 2009 Energy Campaign 4 visit: www.350.org #12;Fall 2009 Energy Campaign Page 4 Sustainability Bulletin This year's Energy. Then you can turn them all off with one switch and eliminate vampire power*. 4. Learn how to put your

Shell, M. Scott

437

Experimental Research of the Falling-Film Evaporation Characteristic outside Horizontal Heat Pipe in the Vacuum  

Science Conference Proceedings (OSTI)

Face the energy crisis in the world, it is important to improve the utilization efficiency of the energy conversion. The evaporation characteristic of the falling film outside heat pipe in the vacuum as a good evaporation method was studied in the paper. ... Keywords: Falling film, Evaporation, Vacuum

Penghui Gao; Lixi Zhang; Hefei Zhang

2009-10-01T23:59:59.000Z

438

A wireless platform for fall and mobility monitoring in health care  

Science Conference Proceedings (OSTI)

In this paper a new platform for monitoring of mobility in health care is presented. The platform was designed with a primary aim at monitoring of mobility and fall incidents in elderly people and is part of a wider system that uses web interfaces to ... Keywords: fall sensing, mobility monitoring, wireless communications

Pepijn van de Ven; Alan Bourke; John Nelson; Gearid Laighin

2008-03-01T23:59:59.000Z

439

Stephen F.Austin State University Fall2003 Arthur Temple Collegeof Forestry  

E-Print Network (OSTI)

) mergers and buyouts have directly impacted forest products companies in East Texas; 4) there are fewer factors driving these changes include consolidation of core customers (e.g. "home-centers," residential then our enrollment has cycled back down to 314 in Fall 2003. However, our official fall numbers indicate

Hung, I-Kuai

440

Seeding date and polymer seed coating effects on plant establishment and yield of fall-seeded  

E-Print Network (OSTI)

-seeded canola in the Northern Great Plains E. N. Johnson1, P. R. Miller2, R. E. Blackshaw3, Y. Gan4, K. N of fall-seeded canola in the Northern Great Plains. Can. J. Plant Sci. 84: 955­963. The time interval for planting fall-seeded Brassica napus L. canola in the Northern Great Plains is narrow, since seeding must

Lawrence, Rick L.

Note: This page contains sample records for the topic "lyle falls fish" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Study of Solar Desalination System with Falling Film Evaporation and Its Operation  

Science Conference Proceedings (OSTI)

The seawater desalination system with falling film evaporation was set up, which was driven by solar-wind energy. In addition, the basic principles of system operation were expounded?and the main factors affecting the system performance were discussed. ... Keywords: Seawater desalination, Solar energy, Falling film evaporation

Chen Zhi-li; He Qiang; Zheng Hong-fei; Long Xiang-yu; Wang Wen-biao; Zhuang Chun-long; Yi Qi-zhen

2009-10-01T23:59:59.000Z

442

Changing Expendable Bathythermograph Fall Rates and Their Impact on Estimates of Thermosteric Sea Level Rise  

Science Conference Proceedings (OSTI)

A time-varying warm bias in the global XBT data archive is demonstrated to be largely due to changes in the fall rate of XBT probes likely associated with small manufacturing changes at the factory. Deep-reaching XBTs have a different fall rate ...

Susan E. Wijffels; Josh Willis; Catia M. Domingues; Paul Barker; Neil J. White; Ann Gronell; Ken Ridgway; John A. Church

2008-11-01T23:59:59.000Z

443

Spawning Distribution of Fall Chinook Salmon in the Snake River : Annual Report 1999.  

DOE Green Energy (OSTI)

This report is separated into 2 chapters. The chapters are (1) Progress toward determining the spawning distribution of supplemented fall chinook salmon in the Snake River in 1999; and (2) Fall chinook salmon spawning ground surveys in the Snake River, 1999.

Garcia, Aaron P.

2000-04-01T23:59:59.000Z

444

#tipsEnergy: Weatherizing Your Home for Fall | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#tipsEnergy: Weatherizing Your Home for Fall #tipsEnergy: Weatherizing Your Home for Fall #tipsEnergy: Weatherizing Your Home for Fall October 17, 2012 - 11:30am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Weatherizing Your Home for Fall #tipsEnergy is a new feature on the Energy Department's Twitter account, highlighting ways to save energy and money at home. Once a month, we will ask you to share your energy-saving tips so the larger energy community can learn from you, and we will highlight some of the best tips. Storified by Energy Department · Wed, Oct 17 2012 08:30:31 The start of fall brings cooler weather, changing leaves and the need to turn on the heat. But the cooler weather doesn't have to mean sky high energy bills. By taking simple

445

Idaho Falls Power - Energy Efficient Heat Pump Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Falls Power - Energy Efficient Heat Pump Loan Program Idaho Falls Power - Energy Efficient Heat Pump Loan Program Idaho Falls Power - Energy Efficient Heat Pump Loan Program < Back Eligibility Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Heat Pumps: $7,500 Ductless Heat Pumps: $5,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount $500 - $7,500 Provider Idaho Falls Power Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in existing buildings. Ducted, ductless, and geothermal heat pumps are all eligible for this offer. The program will loan up to 100% of the actual cost of installing heat pumps

446

Office of Indian Energy Newsletter: Summer/Fall 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer/Fall 2013 Summer/Fall 2013 Office of Indian Energy Newsletter: Summer/Fall 2013 Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Summer/Fall 2013 Issue Educational Curriculum Supports Tribal Energy Develolpment Efforts Message from the Director Building Bridges: Seven New Indian Country Energy and Infrastructure Working Group Members Announced Sharing Knowledge: Military Installations Offer Economic Development Opportunity for Tribes Opening Doors: 10 Tribe Selected for 2013 Start Program Winning the Future: Fuel From Waste Helps Power Two Tribes Leading the Charge: Christine Klein On the Horizon: Upcoming Events Office of Indian Energy Summer/Fall 2013 Newsletter More Documents & Publications Office of Indian Energy Newsletter: Summer 2012

447

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money September 21, 2009 - 3:04pm Addthis Allison Casey Senior Communicator, NREL Tomorrow is the official first day of fall, and while I always mourn the end of summer, one of the best things about fall is leaf peeping! Last year, we took my father-in-law's red '57 T-bird convertible on a lovely drive through the mountains to see the bright yellow aspens. Something about a car like that draws lots of attention-honks, waves, questions. We basically made friends everywhere we went. As much fun as that was, it wasn't exactly the most fuel-efficient or environmentally friendly excursion. I know we can do better this year; beautiful leaves are less than an hour's

448

UMTRA Project water sampling and analysis plan, Falls City, Texas  

SciTech Connect

Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed for sampling. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the Deweesville/Conquista aquifer downgradient of the disposal cell. The list of analytes has been modified with time to reflect constituents currently related to uranium processing activities and natural uranium mineralization. Water sampling is normally conducted biannually in late summer and midwinter.

1994-02-01T23:59:59.000Z

449

Colville Tribal Fish Hatchery, 2000-2001 Annual Report.  

DOE Green Energy (OSTI)

Federal hydropower projects as well as private power utility systems have had a devastating impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas were completely blocked to anadromous fish by dams, causing the native people who's number one food resource was salmon to rely entirely upon resident fish to replace lost fisheries resources. The Colville Tribal Fish Hatchery is an artificial production program to partially mitigate for anadromous fish losses in the ''Blocked Area'' above Chief Joseph and Grand Coulee Dams pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 as a resident fish substitution measure and the hatchery was completed in 1990. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout. To achieve this quota the Colville Tribal Hatchery was scheduled to produce 174,000 fingerling rainbow trout (5 grams/fish), 330,000 sub-yearling rainbow trout (15 grams/fish), 80,000 legal size rainbow trout (90 grams/fish), 196,000 fingerling brook trout (5 grams/fish), 330,000 subyearling brook trout (15 grams/fish) and 60,000 lahontan cutthroat trout (15 grams/fish) in 2001. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence /recreational fishery for Colville Tribal members as well as a successful non-member sport fishery. The majority of the fish distributed from the facility are intended to provide a ''carry-over'' fishery. Fish produced at the facility are intended to be capable of contributing to the natural production component of the reservation fish populations. Contribution to the natural production component will be achieved by producing and releasing fish of sufficient quality and quantity for fish to survive to spawning maturity, to spawn naturally in existing and future available habitat (i.e. natural supplementation), while meeting other program objectives. In addition to the hatchery specific goals detailed above, hatchery personnel will actively participate in the Northwest Power Planning Council program, participate in the Columbia Basin Fish and Wildlife Foundation, Resident Fish Committee, and other associated committees and Ad Hoc groups that may be formed to address resident fish issues in the blocked area above Chief Joseph and Grand Coulee Dams.

Arteburn, John; Christensen, David (Colville Confederated Tribes, Nespelem, WA)

2003-03-01T23:59:59.000Z

450

Augmented Fish Health Monitoring, 1990 Annual Report.  

DOE Green Energy (OSTI)

Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. This report briefly describes third-year work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin and for histopathological support services provided to participating state agencies. It also summarizes the health status of fish reared at participating Service hatcheries and provides a summary of case history data for calendar year 1989. Items of note included severe disease losses to infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho, the detection of IHN virus in juvenile spring chinook salmon at hatcheries on the lower Columbia River, and improved bacterial kidney disease (BKD) detection and adult assay by enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River Basin National Fish Hatcheries. Case history data was fully documented in a computerized data base for storage and analysis and is summarized herein. 2 refs., 1 fig., 4 tabs.

Warren, James W.

1990-08-15T23:59:59.000Z

451

Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.  

DOE Green Energy (OSTI)

During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted