Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines  

Science Conference Proceedings (OSTI)

Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

2012-11-28T23:59:59.000Z

2

PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories  

DOE Green Energy (OSTI)

From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

Finger, J.T.; Glowka, D.A.

1989-06-01T23:59:59.000Z

3

Recent developments in polycrystalline diamond-drill-bit design  

DOE Green Energy (OSTI)

Development of design criteria for polycrystalline diamond compact (PDC) drill bits for use in severe environments (hard or fractured formations, hot and/or deep wells) is continuing. This effort consists of both analytical and experimental analyses. The experimental program includes single point tests of cutters, laboratory tests of full scale bits, and field tests of these designs. The results of laboratory tests at simulated downhole conditions utilizing new and worn bits are presented. Drilling at simulated downhole pressures was conducted in Mancos Shale and Carthage Marble. Comparisons are made between PDC bits and roller cone bits in drilling with borehole pressures up to 5000 psi (34.5 PMa) with oil and water based muds. The PDC bits drilled at rates up to 5 times as fast as roller bits in the shale. In the first field test, drilling rates approximately twice those achieved with conventional bits were achieved with a PDC bit. A second test demonstrated the value of these bits in correcting deviation and reaming.

Huff, C.F.; Varnado, S.G.

1980-05-01T23:59:59.000Z

4

Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting  

DOE Green Energy (OSTI)

A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

Ortega, A.; Glowka, D.A.

1982-06-01T23:59:59.000Z

5

Application of polycrystalline diamond compact bits in the Kuparuk River Field, Alaska  

SciTech Connect

In soft to medium-hard clays and shales, polycrystalline diamond compact (PDC) bits have proved economically successful in the Kuparuk River field, AK. Through the redesign and modification of PDC bits and rig equipment, the necessary operating parameters have been achieved, and the use of PDC bits has become routine. These bits are typically run with a bit weight of 30,000 to 40,000 lbf (133 to 178 kN), a standpipe pressure of 4,000 psi (27 MPa), a pump rate of 400 to 450 gal/min (1.5 to 1.7 m/sup 3//min), and a rotary speed of 150 to 200 rev/min. Use of these high operating parameters saves about $50,000 per PDC bit when compared with roller-cone bits.

Balkenbush, R.J.; Onisko, J.E.

1985-07-01T23:59:59.000Z

6

Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report  

DOE Green Energy (OSTI)

The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

Hibbs, L.E. Jr.; Sogoian, G.C.

1983-05-01T23:59:59.000Z

7

Lubricant Selection  

Science Conference Proceedings (OSTI)

...are lubricated with one of the following types: Oil Grease Adhesive open-gear lubricant Solid lubricant The optimum lubricant for any application is the product that is the

8

Materials - Coatings & Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coatings and Lubricants: Coatings and Lubricants: Super-Hard and Ultra-Low-Friction Films for Friction and Wear Control Ali Erdemir researches nanolubricants. Ali Erdemir researches nanolubricants. The many rolling, rotating and sliding mechanical assemblies in advanced transportation vehicles present friction and wear challenges for automotive engineers. These systems operate under severe conditions-high loads, speeds and temperatures-that currently available materials and lubricants do not tolerate well. Improving the surface friction and wear characteristics of the mechanical system components is an opportunity for engineers, and the use of super-hard, slippery surface films offers promise. Argonne scientists have developed a number of smooth, wear-resistant, low-friction nanocomposite nitride and diamond-like carbon films that have

9

Lubricant compositions  

Science Conference Proceedings (OSTI)

The invention provides a lubricant additive having improved antioxidant and antiwear properties made by (1) reacting an alkenylsuccinic anhydride (Asa) with an aminopolyhydroxy compound and (2) reacting the product thus obtained with a phosphorus trihalide and a polyhydroxyaromatic compound. The invention also provides a lubricant composition containing the additive.

Frangatos, G.

1980-03-18T23:59:59.000Z

10

Lubricant compositions  

Science Conference Proceedings (OSTI)

The invention provides a lubricant additive and a lubricant composition having improved demulsifying and anti-wear properties resulting from the addition thereto of such additive, which is made by reacting a partially esterified multifunctional alcohol with a phosphorus oxyhalide or a trihydrocarbyl phosphate.

Frangatos, G.

1980-10-21T23:59:59.000Z

11

Engine lubrication oil aeration  

E-Print Network (OSTI)

The lubrication system of an internal combustion engine serves many purposes. It lubricates moving parts, cools the engine, removes impurities, supports loads, and minimizes friction. The entrapment of air in the lubricating ...

Baran, Bridget A. (Bridget Anne)

2007-01-01T23:59:59.000Z

12

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

13

Richard Diamond  

NLE Websites -- All DOE Office Websites (Extended Search)

PDF (1.02 MB) 2011 Diamond, Richard C.. "The California Statewide Strategic Plan for Energy Efficiency." In The California Statewide Strategic Plan for Energy Efficiency....

14

DIESEL FUEL LUBRICATION  

Science Conference Proceedings (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

15

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

16

Diamond fiber field emitters  

DOE Patents (OSTI)

A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

Blanchet-Fincher, Graciela B. (Wilmington, DE); Coates, Don M. (Santa Fe, NM); Devlin, David J. (Los Alamos, NM); Eaton, David F. (Wilmington, DE); Silzars, Aris K. (Landenburg, PA); Valone, Steven M. (Santa Fe, NM)

1996-01-01T23:59:59.000Z

17

Advanced Diamond Anvil Techniques (Customized Diamond Anvils)  

Science Conference Proceedings (OSTI)

A complete set of diamond-based fabrication tools now exists for making a wide range of different types of diamond anvils which are tailored for various high-P applications. Current tools include: CVD diamond deposition (making diamond); Diamond polishing, laser drilling, plasma etching (removal of diamond); and Lithography, 3D laser pantography (patterning features onto diamond); - Metal deposition (putting electrical circuits and metal masks onto diamond). Current applications include the following: Electrical Conductivity; Magnetic Susceptibility; and High-P/High-T. Future applications may include: NMR; Hall Effect; de Haas - Shubnikov (Fermi surface topology); Calorimetry; and thermal conductivity.

Weir, S

2009-02-11T23:59:59.000Z

18

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

19

Methods to improve lubricity of fuels and lubricants  

DOE Patents (OSTI)

A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

Erdemir, Ali (Naperville, IL)

2009-06-16T23:59:59.000Z

20

Lubrication with boric acid additives  

DOE Patents (OSTI)

Self-lubricating resin compositions including a boric acid additive and a synthetic polymer including those thermoset materials.

Erdemir, Ali (Naperville, IL)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Turbine Oil Lubrication Compatibility Testing  

Science Conference Proceedings (OSTI)

EPRI's Nuclear Maintenance Application Center (NMAC) has been assisting member utilities with Lubrication issues for a number of years. This assistance includes providing answers to lubrication related problems over the phone, testing samples sent by members, providing written answers when required, publication of the NMAC newsletter (Lube Notes) once a year, and providing a Lubrication Guide which provides guidance on lubrication technology and practices that relate to the nuclear power industry. Part o...

2004-07-27T23:59:59.000Z

22

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Fuels and Lubricants Research to someone by E-mail Share Vehicle Technologies Office: Fuels and Lubricants Research on Facebook Tweet about Vehicle Technologies Office: Fuels and Lubricants Research on Twitter Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Google Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Delicious Rank Vehicle Technologies Office: Fuels and Lubricants Research on Digg Find More places to share Vehicle Technologies Office: Fuels and Lubricants Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

23

A Photo-Stimulated Low Electron Temperature High Current Diamond Film Field  

NLE Websites -- All DOE Office Websites (Extended Search)

A Photo-Stimulated Low Electron Temperature High Current Diamond A Photo-Stimulated Low Electron Temperature High Current Diamond Film Field Emission Cathode A Photo-Stimulated Low Electron Temperature High Current Diamond Film Field Emission Cathode Nanostructure diamond cathodes can operate at relatively moderate vacuum pressures due to the inert surface/vacuum interface. September 27, 2013 A Photo-Stimulated Low Electron Temperature High Current Diamond Film Field Emission Cathode Researchers at LANL have developed a novel, ultra-high-quality, robust electron source, which uses nanostructured polycrystalline diamond in a matrix with single-walled carbon nanotubes (SWCNs). Available for thumbnail of Feynman Center (505) 665-9090 Email A Photo-Stimulated Low Electron Temperature High Current Diamond Film Field Emission Cathode

24

Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling  

Science Conference Proceedings (OSTI)

Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

Robert Lee Cardenas

2000-10-31T23:59:59.000Z

25

Polycrystalline semiconductor processing  

DOE Patents (OSTI)

A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

1983-04-05T23:59:59.000Z

26

Polycrystalline semiconductor processing  

DOE Patents (OSTI)

A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

Glaeser, Andreas M. (Scituate, MA); Haggerty, John S. (Lincoln, MA); Danforth, Stephen C. (Winchester, MA)

1983-01-01T23:59:59.000Z

27

Process for preparing lubricating oil from used waste lubricating oil  

DOE Patents (OSTI)

A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

Whisman, Marvin L. (Bartlesville, OK); Reynolds, James W. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

28

Electrically conductive diamond electrodes  

DOE Patents (OSTI)

An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

2009-05-19T23:59:59.000Z

29

Mass transport through polycrystalline microstructures  

SciTech Connect

Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and variations in grain shape. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two dimensional polycrystalline microstructures. Comparisons with the transport properties of traditional model microstructures provide regimes of applicability of such models. The effects of microstructural parameters such as average grain size are examined.

Swiler, T.P.; Holm, E.A.; Young, M.F.; Wright, S.A.

1994-12-31T23:59:59.000Z

30

Thermal Conductivity of Polycrystalline Semiconductors and Ceramics  

E-Print Network (OSTI)

industries, polycrystalline semiconductors and ceramics havelaser industry, people are also seeking good ceramic laser

Wang, Zhaojie

2012-01-01T23:59:59.000Z

31

Defining the role of elastic lubricants and micro textured surfaces in lubricated, sliding friction  

E-Print Network (OSTI)

Solutions for reducing friction in sliding, lubricated systems include modifying lubricant rheology using polymers and adding a micro-scale texture to the sliding surfaces, but the mechanism of how lubrication properties ...

Hupp, Sara J. (Sara Jean), 1979-

2008-01-01T23:59:59.000Z

32

Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar  

Science Conference Proceedings (OSTI)

The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B.A.; /UC, Irvine /SLAC /Ohio State U.

2008-02-13T23:59:59.000Z

33

Thermally stable diamond brazing  

DOE Patents (OSTI)

A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

Radtke, Robert P. (Kingwood, TX)

2009-02-10T23:59:59.000Z

34

Fuels & Lubricant Technologies- FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels & Lubricants Technology Fuels & Lubricants Technology Fuels and lubricants research at FEERC involves study of the impacts of fuel and lubricant properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes liquid fuels from synthetic and renewable sources as well as conventional and unconventional fossil-based sources. Combustion and emissions studies are leveraged with relevant single and multi-cylinder engine setups in the FEERC and access to a suite of unique diagnostic tools and a vehicle dynamometer laboratory. ORNL/DOE research has been cited by EPA in important decisions such as the 2006 diesel sulfur rule and the 2010/2011 E15 waiver decision. Major program categories and examples

35

On diamond windows for high power synchrotron x-ray beams  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

Khounsary, A.M.; Kuzay, T.M.

1991-12-31T23:59:59.000Z

36

On diamond windows for high power synchrotron x-ray beams  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

Khounsary, A.M.; Kuzay, T.M.

1991-01-01T23:59:59.000Z

37

Diamond tool machining of materials which react with diamond  

DOE Patents (OSTI)

Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

Lundin, Ralph L. (Los Alamos, NM); Stewart, Delbert D. (Los Alamos, NM); Evans, Christopher J. (Gaithersburg, MD)

1992-01-01T23:59:59.000Z

38

Ionic Liquids as Novel Lubricants and /or Lubricant Additives  

SciTech Connect

This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

Qu, J. [ORNL] [ORNL; Viola, M. B. [General Motors Company] [General Motors Company

2013-10-31T23:59:59.000Z

39

Guidelines for Maintaining Steam Turbine Lubrication Systems  

Science Conference Proceedings (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

1986-07-01T23:59:59.000Z

40

Multifunctional lubricant additives and compositions thereof  

Science Conference Proceedings (OSTI)

This paper discusses an antioxidant/ antiwear/extreme pressure/load carrying lubricant composition. It comprises a major proportion of an oil of lubricating viscosity or grease or other solid lubricant prepared therefrom and a minor amount of an ashless multifunctional antioxidant/antiwear/extreme pressure/load carrying additive product comprising a thiophosphate derived from a dihydrocarbyl dithiocarbamate.

Farng, L.O.; Horodysky, A.G.

1991-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Copper doped polycrystalline silicon solar cell  

DOE Patents (OSTI)

Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

1981-01-01T23:59:59.000Z

42

Diamond nucleation using polyethene  

DOE Patents (OSTI)

The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

2013-07-23T23:59:59.000Z

43

Diamond-turning HP-21 beryllium to achieve an optical surface  

SciTech Connect

Investigation of diamond turning on beryllium was made in anticipation of obtaining an optical finish. Although results of past experiences were poor, it was decided to continue diamond turning on beryllium beyond initial failures. By changing speed and using coolant, partial success was achieved. Tool wear was the major problem. Tests were made to establish and plot wear as a function of cutting speed and time. Slower speeds did cause lower wear rates, but at no time did wear reach an acceptable level. The machine, tools, and procedure used were chosen based on the results of preliminary attempts and on previous experience. It was unnecessary to use an air-bearing spindle because tool failure governed the best finish that could be expected. All tools of diamond composition, whether single crystal or polycrystalline, wore at unacceptable rates. Based on present technology, it must be concluded that beryllium cannot be feasibly diamond turned to achieve an optical finish. (22 fig.) (auth)

Allen, D.K.; Hauschildt, H.W.; Bryan, J.B.

1975-09-25T23:59:59.000Z

44

USDOE Top-of-Rail Lubricant Project  

DOE Green Energy (OSTI)

Lubrication of wheel/rail systems has been recognized for the last two decades as a very important issue for railroads. Energy savings and less friction and wear can be realized if a lubricant can be used at the wheel/rail interface. On the other hand, adverse influences are seen in operating and wear conditions if improper or excessive lubrication is used. Also, inefficiencies in lubrication need to be avoided for economic and environmental reasons. The top-of-rail (TOR) lubricant concept was developed by Texaco Corporation to lubricate wheels and rails effectively and efficiently. Tranergy Corporation has been developing its SENTRAEN 2000{trademark} lubrication system for the last ten years, and this revolutionary new high-tech on-board rail lubrication system promises to dramatically improve the energy efficiency, performance, safety, and track environment of railroads. The system is fully computer-controlled and ensures that all of the lubricant is consumed as the end of the train passes. Lubricant quantity dispensed is a function of grade, speed, curve, and axle load. Tranergy also has its LA4000{trademark} wheel and rail simulator, a lubrication and traction testing apparatus. The primary task of this project was collecting and analyzing the volatile and semivolatile compounds produced as the lubricant was used. The volatile organic compounds were collected by Carbotrap cartridges and analyzed by adsorption and gas chromatography/mass spectrometry (GC/MS). The semivolatile fraction was obtained by collecting liquid that dripped from the test wheel. The collected material was also analyzed by GC/MS. Both of these analyses were qualitative. The results indicated that in the volatile fraction, the only compounds on the Environmental Protection Agency's (EPA) Superfund List of Analytes detected were contaminants either in the room air or from other potential contamination sources in the laboratory. Similarly, in the semivolatile fraction none of the detected compounds are on the EPA's Superfund List of Analytes. The major compound in the semivolatile fraction is 1,2-propanediol, which was also found as the major component of the TOR lubricant before testing. Other compounds found in trace quantities either were present in the TOR lubricant or were small fragments from the polymeric component of the TOR lubricant. The second task for Argonne in this project was to investigate the effects of axle load, angle of attack, and quantity of lubricant on lateral friction forces, as well as the consumption time of the TOR lubricant. The second task was to collect and qualitatively identify any volatile and semivolatile compounds produced upon use of the TOR lubricant.

Mohumad F. Alzoubi; George R. Fenske; Robert A. Erck; Amrit S. Boparai

2002-02-01T23:59:59.000Z

45

PROCESS FOR COLORING DIAMONDS  

DOE Patents (OSTI)

A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

Dugdale, R.A.

1960-07-19T23:59:59.000Z

46

Power Circuit Breaker Lubrication: Laboratory Assessments and Lubrication Selection  

Science Conference Proceedings (OSTI)

The life cycle performance of a high voltage circuit breaker is, to a large degree, determined by the performance of the materials and components that make up the complete breaker. The rates of deterioration of components such as compressors, pumps, seals, linkages and their lubrication and interrupter elements drive the requirements for circuit breaker maintenance and refurbishment. EPRI has conducted a series of investigation to enhance knowledge of aging processes and to identify those materials ...

2012-12-13T23:59:59.000Z

47

Diamond Schottky barrier diodes  

E-Print Network (OSTI)

. With superior physical and electrical properties, diamond became a potential competitor to SiC soon after Element Six reported in 2002 the successful synthesis of single crystal plasma deposited diamond with high catTier mobility. This thesis discusses... the fabrication of silicon thyristors able to block more than 5000V and to conduct 2000A when forward-biased. However, due to their bipolar conduction mechanism, these devices suffered from serious limitations in terms of high frequency operation [2...

Brezeanu, Mihai

2008-03-11T23:59:59.000Z

48

Water-based lubricants for metalworking  

Science Conference Proceedings (OSTI)

Metalworking fluids currently constitute 17% of the total US industrial lubricant market. Market forces favor semisynthetic and synthetic formulations because they are more economical, and trends differ substantially from those of other lubricant markets as demand patterns shift. Lubricant manufacturers continue to reduce the use of mineral oil as a component in their formulations because synthetic and semisynthetic formulations are more cost-effective. The introduction of new engineering materials also has increased the demand for tailor-made lubricants in industrial applications. Synthetic and semisynthetic formulations are favored for cutting and metalworking applications because they perform better than the existing commercial product does. The literature strongly supports the development of environmentally friendly synthetic and semisynthetic metalworking lubricants that have longer useful lives, therefore decreasing the amount of fluid for disposal. Future lubricant formulations will focus on environmental issues, process compatibility, and worker health and safety. Biological control of fluids, in use and in disposal, will also draw attention.

Shukla, D.S.; Jain, V.K. [Indian Inst. of Petroleum, Dehradun (India)

1997-05-01T23:59:59.000Z

49

Biofluid lubrication for artificial joints  

E-Print Network (OSTI)

This research investigated biofluid lubrication related to artificial joints using tribological and rheological approaches. Biofluids studied here represent two categories of fluids, base fluids and nanostructured biofluids. Base fluids were studied through comparison of synthetic fluids (simulated body fluid and hyaluronic acid) as well as natural biofluids (from dogs, horses, and humans) in terms of viscosity and fluid shear stress. The nano-structured biofluids were formed using molecules having well-defined shapes. Understanding nano-structured biofluids leads to new ways of design and synthesis of biofluids that are beneficial for artificial joint performance. Experimental approaches were utilized in the present research. This includes basic analysis of biofluids property, such as viscosity, fluid shear stress, and shear rate using rheological experiments. Tribological investigation and surface characterization were conducted in order to understand effects of molecular and nanostructures on fluid lubrication. Workpiece surface structure and wear mechanisms were investigated using a scanning electron microscope and a transmission electron microscope. The surface topography was examined using a profilometer. The results demonstrated that with the adding of solid additives, such as crown ether or fullerene acted as rough as the other solids in the 3-body wear systems. In addition, the fullerene supplied low friction and low wear, which designates the lubrication purpose of this particular particle system. This dissertation is constructed of six chapters. The first chapter is an introduction to body fluids, as mentioned earlier. After Chapter II, it examines the motivation and approach of the present research, Chapter III discusses the experimental approaches, including materials, experimental setup, and conditions. In Chapter IV, lubrication properties of various fluids are discussed. The tribological properties and performance nanostructured biofluids are discussed in Chapter V, followed by summary and conclusions in Chapter VI.

Pendelton, Alice Mae

2008-12-01T23:59:59.000Z

50

Lubrication from mixture of boric acid with oils and greases  

DOE Patents (OSTI)

Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

Erdemir, Ali (Naperville, IL)

1995-01-01T23:59:59.000Z

51

The Fuels and Lubricants Research Division of Southwest Research includes extensive engines, fuels and lubricants research,  

E-Print Network (OSTI)

Caterpillar 1K Lubricant Test This test evaluates the piston deposits, liner wear, and oil consumption and oil consumption. The test is proposed for inclusion in the PC-10 category. Mack T8/T8A/T8E Lubricant of Mack engine oil specification EON+ 03, CI-4+ and will be included in PC-10. Mack T12 Lubricant Test

Chapman, Clark R.

52

Few-Layer Graphene as a Dry Lubricant  

The oil-based lubricants need to be consistently reapplied, producing additional waste. The cost of applying solid lubricating coatings is rather high and, ...

53

Diamond-graphite field emitters  

DOE Patents (OSTI)

A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.

Valone, Steven M. (Santa Fe, NM)

1997-01-01T23:59:59.000Z

54

4-Diamond Formation from Amorphouse Carbon and Graphite in the Presence of COH Fluids : An InSitu High-Pressure and -Temperature Laser-Heated Diamond Anvil Cell Experimental Study  

Science Conference Proceedings (OSTI)

Microdiamonds from orogenic belts contain nanometer-size fluid inclusions suggesting diamond formation from supercritical carbon - oxygen - hydrogen (COH) fluids. Here we report experimental results of diamond nucleation from amorphous carbon and polycrystalline graphite in the presence of COH fluids in a laser-heated diamond anvil cell. Our results show that: (i) diamonds can nucleate from graphite or amorphous carbon at pressures of 9-11 GPa and temperatures of 1200-1400 K in the presence of COH fluids; (ii) it is easier to nucleate diamond from amorphous carbon than from graphite with or without the COH fluids; and (iii) the fluid from decomposition of glucose is more efficient in promoting the graphite-to-diamond transformation than the fluid from decomposition of oxalic acid dihydrate. Carbon crystallinity has strong effects on the kinetics of diamond nucleation and growth. The experimental results demonstrated the critical role of presence and composition of supercritical COH fluids for promoting the graphite-to-diamond transformation.

Zhang, J.; Prakapenka, V.; Kubo, A.; Kavner, A.; Green, H.W.; Dobrzhinetskaya, L. (China University of Geosciences)

2011-10-14T23:59:59.000Z

55

Glass molding process with mold lubrication  

DOE Patents (OSTI)

Improvements are provided in glass forming processes of the type wherein hot metal blank molds are employed by using the complementary action of a solid film lubricant layer, of graphite dispersed in a cured thermoset organopolysiloxane, along with an overspray of a lubricating oil.

Davey, Richard G. (Toledo, OH)

1978-06-27T23:59:59.000Z

56

NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the area of polycrystalline thin-film materials and devices. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

57

Lower pressure synthesis of diamond material  

DOE Patents (OSTI)

Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

Lueking, Angela (State College, PA); Gutierrez, Humberto (State College, PA); Narayanan, Deepa (Redmond, WA); Burgess Clifford, Caroline E. (State College, PA); Jain, Puja (King Of Prussia, PA)

2010-07-13T23:59:59.000Z

58

Black Diamond Internal network  

E-Print Network (OSTI)

?? ? ??Ð ? ? ? ?? ?????Ð ´? µ Ð ? Ð ?? ? ? ?? #12;Black Diamond Internet 123456 789101112 A B 12x 6x

Imperial College, London

59

Double angle seal forming lubricant film  

DOE Patents (OSTI)

A lubricated piston rod seal which inhibits gas leaking from a high pressure chamber on one side of the seal to a low pressure chamber on the other side of the seal. A liquid is supplied to the surface of the piston rod on the low pressure side of the seal. This liquid acts as lubricant for the seal and provides cooling for the rod. The seal, which can be a plastic, elastomer or other material with low elastic modulus, is designed to positively pump lubricant through the piston rod/seal interface in both directions when the piston rod is reciprocating. The capacity of the seal to pump lubricant from the low pressure side to the high pressure side is less than its capacity to pump lubricant from the high pressure side to the low pressure side which ensures that there is zero net flow of lubricant to the high pressure side of the seal. The film of lubricant between the seal and the rod minimizes any sliding contact and prevents the leakage of gas. Under static conditions gas leakage is prevented by direct contact between the seal and the rod.

Ernst, William D. (Troy, NY)

1984-01-01T23:59:59.000Z

60

Lubricants  

Science Conference Proceedings (OSTI)

...jelly Mineral oil plus 10 to 20% fatty oil Tallow plus 50% paraffin Tallow plus 70% paraffin Mineral oil plus 10 to 15% sulfurized fatty oil and 10% fatty

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Polycrystalline Thin Film Used in Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon.

62

Conversion of fullerenes to diamond  

DOE Patents (OSTI)

A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

Gruen, Dieter M. (1324 59th St., Downers Grove, IL 60515)

1993-01-01T23:59:59.000Z

63

Conversion of fullerenes to diamond  

DOE Patents (OSTI)

A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

Gruen, Dieter M. (1324 59th St., Downers Grove, IL 60515)

1994-01-01T23:59:59.000Z

64

Compatibility of refrigerants and lubricants with elastomers  

SciTech Connect

Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-07-01T23:59:59.000Z

65

Dry lubricant films for aluminum forming.  

DOE Green Energy (OSTI)

During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

Wei, J.; Erdemir, A.; Fenske, G. R.

1999-03-30T23:59:59.000Z

66

Droplet mobility on lubricant-impregnated surfaces  

E-Print Network (OSTI)

Non-wetting surfaces containing micro/nanotextures impregnated with lubricating liquids have recently been shown to exhibit superior non-wetting performance compared to superhydrophobic surfaces that rely on stable airliquid ...

Dhiman, Rajeev

67

An experimental investigation into oil mist lubrication  

E-Print Network (OSTI)

Oil mist lubrication offers many advantages over sump lubrication. Unfortunately, mist lubrication generates sub-micrometer sized aerosol particles (fines) that escape from the oil mist lubrication system. These particles are an environmental hazard. There can be a two-pronged approach to the present problem. The first method is to develop a suitable blend that reduces the number of 'fine' particles. Experiments are designed to identify the effect of the additives and the temperature of the lube oil in the generator. The best performing lube oil formulations are identified based on performance at different bearing speeds and the temperature of the lube oil in the generator. The second approach is based on the design of a better bearing casing to maximize collection efficiency. An attempt is made to study collection efficiency using dimensional analysis. The non-dimensional numbers are identified and their validity is analyzed. Alternatively, a boundary value problem based on continuum mechanics is partially formulated for future study.

Kannan, Krishna

2000-01-01T23:59:59.000Z

68

Diamond Wire Technology LLC | Open Energy Information  

Open Energy Info (EERE)

Wire Technology LLC Jump to: navigation, search Name Diamond Wire Technology LLC Place Colorado Springs, Colorado Zip 80916 Sector Solar Product US-based manufacturer of diamond...

69

Anti-friction additives for lubricating oils  

SciTech Connect

A lubricating oil composition is described comprising (i) a major portion of lubricant oil; and (ii) from about 0.05 to about 10.0 wt.% of, as an additive, a product prepared by reacting a natural oil selected from the group consisting of coconut, babassu, palm, palm kernel, olive, castor, peanut, beef tallow and lard, with a (C/sub 2/-C/sub 10/) hydroxy acid and a polyamine.

Karol, T.J.; Magaha, H.S.; Schlicht, R.C.

1987-03-03T23:59:59.000Z

70

Advanced lubrication systems and materials. Final report  

DOE Green Energy (OSTI)

This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

Hsu, S.

1998-05-07T23:59:59.000Z

71

Tribological Characterization of Carbon Based Solid Lubricants  

E-Print Network (OSTI)

High performance machines such as gas turbine engines demand efficient solid lubricants at high temperature and in vacuum. The current conventional solid lubricants need to be further improved. This research evaluates carbon based solid lubricants using a high vacuum, high temperature pin-on-disc tribometer. The objectives of this research were to develop an understanding of the tribological properties of solid lubricant coatings under extreme operating conditions, and to determine whether using a carbon based solid lubricant would be acceptable for use in those conditions. Experimentally, two solid lubricant coatings on tungsten carbide substrate were tested against two different materials. The coatings were carbon based and molybdenum disulfide based. The other materials were 440C stainless steel and tungsten carbide. The temperature, pressure, and relative humidity are independent variables. The results showed that the carbon based coating increases friction and wears out quickly due to high temperature, high vacuum, and low humidity. Abrasive wear is the dominating mechanism. At elevated temperatures and in dry environment, the carbon based coating underwent significant oxidation and phase transformation. This research is beneficial for future design and development of solid lubricants for aerospace applications, as well as other industries requiring lubricants that must operate in extreme conditions. This thesis includes five chapters. Chapter I is an introduction to tribology and to the materials being used in this research. Chapter II describes the motivation and objectives behind this research. Chapter III discusses the experimental procedure and further explains the materials used. Chapter IV presents and discusses the results obtained. Chapter V discusses the major conclusions obtained from the results and offers some future work that may be conducted concerning this research.

Sanchez, Carlos Joel

2011-08-01T23:59:59.000Z

72

Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1  

Science Conference Proceedings (OSTI)

Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

1997-07-01T23:59:59.000Z

73

High efficiency diamond solar cells  

SciTech Connect

A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

Gruen, Dieter M. (Downers Grove, IL)

2008-05-06T23:59:59.000Z

74

Nuclear Maintenance Applications Center: Oil Lubrication Guide for Rotating Equipment  

Science Conference Proceedings (OSTI)

At a nuclear station, several types of safety-related and non-safety-related equipment rely on lubricating oil systems to provide lubrication to rotating components. These lubricating systems consist of gears, pumps, valves, heat exchangers, and other parts. In the event of a lubrication system failure, the supported equipment can be shut down, which in turn can lead to unanticipated entries into limiting conditions of operation, system degradation, or a unit trip. An understanding of how oil is affected...

2009-12-09T23:59:59.000Z

75

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

76

Compatibility of refrigerants and lubricants with elastomers  

Science Conference Proceedings (OSTI)

The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1993-01-01T23:59:59.000Z

77

Compatibility of refrigerants and lubricants with elastomers  

Science Conference Proceedings (OSTI)

Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-10-01T23:59:59.000Z

78

Method for reclaiming waste lubricating oils  

DOE Patents (OSTI)

A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

Whisman, Marvin L. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

79

Friction and lubrication in metal rolling  

E-Print Network (OSTI)

on the ellipticity 'IjJ (appendix E). (= a/ c in chapter 3) , real area of contact ratio. length of arc of contact in rolling (chapters 4 and 5). semi-axis of Hertz contact ellipse in transverse direction (appendix E). half indenter spacing (chapter 3). half... the friction and lubrication conditions are especially critical. This is confirm~d by Cheng [15], who discusses the practical requirements of an aluminium foil rolling lubricant and is demonstrated in a theoretical analysis of foil rolling by Fleck and J...

Sutcliffe, Michael Patrick Forbes

1989-11-14T23:59:59.000Z

80

Method of Dehalogenation using Diamonds  

DOE Patents (OSTI)

A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.

Farcasiu, Malvina; Kaufman, Phillip B.; Ladner, Edward P.; Anderson, Richard R.

1999-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Amorphous-diamond electron emitter  

DOE Patents (OSTI)

An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

Falabella, Steven (Livermore, CA)

2001-01-01T23:59:59.000Z

82

Lubricants or lubricant additives composed of ionic liquids containing ammonium cations  

Science Conference Proceedings (OSTI)

A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

Qu, Jun (Knoxville, TN); Truhan, Jr.,; John J. (Cookeville, TN); Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN); Blau, Peter J. (Knoxville, TN)

2010-07-13T23:59:59.000Z

83

Exploring Low Emission Lubricants for Diesel Engines  

DOE Green Energy (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

84

PAO lubricant inhibits bit balling, speeds drilling  

Science Conference Proceedings (OSTI)

For drilling operations, a new polyalphaolefin (PAO) lubricant improves penetration rates by reducing bit balling tendencies in water-based mud. The additive also reduces drillstring drag. This enables the effective transmission of weight to the bit and thereby increases drilling efficiency in such applications as directional and horizontal drilling. The paper describes drilling advances, bit balling, laboratory testing, and test analysis.

Mensa-Wilmot, G. [GeoDiamond, Houston, TX (United States); Garrett, R.L. [Garrett Fluid Technology, The Woodlands, TX (United States); Stokes, R.S. [Coastal Superior Solutions Inc., Lafayette, LA (United States)

1997-04-21T23:59:59.000Z

85

Lubricant formulation for lower unburnt hydrocarbon emissions  

Science Conference Proceedings (OSTI)

Engine-out emissions of unburnt hydrocabons from spark ignition engines are attributable to a number of mechanisms, occurring during the engine cycle, by which fuel escapes combustion. These include absorption of fuel components into the bore lubricating oil film during compression, and subsequent desorption into hot combustion gases throughout expansion. A proportion of the hydrocarbons desorbed will then be emitted, either as unburnt or partially oxidised fuel. This mechanism has been studied by a number of workers, and estimates of its importance vary from 10 to 30% of total hydrocarbons being related to the absorption/desorption process. A novel lubricant additive has been formulated for the purpose of reducing the quantity of fuel which is absorbed into the bore lubricant film, and hence the quantity of fuel subsequently desorbed. This paper describes a programme to evaluate the effect that this lubricant additive can have on engine-out emissions from a single cylinder research engine, together with results from current technology, low-emitting US and European vehicles, tested over FTP and ECE drive cycles. 11 refs., 9 figs., 3 tabs.

Beckwith, P.; Cooper, J.H.

1994-10-01T23:59:59.000Z

86

Polycrystalline thin films FY 1992 project report  

DOE Green Energy (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. (ed.)

1993-01-01T23:59:59.000Z

87

Polycrystalline thin films FY 1992 project report  

DOE Green Energy (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. [ed.

1993-01-01T23:59:59.000Z

88

Full Life Wind Turbine Gearbox Lubricating Fluids  

DOE Green Energy (OSTI)

Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

2012-02-28T23:59:59.000Z

89

Structure and Electronic Properties of Polycrystalline Dielectrics  

SciTech Connect

We present an overview of the theoretical approaches that can be employed to model polycrystalline oxides along with a discussion of their limitations and associated challenges. We then present results for two metal oxide materials, MgO and HfO2, where theory and experiment have come together to provide insight into the structure and electronic properties of grain boundaries. Finally, we conclude with a discussion and outlook.

Mckenna, Keith P.; Shluger, AL

2013-07-07T23:59:59.000Z

90

Method for forming diamonds from carbonaceous material  

DOE Patents (OSTI)

A method for producing diamonds is provided comprising exposing carbonaceous material to ion irradiation at ambient temperature and pressure.

Daulton, Tyrone (Slidell, LA); Lewis, Roy (Evanston, IL); Rehn, Lynn (LaGrange, IL); Kirk, Marquis (Hinsdale, IL)

2001-01-01T23:59:59.000Z

91

Method of Forming Diamonds from Carbonaceous Material  

DOE Patents (OSTI)

A method for producing diamonds is provided comprising exposing carbonaceous material to ion irradiation at ambient temperature and pressure.

Daulton, Tyrone; Lewis, Roy; Rehn, Lynn; Kirk, Marquis

1999-11-30T23:59:59.000Z

92

A flow modeling of lubricating greases under shear deformation by cellular automata  

Science Conference Proceedings (OSTI)

A Cellular Automata modeling of the lubricating grease flow under the shear deformation is proposed Lubricating greases are composed of thickening agent, liquid lubricant and various kinds of additives The thickening agent forms fibrous microstructures ...

Shunsuke Miyamoto; Hideyuki Sakai; Toshihiko Shiraishi; Shin Morishita

2006-09-01T23:59:59.000Z

93

Properties of carbon overcoats and perfluoro-polyether lubricants in hard disk drives  

E-Print Network (OSTI)

3 discusses different lubricants and additives used in hardand A. Wakabayashi, "Disk lubricant additives, A20H and C2:lower corner. Both lubricant additives can be mixed with

Brunner, Ralf

2009-01-01T23:59:59.000Z

94

Ionic Liquids as Lubricants or Additives - Energy Innovation ...  

New ionic liquids invented at ORNL show great promise as lubricants for aluminum and steel in combustion engines, bearings, and microelectromechanical systems (MEMS).

95

The effect of alternative fuels on the stability and lubricity of crankcase lubricants. Final report, September 1992--September 1993  

DOE Green Energy (OSTI)

The purpose of this research is to study the effect of alternative fuels on the functioning of crankcase lubricants with these three main goals: Develop simple, rapid test protocols to evaluate the influence of alternative fuels on the stability and lubricity of lubricants under conditions simulating engine operation. The objective is to have these test protocols serve industry as a precursor evaluation procedure before expensive engine tests are conducted. The reliability of these test procedures to predict the influence of additives on lubricant performance under actual operating conditions will be determined by comparison of these test results with available engine and fleet tests. Use the developed test procedures to evaluate commercially available lubricants for applications with alternative fuels and determine the influence of various bearing materials, including conventional steel as well as advanced ceramic materials. Use the test procedures to evaluate classes of lubricants and lubricant additives as well as fuel additives, and develop lubricants and additives for comparability with specific alternative fuels. Test procedures have been developed to produce lubricant fractions which can be caused by contact with alternative fuels in the crankcase and the area of the fuel injector. Associated test procedures have also been developed so that the oxidative stability and the wear characteristics of the lubricant fractions from the extraction protocol can be evaluated. Although these test procedures have been used to evaluate some lubricants, the significant impact of these tests on the development and evaluation of lubricants for alternatively fueled engines has only been initiated, and these tests should be the basis for extensive future studies.

Klaus, E.E.; Duda, J.L.; Shah, R.J.

1994-03-01T23:59:59.000Z

96

High optical quality polycrystalline indium phosphide grown on ...  

High optical quality polycrystalline indium phosphide ... IIIV semiconductor solar cells have demonstrated the highest power ... (thermal oxide, 50nm ...

97

On the Microstructural Optimization of a New Polycrystalline ...  

Science Conference Proceedings (OSTI)

... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines ... and Welding Conditions of Monopile and Transition for Offshore Wind Plant.

98

Evaluation of high temperature lubricants for downhole motors in geothermal applications  

DOE Green Energy (OSTI)

A Bearing-Seal Package is being developed for use with downhole motors and turbines for drilling geothermal wells. The lubricant will be sealed in the bearing section which will allow the bearings to operate directly in the lubricant. The development of the Bearing-Seal Package involves the improvement of high temperature seals and lubricants. Candidate high temperature lubricants were tested in the High Temperature Lubricant Tester under elevated temperatures and pressures. A list of candidate high temperature lubricants, a description of the lubricant test program, and the lubricant test results are presented.

DeLafosse, P.H.; Tibbitts, G.A.; Green, S.J.

1979-01-01T23:59:59.000Z

99

Polycrystalline thin film materials and devices  

DOE Green Energy (OSTI)

Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

1992-10-01T23:59:59.000Z

100

Unburned lubricant produces 60%90% of organic carbon emissions.  

E-Print Network (OSTI)

as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE vehicles without aftertreatment emission control systems exhibited OC emissions approxi- mately one order

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Seal/lubricant systems for geothermal drilling equipment  

DOE Green Energy (OSTI)

The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

Hendrickson, R.R.; Winzenried, R.W.

1980-07-01T23:59:59.000Z

102

The experimental evaluation and application of high temperature solid lubricants  

Science Conference Proceedings (OSTI)

A research program meant to develop an understanding of high temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system was described. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid libricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials. The data obtained and the lubrication techniques developed provide important information to designers of sliding seals.

Dellacorte, C.

1989-01-01T23:59:59.000Z

103

Diamond-silicon carbide composite and method  

DOE Patents (OSTI)

Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

Zhao, Yusheng (Los Alamos, NM)

2011-06-14T23:59:59.000Z

104

Modeling of Irradiation Hardening of Polycrystalline Materials  

Science Conference Proceedings (OSTI)

High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

2011-09-14T23:59:59.000Z

105

Workshop on Diamonds for Modern Light Sources | Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Argonne Committees and Contacts diamond Workshop on Diamonds for Modern Light Sources May 5 and 6, 2011 Advanced Photon Source, Argonne National Laboratory Room 401A1100...

106

FY 2012 Progress Report for Fuel & Lubricant Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

911 911 Fuels & Lubricant Technologies VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2012 PROGRESS REPORT FOR FUEL & LUBRICANT TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Office Approved by Kevin Stork Team Leader, Fuel & Lubricant Technologies Vehicle Technologies Office June 2013 DOE/EE-0911 Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

107

Double bevel construction of a diamond anvil  

DOE Patents (OSTI)

A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

Moss, W.C.

1988-10-11T23:59:59.000Z

108

Fluorinated diamond bonded in fluorocarbon resin  

SciTech Connect

By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

Taylor, Gene W. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

109

Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polycrystalline Thin-Film Cell Basics Polycrystalline Thin-Film Cell Basics Photovoltaic Polycrystalline Thin-Film Cell Basics August 20, 2013 - 2:36pm Addthis Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon. Thin-film cells have many advantages over their thick-film counterparts. For example, they use much less material. The cell's active area is usually only 1 to 10 micrometers thick, whereas thick films typically are 100 to 300 micrometers thick. Also, thin-film cells can usually be manufactured in a large-area process, which can be an automated, continuous production process. Finally, they can be deposited on flexible substrate materials. The term thin film comes from the method used to deposit the film, not from

110

Research on Polycrystalline Films for Micro- and Nano-Systems  

E-Print Network (OSTI)

Polycrystalline films are used in a wide array of micro- and nano-scale devices, for electronic, mechanical, magnetic, photonic and chemical functions. Increasingly, the properties, performance, and reliability of films ...

Thompson, Carl V.

111

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

Science Conference Proceedings (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

112

Grain-Boundary Physics in Polycrystalline Photovoltaic Materials: Preprint  

DOE Green Energy (OSTI)

This paper describes a study of the atomic structure and electronic effects of grain boundaries in polycrystalline photovoltaic materials such as Si, CdTe, CuInSe2, and CuGaSe2.

Yan, Y.; Jiang, C. S.; Wu, X. Z.; Noufi, R.; Wei, S. H.; Al-Jassim, M. M.

2008-05-01T23:59:59.000Z

113

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

DOE Green Energy (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

114

Polycrystalline silicon semiconducting material by nuclear transmutation doping  

DOE Patents (OSTI)

A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

Cleland, John W. (Knoxville, TN); Westbrook, Russell D. (Oak Ridge, TN); Wood, Richard F. (Oak Ridge, TN); Young, Rosa T. (Knoxville, TN)

1978-01-01T23:59:59.000Z

115

Estimating Geometric Dislocation Densities in Polycrystalline Materialsfrom Orientation Imaging Microscopy  

Science Conference Proceedings (OSTI)

Herein we consider polycrystalline materials which can be taken as statistically homogeneous and whose grains can be adequately modeled as rigid-plastic. Our objective is to obtain, from orientation imaging microscopy (OIM), estimates of geometrically necessary dislocation (GND) densities.

Man, Chi-Sing [University of Kentucky; Gao, Xiang [University of Kentucky; Godefroy, Scott [University of Kentucky; Kenik, Edward A [ORNL

2010-01-01T23:59:59.000Z

116

TransForum v31n1 - Rail Lubricant  

NLE Websites -- All DOE Office Websites (Extended Search)

RAIL LUBRICANT TECHNOLOGY GOES HIGH TECH "I ... have invented a new and useful improvement on locomotive-engines used on railroads and common roads by which inclined planes and...

117

Notes 01. The fundamental assumptions and equations of lubrication theory  

E-Print Network (OSTI)

The fundamental assumption in Lubrication Theory. Derivation of thin film flow equations from Navier-Stokes equations. Importance of fluid inertia effects in thin film flows. Some fluid physical properties

San Andres, Luis

2009-01-01T23:59:59.000Z

118

Effects of Lubrication on Density Gradient of Titanium Powder ...  

Science Conference Proceedings (OSTI)

It was found that 0.3wt% of lubricant significantly improves the density variation, but ... of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing.

119

Peeling, healing and bursting in a lubricated elastic sheet  

E-Print Network (OSTI)

We consider the dynamics of an elastic sheet lubricated by the flow of a thin layer of fluid that separates it from a rigid wall. By considering long wavelength deformations of the sheet, we derive an evolution equation ...

Hosoi, A.E.

2004-01-01T23:59:59.000Z

120

Amorphous silicon/polycrystalline thin film solar cells  

DOE Patents (OSTI)

An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

Ullal, H.S.

1991-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Circuit Breaker Lubrication: Compatibility and SelectionLaboratory Assessment  

Science Conference Proceedings (OSTI)

The performance of a circuit breaker over its lifetime is largely determined by the performance of the materials and components that make up the complete breaker. The rates of deterioration of lubricants and other components drive the requirements for circuit breaker maintenance and refurbishment. The Electric Power Research Institute (EPRI) has undertaken a comprehensive research effort to develop the knowledge base required by utilities for the correct selection and application of lubricants for ...

2013-12-19T23:59:59.000Z

122

Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals  

DOE Patents (OSTI)

A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes R. (El Paso, TX)

1996-03-26T23:59:59.000Z

123

Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications  

SciTech Connect

One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

Gruen, Dieter M. (Downers Grove, IL)

2009-08-11T23:59:59.000Z

124

Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications  

SciTech Connect

One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

Gruen, Dieter M.

2012-09-04T23:59:59.000Z

125

Progress on diamond amplified photo-cathode  

SciTech Connect

Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

2011-03-28T23:59:59.000Z

126

Defect behavior of polycrystalline solar cell silicon  

DOE Green Energy (OSTI)

The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P. [Arizona State Univ., Tempe, AZ (US). Center for Solid State Electronics Research

1993-05-01T23:59:59.000Z

127

Method of removing an immiscible lubricant from a refrigeration system and apparatus for same  

DOE Patents (OSTI)

A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

Spauschus, Hans O. (Stockbridge, GA); Starr, Thomas L. (Roswell, GA)

1999-01-01T23:59:59.000Z

128

CRC handbook of lubrication. Theory and practice of tribology: Volume II: Theory and design  

Science Conference Proceedings (OSTI)

This handbook covers the general area of lubrication and tribology in all its facets: friction, wear lubricants (liquid, solid, and gas), greases, lubrication principles, applications to various mechanisms, design principles of devices incorporating lubrication, maintenance, lubrication scheduling, and standardized tests; as well as environmental problems and conservation. The information contained in these two volumes will aid in achieving effective lubrication for control of friction and wear, and is another step to improve understanding of the complex factors involved in tribology. Both metric and English units are provided throughout both volumes.

Booser, E.R.

1984-01-01T23:59:59.000Z

129

Rotary seal with enhanced lubrication and contaminant flushing  

DOE Patents (OSTI)

A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

Dietle, Lannie L. (Sugar Land, TX)

2000-01-01T23:59:59.000Z

130

An economical route to high quality lubricants  

Science Conference Proceedings (OSTI)

The current rends in the automotive and industrial markets toward more efficient engines, longer drain intervals, and lower emissions all contribute to placing increasingly stringent performance requirements on lubricants. The demand for higher quality synthetic and non-conventional basestocks is expected to grow at a much faster rate than that of conventional lube basestocks to meet these higher performance standards. Yukong Limited has developed a novel technology (the Yukong UCO Lube Process) for the economic production of high quality, high-viscosity-index lube basestocks from a fuels hydrocracker unconverted oil stream. A pilot plant based on this process has been producing oils for testing purposes since May 1994. A commercial facility designed to produce 3,500 BPD of VHVI lube basestocks cane on-stream at Yukong`s Ulsan refinery in October 1995. The Badger Technology Center of Raytheon Engineers and Constructors assisted Yukong during the development of the technology and prepared the basic process design package for the commercial facility. This paper presents process aspects of the technology and comparative data on investment and operating costs. Yukong lube basestock product properties and performance data are compared to basestocks produced by conventional means and by lube hydrocracking.

Andre, J.P. [Raytheon Engineers and Constructors, Inc., Cambridge, MA (United States); Hahn, S.K.; Kwon, S.H.; Min, W.

1996-12-01T23:59:59.000Z

131

Hydrogen chemisorption on diamond surfaces. Final report  

DOE Green Energy (OSTI)

Previously we demonstrated the ability to measure submonolayer quantities of surface hydrogen on insulating glasses. The present study builds on this by examining hydrogen coverages on another insulating material: the technologically important diamond (100) surface. The information to be obtained in the present study will allow us to deduce the correct structures for the diamond (100)-(1X1) and -(2X1) surface phases and provide information on the kinetics of hydrogen desorption from the (100) surface. Such experiments are essential for a complete understanding of hydrogen surface chemistry during the chemical vapor deposition of thin diamond films. This report summarizes progress made in FY93 for measuring surface hydrogen concentrations on the diamond (100) surface. Although the available LDRD resources were insufficient to finish this study in FY93, completion of the study is planned using other resources and this detailed report as a reference.

Daley, R.; Musket, R.

1994-09-01T23:59:59.000Z

132

Free energy and shock compression of diamond  

Science Conference Proceedings (OSTI)

The new approach has been developed to calculate the free energy in quasiharmonic approximation for homogeneous condensed matter. Common result has been demonstrated on an example of solid and liquid diamond at high pressures and temperatures of shock compression.

A. M. Molodets; M. A. Molodets; S. S. Nabatov

1998-01-01T23:59:59.000Z

133

Diamond growth at low substrate temperatures  

DOE Patents (OSTI)

Diamond films are deposited on silicon wafers at a temperature of less than 600{degree}C by a microwave plasma-assisted chemical vapor deposition process using methane in hydrogen as a source of carbon. 9 refs., 3 figs.

Hsu, W.L.; Tung, D.M.

1990-01-01T23:59:59.000Z

134

Diamond growth at low substrate temperatures  

DOE Patents (OSTI)

Diamond films are deposited on silicon wafers at a temperature of less than 600{degree}C by a microwave plasma-assisted chemical vapor deposition process using methane in hydrogen as a source of carbon. 9 refs., 3 figs.

Hsu, W.L.; Tung, D.M.

1990-12-31T23:59:59.000Z

135

Growth and opportunities in the lubricants business in Asia  

Science Conference Proceedings (OSTI)

The demand for lubricants is increasing faster in Asia than any other part of the world. This development is being propelled largely by the expansion of the transportation and manufacturing sectors. By the year 2000, lubricant consumption in Asia will exceed that of Western Europe, Africa and the Middle East combined. Aside from this growth, most of the region is shifting from very low quality to higher quality value-added products. In view of these factors, there has been an explosion of activity over the past few years as lubricant blenders and additive suppliers attempt to position themselves within the market. Over the past year, Chem Systems has undertaken an extensive study of the lubricants business in East Asia, focusing on the evolution of this complex market structure and the identification of attractive opportunities. The overview presented in this paper is a product of these efforts. Whether you are a multinational oil company, independent blender, national oil company or multinational additive suppler, the questions are the same when developing a strategy for the region: regional overview of lubricant business structure; outlook for Asian demand; profile of lube/additives businesses; and successful competition--what is required?

Burke, B.F. [Chem Systems, Inc., Tarrytown, NY (United States)

1995-09-01T23:59:59.000Z

136

Fuel efficient lubricants and the effect of special base oils  

Science Conference Proceedings (OSTI)

The demand for improved fuel economy is placing increasing pressure upon engine manufacturers world-wide. Lubricants that can provide additional fuel efficiency benefits are being vigorously sought. Such lubricants must achieve the current performance specifications that are also increasing in severity. To meet all of these requirements, passenger car lubricant formulations will need special base oils. This paper presents data on comparable 5W-30 formulations based on either hydrogenated mineral oil, or hydrocracked or poly alpha olefin basestocks. These blends clearly demonstrate the effect of improved volatility on oil consumption and oxidation stability in a range of bench engine tests. Equivalent engine test performance is observed for the hydrocracked and polyalphaolefin blends. Both exhibit performance superior to that attained by the hydrogenated mineral oil-based blend. Predicted Sequence VI fuel savings for these blends show additional fuel efficiency benefits for hydrocracked vs. hydrogenated mineral oil-based blends. 18 refs., 7 figs., 4 tabs.

Kiovsky, T.E. [BP Oil Company, Cleveland, OH (United States); Yates, N.C.; Bales, J.R. [BP Oil International Limited, Middlesex (United Kingdom)

1994-04-01T23:59:59.000Z

137

MIS and SIS solar cells on polycrystalline silicon  

DOE Green Energy (OSTI)

MIS and SIS structured solar cells are receiving much attention in the photovoltaic community. Seemingly, these cells could be a viable alternative to thermally diffused p-n junctions for use on thin-film polycrystalline silicon substrates. This review describes MIS/SIS structured solar cells and the possible advantages of these structures for use with thin-film polycrystalline silicon. The results of efficiency calculations are presented. Also addressed are lifetime stability and fabrication techniques amenable to large scale production. Finally, the relative advantages and disadvantages of these cells and the results obtained are presented.

Cheek, G.; Mertens, R.

1980-02-01T23:59:59.000Z

138

Turbine Generator Auxiliary Systems Volume 1: Turbine Generator Lubrication System Maintenance Guide -- 2012 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current maintenance information on lubrication system components and specifications, treatment, and analysis of the lubricating oil.BackgroundInput from member utilities indicated that maintenance guides were needed for the turbine-generator auxiliary systems. The first auxiliary system selected was the turbine-generator lubrication system used in nuclear and ...

2012-12-12T23:59:59.000Z

139

Plasma spraying method for forming diamond and diamond-like coatings  

DOE Patents (OSTI)

A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

Holcombe, C.E.; Seals, R.D.; Price, R.E.

1997-06-03T23:59:59.000Z

140

Plasma spraying method for forming diamond and diamond-like coatings  

DOE Patents (OSTI)

A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

Holcombe, Cressie E. (Farragut, TN); Seals, Roland D. (Oak Ridge, TN); Price, R. Eugene (Knoxville, TN)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Molybdenum-containing compositions and lubricants and fuels containing them  

Science Conference Proceedings (OSTI)

Molybdenum-containing compositions are prepared by the reaction of an acid of molybdenum or salt thereof, phenol or aldehyde condensation product therewith, and a primary or secondary amine. The preferred amines are diamines such as tallow-substituted trimethylene diamine and their formaldehyde condensation products. An optional but preferred ingredient in the reaction mixture is at least one oil-soluble dispersant. The molybdenumcontaining compositions are useful as additives in lubricants and fuels, and are especially useful in lubricants when combined with compounds containing active sulfur.

Karn, J.L.

1981-05-12T23:59:59.000Z

142

Lubricity of deeply hydrogenated diesel fuels. The Swedish experience  

Science Conference Proceedings (OSTI)

Environmentally adapted diesel fuels defined by the Swedish Government contain extremely low levels of sulphur and have limited aromatics contents. Road trials and pump durability tests of these fuels revealed unacceptable wear in injection pumps due to low lubricity. Additive solutions were identified using bench tests and then proven in field trials. Market experience has substantiated the findings that fuels using the chosen additive give fully satisfactory performance. This paper illustrates how practical solutions to lubricity questions can be found, and is applicable wherever specifications demand fuels requiring a high degree of hydroprocessing. 19 refs., 10 figs., 3 tabs.

Tucker, R.F.; Stradling, R.J.; Wolveridge, P.E.; Rivers, K.J.; Ubbens, A.

1994-10-01T23:59:59.000Z

143

Argonne licenses diamond semiconductor discoveries to AKHAN Technologies |  

NLE Websites -- All DOE Office Websites (Extended Search)

licenses diamond semiconductor discoveries to AKHAN Technologies licenses diamond semiconductor discoveries to AKHAN Technologies By Joseph Bernstein * By Jared Sagoff * March 4, 2013 Tweet EmailPrint LEMONT, Ill. - The U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM). The Argonne-developed technology allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400 degrees Celsius. The combination of the Argonne's low-temperature diamond technology with AKHAN's Miraj Diamond(tm) process represents the state of the art in diamond semiconductor

144

SLAC National Accelerator Laboratory - Superhard Diamond-Denting...  

NLE Websites -- All DOE Office Websites (Extended Search)

is pressed between the flattened tips of two opposing diamonds. Scientists can shine lasers or X-rays through the transparent diamonds to observe and identify any atomic-scale...

145

Diamond Channel with Partially Separated Relays Ravi Tandon Sennur Ulukus  

E-Print Network (OSTI)

Diamond Channel with Partially Separated Relays Ravi Tandon Sennur Ulukus Department of Electrical Theory, 27(1):122­125, January 1981. [8] R. Tandon and S. Ulukus. Diamond channels with partially

Ulukus, Sennur

146

n-Type diamond and method for producing same  

DOE Patents (OSTI)

A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

Anderson, Richard J. (Oakland, CA)

2002-01-01T23:59:59.000Z

147

SLAC National Accelerator Laboratory - Diamond-like Coating Improves...  

NLE Websites -- All DOE Office Websites (Extended Search)

News Feature Archive Diamond-like Coating Improves Electron Microscope Images By Mike Ross November 26, 2012 Coating the surface of a material with a single layer of diamond-like...

148

Research on polycrystalline thin-film materials, cells, and modules  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1990-11-01T23:59:59.000Z

149

Development of a method for predicting the performance and wear of PDC (polycrystalline diamond compact) drill bits  

DOE Green Energy (OSTI)

A method is developed for predicting cutter forces, temperatures, and wear on PDC bits as well as integrated bit performance parameters such as weight-on-bit, drilling torque, and bit imbalance. A computer code called PDCWEAR has been developed to make this method available as a tool for general bit design and analysis. The method uses single-cutter data to provide a measure of rock drillability and employs theoretical considerations to account for interaction among closely spaced cutters on the bit. Experimental data are presented to establish the effects of cutter size and wearflat area on the forces that develop during rock cutting. Waterjet assistance is shown to significantly reduce cutting forces, thereby potentially extending bit life and reducing weight-on-bit and torque requirements in hard rock. The effects of several other design and operating parameters on bit life and drilling performance are also investigated.

Glowka, D.A.

1987-09-01T23:59:59.000Z

150

Lubricant base oil and wax processing. [Glossary included  

SciTech Connect

This book provides state-of-the-art information on all processes currently used to manufacture lubricant base oils and waxes. It furnishes helpful lists of conversion factors, construction cost data, and process licensors, as well as a glossary of essential petroleum processing terms.

Sequeira, A. Jr.

1994-01-01T23:59:59.000Z

151

Symbiotic Simulation Control in Supply Chain of Lubricant Additive Industry  

Science Conference Proceedings (OSTI)

With the increasing growth of manufacture networks as well as the global competition in the lubricant industry, efficient management of a supply chain is vital for large vertically-integrated petroleum companies. Operational decision-making should consider ... Keywords: Symbiotic Simulation

Zeng Fanchao; Stephen John Turner; Heiko Aydt

2009-10-01T23:59:59.000Z

152

Diesel engine lubrication with poor quality residual fuel  

Science Conference Proceedings (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

153

Diamond Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Diamond Energy Pty Ltd Diamond Energy Pty Ltd Jump to: navigation, search Name Diamond Energy Pty Ltd Place Melbourne, Australia Zip 3124 Product Victoria based clean energy project developer. Coordinates -37.817532°, 144.967148° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-37.817532,"lon":144.967148,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts  

Science Conference Proceedings (OSTI)

If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

Blau, Peter Julian [ORNL

2012-03-01T23:59:59.000Z

155

Shock Compressing Diamond to a Conducting Fluid  

Science Conference Proceedings (OSTI)

Laser generated shock reflectance data show that diamond undergoes a continuous transition from optically absorbing to reflecting between Hugoniot pressures 600diamond having a thermal population of carriers at P{sub H}{approx}600 GPa, undergoing band overlap metallization at P{sub H}{approx}1000 GPa and melting at 800

Bradley, D K; Eggert, J H; Hicks, D G; Celliers, P M; Moon, S J; Cauble, R C; Collins, G W

2004-07-29T23:59:59.000Z

156

Method of improving field emission characteristics of diamond thin films  

DOE Patents (OSTI)

A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

1999-01-01T23:59:59.000Z

157

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

158

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

159

Polycrystalline thin-film module and system performance  

DOE Green Energy (OSTI)

The Module and System Performance and Engineering Project at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of photovoltaic (PV) modules and systems (arrays). These evaluations on module/array performance and stability are conducted at the NREL Photovoltaic Outdoor Test Facility (OTF) in Golden, CO. The modules and arrays are located at 39.7{degree}N latitude, 105.2{degree}W longitude, and at 1,782 meters elevation. Currently, two polycrystalline thin-film technologies are the focus of the research presented here. The module structures are copper indium diselenide (CIS) from Siemens Solar Industries and cadmium telluride (CdTe) from Solar Cells, Inc. The research team is attempting to correlate individual module performance with array performance for these two polycrystalline thin-film technologies. This is done by looking at module and array performance over time. Also, temperature coefficients are determined at both the module and array level. Results are discussed.

Strand, T.; Kroposki, B.; Hansen, R.; Mrig, L.

1995-11-01T23:59:59.000Z

160

Polycrystalline thin-film technology: Recent progress in photovoltaics  

DOE Green Energy (OSTI)

Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DEFORMATION AND FRACTURE OF POLYCRYSTALLINE LITHIUM FLUORIDE (thesis)  

SciTech Connect

Techniques for forming polycrystalline LiF from the melt and for fabricating test specimens were developed and evaluated using single-crystal LiF as a control. Large -grain polycrystalline specimens tested in fourpoint loading always showed some plastic deformation (0.078 to 0.798%) before fracture, but the plastic flow was sharpiy reduced from that of single crystals. An etch was developed revealing dislocations on all crystallographic faces of LiF. Details of plastic deformation in polycrystalline material were investigated. Deformation was inhomogeneous among the grains of an aggregate because of differences in orientation with respect to the applied stress, also within individual grains because of interactions between adjoining grains. Grain boundaries were barriers to slip, but stresses resulting from slip in one grain were transmitted to neighboring grains and often caused local deformation near the boundary. Because of local stresses, local slip systems operated although the resolved shear stresses on them from the applied load were below the critical yield stress. In one case, slip occurred on an (010) plane. Three-grain junctions were areas of high residual stress. Fractures originated at boundaries at or near 3-grain junctions, not as a result of inherent boundary weakness but rather because of high stresses developed at the boundary. A quantitative expression for fracture originating in a slip band was applied to one type of fracture. (auth)

Scott, W.D.

1962-09-14T23:59:59.000Z

162

Materials - Coatings & Lubricants - Illinois Center for Advanced Tribology  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Center for Advanced Tribology Illinois Center for Advanced Tribology ICAT brochure cover TRI - BOL*O*GY (N) -- the science and technology of friction, wear, and lubrication of interacting surfaces in relative motion. The Illinois Center for Advanced Tribology (ICAT) is a virtual center that brings together the skills and talents of multiple investigators and unique facilities from Argonne National Laboratory and three partnering universities to resolve critical friction, wear, and lubrication issues in biomedical implants, alternative energy technologies, and extreme environments. The Center's tribology experts work closely with industry, and with state and federal agencies through jointly funded research projects, to perform leading-edge research on the impact of materials, coatings, and fluids on

163

Method of removing an immiscible lubricant from a refrigeration system and apparatus for same  

DOE Patents (OSTI)

A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

Spauschus, H.O.; Starr, T.L.

1999-03-30T23:59:59.000Z

164

Circuit Breaker Lubrication - Assessment of Field-Aged Bearings  

Science Conference Proceedings (OSTI)

The life cycle performance of a high-voltage circuit breaker is, to a large degree, determined by the performance of the materials and components that make up the complete breaker. The rates of deterioration of components such as compressors, pumps, seals, linkages and their lubrication, and interrupter elements drive the requirements for circuit breaker maintenance and refurbishment. EPRI conducted a series of investigations to enhance knowledge of aging processes and to identify those ...

2012-12-14T23:59:59.000Z

165

Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry  

SciTech Connect

A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

Dietle, Lannie (Houston, TX); Gobeli, Jeffrey D. (Houston, TX)

1993-07-27T23:59:59.000Z

166

Lubricating bacteria model for branching growth of bacterial colonies, Phys  

E-Print Network (OSTI)

Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations. 1 I.

Yonathan Kozlovsky; Inon Cohen; Ido Golding; Eshel Ben-jacob

1999-01-01T23:59:59.000Z

167

AECL Qualification of Greases for Motor-Operated Valve Stem/Stem Nut Lubrication  

Science Conference Proceedings (OSTI)

The frictional characteristics of lubricants used in the actuators of motor-operated valves are critical to ensuring adequate actuator output capability. As part of the EPRI Motor-Operated Valve (MOV) Performance Prediction Program, testing was conducted at ambient temperature conditions on over 20 stem-stem nut lubricants in use in United States nuclear plants as documented in EPRI report TR-103235. Additional research has been conducted on several MOV lubricants after thermal and radiation aging under ...

1998-11-24T23:59:59.000Z

168

Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts (Presentation)  

DOE Green Energy (OSTI)

Discusses the impact of lubricant formulation on the performance of oxides of nitrogen (NOx) Adsorber Catalysts, including background/motivation for study, experimental design, and results.

Whitacre, S. D.

2005-08-25T23:59:59.000Z

169

The feasibility of using electrostatic charge condition monitoring for lubricant additive screening.  

E-Print Network (OSTI)

??International standards require lubricant formulators to develop additive packages that increase fuel economy, reduce environmental impact and minimise wear over ever increasing service intervals. However, (more)

Booth, James Edward

2008-01-01T23:59:59.000Z

170

Diamond Shaving of Contaminated Concrete Surfaces  

Science Conference Proceedings (OSTI)

Decommissioning and decontamination of existing facilities presents technological challenges. One major challenge is the removal of surface contamination from concrete floors and walls while eliminating the spread of contamination and volumetric reduction of the waste stream. Numerous methods have been tried with a varying degree of success. Recent technology has made this goal achievable and has been used successfully. This new technology is the Diamond Floor Shaver and Diamond Wall shaver. The Diamond Floor Shaver is a self-propelled, walk behind machine that literally shaves the contaminated concrete surface to specified depths. This is accomplished by using a patented system of 100 dry cutting diamond blades with offset diamond segments that interlock to provide complete shaving of the concrete surface. Grooves are eliminated which allows for a direct frisk reading to analyze results. When attached to an appropriate size vacuum, the dust produced is 100% contained. Dust is collected in drums ready for disposition and disposal. The waste produced in shaving 7,500 square feet at 1/8 inch thickness would fill a single 55 gallon drum. Production is dependent on depth of shaving but averages 100 square feet per hour. The wall shaver uses the same patented diamond drum and blades but is hydraulically driven and is deployed using a robotic arm allowing its operation to be to totally remote. It can reach ceilings as high as 20 feet. Numerous small projects were successfully completed using this technology. Large scale deployment came in 2003. Bluegrass, in conjunction with Bartlett Services, deployed this technology to support decontamination activities for closing of the Rocky Flats nuclear weapons site. Up to six floor shavers and one wall shaver were deployed in buildings B371 and B374. These buildings had up to one half-inch, fixed plutonium and beryllium contamination. Hundred-thousands of square feet of floors and walls were shaved successfully to depths of up to one half inch. Decontamination efforts were so successful the balance of the buildings could be demolished using conventional methods. The shavers helped keep the project on schedule while the vacuum system eliminated the potential for contaminants becoming airborne.

Mullen, Lisa K. [Bluegrass Concrete Cutting Inc., 107 Mildred Street PO Box 427, Greenville, Alabama 36037 (United States)

2008-01-15T23:59:59.000Z

171

Diamonds are an Electronic Device's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diamonds are an Electronic Device's Best Friend Diamonds are an Electronic Device's Best Friend Diamonds are an Electronic Device's Best Friend April 17, 2012 - 11:43am Addthis Ultrananocrystalline diamond has a diverse range of applications from the next generation of high-definition flat panel displays to coatings for mechanical pump seals and tools. | Photo courtesy of Argonne National Lab Ultrananocrystalline diamond has a diverse range of applications from the next generation of high-definition flat panel displays to coatings for mechanical pump seals and tools. | Photo courtesy of Argonne National Lab Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science How does it work? As computer performance has improved, engineers have had a hard time dissipating the heat produced. Diamond film may be the answer, as it's much better at absorbing and

172

Diamond Walnut Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Walnut Biomass Facility Walnut Biomass Facility Jump to: navigation, search Name Diamond Walnut Biomass Facility Facility Diamond Walnut Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Diamond Willow Extension | Open Energy Information  

Open Energy Info (EERE)

Extension Extension Jump to: navigation, search Name Diamond Willow Extension Facility Diamond Willow Extension Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Montana-Dakota Utilities Developer Montana-Dakota Utilities Energy Purchaser Montana-Dakota Utilities Location Near Baker MT Coordinates 46.281621°, -104.271355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.281621,"lon":-104.271355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Comparison of Fast Amplifiers for Diamond Detectors  

E-Print Network (OSTI)

The development of Chemical Vapour Deposition (CVD) diamond detectors requests for novel signal amplifiers, capable to match the superb signal-to-noise ratio and timing response of these detectors. Existing amplifiers are still far away from this goal and are the dominant contributors to the overall system noise and the main source of degradation of the energy and timing resolution. We tested a number of commercial amplifiers designed for diamond detector readout to identify the best solution for a particular application. This application required a deposited energy threshold below 100 keV and timing resolution of the order of 200 ps at 200 keV. None of tested amplifiers satisfies these requirements. The best solution to such application found to be the Cividec C6 amplifier, which allows 100 keV minimal threshold, but its coincidence timing resolution at 200 keV is as large as 1.2 ns.

M. Osipenko; S. Minutoli; P. Musico; M. Ripani; B. Caiffi; A. Balbi; G. Ottonello; S. Argir; S. Beol; N. Amapane; M. Masera; G. Mila

2013-10-03T23:59:59.000Z

175

Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields; Preprint  

DOE Green Energy (OSTI)

We review the status of commercial polycrystalline thin-film solar cells and photovoltaic (PV) modules, including current and projected commercialization activities.

von Roedern, B.; Ullal, H. S.; Zweibel, K.

2006-05-01T23:59:59.000Z

176

Fabrication and Characterization of Polycrystalline CuInSe 2 Thin ...  

Science Conference Proceedings (OSTI)

Symposium, Thin Film Structures for Energy Efficient Systems. Presentation Title, Fabrication and Characterization of Polycrystalline CuInSe2 Thin Film by...

177

High Mobility Exceeding 40cm 2 /Vs in Polycrystalline Al-doped Cu ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Mobility Exceeding 40cm2/Vs in Polycrystalline ... with a resistivity of 1.37 ?cm and electron concentration of 2.31017,...

178

Challenges in Applying Diamond Coatings to Carbide Twist Drills  

Science Conference Proceedings (OSTI)

Despite of the attractive advantage of applying diamond coating to drills, ... Investigation of a Hybrid Cutting Tool Design for Shearing Operations of Sheet Metals.

179

Boron-doped Diamond Synthesis Using Mode-conversion Type ...  

Science Conference Proceedings (OSTI)

DC Arc Plasma Jet Growth of Large Area High Quality Freestanding Diamond Films and ... Hybrid Nanoporous Metal/Oxide Films for Energy Storage.

180

Systems in Commercial Buildings" Project Rick Diamond, Craig...  

NLE Websites -- All DOE Office Websites (Extended Search)

the PIER "Thermal Distribution Systems in Commercial Buildings" Project Rick Diamond, Craig Wray, Brian Smith, Darryl Dickerhoff, Nance Matson, and Skylar Cox Indoor Environment...

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Argonne CNM News: Medical applications of diamond particles and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical applications of diamond particles and surfaces TEM image of nanodiamond particles TEM image of nanodiamond particles Scientists in the Nanofabrication & Devices Group...

182

Argonne CNM News: Ultrananocrystalline Diamond-Coated Membranes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrananocrystalline Diamond-Coated Membranes Show Promise for Medical Implant Applications SEM image of UNCD coated AAO membrane SEM image of AAO membrane coated with tungsten...

183

Alloy Development for Copper Diamond Composites for Thermal ...  

Science Conference Proceedings (OSTI)

One approach to meeting the challenges is to add diamond particles to a copper matrix to improve thermal conductivity and lower CTE simultaneously.

184

Synthesis and characterization of a nanocrystalline diamond aerogel  

E-Print Network (OSTI)

nanocrystalline diamond aerogel Peter J. Pauzauskie a,1,2 ,Laboratory, Berkeley, CA 94720 Aerogel materials have myriadcreating a nanodiamond aerogel matrix has remained an

Pauzauskie, Peter J.

2012-01-01T23:59:59.000Z

185

Thin Sheet of Diamond Has Worlds of Uses  

DOE R&D Accomplishments (OSTI)

A new technique from Argonne National Laboratory creates thin diamond films that are helping industry save energy and could even be used in heart and eye implants.

Sagoff, Jared

2011-04-01T23:59:59.000Z

186

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents (OSTI)

A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

1998-02-03T23:59:59.000Z

187

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents (OSTI)

A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

1998-02-03T23:59:59.000Z

188

Low temperature production of large-grain polycrystalline semiconductors  

SciTech Connect

An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

Naseem, Hameed A. (Fayetteville, AR); Albarghouti, Marwan (Loudonville, NY)

2007-04-10T23:59:59.000Z

189

Reactive sticking coefficients for silane and disilane on polycrystalline silicon  

SciTech Connect

Reactive sticking coefficients (RSCs) were measured for silane and disilane on polycrystalline silicon for a wide range of temperature and flux (pressure) conditions. The data were obtained from deposition-rate measurements using molecular beam scattering and a very low-pressure cold-wall reactor. The RSCs have nonlinear Arrhenius temperature dependencies and decrease with increasing flux at low (710 /sup 0/C) temperatures. Several simple models are proposed to explain these observations. The results are compared with previous studies of the SiH/sub 4//Si(s) reaction and low-pressure chemical vapor deposition-rate measurements.

Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

1988-04-15T23:59:59.000Z

190

Black Diamond Power Co | Open Energy Information  

Open Energy Info (EERE)

Black Diamond Power Co Black Diamond Power Co Place West Virginia Utility Id 1764 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1200/kWh Commercial: $0.0685/kWh The following table contains monthly sales and revenue data for Black Diamond Power Co (West Virginia). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

191

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

192

Modeling of lubricant performance in Kurt Orbahn tests for viscosity modifiers based on star polymers  

Science Conference Proceedings (OSTI)

The kinetics of stress-induced degradation of a star polymer additive dissolved in a mineral oil lubricant is modeled. The polymer degradation is modeled on the basis of a new system of kinetic integro-differential equations for the distribution densities ... Keywords: Existence and uniqueness, Lubricant degradation, Modeling, Star polymer molecules

Ilya I. Kudish

2007-09-01T23:59:59.000Z

193

Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants  

Science Conference Proceedings (OSTI)

In this paper the effect of deformation of the bearing liner on the static characteristics of a circular journal bearing operating with micropolar fluid is analysed. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. ... Keywords: deformation coefficient, elastohydrodynamic, micropolar lubricant

V. P. Sukumaran Nair; K. Prabhakaran Nair

2004-10-01T23:59:59.000Z

194

A view of lubricant demand and quality into the '90's  

Science Conference Proceedings (OSTI)

Lubricant demand and quality are forecast in this paper using the same techniques as in our 1978 and 1982 papers, but with updated factors based on four more years of history, the present economic outlook and the status of lubricant technology.

Boston, E.D.; Ballard, H.D. Jr.

1986-01-01T23:59:59.000Z

195

An efficient preconditioned iterative solution of fully-coupled elastohydrodynamic lubrication problems  

Science Conference Proceedings (OSTI)

This paper presents the fast preconditioned iterative solution to large sparse linear systems arising from the application of Newton and quasi-Newton methods to fully coupled elastohydrodynamic lubrication line and point contact problems. The new blockwise ... Keywords: Elastohydrodynamic lubrication, Finite element method, Fully coupled approach, Linear elasticity, Multigrid, Preconditioned GMRES

Sarfraz Ahmed; Christopher E. Goodyer; Peter K. Jimack

2012-05-01T23:59:59.000Z

196

Impurity-defect interaction in polycrystalline silicon for photovoltaic applications. The role of hydrogen  

E-Print Network (OSTI)

of the cell ? ii) Will the defects of the polycrystalline material hinder the photovoltaic properties..., leading also to a degradation of the efficiency of the photovoltaic cells ? iii) What would655 Impurity-defect interaction in polycrystalline silicon for photovoltaic applications. The role

Paris-Sud XI, Université de

197

NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS  

Science Conference Proceedings (OSTI)

The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

Robert Radtke

2006-01-31T23:59:59.000Z

198

The Phase I MX Beamlines at Diamond Light Source  

Science Conference Proceedings (OSTI)

Three beamlines dedicated to macromolecular crystallography, I02, I03 and I04 at Diamond Light Source are presented. These beamlines formed the life science component of Phase 1 of Diamond Light Source. The article provides details of the design and the current status of the beamlines.

Duke, E. M. H.; Evans, G.; Flaig, R.; Hall, D. R.; Latchem, M.; McAuley, K. E.; Sandy, D. J.; Sorensen, T. L-M.; Waterman, D.; Johnson, L. N. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon. OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

199

Diamond and Related Materials 6 ( 1997) 1759-I771 Simulation of morphological instabilities during diamond  

E-Print Network (OSTI)

, and hydrogen are activated with energetic sources such as microwaves to generate plasmas, direct current (DC include the hot filament [2] and many types of microwave plasma [3], which typically have *Corresponding is expected to be negligible since the diamond phase of carbon is very stable and gasification of dia- mond

Dandy, David

200

Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles  

DOE Patents (OSTI)

A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, suing a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.

Carpenter, D.A.

1993-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles  

SciTech Connect

A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.

Carpenter, Donald A. (Lenior City, TN)

1995-01-01T23:59:59.000Z

202

Waste lubricating oil: an annotated review. 1982 revision  

Science Conference Proceedings (OSTI)

Because of renewed interest in waste oil, both in terms of energy conservation and as a threat to the environment, there appears to be a need for a systemic compilation of information on the subject. This is a revision of the 1979 manuscript (BETC/IC-79/4) reflecting publications of the last three years as well as incorporation of papers that were overlooked. The number of citations has jumped from 486 to 1203, with all previous citations also listed here. The bibliography is divided into broad subject areas. The Introduction gives the history and development of the used oil reclamation industry. The General section includes the comprehensive papers that address several subjects and thus, give a capsulated overview of the used oil situation. Sources of Information and Statistical Treatments of Data tell how to obtain additional and future information and data relating to waste oil and could aid those persons interested in keeping their knowledge current. The Other Lubricating Oils section covers many of the lubricants that have the potential for recycling. The Other Oils section is divided into four sub-sections to aid the reader to find the subject of interest. The section on Related Subjects includes those sideline areas that could apply to used oil reclamation.

Cotton, F.O.

1982-10-01T23:59:59.000Z

203

Nonlinear optical spectroscopy of diamond surfaces  

DOE Green Energy (OSTI)

Second harmonic generation (SHG) and infrared-visible sum frequency generation (SFG) spectroscopies have been shown to be powerful and versatile for studying surfaces with submonolayer sensitivity. They have been used in this work to study bare diamond surfaces and molecular adsorption on them. In particular, infrared-visible SFG as a surface vibrational spectroscopic technique has been employed to identify and monitor in-situ surface bonds and species on the diamond (111) surface. The CH stretch spectra allow us to investigate hydrogen adsorption, desorption, abstraction, and the nature of the hydrogen termination. The C(111) surface dosed with atomic hydrogen was found to be in a monohydride configuration with the hydrogen atoms situated at top-sites. The ratio of the abstraction rate to the adsorption rate was appreciable during atomic hydrogen dosing. Kinetic parameters for thermal desorption of H on C(111) were determined showing a near first-order kinetics. For the fully H-terminated (111) surface, a large (110 cm{sup {minus}1}) anharmonicity and {approximately}19 psec lifetime were measured for the first-excited CH stretch mode. The bare reconstructed C(111)-(2 {times} l) surface showed the presence of CC stretch modes which were consistent with the Pandey {pi}-bonded chain structure. When exposed to the methyl radical, the SFG spectra of the C(111) surface showed features suggesting the presence of adsorbed methyl species. After heating to sufficiently high temperatures, they were converted into the monohydride species. Preliminary results on the hydrogen-terminated diamond (100) surface are also presented.

Chin, R.P.

1995-04-01T23:59:59.000Z

204

Nano-diamonds in the Universe A.C. Andersen,1  

E-Print Network (OSTI)

Nano-diamonds in the Universe A.C. Andersen,1 H. Mutschke,2 L. Binette3 , S. Höfner4 1 NORDITA, SE-75120 Uppsala Sweden The first direct evidence for nano-diamonds in space came from meteorites. Laboratory analyses on fine-grained diamond residues from primitive meteorites have shown that nano- diamonds

Andersen, Anja C.

205

Diamond Detectors for Heavy Ion Measurements  

E-Print Network (OSTI)

In 1999, the accelerator facility at GSI is scheduled to deliver beam intensities of about 10 10 particles/spill for all available ions up to 238 U. This necessitates the development of a new generation of radiation-resistant and ultra-fast detectors, in conjunction with new high-speed and low-noise electronics. Preliminary results confirm the suitability of CVD-diamond detectors for both, beam diagnostics, and heavy-ion experiments with projectiles in the energy region from 50 MeV/amu to 2 GeV/amu. Various test measurements

E. Berdermann; K. Blasche; P. Moritz; H. Stelzer; F. Zeytouni

1998-01-01T23:59:59.000Z

206

Diamond Shamrock nears completion of major expansions  

SciTech Connect

With completion later this year of a second refined products line into Colorado, Diamond Shamrock Inc., San Antonio, will have added more than 600 miles of product and crude-oil pipeline on its system and expanded charge and production capacities at its two state-of-the-art refineries, all within 30 months. The projects aim at improving the company's ability to serve markets in the U.S. Southwest and increasing capacities and flexibility at its two refineries. The paper describes these projects under the following headings: new products service; another new line; and refineries, crude pipelines; Three Rivers expansion and Supplies for McKee.

True, W.R.

1993-05-24T23:59:59.000Z

207

Manufacturing of diamond windows for synchrotron radiation  

Science Conference Proceedings (OSTI)

A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.

Schildkamp, W.; Nikitina, L. [Synchrotron ALBA, CELLS, Carretera BP 1413, km 3.3, 08290 Cerdanyola del Valles (Spain)

2012-09-15T23:59:59.000Z

208

Status of High Performance PV: Polycrystalline Thin-Film Tandems  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

Symko-Davies, M.

2005-02-01T23:59:59.000Z

209

ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Diamond Monochromators for APS Undulator-A Beamlines R.C. Blasdell, L. A. Assoufid, and D. M. Mills TABLE OF CONTENTS 1. INTRODUCTION .................................................................................1 2. PHYSICAL PROPERTIES OF DIAMONDS ..................................................5 2.1 Varieties of Diamonds ....................................................................5 2.2 The Lattice Parameter .....................................................................5 2.3 Bulk Thermal and Mechanical Properties ...............................................6 2.4 Typical Surface and Lattice Plane Morphology ......................................8 2.5 The Liquid-GaIn/Diamond Interface ...................................................10 3. DIFFRACTION PROPERTIES OF DIAMOND

210

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2012-03-01T23:59:59.000Z

211

Printable, flexible and stretchable diamond for thermal management  

DOE Patents (OSTI)

Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

2013-06-25T23:59:59.000Z

212

Epitaxial synthesis of diamond layers on a monocrystalline diamond substrate in a torch microwave plasmatron  

SciTech Connect

The epitaxial growth of a diamond single-crystal film in a torch microwave discharge excited by a magnetron of a domestic microwave oven with the power of {<=}1 kW in an argon-hydrogen-methane mixture with a high concentration of methane (up to 25% with respect to hydrogen) at atmospheric pressure on a sub-strate of a synthetic diamond single crystal (HPHP) with the orientation (100) and 4 Multiplication-Sign 4 mm in size is obtained. A discharge with the torch diameter of {approx}2 mm and the concentration of the microwave power absorbed in the torch volume of >10{sup 3} W/cm{sup 3} is shown to be effective for epitaxial enlargement of a single crystal of synthetic diamond. The structure of the deposited film with the thickness up to 10 {mu}m with high-quality morphology is investigated with an optical microscope as well as using the methods of the Raman scattering and scanning electron microscopy.

Sergeichev, K. F., E-mail: kserg@fpl.gpi.ru; Lukina, N. A. [Prokhorov Institute of General Physics (Russian Federation)

2011-12-15T23:59:59.000Z

213

Compatibility of refrigerants and lubricants with elastomers. Quarterly report, 1 April 1992--30 June 1992  

Science Conference Proceedings (OSTI)

Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-07-01T23:59:59.000Z

214

High temperature solid lubricant materials for heavy duty and advanced heat engines  

DOE Green Energy (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

215

The Feasibility study of using Palm oil as the lubricant of Automative Engine.  

E-Print Network (OSTI)

??In general,the lubricants were composed by basestock and additive,and the basestock is usual use mineral oil. This paper examines the viscosity,viscosity index and antiwear properties (more)

tzeng, jason

2001-01-01T23:59:59.000Z

216

Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method  

E-Print Network (OSTI)

Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

Chen, Haijie

2011-01-01T23:59:59.000Z

217

Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines  

E-Print Network (OSTI)

The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

Takata, Rosalind (Rosalind Kazuko), 1978-

2006-01-01T23:59:59.000Z

218

Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles  

Science Conference Proceedings (OSTI)

This patent describes an additive for liquid hydrocarbon fuel composition, particularly diesel fuels. The additive composition is the reaction product of polyalkenyl-substituted succinimides, aldehydes, and triazoles. It also finds use in lubricant compositions.

Blain, D.A.; Cardis, A.B.; McGonigle, S.S.

1990-10-16T23:59:59.000Z

219

Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles  

Science Conference Proceedings (OSTI)

Disclosed in an additive for liquid hydrocarbon fuel composition, particularly diesel fuels. The additive composition is the reaction product of polyalkenyl-substituted succinimides, aldehydes, and triazoles. It also finds use in lubricant compositions.

Blain, D.A.; Cardis, A.B.; McGonigle, S.S.

1990-01-30T23:59:59.000Z

220

A tribological study of the interaction between surface micro texturing and viscoelastic lubricants  

E-Print Network (OSTI)

An experimental study is performed on micro textured surfaces using both elastic and Newtonian fluids in order to understand the effect of surface texturing and fluid rheology on sliding friction under lubricated conditions. ...

Hupp, Sara J. (Sara Jean), 1979-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

LG/BV series water lubrication VSD oil-free screw compressor ...  

U.S. Energy Information Administration (EIA)

LG/BV series water lubrication VSD oil-free screw compressor,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor manufacturer and ...

222

How to reduce torque and drag with a plastic sphere lubricant  

SciTech Connect

A new mud lubricant, Lubra-Beads has been used to reduce torque and drag in deviated holes, improve wire line operations, improve casing running times and, in some cases, improve rates of penetrations. Treatments have varied from batch treatments to treating the entire system. The type of treatment used depends on the problem encountered. The case histories presented described ways in which Lubra-Beads mud lubricant has been used to reduce torque and drag and increase penentration rates.

Vieaux, G.J.

1980-10-01T23:59:59.000Z

223

Argonne CNM News: State-of-the-Art Diamond Semiconductor Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

State-of-the-Art Diamond Semiconductor Technology Licensed to AKHAN Technologies State-of-the-Art Diamond Semiconductor Technology Licensed to AKHAN Technologies The U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies, Inc., exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM). The method allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400°C, highly advantageous for integration with processed semiconductor electronic materials and resulting in the deposition of low-defect nanocrystalline diamond (NCD) thin films. The combination of CNM's low-temperature diamond technology with the AKHAN Miraj Diamond(tm) process represents the state of the art in diamond semiconductor thin-film technology.

224

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee to Diamond Green Diesel, LLC., the DOE Loan Program's first conditional commitment for an advanced biofuels plant. The loan guarantee will support the construction of a 137-million gallon per year renewable diesel facility that will produce renewable diesel fuel primarily from animal fats, used cooking oil and other waste grease

225

Wakefield Breakdown Test of a Diamond-Loaded Accelerating Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

WAKEFIELD BREAKDOWN TEST OF A DIAMOND-LOADED ACCELERATING STRUCTURE S. Antipov, C. Jing, A. Kanareykin, P. Schoessow Euclid TechLabs LLC, Solon, OH, 44139 USA M. Conde, W. Gai, S....

226

Wakefield Breakdown Test of a Diamond-loaded Accelerating Structure...  

NLE Websites -- All DOE Office Websites (Extended Search)

WAKEFIELD BREAKDOWN TEST OF A DIAMOND-LOADED ACCELERATING STRUCTURE AT THE AWA S. Antipov, C. Jing, P. Schoessow, J. E. Butler, S. Zuo and A. Kanareykin, Euclid Techlabs LLC,...

227

Plasma-assisted conversion of solid hydrocarbon to diamond  

DOE Patents (OSTI)

A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

Valone, Steven M. (Santa Fe, NM); Pattillo, Stevan G. (Los Alamos, NM); Trkula, Mitchell (Los Alamos, NM); Coates, Don M. (Santa Fe, NM); Shah, S. Ismat (Wilmington, DE)

1996-01-01T23:59:59.000Z

228

Diamond: a storage architecture for early discard in interactive search  

Science Conference Proceedings (OSTI)

This paper explores the concept of early discard for interactive search of unindexed data. Processing data inside storage devices using downloaded searchlet code enables Diamond to perform efficient, applicationspecific filtering of large data collections. ...

Larry Huston; Rahul Sukthankar; Rajiv Wickremesinghe; M. Satyanarayanan; Gregory R. Ganger; Erik Riedel; Anastassia Ailamaki

2004-03-01T23:59:59.000Z

229

In-situ Tracking of Slip Activation in Bulk Polycrystalline Zirconium  

Science Conference Proceedings (OSTI)

Presentation Title, In-situ Tracking of Slip Activation in Bulk Polycrystalline Zirconium. Author(s), J. Lind, S. F. Li, C. M. Hefferan, R. Pokharel, A. D. Rollett,...

230

Structure and Effects of Extended Defects in Polycrystalline Si Thin Films  

DOE Green Energy (OSTI)

The structure and effects of extended defects in rapid deposited polycrystalline Si thin films were studied using a combination of high-resolution transmission electron microscopy and first-principles total energy calculations.

Yan, Y.; Al-Jassim, M. M.; Wang, T. H.; Ciszek, T. F.

2000-01-01T23:59:59.000Z

231

Striving for a Standard Protocol for Preconditioning or Stabilization of Polycrystalline Thin Film Photovoltaic Modules: Preprint  

DOE Green Energy (OSTI)

A protocol was devised for preconditioning polycrystalline CdTe and CIGS cell technologies under bias with light exposure or forward-bias currents at elevated temperatures and the results reported.

del Cueto, J. A.; Deline, C. A.; Albin, D. S.; Rummel, S. R.; Anderberg, A.

2009-07-01T23:59:59.000Z

232

Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

233

Friction and wear performance of low-friction carbon coatings under oil lubrication.  

DOE Green Energy (OSTI)

Amorphous carbon coatings with very low friction properties were recently developed at Argonne National Laboratory. These coatings have shown good promise in mitigating excessive wear and scuffing problems associated with low-lubricity diesel fuels. To reduce the negative effect of sulfur and other lubricant additives in poisoning the after-treatment catalyst, a lubricant formulation with a low level of sulfur may be needed. Exclusion of proven sulfur-containing extreme pressure (EP) and antiwear additives from oils will require other measures to ensure durability of critical lubricated components. The low-friction carbon coating has the potential for such applications. In the present study, we evaluated the friction and wear attributes of three variations of the coating under a boundary lubrication regime. Tests were conducted with both synthetic and mineral oil lubricants using a ball-on-flat contact configuration in reciprocating sliding. Although the three variations of the coating provided modest reductions in friction coefficient, they all reduced wear substantially compared to an uncoated surface. The degradation mode of oxidative wear on the uncoated surface was replaced by a polishing wear mode on the coated surfaces.

Kovalchenko, A.; Ajayi, O. O.; Erdemir, A.; Fenske, G. R.

2001-12-11T23:59:59.000Z

234

Aging model for solid lubricants used in weapon stronglinks: tribological performance and hardware review  

Science Conference Proceedings (OSTI)

The solid lubricant used most extensively in strong links throughout the enduring stockpile contains MoS{sub 2}, which is known to react with oxygen and water vapor resulting in a change in the material`s friction and wear behavior. The authors have examined the frictional behavior of this lubricant as a function of oxidation, in support of efforts to quantify the impact of changes in the material on the dynamic behavior of the MC2969 strong link. Their results show that the friction response of oxidized lubricant is strongly influenced by the amount of burnishing performed on the lubricant after deposition. Low levels of burnish leave a thick film, of which only the near surface degrades during oxidation. Rapid wear of the oxidized material leaves a surface whose properties are the same as non-oxidized material. Higher levels of burnish leave a thinner film of lubricant such that the entire film may be oxidized. The friction coefficient on this surface reaches a steady state value greater than that of non oxidized material. In addition to these fundamental differences in steady state behavior, they have shown that the initial friction coefficient on oxidized surfaces is related to the amount of sulfide converted to sulfate, regardless of the oxidation conditions used. Measurements on parts returned from the stockpile show that the friction behavior of aged hardware is consistent with the behavior observed on controlled substrates containing thin lubricant films.

Dugger, M.T.; Peebles, D.E.; Sorroche, E.H.; Varga, K.S. [Sandia National Labs., Albuquerque, NM (United States); Bryan, R.M. [Allied Signal, Kansas City, MO (United States). Federal Manufacturing and Technology

1997-09-01T23:59:59.000Z

235

Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix  

DOE Patents (OSTI)

A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

Taylor, G.W.; Roybal, H.E.

1983-11-14T23:59:59.000Z

236

Free-standing polycrystalline boron phosphide film and method for production thereof  

DOE Patents (OSTI)

A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

Baughman, R.J.; Ginley, D.S.

1982-09-09T23:59:59.000Z

237

Method for production of free-standing polycrystalline boron phosphide film  

DOE Patents (OSTI)

A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

Baughman, Richard J. (Albuquerque, NM); Ginley, David S. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

238

Understanding of Defect Physics in Polycrystalline Photovoltaic Materials: Preprint  

DOE Green Energy (OSTI)

The performance of thin-film solar cells is influenced by the quality of interfaces and formation of defects such as point defects, stacking faults, twins, dislocations, and grain boundaries. It is important to understand the defect physics so that appropriate methods may be developed to suppress the formation of harmful defects. Here, we review our understanding of defect physics in thin-film photovoltaic (PV) materials such as Si, CdTe, Cu(In,Ga)Se2 (CIGS), Cu2ZnSnSe2 (CZTSe), and Cu2ZnSnS2 (CZTS) using the combination of nanoscale electron microscopy characterization and density-functional theory (DFT). Although these thin-film PV materials share the same basic structural feature - diamond structure based - the defect physics in them could be very different. Some defects, such as stacking faults and special twins, have similar electronic properties in these thin-film materials. However, some other defects, such as grain boundaries and interfaces, have very different electronic properties in these materials. For example, grain boundaries produce harmful deep levels in Si and CdTe, but they do not produce significant deep levels in CIGS, CZTSe, and CZTS. These explain why passivation is critical for Si and CdTe solar cells, but is less important in CIS and CZTS solar cells. We further provide understanding of the effects of interfaces on the performance of solar cells made of these PV materials.

Yan, Y.

2011-07-01T23:59:59.000Z

239

An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration  

Science Conference Proceedings (OSTI)

A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

TerraTek

2007-06-30T23:59:59.000Z

240

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Kinetic Lattice Monte Carlo Simulation ofKinetic Lattice Monte Carlo Simulation of Polycrystalline Thin film growthPolycrystalline Thin film growth  

E-Print Network (OSTI)

grain orientations s The first application of this code is to the growth of Mo tips, including chemicalKinetic Lattice Monte Carlo Simulation ofKinetic Lattice Monte Carlo Simulation of Polycrystalline Applications Motorola National Science Foundation National Center for Supercomputer Applications Motorola #12

Adams, James B

242

Potentially useful polyolester lubricant additives an overview of antioxidants, antiwear and antiseize compounds  

Science Conference Proceedings (OSTI)

Reliable service lubrication of compressors with polyolesters that do not contain additives is the optimal goal for hermetic compressor use. Chlorine derived from CFC and HCFC refrigerants is reported to have effective antiwear properties and negates the widespread use of additives in mineral oil lubricated systems. The use of antioxidants for mineral oil and polyolesters have been reported; antioxidant additive activity seems essential for polyolesters.- Antiwear and antiseize additives seem to be a short term goal for use with polyolesters. High silicone aluminum to steel wear seems to be a primary target for additive use. The interaction of specific heteroatom organic compounds with highly polar surface active synthetic polyolester lubricants is complex. Results of an extensive literature search describe results from a service base determined at ambient conditions. Known lubricant additives used in the hermetic compressor industry, the. mode of action of several types of additives and some lubricant additive chemistry that demonstrates selective thermal stability in conjunction with the chemical structure are examined.

Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

1996-11-01T23:59:59.000Z

243

Clean and cost-effective dry boundary lubricants for aluminum forming.  

DOE Green Energy (OSTI)

Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce sliding fiction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal formability tests indicated that the boric acid films formed on aluminum surfaces by spraying or dipping worked quite well; improving draw scale performance by 58 to 75%. These findings have increased the prospect that boric acid can be formulated and optimized as an effective boundary lubricant and used to solve the friction, galling, and severe wear problems currently encountered in cold-forming of aluminum products. Accordingly, the major goal of this paper is to demonstrate the usefulness and lubrication capacity of thin boric acid films formed on aluminum surfaces by simple dipping or spraying processes and to describe the lubrication mechanisms under typical metal forming conditions. We will also examine the nature of chemical bonding between boric acid and aluminum surfaces and develop new ways to optimize its performance as an effective boundary lubricant.

Erdemir, A.; Fenske, G. R.

1997-12-05T23:59:59.000Z

244

Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future  

DOE Green Energy (OSTI)

Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

1997-12-31T23:59:59.000Z

245

MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior  

SciTech Connect

We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions.

AUKLAND,NEIL R.; HANLON,JAMES T.

1999-10-12T23:59:59.000Z

246

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

247

Hydrogen Storage in Nano-Phase Diamond at High Temperature and Its Release  

DOE Green Energy (OSTI)

The objectives of this proposed research were: 91) Separation and storage of hydrogen on nanophase diamonds. It is expected that the produced hydrogen, which will be in a mixture, can be directed to a nanophase diamond system directly, which will not only store the hydrogen, but also separate it from the gas mixture, and (2) release of the stored hydrogen from the nanophase diamond.

Tushar K Ghosh

2008-10-13T23:59:59.000Z

248

Melting temperature of iron in the core diamond cell experiments Guoyin Shen  

E-Print Network (OSTI)

, Washington DC, 1998. 3. Boehler, R., High pressure experiments and the phase diagram of lower mantle and core. Manghnani and Y. Syono (Terra Scientific Publishing Company/American Geophysical Union, Tokyo, Washington DC materials, Rev. Geophysics, 38, 221-245, 2000. Diamond cell technique Diamond as anvil and window Diamond

Shen, Guoyin

249

The lubrication of engine valve trains equipped with ceramicized followers  

Science Conference Proceedings (OSTI)

The valve train wear characteristics of motored 2.2l and 2.3l engines were examined using ceramic and conventional metal cam followers. Under regular wear conditions with fully formulated motor oils, minimal wear was observed on the metal cam lobes running with either the ceramicized or metal followers. Running under chemically accelerated wear conditions with low quality oil, however, cam lobe wear with ceramicized followers was observed to be significantly less than that with metal followers. The difference in wear was diminished when testing high quality oils under chemically accelerated conditions. Typical testing revealed that the metal follower pads quickly developed considerable wear in a characteristic pattern, while the ceramic followers pads quickly developed considerable were in a characteristic pattern, while the ceramic followers exhibited only slight polishing. Scanning electron photographs revealed details of the used ceramic surfaces, and that wear took place by polishing and by intergranular fracture with subsequent material removal. Engine wear is a major factor that limits the life of today's passenger cars. Particularly for the newer models that have smaller but higher speed and output engines incorporating current designs such as overhead camshafts, 4-valves per cylinder and turbochargers, the valve train represents one of the highest wear components within an engine. In light of the trend towards extended drivetrain warranties, there is a strong demand for lubricant suppliers to develop engine oils with improved antiwear performance. In a parallel effort, automotive engine and component manufacturers are enhancing valve train durability with technologies that include roller followers and the use of advanced ceramic materials.

Blahey, A.G.; Habeeb, J.J.; Rogers, W.N.< 110> The lubrication of engine valve trains equipped with ceramicized followers.

1990-01-01T23:59:59.000Z

250

BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS  

Office of Legacy Management (LM)

BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO October 27, 1989 Prepared for: U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Prepared by: R.F. Weston/Office of Technical Services BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO INTRODUCTION The Department of Energy (DOE) is conducting a program to identify and examine the radiological conditions at sites used in the early years of nuclear energy development by the U.S. Army Corps of Engineer's Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC). This program, the Formerly Utilized Sites Remedial Action Program (FUSRAP), is administered by the Assistant Secretary for Nuclear Energy through the

251

Is Graphite a Diamonds Best Friend? New Information on Material  

NLE Websites -- All DOE Office Websites (Extended Search)

November 18th, 2003 November 18th, 2003 Is Graphite a Diamond's Best Friend? New Information on Material Transformation Science has yet to achieve the alchemist's dream of turning lead into gold. But a group of re-searchers using the GeoSoilEn-viroCARS (GSECARS) and High-Pressure Collaborative Access Team (HP-CAT) facilities at the Department of Energy's Advanced Photon Source (APS) at Argonne National Laboratory, may have found a way to turn ordinary soft graphite (source of the "lead" found in pencils) into a new, super-hard material that "looks" just like diamond. Using the high-brilliance x-ray beams from the APS, the group discovered that, under extreme pressure, graphite (among the softest of materials and the source of the lead found in pencils) becomes as hard as diamond, the

252

Synthesis and characterization of a nanocrystalline diamond aerogel  

SciTech Connect

Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

2011-07-06T23:59:59.000Z

253

Capacitively coupled RF diamond-like-carbon reactor  

DOE Patents (OSTI)

A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.

Devlin, David James (Los Alamos, NM); Coates, Don Mayo (Santa Fe, NM); Archuleta, Thomas Arthur (Espanola, NM); Barbero, Robert Steven (Santa Cruz, NM)

2000-01-01T23:59:59.000Z

254

Identification of tribological research and development needs for lubrication of advanced heat engines  

DOE Green Energy (OSTI)

The continuous evolution of higher power density propulsion systems has always fueled the search for materials and lubricants with improved thermal and/or durability characteristics. Tribology of the upper cylinder region is the major technology roadblock in the path of the adiabatic diesel engine which has an energy reduction potential that exceeds that of all other engine development types. This tribology assessment resulted in the following major conclusions: a low friction and a low wear seal between the ring belt and cylinder bore are the most critical tribology functions in the diesel combustion chamber; development of solid lubrication systems will not satisfy the simultaneous low friction and low wear requirements in the upper cylinder area; development of separate upper cylinder liquid lubrication systems offers the most attractive design alternative for meeting the operational goals of future ''minimum cooled'' diesel engines.

Fehrenbacher, L.L.; Levinson, T.M.

1985-09-01T23:59:59.000Z

255

Compatibility of refrigerants and lubricants with elastomers. Quarterly report, 1 July 1992--30 September 1992  

SciTech Connect

Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-10-01T23:59:59.000Z

256

Compatibility of refrigerants and lubricants with elastomers. Quarterly report, 1 October 1992--30 December 1992  

Science Conference Proceedings (OSTI)

The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1993-01-01T23:59:59.000Z

257

Multifractal analysis of stress time series during ultrathin lubricant film melting  

E-Print Network (OSTI)

Melting of an ultrathin lubricant film confined between two atomically flat surfaces is we studied using the rheological model for viscoelastic matter approximation. Phase diagram with domains, corresponding to sliding, dry, and two types of $stick-slip$ friction regimes has been built taking into account additive noises of stress, strain, and temperature of the lubricant. The stress time series have been obtained for all regimes of friction using the Stratonovich interpretation. It has been shown that self-similar regime of lubricant melting is observed when intensity of temperature noise is much larger than intensities of strain and stress noises. This regime is defined by homogenous distribution, at which characteristic stress scale is absent. We study stress time series obtained for all friction regimes using multifractal detrended fluctuation analysis. It has been shown that multifractality of these series is caused by different correlations that are present in the system and also by a power-law distribu...

Khomenko, A V; Borisyuk, V N; 10.1142/S0219477510000046

2010-01-01T23:59:59.000Z

258

Accurate lubrication corrections for spherical and non-spherical particles in discretized fluid simulations  

E-Print Network (OSTI)

Discretized fluid solvers coupled to a Newtonian dynamics method are a popular tool to study suspension flow. As any simulation technique with finite resolution, the lattice Boltzmann method, when coupled to discrete particles using the momentum exchange method, resolves the diverging lubrication interactions between surfaces near contact only insufficiently. For spheres, it is common practice to account for surface-normal lubrication forces by means of an explicit correction term. A method that additionally covers all further singular interactions for spheres is present in the literature as well as a link-based approach that allows for more general shapes but does not capture non-normal interactions correctly. In this paper, lattice-independent lubrication corrections for aspherical particles are outlined, taking into account all leading divergent interaction terms. An efficient implementation for arbitrary spheroids is presented and compared to purely normal and link-based models. Good consistency with Stok...

Janoschek, Florian; Toschi, Federico

2013-01-01T23:59:59.000Z

259

Designed Diamond Ground State via Optimized Isotropic Monotonic Pair Potentials  

E-Print Network (OSTI)

We apply inverse statistical-mechanical methods to find a simple family of optimized isotropic, monotonic pair potentials, under certain constraints, whose ground states for a wide range of pressures is the diamond crystal. These constraints include desirable phonon spectra and the widest possible pressure range for stability. We also ascertain the ground-state phase diagram for a specific optimized potential to show that other crystal structures arise for other pressures. Cooling disordered configurations interacting with our optimized potential to absolute zero frequently leads to the desired diamond crystal ground state, revealing that the capture basin for the global energy minimum is large and broad relative to the local energy minima basins.

Etienne Marcotte; Frank H. Stillinger; Salvatore Torquato

2012-12-15T23:59:59.000Z

260

Nano-manipulation of diamond-based single photon sources  

E-Print Network (OSTI)

The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a new technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a ~ 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.

E. Ampem-Lassen; D. A. Simpson; B. C. Gibson; S. Trpkovski; F. M. Hossain; S. T. Huntington; K. Ganesan; L. C. L. Hollenberg; S. Prawer

2009-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nano-manipulation of diamond-based single photon sources  

E-Print Network (OSTI)

The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a new technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a ~ 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.

Ampem-Lassen, E; Gibson, B C; Trpkovski, S; Hossain, F M; Huntington, S T; Ganesan, K; Hollenberg, L C L; Prawer, S

2009-01-01T23:59:59.000Z

262

Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines  

DOE Green Energy (OSTI)

Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

Wiczynski, T.A.; Marolewski, T.A.

1993-03-01T23:59:59.000Z

263

Role of polycrystallinity in CdTe and CuInSe[sub 2] photovoltaic cells  

DOE Green Energy (OSTI)

The limiting role of polycrystallinity in thin-film solar calls has been reduced somewhat during the past year, and efficiencies of both CdTe and CuInSe[sub 2] cells are approaching 15%. Quantitative separation of loss mechanisms shows that individual losses, with the exception of forward recombination current, can be made comparable to their single crystal counterparts. One general manifestation of the extraneous trapping states in that the voltage of all polycrystalline thin-film cells drifts upward by 10--50 mV following the onset of illumination.

Sites, J.R. (Colorado State Univ., Fort Collins, CO (United States))

1992-11-01T23:59:59.000Z

264

Abstract Moving average algorithms for diamond, hexagon, and general polygonal shaped window operations  

E-Print Network (OSTI)

This paper presents fast moving window algorithms for calculating local statistics in a diamond, hexagon, and general polygonal shaped windows of an image which is important for real-time applications. The algorithms for a diamond shaped window requires only seven or eight additions and subtractions per pixel. A fast sparse algorithm only needs four additions and subtractions for a sparse diamond shaped window. A number of other shapes of diamond windows such as skewed or parallelogram shaped diamond, long diamond, and lozenged diamond shaped, are also investigated. Similar algorithms are also developed for hexagon shaped windows. The computation for a hexagon window only needs eight additions and subtractions for each pixel. Fast algorithms for general polygonal shaped windows are also developed. The computation cost of all these algorithms is independent of the window size. A variety of synthetic and real images have been tested.

Changming Sun

2005-01-01T23:59:59.000Z

266

The Diamond Beamline Controls and Data Acquisition Software Architecture  

Science Conference Proceedings (OSTI)

The software for the Diamond Light Source beamlines[1] is based on two complementary software frameworks: low level control is provided by the Experimental Physics and Industrial Control System (EPICS) framework[2][3] and the high level user interface is provided by the Java based Generic Data Acquisition or GDA[4][5]. EPICS provides a widely used

N. Rees; Diamond Controls Group; Diamond Data Acquisition Group

2010-01-01T23:59:59.000Z

267

Fabrication of Aluminum Alloy-Based Diamond Grinding Wheel by ...  

Science Conference Proceedings (OSTI)

Moreover, ability of CFRP drilling of the aluminum alloy-based diamond grinding wheel ... Accelerated Post-Weld Natural Ageing in Ultrasonic Welding Aluminium ..... Powder Metallurgy of High Strength Al84Gd6Ni7Co3 Gas-atomized Powder.

268

Tribological and microstructural investigation of the PM200 series of self-lubricating composites  

Science Conference Proceedings (OSTI)

This master`s thesis describes an investigation of the effects of processing and compositional variations on the tribological, microstructural, and compressive strength characteristics of PM212. PM212 is a self-lubricating composite, comprised of a wear-resistant metal bonded (NiCo) chromium carbide matrix, containing the solid lubricants barium fluoride/calcium fluoride eutectic and silver. Several alternate composites were formulated which had lubricant and matrix variations. Processing variations included sintering and hot isostatic pressing (HIPping). Pin-on-disk tests were used to screen the alternates for friction and wear properties. Several of the chromium carbide-based self-lubricating composites exhibited low friction and wear in sliding against a nickel-based superalloy. One specific composition contained gold in place of silver to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. This formulation also resulted in a composite with good tribological properties. Results indicate that several of these composites have potential use as sliding bearing and seal materials in operation from 25{degrees}C to temperatures as high as 900{degrees}C. The good tribological performance by several different composites showed that the composition of PM212 can be altered without dramatically affecting performance.

Bogdanski, M.S.

1992-11-01T23:59:59.000Z

269

Engine having a high pressure hydraulic system and low pressure lubricating system  

DOE Patents (OSTI)

An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

270

Gas-lubricated seal for sealing between a piston and a cylinder wall  

DOE Patents (OSTI)

A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal. 4 figs.

Hoult, D.P.

1985-09-10T23:59:59.000Z

271

Collaborative Lubricating Oil Study on Emissions: November 28, 2006 - March 31, 2011  

DOE Green Energy (OSTI)

The Collaborative Lubricating Oil Study on Emissions (CLOSE) project was a pilot investigation of how fuels and crankcase lubricants contribute to the formation of particulate matter (PM) and semi-volatile organic compounds (SVOC) in vehicle exhaust. As limited vehicles were tested, results are not representative of the whole on-road fleet. Long-term effects were not investigated. Pairs of vehicles (one normal PM emitting, one high-PM emitting) from four categories were selected: light-duty (LD) gasoline cars, medium-duty (MD) diesel trucks, heavy-duty (HD) natural-gas-fueled buses, and HD diesel buses. HD vehicles procured did not exhibit higher PM emissions, and thus were labeled high mileage (HM). Fuels evaluated were non-ethanol gasoline (E0), 10 percent ethanol (E10), conventional low-sulfur TxLED diesel, 20% biodiesel (B20), and natural gas. Temperature effects (20 degrees F, 72 degrees F) were evaluated on LD and MD vehicles. Lubricating oil vintage effects (fresh and aged) were evaluated on all vehicles. LD and MD vehicles were operated on a dynamometer over the California Unified Driving Cycle, while HD vehicles followed the Heavy Duty Urban Dynamometer Driving Schedule. Regulated and unregulated emissions were measured. Chemical markers from the unregulated emissions measurements and a tracer were utilized to estimate the lubricant contribution to PM.

Carroll, J. N.; Khalek, I. A.; Smith, L. R.; Fujita, E.; Zielinska, B.

2011-10-01T23:59:59.000Z

272

Tribological performance of NFC coatings under oil lubrication[Near Frictionless Carbon  

DOE Green Energy (OSTI)

An increase in engine and vehicle efficiency usually requires an increase in the severity of contact at the interfaces of many critical components. Examples of such components include piston rings and cylinder liners in the engine, gears in the transmission and axle, bearings, etc. These components are oil-lubricated and require enhancement of their tribological performance. Argonne National Laboratory (ANL) recently developed a carbon-based coating with very low friction and wear properties. These near-frictionless-carbon (NFC) coatings have potential for application in various engine components for performance enhancement. This paper presents the study of the tribological performance of NFC-coated steel surfaces when lubricated with fully formulated and basestock synthetic oils. The NFC coatings reduced both the friction and wear of lubricated steel surfaces. The effect of the coating was much more pronounced in tests with basestock oil. This suggests that NFC-coated parts may not require heavily formulated lubricant oils to perform satisfactorily in terms of reliability and durability.

Ajayi, O. O.; Alzoubi, M.; Erdemir, A.; Fenske, G. R.; Eryilmaz, O. L.; Zimmerman, S.

2000-01-20T23:59:59.000Z

273

Multifractal analysis of stress time series during ultrathin lubricant film melting  

E-Print Network (OSTI)

Melting of an ultrathin lubricant film confined between two atomically flat surfaces is we studied using the rheological model for viscoelastic matter approximation. Phase diagram with domains, corresponding to sliding, dry, and two types of $stick-slip$ friction regimes has been built taking into account additive noises of stress, strain, and temperature of the lubricant. The stress time series have been obtained for all regimes of friction using the Stratonovich interpretation. It has been shown that self-similar regime of lubricant melting is observed when intensity of temperature noise is much larger than intensities of strain and stress noises. This regime is defined by homogenous distribution, at which characteristic stress scale is absent. We study stress time series obtained for all friction regimes using multifractal detrended fluctuation analysis. It has been shown that multifractality of these series is caused by different correlations that are present in the system and also by a power-law distribution. Since the power-law distribution is related to small stresses, this case corresponds to self-similar solid-like lubricant.

A. V. Khomenko; I. A. Lyashenko; V. N. Borisyuk

2010-07-20T23:59:59.000Z

274

Diamond Wire Saw for Precision Machining of Laser Target Components  

SciTech Connect

The fabrication of precision laser targets requires a wide variety of specialized mesoscale manufacturing techniques. The diamond wire saw developed in this study provides the capability to precisely section meso-scale workpieces mounted on the assembly stations used by the Target Fabrication Group. This new capability greatly simplifies the fabrication of many types of targets and reduces the time and cost required to build the targets. A variety of materials are used to fabricate targets, including metals, plastics with custom designed chemical formulas, and aerogels of various densities. The materials are usually provided in the form of small pieces or cast rods that must be machined to the required shape. Many of these materials, such as metals and some plastics, can be trimmed using a parting tool on a diamond turning machine. However, other materials, such as aerogels and brittle materials, cannot be adequately cut with a parting tool. In addition, the geometry of the parts often requires that the workpieces be held in a special assembly station, which excludes the use of a parting tool. In the past, these materials were sectioned using a small, handheld coping saw that used a diamond-impregnated wire as a blade. This miniature coping saw was effective, but it required several hours to cut through certain materials. Furthermore, the saw was guided by hand and often caused significant damage to fragile aerogels. To solve these problems, the diamond wire saw shown in Figure 1 was developed. The diamond wire saw is designed to machine through materials that are mounted in the Target Fabrication Group's benchtop assembly stations. These assembly stations are the primary means of aligning and assembling target components, and there is often a need to machine materials while they are mounted in the assembly stations. Unfortunately, commercially available saws are designed for very different applications and are far too large to be used with the assembly stations. Therefore, a custom diamond wire saw was designed and constructed. The diamond wire saw cuts through workpieces using a continuous loop of diamond-impregnated wire of length 840 mm. The wire loop runs around several idler pulleys and is driven by a simple geared DC motor that rotates at 17 rpm. The linear speed of the wire is 107 inches/minute. The saw is oriented at an angle of 20{sup o} from horizontal, so the operator can view the wire through the cutout at the front end of the saw. When looking through a microscope or camera with a horizontal line of sight, the operator can clearly see the wire as it cuts through the workpiece, as shown in the right side of Figure 1. The saw is mounted on a two-axis stage that allows the operator to align the wire with the workpiece. To cut through the workpiece, the operator drives the wire through the workpiece by turning the feed micrometer. An image of the interior of the diamond wire saw appears in Figure 2. This picture was taken after removing the protective cover plate from the saw.

Bono, M J; Bennett, D W

2005-08-08T23:59:59.000Z

275

Low substrate temperature deposition of diamond coatings derived from glassy carbon  

DOE Patents (OSTI)

A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.

Holcombe, Jr., Cressie E. (Farragut, TN); Seals, Roland D. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

276

Low substrate temperature deposition of diamond coatings derived from glassy carbon  

DOE Patents (OSTI)

A process is disclosed for depositing a diamond coating on a substrate at temperatures less than about 550 C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture. 2 figs.

Holcombe, C.E. Jr.; Seals, R.D.

1995-09-26T23:59:59.000Z

277

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

278

Design of a dry sump lubrication system for a Honda CBR 600 F4i engine for Formula SAE applications  

E-Print Network (OSTI)

A dry sump lubrication system for a Formula SAE race car was designed and manufactured in order to gain the various advantages this type of system affords. A dry sump system stores oil in an external tank and pumps it ...

Farkhondeh, Ehsan

2006-01-01T23:59:59.000Z

279

Black Diamond, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Diamond, Washington: Energy Resources Diamond, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3087121°, -122.0031691° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3087121,"lon":-122.0031691,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Corrosion Resistance of Diamond-Like Carbon (DLC) Lined Pipe to ...  

Science Conference Proceedings (OSTI)

Author(s), Peter F. Ellis, Brian Chambers, Bill Boardman. On-Site Speaker ( Planned), Peter F. Ellis. Abstract Scope, Diamond-like carbon (DLC) coatings applied...

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

I17: Surface Modification of Boron-doped Diamond with H2O Plasma  

Science Conference Proceedings (OSTI)

On the other hand, the wettability of diamond film surfaces can be altered by plasma exposure treatments. Investigation was carried on the surface modification...

282

Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles  

DOE Green Energy (OSTI)

This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

Mark A. Prelas

2009-06-25T23:59:59.000Z

283

Raman Shift of Stressed Diamond Anvils: Pressure Calibration and Culet Geometry Dependence  

DOE Green Energy (OSTI)

The pressure dependence of the Raman shift of diamond for highly stressed anvils at the diamond-anvil sample interface has been measured for different culet shapes up to 180 GPa at ambient temperature. By using hydrogen samples, which constitute both a quasi-hydrostatic medium and a sensitive pressure sensor, some of the effects of culet and tip size have been determined. We propose that the divergent results in the literature can be partly ascribed to different anvil geometries. Experiments show increasing second order dependence of the diamond Raman shift with pressure for decreasing tip size. This is an important consideration when using the diamond anvils as a pressure sensor.

Baer, B J; Chang, M E; Evans, W J

2008-04-03T23:59:59.000Z

284

Particle? and photoinduced conductivity in type?IIa diamonds  

Science Conference Proceedings (OSTI)

Electrical characteristics associated with radiation detection were measured on single?crystal natural type?IIa diamond using two techniques: charged particle?induced conductivity and time?resolved transient photoinduced conductivity. The two techniques complement each other: The charged particle?induced conductivity technique measures the product of the carrier mobility ? and lifetime ? throughout the bulk of the material while the transient photoconductivity technique measures the carrier mobility and lifetime independently at the first few micrometers of the materialsurface. For each technique

L. S. Pan; S. Han; D. R. Kania; S. Zhao; K. K. Gan; H. Kagan; R. Kass; R. Malchow; F. Morrow; W. F. Palmer; C. White; S. K. Kim; F. Sannes; S. Schnetzer; R. Stone; G. B. Thomson; Y. Sugimoto; A. Fry; S. Kanda; S. Olsen; M. Franklin; J. W. Ager III; P. Pianetta

1993-01-01T23:59:59.000Z

285

Study of bound hydrogen in powders of diamond nanoparticles  

Science Conference Proceedings (OSTI)

In order to access feasibility of increasing albedo of very cold neutrons from powder of diamond nanoparticles, we studied hydrogen bound to surface of diamond nanoparticles, which causes unwanted losses of neutrons. We showed that one could decrease a fraction of hydrogen atoms from a ratio C{sub 7.4{+-}0.15}H to a ratio C{sub 12.4{+-}0.2}H by means of thermal treatment and outgasing of powder. Measurements of atomic excitation spectra of these samples, using a method of inelastic incoherent neutron scattering, indicate that residual hydrogen is chemically bound to carbon, while a removed fraction was composed of adsorbed water. The total cross section of scattering of neutrons with a wavelength of 4.4 Angstrom-Sign on residual hydrogen atoms equals 108 {+-} 2 b; it weakly changes with temperature. Thus preliminary cleaning of powder from hydrogen and its moderate cooling do not improve considerably neutron albedo from powder of nano-diamonds. An alternative approach is isotopic replacement of hydrogen by deuterium.

Krylov, A. R.; Lychagin, E. V.; Muzychka, A. Yu. [Joint Institute for Nuclear Research (Russian Federation); Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu [Institut Laue-Langevin (Russian Federation); Nekhaev, G. V.; Strelkov, A. V. [Joint Institute for Nuclear Research (Russian Federation); Ivanov, A. S. [Institut Laue-Langevin (Russian Federation)

2011-12-15T23:59:59.000Z

286

Plasma deposited diamond-like carbon films for large neutralarrays  

SciTech Connect

To understand how large systems of neurons communicate, we need to develop methods for growing patterned networks of large numbers of neurons. We have found that diamond-like carbon thin films formed by energetic deposition from a filtered vacuum arc carbon plasma can serve as ''neuron friendly'' substrates for the growth of large neural arrays. Lithographic masks can be used to form patterns of diamond-like carbon, and regions of selective neuronal attachment can form patterned neural arrays. In the work described here, we used glass microscope slides as substrates on which diamond-like carbon was deposited. PC-12 rat neurons were then cultured on the treated substrates and cell growth monitored. Neuron growth showed excellent contrast, with prolific growth on the treated surfaces and very low growth on the untreated surfaces. Here we describe the vacuum arc plasma deposition technique employed, and summarize results demonstrating that the approach can be used to form large patterns of neurons.

Brown, I.G.; Blakely, E.A.; Bjornstad, K.A.; Galvin, J.E.; Monteiro, O.R.; Sangyuenyongpipat, S.

2004-07-15T23:59:59.000Z

287

Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon  

DOE Patents (OSTI)

A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

Kaschmitter, J.L.; Sigmon, T.W.

1995-10-10T23:59:59.000Z

288

Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon  

DOE Patents (OSTI)

A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

Kaschmitter, James L. (Pleasanton, CA); Sigmon, Thomas W. (Beaverton, OR)

1995-01-01T23:59:59.000Z

289

Release of impurities from structural defects in polycrystalline silicon solar cells  

DOE Green Energy (OSTI)

It is critical to understand the behavior of metallic impurities in polycrystalline silicon used for solar cells. These impurities significantly increase the minority carrier recombination rate and, in turn, degrade cell performance. Impurity gettering is a commonly used method to remove these impurities from the material, however, past work has suggested that impurity release from structural defects drastically limits the gettering process. Presently, there is only a limited understanding of impurity release from structural defects. In this work, a correlation between structural defects and the location of metal impurities in as-grown material is established and the release of nickel and copper from structural defects in polycrystalline silicon was studied in as-grown material and after sequential thermal treatments which dissolve the impurities into the silicon matrix. Synchrotron-based x-ray fluorescence impurity mapping with spatial resolution of {approx} 1 {micro}m, was used to determine impurity distributions after each thermal treatment.

McHugo, S.A. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Imaizumi, M. [Toyota Technological Inst., Nagoya (Japan)

1997-04-01T23:59:59.000Z

290

Thin-film polycrystalline n-ZnO/p-CuO heterojunction  

SciTech Connect

Results of X-ray diffraction and spectral-optical studies of n-ZnO and p-CuO films deposited by gas-discharge sputtering with subsequent annealing are presented. It is shown that, despite the difference in the crystal systems, the polycrystallinity of n-ZnO and p-CuO films enables fabrication of a heterojunction from this pair of materials.

Lisitski, O. L.; Kumekov, M. E.; Kumekov, S. E. [Satpaev Kazakh National Technical University (Kazakhstan)], E-mail: skumekov@mail.ru; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

2009-06-15T23:59:59.000Z

291

Sputter-deposited lubricant thin films for high-temperature applications  

SciTech Connect

The major objective of this research program is to investigate and produce lubricant multilayer coatings deposited by sputtering to provide friction coefficients as low as 0.3 in air at temperatures varying from room temperature to 800{degrees}C under tribological test conditions appropriate to specific lubrication applications. The friction properties (friction coefficients and wear rates) of sputter-deposited silver, calcium fluoride and Ag/CaF{sub x} multilayer structures determined under various tribological conditions are reported. The tribological properties of sputter-deposited CaF{sub x}/Cr{sub 3}C{sub 2} thin bilayer structures at 500{degrees}C and 700{degrees}C in air are compared to those of thick coatings of plasma-sprayed composite material (PS-212-type) similar to coatings developed by NASA. 11 refs., 15 figs., 1 tab.

Pauleau, Y.; Marechal, N.; Juliet, P.; Rouzaud, A. [CEA-Nuclear Research Center, Grenoble (France); Zimmermann, C. [Dassault Aviation, Saint Cloud (France); Gras, R. [Institut Superieur des Materiaux, Saint Quen (France)

1996-06-01T23:59:59.000Z

292

Effects of Water in Synthetic Lubricant Systems and Clathrate Formation: A Literature Search and Review  

Science Conference Proceedings (OSTI)

An extensive literature search and a confidential survey were critically analyzed to determine the effects of water on the stability of hydrofluorocarbon/synthetic lubricant systems and to identify key areas requiring further investigation. Following are highlights from the analysis: Clathrate hydrates are solid solutions formed when water molecules are linked through hydrogen bonding creating cavities that can enclose various guest molecules from hydrate formers, such as hydrofluorocarbons R-32, R-125, R-134a, R-407C and R-410A. The four methods for preventing clathrate formation were drying the gas, heating it, reducing its pressure, or using inhibitors. The hydrolysis of polyolester lubricants was mostly acid-catalyzed and its reaction rate constant typically followed the Arrhenius equation of an activated process. Hydrolytic stability improved with hindered molecular structures, and with the presence of acid catcher additives and desiccants. Water vapor can effect the adsorption of long-chain fatty acids and the chemistry of formation of protective oxide film. However, these effects on lubrication can be either positive or negative. Fifty to sixty percent of the moisture injected into an air-conditioning system remained in the refrigerant and the rest mixed with the compressor oil. In an automotive air-conditioning system using R-134a, ice would form at 0 C evaporating temperature when the water content in the vapor refrigerant on the low-pressure side was more than 350 ppm. Moisture would cause the embrittlement of polyethylene terephthalate and the hydrolysis of polyesters, but would reduce the effect of amine additives on fluoroelastomer rubbers. The reactions of water with refrigerants and lubricants would cause formicary and large-pit corrosion in copper tubes, as well as copper plating and sludge formation. Moreover, blockage of capillary tubes increased rapidly in the presence of water. Twenty-four companies responded to the survey. From the responses, the water concentrations specified and expected for different refrigerant/lubricant systems varied depending on the products, their capacities and applications, and also on the companies. Among the problems associated with high moisture level, lubricant breakdown was of greatest concern, followed by acid formation, compressor failure and expansion valve sticking. The following research topics are suggested: 1. The air-conditioning and refrigeration industry needs to measure and record the water content and total acid number of the lubricant of newly installed systems as well as operating systems that are shutdown for service or repair. The reason for the shutdown needs to be documented. A database can then be established to correlate water content with type and cause of breakdown. 2. Detailed studies on the distribution of water in refrigeration and air-conditioning systems should be conducted to pinpoint problem areas associated with free water. 3. Research is needed to validate the current theories and mechanisms of formicary corrosion. Corrosion inhibitors need to be developed. 4. The conditions for clathrate formation and decomposition of other alternative refrigerants, such as R-23, R-41, R-116, R-125, R-143a, R-404A and R-507C, and water should be determined to avoid possible problems associated with tube plugging. The mechanism by which water facilitates or hinders lubrication needs to be studied.

Rohatgi, Ngoc Dung T.

2001-08-08T23:59:59.000Z

293

Film Thickness Changes in EHD Sliding Contacts Lubricated by a Fatty Alcohol  

E-Print Network (OSTI)

This paper describes the appearance of abnormal film thickness features formed in elastohydrodynamic contacts lubricated by a fatty alcohol. Experiments were conducted by varying the slide to roll ratio between a steel ball and a glass disk in a ball-on-disk type device. Lauric alcohol was used as lubricant and film thickness was measured in the contact area by optical interferometry. Experimental results showed that the film thickness distributions under pure rolling conditions remained classical whereas the film shape changed when the slide to roll ratio was increased. The thickness in the central contact area increased and in the same time inlet and exit film thicknesses were modified. In addition, the film shapes observed when the ball surface was moving faster than the disk one and those obtained in the opposite case were different, i.e. when opposite signs but equal absolute values of the slide to roll ratio were applied.

Yagi, Kazuyuki

2006-01-01T23:59:59.000Z

294

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

Wohlgemuth, J. [Amoco/Enron Solar, Frederick, MD (United States)

1996-06-01T23:59:59.000Z

295

Polycrystalline thin film materials and devices. Final subcontract report, 16 January 1990--15 January 1993  

DOE Green Energy (OSTI)

This report describes results and conclusions of the final phase (III) of a three-year research program on polycrystalline thin-film heterojunction solar cells. The research consisted of the investigation of the relationships between processing, materials properties, and device performance. This relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority-carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current, which appears to be caused by recombination in the space charge region. Developing an efficient commercial-scale process for fabricating large-area polycrystalline, thin-film solar cells from a research process requires a detailed understanding of the individual steps in making the solar cell, and their relationship to device performance and reliability. The complexities involved in characterizing a process are demonstrated with results from our research program on CuInSe{sub 2}, and CdTe processes.

Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.; Yokimcus, T.A. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

1993-08-01T23:59:59.000Z

296

Field Guide: Lubrication of High-Voltage Circuit Breakers - 2013 Update  

Science Conference Proceedings (OSTI)

High-voltage circuit breakers (HVCBs) perform essential protection and control functions on power transmission networks. Circuit breaker mechanisms have multiple components that must operate in concert in order for the breaker to perform properly. If one component does not operate correctly, the circuit breaker may mis-operate or fail. A circuit breaker mis-operation may cause equipment damage and outagesboth expensive consequences. Proper lubrication ...

2013-12-19T23:59:59.000Z

297

Oil-Miscible and Non-Corrosive Phosphonium Ionic Liquids as Candidate Lubricant Additives  

SciTech Connect

Ionic liquids (ILs) have been receiving considerable attention from the lubricants industry as potential friction and wear-reducing additives, but their solubility in oils is an issue. Unlike most ionic liquids that are insoluble in non-polar hydrocarbon oils, this study reports phosphonium-based ILs (PP-ILs) that are fully miscible with both mineral oil-based and synthetic lubricants. Both the cation and anion in quaternary structures, long alkyl chains, and capability of pairing the cation and the anion via a H-O bond are hypothesized to improve the compatibility between ions and neutral oil molecules. The measured viscosities of the oil-IL blends agree well with the Refutas equation that is for solutions containing multiple components. High thermal stability and non-corrosiveness were observed for the PP-ILs. Effective friction reduction and anti-wear functionality have been demonstrated in tribological tests when adding 5 wt% of a PP-IL into a base oil, suggesting potential applications for using the oil-miscible PP-ILs as lubricant additives.

Yu, Bo [ORNL; Bansal, Dinesh G [ORNL; Qu, Jun [ORNL; Sun, Xiaoqi [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL; Blau, Peter Julian [ORNL; Bunting, Bruce G [ORNL; Mordukhovich, Gregory [GM R& D and Planning, Warren, Michigan; Smolenski, Donald [GM R& D and Planning, Warren, Michigan

2012-01-01T23:59:59.000Z

298

Nephelometric determination of the chemical oxygen demand in filtrates after the ultrafiltration purification of used lubricants  

Science Conference Proceedings (OSTI)

Regions with developed industry are characterized by a large amount of lubricants in wastewater, and controlling the amount of mineral oil in the water in these regions is of prime importance. One of the methods of purifying used lubricants is ultrafiltration. In most cases, ultrafiltration purification is performed in BTU-0.5/2 tubular units with F-1 Teflon membranes. It is known that, in the case of the ultrafiltration purification of dispersed systems, the part of the dispersed phase with a particle size smaller than the diameter of membrane pores usually penetrates to the filtrate. The formation of the dispersed phase with a smaller size of particles is also possible because oil particles of a larger size are pressed through the membrane due to the wetting of the membrane material with the dispersed phase, which is the case of Teflon membranes. As a result, water produced by the ultrafiltration purification of lubricant-containing wastes contains oil particles 10-100 nm in size, which is comparable to the membrane pores. The amount of these particles can be small, which makes their determination difficult. Moreover, the method of controlling the amount of oil in the filtrate should be rapid, sensitive, and simple enough to allow its application in industrial conditions.

Bykadorov, N.U.; Radchenko, S.S. [Volgograd State Technical Univ. (Russian Federation)

1995-11-01T23:59:59.000Z

299

Annealing dependence of diamond-metal Schottky barrier heights probed by hard x-ray photoelectron spectroscopy  

SciTech Connect

Hard x-ray photoelectron spectroscopy was applied to investigate the diamond-metal Schottky barrier heights for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. The platinum contacts on oxygen-terminated diamond was found to provide a higher Schottky barrier and therefore a better blocking contact than that of the silver contact in diamond-based electronic devices.

Gaowei, M.; Muller, E. M. [Department of Materials Science and Engineering, SUNY Stony Brook, Stony Brook, New York 11794 (United States); Rumaiz, A. K. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States); Weiland, C.; Cockayne, E.; Woicik, J. C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Jordan-Sweet, J. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Smedley, J. [Instrumentation Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2012-05-14T23:59:59.000Z

300

Growth of diamond films using an enclosed methyl-acetylene and propadiene combustion flame  

E-Print Network (OSTI)

1 Growth of diamond films using an enclosed methyl-acetylene and propadiene combustion flame K Abstract Diamond growth in low pressure combustion flames was studied using a safer, more economical and chemical kinetic time scales in the combustion reactor. 1 Present Address: 3M Corporation, Bldg. 60-1N-01

Dandy, David

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Diameter-controlled Growth of Single-walled Carbon Nanotubes by Using Nano-Diamonds  

E-Print Network (OSTI)

Diameter-controlled Growth of Single-walled Carbon Nanotubes by Using Nano-Diamonds Shohei Chiashi diameter attract attention. Here, we perform CVD growth by using nano-diamond particles as the catalyst [1] and investigate the CVD condition dependence of SWNT tube diameter. The average diameter of the as-received nano

Maruyama, Shigeo

302

Method of bonding diamonds in a matrix and articles thus produced  

DOE Patents (OSTI)

By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

Taylor, G.W.

1981-01-27T23:59:59.000Z

303

Design and Application of CVD Diamond Windows for X-Rays at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Yifei [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Bldg 401, Argonne, IL 60439 (United States); Cookson, David [University of Chicago, CARS, APS Sector 15, 9700 S. Cass Ave, Bldg. 434D, Argonne, IL 60439 (United States)

2007-01-19T23:59:59.000Z

304

Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Y.; Cookson, D.; Experimental Facilities Division (APS); Univ. of Chicago

2007-01-01T23:59:59.000Z

305

Engineering shallow spins in diamond with nitrogen delta-doping  

SciTech Connect

We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D. [Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106 (United States)

2012-08-20T23:59:59.000Z

306

Method and apparatus for making diamond-like carbon films  

SciTech Connect

Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

Pern, Fu-Jann (Golden, CO); Touryan, Kenell J. (Indian Hills, CO); Panosyan, Zhozef Retevos (Yerevan, AM); Gippius, Aleksey Alekseyevich (Moscow, RU)

2008-12-02T23:59:59.000Z

307

Charging characteritiscs of ultrananocrystalline diamond in RF MEMS capacitive switches.  

SciTech Connect

Modifications to a standard capacitive MEMS switch process have been made to allow the incorporation of ultra-nano-crystalline diamond as the switch dielectric. The impact on electromechanical performance is minimal. However, these devices exhibit uniquely different charging characteristics, with charging and discharging time constants 5-6 orders of magnitude quicker than conventional materials. This operation opens the possibility of devices which have no adverse effects of dielectric charging and can be operated near-continuously in the actuated state without significant degradation in reliability.

Sumant, A. V.; Goldsmith, C.; Auciello, O.; Carlisle, J.; Zheng, H.; Hwang, J. C. M.; Palego, C.; Wang, W.; Carpick, R.; Adiga, V.; Datta, A.; Gudeman, C.; O'Brien, S.; Sampath, S.

2010-05-01T23:59:59.000Z

308

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1996-02-01T23:59:59.000Z

309

Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach  

SciTech Connect

A multiscale methodology was developed to predict the evolution of thermal conductivity of polycrystalline fuel under irradiation. In the mesoscale level, phase field model was used to predict the evolution of gas bubble microstructure. Generation of gas atoms and vacancies were taken into consideration. In the macroscopic scale, a statistical continuum mechanics model was applied to predict the anisotropic thermal conductivity evolution during irradiation. Microstructure predicted by phase field model was fed into statistical continuum mechanics model to predict properties and behavior. Influence of irradiation intensity, exposition time and morphology were investigated. This approach provides a deep understanding on microstructure evolution and property prediction from a basic scientific viewpoint.

Li, Dongsheng; Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

2012-03-01T23:59:59.000Z

310

Surface segregation effects in electrocatalysis: Kinetics ofoxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces  

DOE Green Energy (OSTI)

Effects of surface segregation on the oxygen reduction reaction (ORR) have been studied on a polycrystalline Pt3Ni alloy in acid electrolyte using ultra high vacuum (UHV) surface sensitive probes and the rotating ring disk electrode (RRDE) method. Preparation, modification and characterization of alloy surfaces were done in ultra high vacuum (UHV). Depending on the preparation method, two different surface compositions of the Pt3Ni alloy are produced: a sputtered surface with 75 % Pt and an annealed surface (950 K ) with 100 % Pt. The latter surface is designated as the 'Pt-skin' structure, and is a consequence of surface segregation, i.e., replacement of Ni with Pt atoms in the first few atomic layers. Definitive surface compositions were established by low energy ion scattering spectroscopy (LEISS). The cyclic voltammetry of the 'Pt-skin' surface as well as the pseudocapacitance in the hydrogen adsorption/desorption potential region is similar to a polycrystalline Pt electrode. Activities of ORR on Pt3Ni alloy surfaces were compared to polycrystalline Pt in 0.1M HClO4 electrolyte for the observed temperature range of 293 < T < 333 K. The order of activities at 333 K was: 'Pt-skin' > Pt3Ni (75% Pt) > Pt with the maximum catalytic enhancement obtained for the 'Pt-skin' being 4 times that for pure Pt. Catalytic improvement of the ORR on Pt3Ni and 'Pt-skin' surfaces was assigned to the inhibition of Pt-OHad formation (on Pt sites) versus polycrystalline Pt. Production of H2O2 on both surfaces were similar compared to the pure Pt. Kinetic analyses of RRDE data confirmed that kinetic parameters for the ORR on the Pt3Ni and 'Pt-skin' surfaces are the same as on pure Pt: reaction order, m=1, two identical Tafel slopes, activation energy, {approx} 21-25 kJ/mol. Therefore the reaction mechanism on both Pt3Ni and 'Pt-skin' surfaces is the same as one proposed for pure Pt i.e. 4e{sup -} reduction pathway.

Stamenkovic, V.; Schmidt, T.J.; Ross, P.N.; Markovic, N.M.

2002-11-01T23:59:59.000Z

311

Evaluation and Test of Improved Fire Resistant Fluid Lubricants for Water Reactor Coolant Pump Motors, Volume 1: Fluid Evaluation, Bearing Model Tests, Motor Tests, and Fire Tests  

Science Conference Proceedings (OSTI)

Commercially available fire-resistant fluid lubricants were evaluated to determine their suitability for use in primary-system pump motors in nuclear reactors. Volume 1 describes the procedures and results of tests of lubrication properties; fire and radiation resistance; and thermal, oxidative, and hydrolytic stability.

1980-07-01T23:59:59.000Z

312

Diamond Willow Wind (07) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind (07) Wind Farm Wind (07) Wind Farm Jump to: navigation, search Name Diamond Willow Wind (07) Wind Farm Facility Diamond Willow Wind (07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Montana-Dakota Utilities Developer Montana-Dakota Utilities Energy Purchaser Montana-Dakota Utilities Location Near Baker MT Coordinates 46.274903°, -104.183013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.274903,"lon":-104.183013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Diamond Willow Wind (08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Willow Wind (08) Wind Farm Willow Wind (08) Wind Farm Jump to: navigation, search Name Diamond Willow Wind (08) Wind Farm Facility Diamond Willow Wind (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Montana-Dakota Utilities Developer Montana-Dakota Utilities Energy Purchaser Montana-Dakota Utilities Location Near Baker MT Coordinates 46.268046°, -104.201742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.268046,"lon":-104.201742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Sparkling Diamonds Reducing High Energy in the Frozen North  

E-Print Network (OSTI)

De Beers, the undisputed world leader in diamond mining, in a typically proactive approach, completed an energy review at the Snap Lake Diamond Mine in the Northwest Territories. What makes the approach unique is that the mine is still under construction. The focus on a construction site tends to be on keeping the project on schedule, and not on energy matters although the two can, and need to, complement each other. There were two motivating factors in completing an energy review during the construction phase: cost and environmental responsibilities. De Beers Canada is working to identify a long term strategy to manage their business in a sustainable manner while mitigating the energy costs of their on-site power usage. The paper will highlight the: Approach De Beers took; Challenges of conducting an energy assessment at a construction site; Energy issues exposed by a sub-arctic climate Results achieved; Next steps to achieve a sustainable energy management program. The paper will also discuss how De Beers Canada is incorporating the learning and the systems development benefits from the energy review. The organization is building these aspects into their overall Carbon Emissions and Energy Management System that will be implemented at their three new sites across Canada.

Feldman, J.

2007-01-01T23:59:59.000Z

315

Mechanical stiffness and dissipation in ultrananocrystalline diamond micro-resonators.  

SciTech Connect

We have characterized mechanical properties of ultrananocrystalline diamond (UNCD) thin films grown using the hot filament chemical vapor deposition (HFCVD) technique at 680 C, significantly lower than the conventional growth temperature of {approx}800 C. The films have {approx}4.3% sp{sup 2} content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, {approx}1 {micro}m thick, exhibit a net residual compressive stress of 370 {+-} 1 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 838 {+-} 2 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum (UHV) conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 790 {+-} 30 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.057 {+-} 0.038. The quality factors (Q) of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators.

Sumant, A. V.; Adiga, V. P.; Suresh, S.; Gudeman, C.; Auciello, O.; Carlis, J. A.; Carpick, R. W.

2009-01-01T23:59:59.000Z

316

ON THE LOAD CAPACITY OF THE HYDRO-MAGNETICALLY LUBRICATED SLIDER BEARING  

SciTech Connect

The load capacity of liquid metal lubricated slider bearings subject to an applied magnetic field transverse to the film is investigated. The optimum profile is determined and found to be the Rayleigh step form with the riser location and step height ratio dependent on the strength of the magnetic field. Load capacity is favored by large magnetic fields, small film thicknesses, and electrically insulating bearing surfaces. Only modest load increases can be obtained from conventional magnets of reasonable size. Substantial load increases could be accomplished by the recently developed superconducting electromagnets. (auth)

Osterle, J.F.; Young, F.J.

1962-05-01T23:59:59.000Z

317

Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.  

SciTech Connect

Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

2009-05-01T23:59:59.000Z

318

Progress in High-Performance PV: Polycrystalline Thin-Film Tandem Cells  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of PV for cost-competitive applications. The goal is that PV will contribute significantly to the U.S. and world energy supply and environmental enhancement in the 21st century. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course, to accelerate and enhance their impact in the marketplace. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. This paper will describe progress of the subcontractor and in-house R&D on critical pathways for a PV technology having a high potential to reach cost-competitiveness goals: 25%-efficient, low-cost polycrystalline thin-film tandems for large-area, flat-plate modules.

Symko-Davies, M.

2004-08-01T23:59:59.000Z

319

The double effect of grain size on the work hardening behavior of polycrystalline copper  

Science Conference Proceedings (OSTI)

Following the approach by Ashby, one can consider that strain compatibility between adjacent grains of a polycrystal generates geometrical dislocations. These dislocations participated in the strengthening mechanism in conjunction with statistically stored dislocations which are related to the single-crystal behavior. The dislocations of either species are indistinguishable and, as a whole, they may contribute to cell formation. The dislocation structure formed in a polycrystal is then a function of the major or minor intergranular accommodation complexity. At intermediate strain values the accommodation is distributed over the cells leading to a linear relationship between the tensile stress and the inverse of the cell size, whatever the grain size of the tested samples. The aim of the present work is to check that the presence of statistical and geometrical dislocations in the grains, as well as the fact that at the very early stage of plastic deformation the mean free path of dislocations is of the order of the grain size, leads to a double effect of the grain size on the work hardening behavior of polycrystalline copper. Moreover, careful analysis of the mechanical behavior of polycrystalline copper, including the microstructural aspects of plastic deformation, is performed, allowing the understanding of the relationship between the work hardening ratio and the grain size.

Gracio, J.J. (Univ. de Aveiro (Portugal). Dept. de Engenharia Mecanica)

1994-08-15T23:59:59.000Z

320

Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam  

Science Conference Proceedings (OSTI)

When treated with intense pulsed ion beams (IPIB), many materials exhibit increased wear resistance, fatigue life, and hardness. However, this treatment often results in cratering and roughening of the surface. In this work, high purity single crystal and polycrystalline copper samples were irradiated with pulses from an IPIB to gain insight into the causes of this cratering behavior. Samples were treated with 1,2,5, and 10 shots at 2 J/cm{sup 2} and 5 J/cm{sup 2} average energy fluence per shot. Shots were about 400 ns in duration and consisted of a mixture of carbon, hydrogen, and oxygen ions at 300 keV. It was found that the single crystal copper cratered far less than the polycrystalline copper at the lower energy fluence. At the higher energy fluence, cratering was replaced by other forms of surface damage, and the single crystal copper sustained less damage at all but the largest number of shots. Molten debris from the Lucite anode (the ion source) was removed and redeposited on the samples with each shot.

Wood, B.P.; Bitteker, L.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States). Plasma Physics Group; Perry, A.J. [A.I.M.S. Marketing, San Diego, CA (United States)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1991--15 January 1992  

DOE Green Energy (OSTI)

Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

1992-10-01T23:59:59.000Z

322

Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure  

Science Conference Proceedings (OSTI)

We have directly measured THz wakefields induced by a subpicosecond, intense relativistic electron bunch in a diamond loaded accelerating structure via the wakefield acceleration method. We present here the beam test results from the diamond based structure. Diamond has been chosen for its high breakdown threshold and unique thermoconductive properties. Fields produced by a leading (drive) beam were used to accelerate a trailing (witness) electron bunch, which followed the drive bunch at a variable distance. The energy gain of a witness bunch as a function of its separation from the drive bunch describes the time structure of the generated wakefield.

Antipov, S.; Jing, C. [Euclid Techlabs LLC, Solon, Ohio 44139 (United States); Argonne Wakefield Accelerator Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kanareykin, A.; Butler, J. E. [Euclid Techlabs LLC, Solon, Ohio 44139 (United States); Yakimenko, V.; Fedurin, M.; Kusche, K. [Accelerator Test Facility, Brookhaven National Laboratory, Upton, New York 11973 (United States); Gai, W. [Argonne Wakefield Accelerator Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2012-03-26T23:59:59.000Z

323

Plasma etching of cavities into diamond anvils for experiments at high pressures and high temperatures  

Science Conference Proceedings (OSTI)

We describe a method for precisely etching small cavities into the culets of diamond anvils for the purpose of providing thermal insulation for samples in experiments at high pressures and high temperatures. The cavities were fabricated using highly directional oxygen plasma to reactively etch into the diamond surface. The lateral extent of the etch was precisely controlled to micron accuracy by etching the diamond through a lithographically fabricated tungsten mask. The performance of the etched cavities in high-temperature experiments in which the samples were either laser heated or electrically heated is discussed.

Weir, S.T.; Cynn, H.; Falabella, S.; Evans, W.J.; Aracne-Ruddle, C.; Farber, D.; Vohra, Y.K. (LLNL); (UAB)

2012-10-23T23:59:59.000Z

324

Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby  

DOE Patents (OSTI)

A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

Gonzalez, Franklin N. (Gainesville, FL); Neugroschel, Arnost (Gainesville, FL)

1984-02-14T23:59:59.000Z

325

Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode  

DOE Green Energy (OSTI)

The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond film to achieve high SEY and desired emission phase. The diamond amplifier also is capable of handling a large heat load by conduction and sub-nanosecond pulse input. The preparation of the diamond amplifier includes thinning and polishing, cleaning with acid etching, metallization, and hydrogenation. The best mechanical polishing available can provide high purity single crystal diamond films with no less than 100 {micro}m thickness and <15 nm Ra surface roughness. The ideal thickness for 700MHz beam is {approx}30 {micro}m, which requires further thinning with RIE or laser ablation. RIE can achieve atomic layer removal precision and roughness eventually, but the time consumption for this procedure is very significant. Laser ablation proved that with <266nm ps laser beam, the ablation process on the diamond can easily achieve removing a few microns per hour from the surface and <100nm roughness. For amplifier application, laser ablation is an adequate and efficient process to make ultra thin diamond wafers following mechanical polishing. Hydrogenation will terminate the diamond surface with monolayer of hydrogen, and form NEA so that secondary electrons in the conduction band can escape into the vacuum. The method is using hydrogen cracker to strike hydrogen atoms onto the bare diamond surface to form H-C bonds. Two independent experiments were carried out to determine the transport of the electrons within the diamond and their emission at the surface. In transmission mode measurements, the diamond amplifier was coated with metal on both sides, so results simply depend only on the electron transport within the diamond. The SEY for this mode provides one secondary electron per 20eV energy, which gives the gain of more than 200 for 4.7keV (effective energy) primary electrons under 2MV/m. Laser detrapping can help the signal maintain the gain with lops pulse and duty cycle of 1.67 x 10{sup -7}. In emission mode measurements, in which the diamond is prepared as in the actual application, the SEY is {approx}20 for 700eV (effective energy) primary electrons under 1.21MV/m. The electric field applied and the primary electron energy is limited by the experiment setup, but the results show good trend toward large gain under high field. Thermal emittance of the diamond secondary emission is critical for the beam application. A careful design is setup to measure with very fine precision and accuracy of 0.01eV.

Wu,Q.

2008-10-01T23:59:59.000Z

326

CX-005128: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28: Categorical Exclusion Determination 28: Categorical Exclusion Determination CX-005128: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United States Synthetic Corporation is proposing to use federal funding to design, fabricate and test polycrystalline diamond (PCD) thrust bearings for marine hydrokinetic (MHK) systems. A key design element in most MHK strategies would be robust bearings, which can operate for extended periods of time in the harsh marine environments. The goal of the proposed project is to demonstrate how PCD thrust bearings would reduce the cost of

327

CX-005184: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84: Categorical Exclusion Determination 84: Categorical Exclusion Determination CX-005184: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic Energy Machines CX(s) Applied: A9, B3.6 Date: 01/28/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United States Synthetic Corporation is proposing to use federal funding to design, fabricate and test polycrystalline diamond (PCD) thrust bearings for marine hydrokinetic (MHK) systems. A key design element in most MHK strategies would be robust bearings, which can operate for extended periods of time in the harsh marine environments. The goal of the proposed project is to demonstrate how PCD thrust bearings would reduce the cost of

328

Development of Designer Diamond Anvils for High Pressure-High-Temperature Experiments in Support of the Stockpile Stewardship Program  

DOE Green Energy (OSTI)

The focus of this program at the University of Alabama at Birmingham (UAB) is to develop the next generation of designer diamond anvils that can perform simultaneous joule heating and temperature profile measurements in a diamond anvil cell. A series of tungsten-rhenium thermocouples will be fabricated onto to the anvil and encapsulated by a chemical vapor deposited diamond layer to allow for a complete temperature profile measurement across the anvil. The tip of the diamond anvil will be engineered to reduce the thermal conductivity so that the tungsten-heating coils can be deposited on top of this layer. Several different approaches will be investigated to engineer the tip of the diamond anvil for reduction in thermal conductivity (a) isotopic mixture of 12C and 13C in the diamond layer, (b) doping of diamond with impurities (nitrogen and/or boron), and (c) growing diamond in a higher concentration of methane in hydrogen plasma. Under this academic alliance with Lawrence Livermore National Laboratory (LLNL), PI and his graduate students will use the lithographic and diamond polishing facility at LLNL. This proposed next generation of designer diamond anvils will allow multi-tasking capability with the ability to measure electrical, magnetic, structural and thermal data on actinide materials with unparallel sensitivity in support of the stockpile stewardship program.

Yogesh K. Vohra

2005-05-12T23:59:59.000Z

329

Diamond Amplified Photocathode at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Diamond Amplified Photocathode at BNL Diamond Amplified Photocathode at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Diamond Amplified Photocathode at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Diamond amplified photocathode Developed at: Brookhaven National Laboratory, New York Developed in: 2004-2007 Result of NP research:

330

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond`s performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. [Argonne National Lab., IL (United States); Phillips, W. [Crystallume, Menlo Park, CA (United States)

1992-12-01T23:59:59.000Z

331

Optical data of meteoritic nano-diamonds from far-ultraviolet to far-infrared wavelengths  

E-Print Network (OSTI)

We have used different spectroscopic techniques to obtain a consistent quantitative absorption spectrum of a sample of meteoritic nano-diamonds in the wavelength range from the vacuum ultraviolet (0.12 $\\mu$m) to the far infrared (100 $\\mu$m). The nano-diamonds have been isolated by a chemical treatment from the Allende meteorite (Braatz et al.2000). Electron energy loss spectroscopy (EELS) extends the optical measurements to higher energies and allows the derivation of the optical constants (n & k) by Kramers-Kronig analysis. The results can be used to restrain observations and to improve current models of the environment where the nano-diamonds are expected to have formed. We also show that the amount of nano-diamond which can be present in space is higher than previously estimated by Lewis et al. (1989).

H. Mutschke; A. C. Andersen; C. Jaeger; Th. Henning; A. Braatz

2004-08-10T23:59:59.000Z

332

New Superhard Form of Carbon Dents Diamond | U.S. DOE Office...  

Office of Science (SC) Website

20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information August 2012 New Superhard Form of Carbon Dents Diamond Squeezing creates new class of...

333

Growth and electrical characterisation of {delta}-doped boron layers on (111) diamond surfaces  

SciTech Connect

A plasma enhanced chemical vapor deposition protocol for the growth of {delta}-doping of boron in diamond is presented, using the (111) diamond plane as a substrate for diamond growth. AC Hall effect measurements have been performed on oxygen terminated {delta}-layers and desirable sheet carrier densities ({approx}10{sup 13} cm{sup -2}) for field-effect transistor application are reported with mobilities in excess of what would expected for equivalent but thicker heavily boron-doped diamond films. Temperature-dependent impedance spectroscopy and secondary ion mass spectroscopy measurements show that the grown layers have metallic-like electrical properties with high cut-off frequencies and low thermal impedance activation energies with estimated boron concentrations of approximately 10{sup 20} cm{sup -3}.

Edgington, Robert; Jackman, Richard B. [London Centre for Nanotechnology, and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom); Sato, Syunsuke; Ishiyama, Yuichiro; Kawarada, Hiroshi [Department of Electronic and Photonic Systems, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Morris, Richard [Advanced SIMS Projects, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

2012-02-01T23:59:59.000Z

334

ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines  

E-Print Network (OSTI)

, Cutoff Energies, and Tuning Range .......................27 3.3 Absorption .............................................................36 4.2 Direct Cooling of Diamonds ............................................................39 4.3 Operation at Cryogenic Temperatures .................................................39 4.4 Cooling through

Kemner, Ken

335

Microsoft Word - DiamondB_Easement_CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2011 16, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to Montana Fish, Wildlife & Parks to purchase the Diamond B conservation easement. Fish and Wildlife Project No.: 2008-800-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there will be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 28N, Range 20W, Sections 28 and 33 in Flathead County, MT

336

Creation of multiple identical single photon emitters in diamond  

E-Print Network (OSTI)

Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are also required. However typical solid-state single photon sources are dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here, we present controllable growth of bright silicon-vacancy (SiV-) centres in bulk diamond which intrinsically show almost identical emission (spectral overlap of up to 83%) and near transform-limited excitation linewidths. We measure the photo-physical properties of defects at room and cryogenic temperatures, and demonstrate incorporation into a solid immersion lens (SIL). Our results have impact upon the application of single photon sources for quantum optics and cryptography, and the production of next generation fluorophores for bio-imaging.

Lachlan J. Rogers; Kay D. Jahnke; Luca Marseglia; Christoph. Mller; Boris Naydenov; Hardy Schauffert; C. Kranz; T. Teraji; Junichi Isoya; Liam P. McGuinness; Fedor Jelezko

2013-10-14T23:59:59.000Z

337

Experimental Design for Laser Produced Shocks in Diamond Anvil Cells  

Science Conference Proceedings (OSTI)

Laser driven shock measurements have been performed on pre-compressed samples. A diamond anvil cell (DAC) has been used to statically compress water to 1 GPa and then strong shocked with an energetic laser. The use of intense laser irradiation can drive shocks in targets making it possible to study the equation of state (EOS) of samples well into the hundreds of GPQ regime. Generally, such experiments employ a sample initially at normal density and standard pressure. Therefore providing data on the principal Hugoniot. In this experiment the initial state of the sample was varied to provide data off the principal Hugoniot. We report the work that was done on the Vulcan laser and describe a method to achieve off principal Hugoniot data.

Moon, S J; Cauble, R; Collins, G W; Celliers, P M; Hicks, D; Da Silva, L B; Mackinon, A; Wallace, R; Hammel, B; Hsing, W; Jeanloz, R; Lee, K M; Benedetti, L R; Koenig, M; Benuzzi, A; Huser, G; Henry, E; Batani, D; Willi, O; Pasley, J; Henning, G; Loubeyre, P; Neely, D; Notley, M; Danson, C

2001-06-22T23:59:59.000Z

338

Molecular Limits to the Quantum Confinement Model in Diamond Clusters  

DOE Green Energy (OSTI)

The electronic structure of monodisperse, hydrogen-passivated diamond clusters in the gas phase has been studied with x-ray absorption spectroscopy. The data show that the bulk-related unoccupied states do not exhibit any quantum confinement. Additionally, density of states below the bulk absorption edge appears, consisting of features correlated to CH and CH{sub 2} hydrogen surface termination, resulting in an effective red shift of the lowest unoccupied states. The results contradict the commonly used and very successful quantum confinement model for semiconductors which predicts increasing band edge blue shifts with decreasing particle size. Our findings indicate that in the ultimate size limit for nanocrystals a more molecular description is necessary.

Willey, T M; Bostedt, C; van Buuren, T; Dahl, J E; Liu, S E; Carlson, R K; Terminello, L J; Moller, T

2005-04-07T23:59:59.000Z

339

Ultrafast QND measurements based on diamond-shape artificial atom  

E-Print Network (OSTI)

We propose a Quantum Non Demolition (QND) read-out scheme for a superconducting artificial atom coupled to a resonator in a circuit QED architecture, for which we estimate a very high measurement fidelity without Purcell effect limitations. The device consists of two transmons coupled by a large inductance, giving rise to a diamond-shape artificial atom with a logical qubit and an ancilla qubit interacting through a cross-Kerr like term. The ancilla is strongly coupled to a transmission line resonator. Depending on the qubit state, the ancilla is resonantly or dispersively coupled to the resonator, leading to a large contrast in the transmitted microwave signal amplitude. This original method can be implemented with state of the art Josephson parametric amplifier, leading to QND measurements in a few tens of nanoseconds with fidelity as large as 99.9 %.

I. Diniz; E. Dumur; O. Buisson; A. Auffves

2013-02-15T23:59:59.000Z

340

First tests of THz transmission through a Diamond Anvil Cell  

Science Conference Proceedings (OSTI)

The THz source generated by the accelerator driver for the Jefferson Lab Free Electron Laser is unique in the world in its ability to deliver a high average power beam of ultrashort (energy phenomena, and the time structure enables measurement of dynamic processes with sub-ps resolution. An outline of the range of potential applications for this THz source as a probe of sub-ps dynamics in materials under extreme conditions will be presented. To demonstrate the capabilities of this source for just such experiments, the first set of tests to characterize the transmission of the THz beam through a diamond anvil cell (DAC) have been performed. These preliminary results will be presented along with a description of the optical design used to deliver the THz beam into and out of the DAC. The current design will be compared with other possible techniques and the plans for the next set of measurements will also be given.

John Klopf

2011-01-24T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Orbital ice: An exact Coulomb phase on the diamond lattice  

SciTech Connect

We demonstrate the existence of an orbital Coulomb phase as the exact ground state of a p-orbital exchange Hamiltonian on the diamond lattice. The Coulomb phase is an emergent state characterized by algebraic dipolar correlations and a gauge structure resulting from local constraints (ice rules) of the underlying lattice models. For most ice models on the pyrochlore lattice, these local constraints are a direct consequence of minimizing the energy of each individual tetrahedron. On the contrary, the orbital ice rules are emergent phenomena resulting from the quantum orbital dynamics. We show that the orbital ice model exhibits an emergent geometrical frustration by mapping the degenerate quantum orbital ground states to the spin-ice states obeying the 2-in-2-out constraints on the pyrochlore lattice. We also discuss possible realization of the orbital ice model in optical lattices with p-band fermionic cold atoms.

Chern Giawei [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wu Congjun [Department of Physics, University of California, San Diego, California 92093 (United States)

2011-12-15T23:59:59.000Z

342

Self-assembling hybrid diamond-biological quantum devices  

E-Print Network (OSTI)

The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-center in bulk diamond crystals or hybrid device approaches have been developed, they are limited in the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and its beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11nm, we evaluate the expected dipolar coupling interaction with neighboring NV-center as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

Andreas Albrecht; Guy Koplovitz; Alex Retzker; Fedor Jelezko; Shira Yochelis; Danny Porath; Yuval Nevo; Oded Shoseyov; Yossi Paltiel; Martin B. Plenio

2013-01-09T23:59:59.000Z

343

Characterization and Qualification of a Precision Diamond Saw  

SciTech Connect

A precision diamond saw was characterized and qualified for production using the MCCS Encryption Translator (MET) network. This characterization was performed in three steps. First the equipment was evaluated and characterized, and then a process was developed and characterized to saw cofire networks. Finally, the characterized process was qualified for production using the MET network. During the development of the low-temperature cofired ceramic (LTCC) processes needed to build the MCCS Encryption Translator (MET) network, a problem was uncovered. The laser process planned for scribing and separating was found to weaken the LTCC material by about 30%. A replacement process was needed, and precision diamond sawing was chosen. During the equipment evaluation and characterization, several parameters were investigated. These were cut depth, feed rate, spindle speed, and saw blade thickness. Once these were understood the process was then developed. Initially 24 variables were identified for the process, and eventually 12 of these variables were found to be critical. These variables were then adjusted until a process envelope was found that produced acceptable product. Finally parameters were chosen from the middle of the process envelope for production. With the production process set, the next step was to qualify it for production. Two criteria had to be met: visual acceptability and bending strength. The parts were examined under a microscope and found to be visually acceptable. Parts were then put through a four-point bend test, and the strengths recorded were equivalent to those measured in the past. With the completion of this work and the acceptable results, this process was qualified for production use.

Morgenstern, H.A.

1999-03-04T23:59:59.000Z

344

Cobalt-related impurity centers in diamond: electronic properties and hyperfine parameters  

E-Print Network (OSTI)

Cobalt-related impurity centers in diamond have been studied using first principles calculations. We computed the symmetry, formation and transition energies, and hyperfine parameters of cobalt impurities in isolated configurations and in complexes involving vacancies and nitrogen atoms. We found that the Co impurity in a divacant site is energetically favorable and segregates nitrogen atoms in its neighborhood. Our results were discussed in the context of the recently observed Co-related electrically active centers in synthetic diamond.

Larico, R; Machado, W V M; Justo, J F

2013-01-01T23:59:59.000Z

345

Formation damage studies of lubricants used with drill-in fluids systems on horizontal open-hole wells  

E-Print Network (OSTI)

Tests were conducted to evaluate the effect of lubricants in formation damage. Two types of lubricants were tested along with two types of drill-in fluids. The DIF's tested included a sized-calcium carbonate (SCC) and a sized-salt (SS). Also a set of variables including drill solids content (2%-6%), hydrochloric acid concentration (2%-10%), and temperature (110F-160F) were changed during the testing procedure. A matrix design was used to determine the behavior in regain permeability and break through time depending on the different variables in the testing, and two devices were used to measure responses, Conoco cell and ceramic disc cell respectively. Results have shown that regain permeability and break through time responses are not affected in a greater degree when lubricants (Idlube or Mil-Lube) are added to the DIF systems (SS and SCC). When comparing results between lubricants, Idlube gives a higher regain permeability percentage and faster break through time at higher concentrations than Mil-Lube in both DIF systems. Overall, sized calcium carbonate seems to be a better DIF system than Sized salt for these types of experiments, being much more efficient in reducing break through times than in increasing regain permeability.

Gutierrez, Fernando A

2000-01-01T23:59:59.000Z

346

Anti-Wear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive  

Science Conference Proceedings (OSTI)

An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential anti-wear lubricant additive. Unlike most other ILs that have very low solubility in non-polar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 oC, showed no corrosive attack to cast iron in ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron lubricating oils. For example, a 5 wt.% addition into a synthetic base oil eliminated the scuffing failure experienced by the neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by three orders of magnitude. A synergistic effect on wear protection was observed with the current anti-wear additive when added into a fully-formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL s anti-scuffing and anti-wear functionality.

Qu, Jun [ORNL; Bansal, Dinesh G [ORNL; Yu, Bo [ORNL; Howe, Jane Y [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL; Li, Huaqing [ORNL; Blau, Peter Julian [ORNL; Bunting, Bruce G [ORNL; Mordukhovich, Gregory [GM R& D and Planning, Warren, Michigan; Smolenski, Donald [GM R& D and Planning, Warren, Michigan

2012-01-01T23:59:59.000Z

347

Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly report, October 1, 1995--December 31, 1995  

SciTech Connect

The quarterly status report for the Materials Compatibility and Lubricants Research Program is presented. Objectives for 1 October 1995--31 December 1995 include completion of contract negotiations for Study of Foaming Characteristics project, and finalizing Phase IV and Phase V projects.

Szymurski, S.R.

1996-02-01T23:59:59.000Z

348

Kinetic measurement and prediction of the hydrogen outgassing from the polycrystalline LiH/LiOH system  

DOE Green Energy (OSTI)

In this report, we present the use of temperature programmed reaction/decomposition (TPR) in the isoconversion mode to measure outgassing kinetics and to make kinetic prediction concerning hydrogen release from the polycrystalline LiH/LiOH system in the absence of any external H{sub 2}O source.

Dinh, L N; Grant, D M; Schildbach, M A; Smith, R A; Leckey, J H; Siekhaus, W J; Balazs, B; McLean II, W

2005-03-09T23:59:59.000Z

349

Pulsed ion beam methods for in situ characterization of diamond film deposition processes  

DOE Green Energy (OSTI)

Diamond and diamond-like carbon (DLC) have properties which in principle make them ideally suited to a wide variety of thin-film applications. Their widespread use as thin films, however, has been limited for a number of reasons related largely to the lack of understanding and control of the nucleation and growth processes. Real-time, in situ studies of the surface of the growing diamond film are experimentally difficult because these films are normally grown under a relatively high pressure of hydrogen, and conventional surface analytical methods require an ultrahigh vacuum environment. It is believed, however, that the presence of hydrogen during growth is necessary to stabilize the corrugated diamond surface structure and thereby prevent the formation of the graphitic phase. Pulsed ion beam-based analytical methods with differentially pumped ion sources and particle detectors are able to characterize the uppermost atomic layer of a film during, growth at ambient pressures 5-7 orders of magnitude higher than other surface-specific analytical methods. We describe here a system which has been developed for the purpose of determining the hydrogen concentration and bonding sites on diamond surfaces as a function of sample temperature and ambient hydrogen pressure under hot filament CVD growth conditions. It is demonstrated that as the hydrogen partial pressure increases, the saturation hydrogen coverage of the surface of a CVD diamond film increases, but that the saturation level depends on the atomic hydrogen concentration and substrate temperature.

Krauss, A.R.; Smentkowski, V.S.; Zuiker, C.D.; Gruen, D.M. [Argonne National Lab., IL (United States); Im, J. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Schultz, J.A.; Waters, K. [Ionwerks Corp., Houston, TX (United States); Chang, R.P.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

1995-06-01T23:59:59.000Z

350

Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing  

SciTech Connect

We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

Machida, Emi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472 (Japan); Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan)

2012-12-17T23:59:59.000Z

351

High cycle fatigue of polycrystalline silicon thin films in laboratory air  

E-Print Network (OSTI)

When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, cyclic fatigue can only take place where there is some degree of toughening, implying that premature fatigue failure would not be expected in polycrystalline silicon where such toughening is absent. However, the fatigue failure of polysilicon is reported in the present work, based on tests on thirteen thin-film (2 m thick) specimens cycled to failure in laboratory air (~25C, 30-50 % relative humidity), where damage accumulation and failure of the notched cantilever beams were monitored electrically during the test. Specimen lives ranged from about 10 seconds to 34 days (5 x 10 5 to 1 x 10 11 cycles) with the stress amplitude at failure being reduced to ~50 % of the low-cycle strength for lives in excess of 10 9 cycles.

C. L. Muhlstein; S. B. Brown; R. O. Ritchie

2000-01-01T23:59:59.000Z

352

Lubricant Classification  

Science Conference Proceedings (OSTI)

Table 9   Engine tests for API classification...wear ASTM sequence VI (1982 Buick V-6 engine): Fuel economy Diesel engines CRC L-38: Bearing corrosion, oxidation, shear stability Caterpillar 1K: Piston deposits Detroit diesel 6V-92TA (two-stroke engine): Piston

353

Real-time X-ray Diffraction Measurements of Shocked Polycrystalline Tin and Aluminum  

SciTech Connect

A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35-ns pulse. The characteristic K? lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K? line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3-mm by 6-mm spot and 1 full-width-half-maximum (FWHM) angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5. A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device (CCD) camera through a coherent fiberoptic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1-mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic (fcc) aluminum lattice with no phase transformation.

Dane V. Morgan, Don Macy, Gerald Stevens

2008-11-22T23:59:59.000Z

354

News From the D.C. Office: Lubricating the Market for Energy-Efficient  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Lubricating the Market for Energy-Efficient Products: Snake Oil vs. Slick Databases A handful of tools are essential for those involved in analyzing energy-efficiency policies or designing and implementing programs, no matter what their area of interest or institutional or individual role. My own short list includes: Detailed information on the structure of energy end-use and market trends. Empirical data that document the real-world performance of technologies and programs. Simulation models that use these data to shed light on the future impact of policies and programs. Accessible, accurate information on the efficiency, costs, and other characteristics of energy-efficient products. My colleagues could certainly add to this list, but for now I want to focus

355

A new emergency lubricating-oil system for steam turbine generators: Final report  

Science Conference Proceedings (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

356

Lubricating system for thermal medium delivery parts in a gas turbine  

DOE Patents (OSTI)

Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.

Mashey, Thomas Charles (Coxsackie, NY)

2002-01-01T23:59:59.000Z

357

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to

358

Synthesis of polycrystalline SnO{sub 2} nanotubes on carbon nanotube template for anode material of lithium-ion battery  

Science Conference Proceedings (OSTI)

Polycrystalline tin oxide nanotubes have been prepared by a layer-by-layer technique on carbon nanotubes template. Firstly, the surface of carbon nanotubes was modified by polyelectrolyte. Then, a uniform layer of tin oxide nanoparticles was formed on the positive charged surface of carbon nanotubes via a redox process. At last, the polycrystalline tin oxide nanotubes were synthesized after calcination at 650 deg. C in air for 3 h. The as-synthesized polycrystalline nanotubes with large surface area exhibit finer lithium storage capacity and cycling performance, which shows the potentially interesting application in lithium-ion battery.

Du Ning; Zhang Hui; Chen Bindi; Ma Xiangyang; Huang Xiaohua; Tu Jiangping [State Key Lab of Silicon Materials and Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yang Deren [State Key Lab of Silicon Materials and Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: mseyang@zju.edu.cn

2009-01-08T23:59:59.000Z

359

DIAMOND WIRE CUTTING OF THE TOKAMAK FUSION TEST REACTOR  

Science Conference Proceedings (OSTI)

The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the techno logy was improved and redesigned for the actual cutting of the vacuum vessel. 10 complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D activity.

Rule, Keith; Perry, Erik; Parsells, Robert

2003-02-27T23:59:59.000Z

360

Diamond Wire Cutting of the Tokamak Fusion Test Reactor  

Science Conference Proceedings (OSTI)

The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

Keith Rule; Erik Perry; Robert Parsells

2003-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Atmospheric Plasma Deposition of Diamond-like Carbon Coatings  

DOE Green Energy (OSTI)

DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of material that may be treated. The deposition of DLC at atmospheric pressure has been demonstrated by several researchers. Izake, et al [53] and Novikov and Dymont [54] have demonstrated an electrochemical process that is carried out with organic compounds such as methanol and acetylene dissolved in ammonia. This process requires that the substrates be immersed in the liquid [53-54]. The atmospheric pressure deposition of DLC was also demonstrated by Kulik, et al. utilizing a plasma torch. However, this process requires operating temperatures in excess of 800 oC [55]. In this report, we investigate the deposition of diamond-like carbon films using a low temperature, atmospheric pressure plasma-enhanced chemical vapor deposition (PECVD) process. The films were characterized by solid-state carbon-13 nuclear magnetic resonance (13C NMR) and found to have a ratio of sp2 to sp3 carbon of 43 to 57%. The films were also tested for adhesion, coefficient of friction, and dielectric strength.

Ladwig, Angela

2008-01-23T23:59:59.000Z

362

Particle- and photoinduced conductivity in type-IIa diamonds  

SciTech Connect

Electrical characteristics associated with radiation detection were measured on single-crystal natural type-IIa diamond using two techniques: charged particle-induced conductivity and time-resolved transient photoinduced conductivity. The two techniques complement each other: The charged particle-induced conductivity technique measures the product of the carrier mobility [mu] and lifetime [tau] throughout the bulk of the material while the transient photoconductivity technique measures the carrier mobility and lifetime independently at the first few micrometers of the material surface. For each technique, the [mu][tau] product was determined by integration of the respective signals. The collection distance that a free carrier drifts in an electric field was extracted by each technique. As a result, a direct comparison of bulk and surface electrical properties was performed. The data from these two techniques are in agreement, indicating no difference in the electrical properties between the bulk and the surface of the material. The collection distance continues to increase with field up to 25 kV/cm without saturation. Using the transient photoconductivity technique the carrier mobility was measured separately and compared with a simple electron-phonon scattering model. The general characteristics of carrier mobility, lifetime, and collection distance at low electric field appear to be adequately described by the model.

Pan, L.S.; Han, S.; Kania, D.R. (Laser Division, L-476, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); Zhao, S.; Gan, K.K.; Kagan, H.; Kass, R.; Malchow, R.; Morrow, F.; Palmer, W.F.; White, C. (Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)); Kim, S.K.; Sannes, F.; Schnetzer, S.; Stone, R.; Thomson, G.B. (Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)); Sugimoto, Y. (KEK Laboratory, Tsukuba-shi, Ibaraki-ken, 305 (Japan)); Fry, A. (Physics Division, SSC Laboratory, Dallas, Texas 75237 (United States)); Kanda, S.; Olsen, S. (Department of Physics, University of Rochester, Rochester, New York 14627 (United States)); Franklin, M. (Department of Physics, Harvard University, Boston, Massachusetts 02138 (United States)); Ager, J.W. III (Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Pianetta, P

1993-07-15T23:59:59.000Z

363

First tests of THz transmission through a Diamond Anvil Cell  

SciTech Connect

The THz source generated by the accelerator driver for the Jefferson Lab Free Electron Laser is unique in the world in its ability to deliver a high average power beam of ultrashort (<500 fs FWHM) broadband THz pulses. The spectrum of this source presents an ideal probe for many low energy phenomena, and the time structure enables measurement of dynamic processes with sub-ps resolution. An outline of the range of potential applications for this THz source as a probe of sub-ps dynamics in materials under extreme conditions will be presented. To demonstrate the capabilities of this source for just such experiments, the first set of tests to characterize the transmission of the THz beam through a diamond anvil cell (DAC) have been performed. These preliminary results will be presented along with a description of the optical design used to deliver the THz beam into and out of the DAC. The current design will be compared with other possible techniques and the plans for the next set of measurements will also be given.

John Klopf

2011-01-24T23:59:59.000Z

364

Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.  

DOE Green Energy (OSTI)

The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

Swain; Greg M.

2009-04-13T23:59:59.000Z

365

Science and technology of piezoelectric/diamond heterostructures for monolithically integrated high performance MEMS/NEMS/CMOS devices.  

SciTech Connect

This paper describes the fundamental and applied science performed to integrate piezoelectric PbZr{sub x}Ti{sub 1-x}O{sub 3} and AlN films with a novel mechanically robust ultrananocrystalline diamond layer to enable a new generation of low voltage/high-performance piezoactuated hybrid piezoelectric/diamond MEMS/NEMS devices.

Auciello, O.; Sumant, A. V.; Hiller, J.; Kabius, B.; Ma, Z.; Srinivasan, S. (Center for Nanoscale Materials); ( MSD); (Univ. of Wisconsin at Madison); (INTEL)

2008-12-01T23:59:59.000Z

366

Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994  

DOE Green Energy (OSTI)

This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1995-09-01T23:59:59.000Z

367

Nuclear Maintenance Applications Center: Reactor Coolant Pump/Reactor Recirculation Pump Motor Lubrication Oil Systems Maintenance G uide  

Science Conference Proceedings (OSTI)

RCP and RRP Motor Lubrication system issues have ranked high on NMAC maintenance Issues Surveys in recent years. Problems reported have included oil leakage at power, the need for additional reservoirs to accommodate leakage, oil degradation (foaming, particulate) as well as sludge problems due to the design of the motor and some as a result of new oil formulations and other changes made by the oil suppliers. Reactor Coolant Pumps (RCP) used in Pressurized Water Reactors and Reactor Recirculation Pumps ...

2006-12-22T23:59:59.000Z

368

Using Environmental Solutions to Lubrication at Hydropower Plants: A Hydropower Technology Round-Up Report, Volume 1  

Science Conference Proceedings (OSTI)

Hydropower owners and operators are confronted with the dual challenge of compliance with continually-developing environmental regulations and increasingly vigorous competition in the electric generation market. Managing this challenge requires consideration and selected application of new and emerging strategies and technologies. This volume of EPRI's Hydropower Technology Roundup Report presents an overview of research, practices, lessons learned, and some examples regarding the use of self-lubricating...

1999-10-28T23:59:59.000Z

369

Patent search and review on roller-bit bearings seals and lubrication systems. [State-of-the-art  

DOE Green Energy (OSTI)

Over 300 patents on bit design were reviewed, and the more important ones were abstracted. These patents were divided into three groups dealing with roller bit bearings, seals, and lubrication systems. Review of these patents helps identify the problems encountered by previous bit designers and establishes the current state-of-the-art of roller bit design. This report can be used as a reference for designing improved bits both for the petroleum and the geothermal industries.

Maurer, W.C.

1975-10-14T23:59:59.000Z

370

Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint  

DOE Green Energy (OSTI)

The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

2011-09-01T23:59:59.000Z

371

MICROMACHINED POLYCRYSTALLINE SIGE-BASED THERMOPILES FOR MICROPOWER GENERATION ON HUMAN BODY  

E-Print Network (OSTI)

This paper presents a polycrystalline silicon germanium (poly-SiGe) thermopile specially designed for thermoelectric generators used on human body. Both the design of the single thermocouple and the arrangement of the thermocouple array have been described. A rim structure has been introduced in order to increase the temperature difference across the thermocouple junctions. The modeling of the thermocouple and the thermopile has been performed analytically and numerically. An output power of about 1 ?W at an output voltage of more than 1 V is expected from the current design of thermopiles in a watch-size generator. The key material properties of the poly-SiGe have been measured. The thermopile has been fabricated and tested. Experimental results clearly demonstrate the advantage of the rim structure in increasing output voltage. In presence of forced convection, the output voltage of a non-released thermopile can increase from about 53 mV/K/cm 2 to about 130 mV/K/cm 2 after the rim structure is formed. A larger output voltage from the thermopile is expected upon process completion. 1.

Z. Wang; V. Leonov; P. Fiorini; C. Van Hoof

2008-01-01T23:59:59.000Z

372

Photovoltaic mechanisms in polycrystalline thin film solar cells. Quarterly technical progress report No. 2, January 1, 1979--March 31, 1979  

DOE Green Energy (OSTI)

The effect of grain size on short circuit current density was investigated by approximating individual silicon grains as right circular cylinders and solving the diffusion equation within the base region. This model confirms the previous results that for grain radii exceeding a few tenths of a millimeter, the minority carrier lifetime in the grain essentially determines the short-circuit current response of the cell. The dark I-V characteristics of some polycrystalline solar cells were measured and compared with single crystal cells. The dark current of the polycrystalline cells is dominated by recombination within the space-charge region well past the one sun maximum power point. This has the effect of lowering the cells output power and open circuit voltage. Single crystal cells are dominated by recombination within the quasi-neutral regions at the one sun maximum power point and, consequently, the fill factor and open circuit voltage are greater. Additionally, some preliminary measurements of the spatial dependence of diffusion length were made, Laue X-ray diffraction study of crystal orientations was performed and some SEM micrographs of polycrystalline wafers were taken.

Storti, G.; Johnson, S.; Lin, H.C.; Armstrong, R.W.

1979-01-01T23:59:59.000Z

373

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. (Argonne National Lab., IL (United States)); Phillips, W. (Crystallume, Menlo Park, CA (United States))

1992-01-01T23:59:59.000Z

374

Nano-fabricated solid immersion lenses registered to single emitters in diamond  

E-Print Network (OSTI)

We describe a technique for fabricating micro- and nano-structures incorporating fluorescent defects in diamond with a positional accuracy in the hundreds of nanometers. Using confocal fluorescence microscopy and focused ion beam (FIB) etching we first locate a suitable defect with respect to registration marks on the diamond surface and then etch a structure using these coordinates. We demonstrate the technique here by etching an 8 micron diameter hemisphere positioned such that a single negatively charged nitrogen-vacancy defect lies at its origin. This type of structure increases the photon collection efficiency by removing refraction and aberration losses at the diamond-air interface. We make a direct comparison of the fluorescence photon count rate before and after fabrication and observe an 8-fold increase due to the presence of the hemisphere.

L. Marseglia; J. P. Hadden; A. C. Stanley-Clarke; J. P. Harrison; B. Patton; Y. -L. D. Ho; B. Naydenov; F. Jelezko; J. Meijer; P. R. Dolan; J. M. Smith; J. G. Rarity; J. L. O'Brien

2010-12-06T23:59:59.000Z

375

Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications  

Science Conference Proceedings (OSTI)

Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

Rainer Wallny

2012-10-15T23:59:59.000Z

376

A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells  

E-Print Network (OSTI)

The quantal release of catecholamines from neuroendocrine cells is a key mechanism which has been investigated with a broad range of materials and devices, among which carbon-based materials such as carbon fibers, diamond-like carbon, carbon nanotubes and nanocrystalline diamond. In the present work we demonstrate that a MeV-ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular bio-sensor based on graphitic micro-channels embedded in a single-crystal diamond matrix. The device was functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors.

Picollo, Federico; Vittone, Ettore; Pasquarelli, Alberto; Carbone, Emilio; Olivero, Paolo; Carabelli, Valentina

2013-01-01T23:59:59.000Z

377

Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes  

DOE Green Energy (OSTI)

The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

Greg M. Swain, PI

2009-03-10T23:59:59.000Z

378

MEASUREMENT OF THE SECONDARY EMISSION YIELD OF A THIN DIAMOND WINDOW IN TRANSMISSION MODE.  

DOE Green Energy (OSTI)

The secondary emission enhanced photoinjector (SEEP) is a promising new approach to the generation of high-current, high-brightness electron beams. A low current primary electron beam with energy of a few thousand electron-volts strikes a specially prepared diamond window which emits secondary electrons with a current two orders of magnitude higher. The secondary electrons are created at the back side of the diamond and drift through the window under the influence of a strong electrical field. A hydrogen termination at the exit surface of the window creates a negative electron affinity (NEA) which allows the electrons to leave the diamond. An experiment was performed to measure the secondary electron yield and other properties. The results are discussed in this paper.

CHANG, X.; RAO, T.; SMEDLEY, J.; ET AL.

2005-05-16T23:59:59.000Z

379

Photo-stimulated low electron temperature high current diamond film field emission cathode  

DOE Patents (OSTI)

An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.

Shurter; Roger Philips (Los Alamos, NM), Devlin; David James (Santa Fe, NM), Moody; Nathan Andrew (Los Alamos, NM), Taccetti; Jose Martin (Santa Fe, NM), Russell; Steven John (Los Alamos, NM)

2012-07-24T23:59:59.000Z

380

Calculation of the charge-carrier mobility in diamond at low temperatures  

Science Conference Proceedings (OSTI)

The discrepancies between the quasi-elastic and inelastic approaches to the calculation of the electron and hole mobilities in diamond at low temperatures when the carrier scattering from acoustic phonons becomes significantly inelastic have been numerically estimated. The calculations showed that the mobility described by a close-to-equilibrium distribution function differs several times from that obtained within the quasi-elastic approach even at 20 K. The results obtained are important for interpreting the low-temperature electrical experiments on high-purity diamond single crystals.

Baturin, A. S.; Gorelkin, V. N.; Soloviev, V. R.; Chernousov, I. V., E-mail: ichernousov@inbox.ru [Moscow Institute of Physics and Technology (Russian Federation)

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tribological and mechanical comparison of sintered and HIPped PM212 - high temperature self-lubricating composites  

SciTech Connect

Selected tribological, mechanical and thermophysical properties of two versions of PM212 (sintered and hot isostatically pressed, HIPped) are compared. PM212, a high temperature self-lubricating composite, contains 70 wt percent metal bonded chromium carbide, 15 wt percent CaF2/BaF2 eutectic and 15 wt percent silver. PM212 in the sintered form is about 80 percent dense and has previously been shown to have good tribological properties from room temperature to 850 C. Tribological results of a fully densified, HIPped version of PM212 are given. They are compared to sintered PM212. In addition, selected mechanical and thermophysical properties of both types of PM212 are discussed and related to the tribological similarities and differences between the two PM212 composites. In general, both composites display similar friction and wear properties. However, the fully dense PM212 HIPped composite exhibits slight lower friction and wear than sintered PM212. This may be attributed to its generally higher strength properties. The sintered version displays stable wear properties over a wide load range indicating its promise for use in a variety of applications. Based upon their properties, both the sintered and HIPped PM212 have potential as bearing and seal materials for advanced high temperature applications. 12 refs.

Dellacorte, C.; Sliney, H.E.; Bogdanski, M.S. (NASA, Lewis Research Center, Cleveland, OH (United States) Case Western Reserve Univ., Cleveland, OH (United States))

1992-11-01T23:59:59.000Z

382

Tribological evaluation of piston skirt/cylinder liner contact interfaces under boundary lubrication conditions.  

DOE Green Energy (OSTI)

The friction and wear between the piston and cylinder liner significantly affects the performance of internal combustion engines. In this paper, segments from a commercial piston/cylinder system were tribologically tested using reciprocating motion. The tribological contact consisted of aluminium alloy piston segments, either uncoated, coated with a graphite/resin coating, or an amorphous hydrogenated carbon (a-C : H) coating, in contact with gray cast iron liner segments. Tests were conducted in commercial synthetic motor oils and base stocks at temperatures up to 120 C with a 2 cm stroke length at reciprocating speeds up to 0.15 m s{sup -1}. The friction dependence of these piston skirt and cylinder liner materials was studied as a function of load, sliding speed and temperature. Specifically, an increase in the sliding speed led to a decrease in the friction coefficient below approximately 70 C, while above this temperature, an increase in sliding speed led to an increase in the friction coefficient. The presence of a coating played an important role. It was found that the graphite/resin coating wore quickly, preventing the formation of a beneficial tribochemical film, while the a-C : H coating exhibited a low friction coefficient and provided significant improvement over the uncoated samples. The effect of additives in the oils was also studied. The tribological behaviour of the interface was explained based on viscosity effects and subsequent changes in the lubrication regime, formation of chemical and tribochemical films.

Demas, N. G.; Erck, R. A.; Fenske, G. R.; Energy Systems

2010-03-01T23:59:59.000Z

383

Soft lubrication: the elastohydrodynamics of non-conforming and conforming contacts  

E-Print Network (OSTI)

We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g. a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter = hydrodynamic pressure/elastic stiffness = surface deflection/gap thickness which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.

J. M. Skotheim; L. Mahadevan

2004-12-18T23:59:59.000Z

384

Electrochemical studies of the automotive lubricant additive zinc n-dibutyldithiophosphate  

Science Conference Proceedings (OSTI)

Zinc dialkyldithiophosphates (ZDTPs) are widely incorporated in lubricant formulations as antioxidant and antiwear additives. Using the model compound zinc n-dibutyldithiophosphate (Bu-ZDTP) in dimethylformamide (DMF) solution, cyclic voltammetry is applied to a detailed study of Bu-ZDTP electro-oxidation. Bu-ZDTP is shown to be oxidized in a chemically irreversible electron transfer process under diffusion-limited conditions. A similar study of Bu-ZDTP reduction revealed nucleation of zinc at the electrode surface. A chronoamperometric investigation of zinc deposition classified the nucleation according to a progressive mechanism with the diffusion coefficient for Bu-ZDTP in DMF solution as 6.5 {times} 10{sup {minus}6} cm{sup 2}/s. By comparison with diffusion coefficients obtained via Levich analysis of Bu-ZDTP oxidation, the oxidation process is assigned as a two-electron transfer. The use of atomic force microscopy as a means of directly visualizing zinc nuclei formed as a result of Bu-ZDTP reduction is described.

Jacob, S.R.; Compton, R.G. [Oxford Univ. (United Kingdom). Physical and Theoretical Chemistry Lab.

1999-07-01T23:59:59.000Z

385

Thin film polycrystalline silicon solar cells. Quarterly report No. 1, January 1, 1979-March 31, 1979  

DOE Green Energy (OSTI)

A theory capable of predicting the performance of polycrystalline silicon solar cells is formulated. It relates grain size to mobility, lifetime, diffusion length, reverse saturation current, open circuit photovoltage and fill factor. Only the diffusion lengths measured by the surface photovoltage technique for grains less than or equal to 5 ..mu..m do not agree with our theory. The reason for this discrepancy is presently being investigated. We conclude that grains greater than or equal to 100 ..mu..m are necessary to achieve efficiencies greater than or equal to 10 percent at AM1 irradiance. The calculations were performed for the case of no grain boundary passivation. At present we are investigating the improvements to be expected from grain boundary passivation. We have determined that the parameters that best fit the available data are as follows: (1) Number of surface states at grain boundaries acting as recombination centers - 1.6 x 10/sup 13//cm/sup 2/. (2) Capture cross section - 2 x 10/sup -16/ cm/sup 2/. (3) Surface recombination velocity at grain boundary - 3.2 x 10/sup 4/ cm/sec. The following types of solar cells are considered in the model: SnO/sub 2//Si Heterostructure, MIS, and p/n junction. In all types of solar cells considered, grain boundary recombination plays a dominant role, especially for small grains. Though the calculations were originally expected to yield only order of magnitude results, they have proven to be accurate for most parameters within 10 percent.

Ghosh, A.K.; Feng, T.; Maruska, H.P.; Fishman, C.

1979-01-01T23:59:59.000Z

386

Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films  

Science Conference Proceedings (OSTI)

A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to the development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f{sub T} = D//{sup 2}. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.

Chung, Ding-wen [Purdue University; Balke, Nina [ORNL; Kalinin, Sergei V [ORNL; Garcia, R. Edwin [Purdue University

2011-01-01T23:59:59.000Z

387

Automated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond  

E-Print Network (OSTI)

Automated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond Lawrence Berkeley of the commissioning of HVAC systems. The approach is based on software that generates a sequence of test signals for new and retrofit projects. Introduction The performance of many HVAC systems is limited more by poor

Diamond, Richard

388

The Effect of Grain Size and Phosphorous-doping of Polycrystalline 3C-SiC on Infrared Reflectance Spectra  

SciTech Connect

The effect of P-doping and grain size of polycrystalline 3C-SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behaviour of the 3C-SiC with the highest phosphorous doping level (of 1.2 x 10{sup 19} at. cm{sup -3}) is different from those with lower doping levels (< 6.6 x 10{sup 18} at. cm{sup -3}). It is also further demonstrated that the plasma resonance frequency (w{sub p}) is not influenced by the grain size.

I. J. van Rooyen; J. A. A. Engelbrecht; A. Henry; E. Janzen; J. H. Neethling; P. M. van Rooyen

2012-03-01T23:59:59.000Z

389

Thin-film polycrystalline silicon solar cells. Quarterly report no. 3, October 16, 1980-January 15, 1981  

DOE Green Energy (OSTI)

The objectives of the project are: 1) to develop cell fabrication procedures to further define the maximum capabilities of the conducting oxide/silicon heterojunction solar cells; 2) to optimize the spray fabrication technique for making reproducible high efficiency cells; 3) to assess the stability and the projected lifetime of the cell structure; 4) to identify through appropriate measurements the effects of grain boundaries and intragrain defects on the electronic transport mechanisms in thin-film polycrystalline silicon; and 5) to determine the feasibility of a large-scale fabrication process. Progress is reported.

Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

1981-01-01T23:59:59.000Z

390

Device physics of thin-film polycrystalline cells and modules. Annual subcontract report, December 6, 1993--December 5, 1994  

DOE Green Energy (OSTI)

Progress has been made in several applications of device physics to thin-film polycrystalline cells and modules. At the cell level, results include a more quantitative separation of photon losses, the impact of second barriers on cell operation, and preliminary studies of how current-voltage curves are affected by band offsets. Module analysis includes the effects of the typical monolithic, series-connected cell geometry, analytical techniques when only the two module leads are accessible, and the impact of chopping frequency, local defects, and high-intensity beams on laser-scanning measurements.

Sites, J.R.

1995-05-01T23:59:59.000Z

391

Model catalytic studies of single crystal, polycrystalline metal, and supported catalysts  

E-Print Network (OSTI)

This dissertation is focused on understanding the structure-activity relationship in heterogeneous catalysis by studying model catalytic systems. The catalytic oxidation of CO was chosen as a model reaction for studies on a variety of catalysts. A series of Au/TiO2 catalysts were prepared from various metalorganic gold complexes. The catalytic activity and the particle size of the gold catalysts were strongly dependent on the gold complexes. The Au/TiO2 catalyst prepared from a tetranuclear gold complex showed the best performance for CO oxidation, and the average gold particle size of this catalyst was 3.1 nm. CO oxidation was also studied over Au/MgO catalysts, where the MgO supports were annealed to various temperatures between 900 and 1300 K prior to deposition of Au. A correlation was found between the activity of Au clusters for the catalytic oxidation of CO and the F-center concentration in the MgO support. In addition, the catalytic oxidation of CO was studied in a batch reactor over supported Pd/Al2O3 catalysts, a Pd(100) single crystal, as well as polycrystalline metals of rhodium, palladium, and platinum. A hyperactive state, corresponding to an oxygen covered surface, was observed at high O2/CO ratios at elevated pressures. The reaction rate at this state was significantly higher than that on CO-covered surfaces at stoichiometric conditions. The oxygen chemical potential required to achieve the hyperactive state depends on the intrinsic properties of the metal, the particle size, and the reaction temperature. A well-ordered ultra-thin titanium oxide film was synthesized on the Mo(112) surface as a model catalyst support. Two methods were used to prepare this Mo(112)- (8x2)-TiOx film, including direct growth on Mo(112) and indirect growth by deposition of Ti onto monolayer SiO2/Mo(112). The latter method was more reproducible with respect to film quality as determined by low-energy electron diffraction and scanning tunneling microscopy. The thickness of this TiOx film was one monolayer and the oxidation state of Ti was +3 as determined by Auger spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy.

Yan, Zhen

2007-12-01T23:59:59.000Z

392

Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1990--15 January 1991  

DOE Green Energy (OSTI)

Results and conclusion of Phase I of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe{sub 2} and CdTe solar cells. The kinetics of the formation of CuInSe{sub 2} by selenization with hydrogen selenide was investigated and a CuInSe{sub 2}/CdS solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe{sub 2} films and a cell efficiency of 7%. Detailed investigations of the open circuit voltage of CuInSe{sub 2} solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe{sub 2} thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe{sub 2} is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10% can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm{sup 2} are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

1991-11-01T23:59:59.000Z

393

Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer  

Science Conference Proceedings (OSTI)

We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

Chu, Yueh-Chieh; Jiang, Gerald [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Tu, Chia-Hao [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Chang Chi [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Liu, Chuan-pu; Ting, Jyh-Ming [Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Lee, Hsin-Li [Industrial Technology Research Institute - South, Tainan 701, Taiwan (China); Tzeng, Yonhua [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Advanced Optoelectronics Technology Center, No.1, University Road, Tainan 701, Taiwan (China); Auciello, Orlando [Argonne National Laboratory, Materials Science Division, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

2012-06-15T23:59:59.000Z

394

Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly MCLR program technical progress report, January 1, 1995--March 31, 1995  

Science Conference Proceedings (OSTI)

The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

1995-04-01T23:59:59.000Z

395

Optimization of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector  

E-Print Network (OSTI)

Optimization of blade type X-ray Beam Position Monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, configuration and operation principle was analyzed to improve XBPM performance. Optimization is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission blades, Diamond Detector Blade (DDB) was analyzed as XBPM signal source. Analyses revealed, that Diamond Detector Blade XBPM would allow overcoming drawbacks of the photoemission type XBPMs.

Ilinski, Petr

2013-01-01T23:59:59.000Z

396

Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate  

DOE Patents (OSTI)

A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.

Findikoglu, Alp T. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM); Choi, Woong (Los Alamos, NM)

2009-10-27T23:59:59.000Z

397

Ingrain and grain boundary scattering effects on electron mobility of transparent conducting polycrystalline Ga-doped ZnO films  

Science Conference Proceedings (OSTI)

Transparent conducting polycrystalline Ga-doped ZnO (GZO) films with different thicknesses were deposited on glass substrates at a substrate temperature of 200 deg. C by ion-plating deposition with direct current arc-discharge. The dependences of crystal structure, electrical, and optical properties of the GZO films on thickness have been systematically studied. Optical response due to free electrons of the GZO films was characterized in the photon energy range from 0.73 to 3.8 eV by spectroscopic ellipsometry (SE). The free electron response was expressed by the simple Drude model combined with the Tauc-Lorentz model. From the SE analysis and the results of Hall measurements, electron effective mass, m{sup *}, and optical mobility, {mu}{sub opt}, of the GZO films were determined, based on the assumptions that the films are homogeneous and optically isotropic. By comparing the {mu}{sub opt} and Hall mobility, {mu}{sub Hall}, an indication on the effect of ingrain and grain boundary scattering limiting the electron mobility has been obtained. Moreover, the variation in scattering mechanism causing thickness dependence of {mu}{sub Hall} was correlated with the development of polycrystalline grain structure.

Yamada, Takahiro; Makino, Hisao; Yamamoto, Naoki; Yamamoto, Tetsuya [Materials Design Center, Research Institute, Kochi University of Technology, 185 Miyanokuchi, Tosayamada-cho, Kami-shi, Kochi 782-8502 (Japan)

2010-06-15T23:59:59.000Z

398

Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1991--31 March 1992  

DOE Green Energy (OSTI)

The limiting role of polycrystallinity in thin-film solar calls has been reduced somewhat during the past year, and efficiencies of both CdTe and CuInSe{sub 2} cells are approaching 15%. Quantitative separation of loss mechanisms shows that individual losses, with the exception of forward recombination current, can be made comparable to their single crystal counterparts. One general manifestation of the extraneous trapping states in that the voltage of all polycrystalline thin-film cells drifts upward by 10--50 mV following the onset of illumination.

Sites, J.R. [Colorado State Univ., Fort Collins, CO (United States)

1992-11-01T23:59:59.000Z

399

A New Gas Loading System for Diamond Anvil Cells at GSECARS  

NLE Websites -- All DOE Office Websites (Extended Search)

Sidorowicz Named "Supervisor of the Year" Sidorowicz Named "Supervisor of the Year" SESS 2007: The School for Environmental Sciences with Synchrotrons Art and Science A Breakthrough in Interface Science APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed A New Gas Loading System for Diamond Anvil Cells at GSECARS MARCH 11, 2008 Bookmark and Share The diamond anvil cell (DAC) is the most commonly used device for obtaining static high pressures above 3 GPa. Experiments in the DAC are frequently performed at the APS, in particular at GSECARS (Sector 13), HP-CAT (Sector 16), and at XOR sectors 1 and 3. In order to have the sample in the DAC be subject to a quasi-hydrostatic pressure it is necessary to surround the

400

Dented Diamonds, Carbon Cages and Exceptional Potential | U.S. DOE Office  

Office of Science (SC) Website

News » Featured Articles » 2012 » Dented News » Featured Articles » 2012 » Dented Diamonds, Carbon Cages and Exceptional Potential News Featured Articles 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 08.27.12 Dented Diamonds, Carbon Cages and Exceptional Potential Office of Science supported researchers develop new material with amazing hardness and exciting possibilities. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Simulated structures showing the starting material of carbon-60 Image courtesy of Carnegie Institute of Washington Simulated structures showing the starting material of carbon-60

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Diamond as a solid state quantum computer with a linear chain of nuclear spins system  

E-Print Network (OSTI)

By removing a $^{12}C$ atom from the tetrahedral configuration of the diamond, replace it by a $^{13}C$ atom, and repeating this in a linear direction, it is possible to have a linear chain of nuclear spins one half and to build a solid state quantum computer. One qubit rotation and controlled-not (CNOT) quantum gates are obtained immediately from this configuration, and CNOT quantum gate is used to determined the design parameters of this quantum computer.

G. V. Lpez

2013-10-02T23:59:59.000Z

402

Effect of Decreasing of Cobalt Content in Properties for Diamond/Cemented Carbide Tools  

Science Conference Proceedings (OSTI)

Powder metallurgy plays a role in manufacturing such as automotive and cutting tool applications. Diamond/cemented carbide tools are also made from this technique. Diamond particle and other matrix materials were employed in this study. The purpose is to investigate the physical and mechanical properties of different Cobalt (Co) content samples by using Taguchi's method. The materials used in the experiments were mixed by using a ball-mill machine. The mixed powders were pressed by conventional method. Then the green samples were sintered in a vacuum furnace. After reaching 500 deg. C, the samples were sintered with Argon (Ar) gas. The sintered samples were investigated density by immersion method, porosity by water saturation method, and hardness by Vicker hardness tester. It was found that with 59.5% Co content, plain diamond type, sintering temperature of 950 deg. C, sintering time of 40 minutes, and pressure of 625 MPa, density, porosity, and hardness got the best result in this study. From the Taguchi's analysis, the significant factors effected the performance were composition, sintering temperature, and sintering time.

Waratta, A.; Hamdi, M. [Department of Design and Manufacture, Faculty of Engineering, University of Malaya (Malaysia); Ariga, T. [Department of Materials Science, School of Engineering, Tokai University (Japan)

2010-03-11T23:59:59.000Z

403

H2 carrier gas dependence of Young's modulus and hardness of chemical vapor deposited polycrystalline 3C-SiC thin films  

Science Conference Proceedings (OSTI)

This paper presents the mechanical properties of poly (polycrystalline) 3C-SiC thin films according to 0%, 7%, and 10% carrier gas (H"2) concentrations using nano-indentation. When H"2 concentration was 10%, it has been proved that the mechanical properties, ... Keywords: AFM, Hardness, Nano-indentation, Poly 3C-SiC, Young's modulus

Gwiy-Sang Chung; Ki-Bong Han

2008-12-01T23:59:59.000Z

404

Raman scattering of polycrystalline 3C-SiC film deposited on AlN buffer layer by using CVD with HMDS  

Science Conference Proceedings (OSTI)

This paper presents the Raman scattering characteristics of poly (polycrystalline) 3C-SiC thin films deposited on AlN buffer layer by atmospheric pressure chemical vapor deposition (APCVD) using hexamethyldisilane (MHDS) and carrier gases (Ar+H"2). The ... Keywords: AlN, HMDS, Poly 3C-SiC, Raman scattering

Gwiy-Sang Chung; Kang-San Kim

2008-12-01T23:59:59.000Z

405

The effects of diamond injector angles on flow structures at various Mach numbers  

E-Print Network (OSTI)

Numerical simulations of a three dimensional diamond jet interaction flowfield at various diamond injector half angles into a supersonic crossflow were presented in this thesis. The numerical study was performed to improve the understanding of the flame holding potential by extending the numerical database envelop to include different injector half angles and examine the flow at Mach 2 and Mach 5. The configuration of a diamond injector shape was found to reduce the flow separation upstream, and produce an attached shock at the initial freestream interaction and the injection fluid has an increased field penetration as compared to circular injectors. The CFD studies were also aimed at providing additional information on the uses of multiple injectors for flow control. The numerical runs were performed with diamond injectors at half angles of 10?° and 20?° at a freestream Mach number of 5. The transverse counter-rotating pair of vortices found in the 15?° does not form within the 10?° and 20?° cases at freestream Mach number 5. The 10?° case had a barrel shock that became streamlined in the lateral direction. The 20?° barrel shock had a very large spanwise expansion and became streamlined in the transverse direction. In both cases the trailing edge of their barrel shocks did not form the flat â??Vâ? shape, as found in the baseline case. At Mach 2 the 10?° and 15?° cases both formed the flat â??Vâ? shape at the trailing edge of the barrel shocks, and formed the transverse counter rotating vortex pairs. The 10?° multiple injector case successfully showed the interaction shocks forming into a larger planer shock downstream of the injectors. The swept 15?° case produced interaction shocks that were too weak to properly form a planar shock downstream. This planar shock has potential for flow control. Depending on the angle of incidence of the injector fluid with the freestream flow and the half angle of the diamond injector, the planar shocks will form further upstream or downstream of the injector.

McLellan, Justin Walter

2005-08-01T23:59:59.000Z

406

Observation and simulation of hard x ray photoelectron diffraction to determine polarity of polycrystalline zinc oxide films with rotation domains  

SciTech Connect

X ray photoelectron diffraction (XPD) patterns of polar zinc oxide (ZnO) surfaces were investigated experimentally using hard x rays and monochromatized Cr K{alpha} radiation and theoretically using a cluster model approach and a dynamical Bloch wave approach. We focused on photoelectrons emitted from the Zn 2p{sub 3/2} and O 1s orbitals in the analysis. The obtained XPD patterns for the (0001) and (0001) surfaces of a ZnO single crystal were distinct for a given emitter and polarity. Polarity determination of c-axis-textured polycrystalline ZnO thin films was also achieved with the concept of XPD, even though the in-plane orientation of the columnar ZnO grains was random.

Williams, Jesse R.; Adachi, Yutaka; Ohashi, Naoki [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); NIMS Saint-Gobain Research Center of Excellence for Advanced Materials, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Pis, Igor [Synchrotron X-ray Station at SPring-8, NIMS, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8 18000 (Czech Republic); Kobata, Masaaki [Synchrotron X-ray Station at SPring-8, NIMS, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Winkelmann, Aimo [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale) (Germany); Matsushita, Tomohiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kobayashi, Keisuke [Synchrotron X-ray Station at SPring-8, NIMS, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 (Japan)

2012-02-01T23:59:59.000Z

407

Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Final report, 30 June 1979-29 June 1980  

DOE Green Energy (OSTI)

The objectives of this program were: (1) to develop appropriate measurement techniques to facilitate a quantitative study of the electrical activity of structural defects and at a grain boundary (G.B.) in terms of generation-recombination, barrier height, and G.B. conductivity; (2) to characterize G.B.s in terms of physical properties such as angle of misfit and local stress, and to correlate them with the electrical activity; (3) to determine the influence of solar cell processing on the electrical behavior of structural defects and G.B.s; and (4) to evaluate polycrystalline solar cell performance based on the above study, and to compare it with the experimentally measured performance. Progress is reported in detail. (WHK)

Sopori, B.L.

1980-11-01T23:59:59.000Z

408

Carrier mobility measurement across a single grain boundary in polycrystalline silicon using an organic gate thin-film transistor  

Science Conference Proceedings (OSTI)

In this study, we developed a measurement method for field-effect-carrier mobility across a single grain boundary in polycrystalline Si (poly Si) used for solar cell production by using an organic gate field-effect transistor (FET). To prevent precipitation and the diffusion of impurities affecting the electronic characteristics of the grain boundary, all the processing temperatures during FET fabrication were held below 150 deg. C. From the grain boundary, the field-effect mobility was measured at around 21.4 cm{sup 2}/Vs at 297 K, and the temperature dependence of the field-effect mobility suggested the presence of a potential barrier of 0.22 eV at the boundary. The technique presented here is applicable for the monitoring of carrier conduction characteristics at the grain boundary in poly Si used for the production of solar cells.

Hashimoto, Masaki; Kanomata, Kensaku; Momiyama, Katsuaki; Kubota, Shigeru; Hirose, Fumihiko

2012-01-09T23:59:59.000Z

409

Electron Drift-Mobility Measurements in Polycrystalline CuIn 1-xGaxSe2 Solar Cells  

Science Conference Proceedings (OSTI)

We report photocarrier time-of-flight measurements of electron drift mobilities for the p-type CuIn{sub 1-x}Ga{sub x}Se{sub 2} films incorporated in solar cells. The electron mobilities range from 0.02 to 0.05 cm{sup 2}/Vs and are weakly temperature-dependent from 100-300 K. These values are lower than the range of electron Hall mobilities (2-1100 cm{sup 2}/Vs) reported for n-type polycrystalline thin films and single crystals. We propose that the electron drift mobilities are properties of disorder-induced mobility edges and discuss how this disorder could increase cell efficiencies.

Dinca, S. A.; Schiff, E. A.; Shafarman, W. N.; Egaas, B.; Noufi, R.; Young, D. L.

2012-03-05T23:59:59.000Z

410

Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2  

SciTech Connect

Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at grain boundaries for given grain boundary properties. More validation of the model capability in polycrystalline is underway.

Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

2012-05-30T23:59:59.000Z

411

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996  

DOE Green Energy (OSTI)

Two specific objectives of Solarex`s program are to reduce the manufacturing cost for polycrystalline silicon photovoltaic modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. This report highlights accomplishments during the period of January 1 through June 30, 1996. Accomplishments include: began the conversion of production casting stations to increase ingot size; operated the wire saw in a production mode with higher yields and lower costs than achieved on the ID saws; developed and qualified a new wire guide coating material that doubles the wire guide lifetime and produces significantly less scatter in wafer thickness; completed a third pilot run of the cost-effective Al paste back-surface-field (BSF) process, verifying a 5% increase in cell efficiency and demonstrating the ability to process and handle the BSF paste cells; completed environmental qualification of modules using cells produced by an all-print metallization process; optimized the design of the 15.2-cm by 15.2-cm polycrystalline silicon solar cells; demonstrated the application of a high-efficiency process in making 15.2-cm by 15.2-cm solar cells; demonstrated that cell efficiency increases with decreasing wafer thickness for the Al paste BSF cells; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; demonstrated the operation of a prototype unit to trim/lead attach/test modules; and demonstrated the operation of a wafer pull-down system for cassetting wet wafers.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1997-01-01T23:59:59.000Z

412

Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems  

Science Conference Proceedings (OSTI)

Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.

He, X.; Williams, A.; Christensen, E.; Burton, J.; McCormick, R.

2011-12-01T23:59:59.000Z

413

Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process  

DOE Green Energy (OSTI)

This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

Compere, A L [ORNL; Griffith, William {Bill} L [ORNL

2009-04-01T23:59:59.000Z

414

CHARACTERIZATION AND TRIBOLOGICAL EVALUATION OF 1-BENZYL-3-METHYLIMIDAZOLIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE AS NEAT LUBRICANT AND OIL ADDITIVE  

Science Conference Proceedings (OSTI)

Selected physical and chemical properties and tribological data for a newly-developed, imidazolium-based ionic liquid (IL) are presented. The IL is soluble in the SAE 5W-30 oil up to a certain weight percentage, and is as a promising candidate for use in lubrication applications, either in its neat version or as an oil additive. Characterization of the IL included dynamic viscosity at different temperatures, corrosion effects on cast iron cylinder liners, and thermal stability analysis. The tribological performance was evaluated using a reciprocating ring-on-liner test arrangement. When used in neat version this IL demonstrated friction coefficient comparable to a fully formulated engine oil, and when used as an oil additive it produced less wear.

Bansal, Dinesh G [ORNL; Qu, Jun [ORNL; Yu, Bo [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL; Bunting, Bruce G [ORNL; Blau, Peter Julian [ORNL; Mordukhovich, Gregory [GM R& D and Planning, Warren, Michigan; Smolenski, Donald [GM R& D and Planning, Warren, Michigan

2011-01-01T23:59:59.000Z

415

Freeway ramp metering often exists in the vicinity of a signal-controlled diamond interchange, at which the surface street system and the free-  

E-Print Network (OSTI)

Freeway ramp metering often exists in the vicinity of a signal-controlled diamond interchange signal and the ramp-metering signal. The proposed control algorithm, including an adaptive diamond inter- change control and a traffic-responsive ramp-metering control were programmed with VISSIM's vehicle

Tian, Zong Z.

416

CHARACTERISTICS OF DIAMOND WINDOWS ON THE 1 MW, 110 GHz GYROTRON SYSTEMS ON THE DIII-D TOKAMAK  

SciTech Connect

Diamond disks made using the chemical vapor deposition (CVD) technique are now in common use as gyrotron output windows. The low millimeter wave losses and excellent thermal conductivity of diamond have made it possible to use such windows in gyrotrons with {approx}1 MW output power and pulse length up to and greater than 10 s. A ubiquitous characteristic of diamond gyrotron windows is the presence of apparent hot spots in the infrared images registered during rf pulses. Many of these spots are co-located with bright points seen in visible video images. The spots do not seem to compromise the integrity of the windows. Analysis of the infrared observations on several different gyrotrons operating at the DIII-D tokamak are reported.

Y.A. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

2002-08-01T23:59:59.000Z

417

A diamond anvil cell with resistive heating for high pressure and high temperature x-ray diffraction and absorption studies  

SciTech Connect

In this paper we describe a prototype of a diamond anvil cell (DAC) for high pressure/high temperature studies. This DAC combines the use of a resistive oven of 250 W power in a very small volume, associated with special conical seats for Boehler-type diamond anvils in order to have a large angular acceptance. To protect the diamond anvils from burning and to avoid the oven oxidation, the heated DAC is enclosed in a vacuum chamber. The assemblage was used to study the melting curve of germanium at high pressure (up to 20 GPa) and high temperature (up to 1200 K) using x-ray diffraction and x-ray absorption spectroscopy.

Pasternak, Sebastien; Aquilanti, Giuliana; Pascarelli, Sakura; Zhang Lin [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble, Cedex (France); Poloni, Roberta [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble, Cedex (France); Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona Spain (Spain); Canny, Bernard [IMPMC-CNRS UMR, 7590 Universite Paris VI, 140 rue de Lourmel, 75015 Paris (France); Coulet, Marie-Vanessa [IM2NP-UMR CNRS, 6242 Universite Paul Cezanne Campus de St Jerome, 13397 Marseille Cedex 20 (France)

2008-08-15T23:59:59.000Z

418

Electron emission and defect formation in the interaction of slow,highly charged ions with diamond surfaces  

DOE Green Energy (OSTI)

We report on electron emission and defect formation in theinteraction between slow (v~;0.3 vBohr) highly charged ions (SHCI) withinsulating (type IIa) and semiconducting (type IIb) diamonds. Electronemission induced by 31Pq+ (q=5 to 13), and 136Xeq+ (q=34 to 44) withkinetic energies of 9 kVxq increase linearly with the ion charge states,reaching over 100 electrons per ion for high xenon charge states withoutsurface passivation of the diamond with hydrogen. Yields from bothdiamond types are up to a factor of two higher then from reference metalsurfaces. Crater like defects with diameters of 25 to 40 nm are formed bythe impact of single Xe44+ ions. High secondary electron yields andsingle ion induced defects enable the formation of single dopant arrayson diamond surfaces.

Sideras-Haddad, E.; Shrivastava, S.; Rebuli, D.B.; Persaud, A.; Schneider, D.H.; Schenkel, T.

2006-05-31T23:59:59.000Z

419

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents (OSTI)

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

1994-09-13T23:59:59.000Z

420

Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond  

SciTech Connect

We demonstrate a technique to nanofabricate nitrogen vacancy (NV) centers in diamond based on broad-beam nitrogen implantation through apertures in electron beam lithography resist. This method enables high-throughput nanofabrication of single NV centers on sub-100-nm length scales. Secondary ion mass spectroscopy measurements facilitate depth profiling of the implanted nitrogen to provide three-dimensional characterization of the NV center spatial distribution. Measurements of NV center coherence with on-chip coplanar waveguides suggest a pathway for incorporating this scalable nanofabrication technique in future quantum applications.

Toyli, David M.; Weis, Christoph D.; Fuchs, D.; Schenkel, Thomas; Awschalom, David D.

2010-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents (OSTI)

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

1994-01-01T23:59:59.000Z

422

Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate  

DOE Patents (OSTI)

A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment.

Feng, Zhu (Albany, CA); Brewer, Marilee (Goleta, CA); Brown, Ian (Berkeley, CA); Komvopoulos, Kyriakos (Orinda, CA)

1994-01-01T23:59:59.000Z

423

Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)  

Science Conference Proceedings (OSTI)

The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

2009-01-06T23:59:59.000Z

424

Diamond-like atomic-scale composite films: Surface properties and stability studied by STM and AFM  

DOE Green Energy (OSTI)

Amorphous ``diamond-like/quartz-like`` composites a-(C:H/Si:O) and metal containing a-(C:H/Si:O/Me) constitute a novel class of diamond-related materials with a number of unique bulk and surface properties. In order to gain a more fundamental understanding of the surface properties and stability of these solids we have performed a scanning tunneling and atomic force microscopy investigation of both a-(C:H/Si:O) and a-(C:H/Si:O/Me) films, including the effects of ion bombardment and annealing.

Dorfman, B.; Abraizov, M. [SUNY, Farmingdale, NY (United States); Pollak, F.H. [CUNY, Brooklyn, NY (United States); Eby, R. [TopoMetrix, Bedminster, NJ (United States); Rong, Z.Y. [SUNY, Stony Brook, NY (United States); Strongin, M.; Yang, X.Q. [Brookhaven National Lab., Upton, NY (United States)

1995-10-01T23:59:59.000Z

425

Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions  

SciTech Connect

This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

Erdemir, Ali [Argonne National Laboratory] [Argonne National Laboratory

2013-09-26T23:59:59.000Z

426

Spatially-Resolved Studies of Grain-Boundary Effects in Polycrystalline Solar Cells Using Micro-Photoluminescence and Near-Field Microscopy  

DOE Green Energy (OSTI)

Photoluminescence and photocurrent spectroscopies combined with diffraction-limited and sub- diffraction-limited spatial resolution are achieved via micro-photoluminescence (m-PL) and near-field microscopy (NSOM). These methods are used to examine the photo-response of individual grain boundaries in thin-film, polycrystalline solar cells at room and cryogenic temperatures. A systematic m-PL study of the effect of CdCl2-treatment on recombination in CdTe/CdS solar cell structures of varying thickness directly reveals the grain-boundary and surface passivation action of this important post-growth processing step. We achieve 50nm (l/10) spatial resolution in near-field Optical Beam Induced Current imaging (n-OBIC) of polycrystalline silicon solar cells using NSOM, at varying stages of silicon nitride grain-boundary passivation, and measure lateral variations in photo-response of CdTe/CdS solar cells with subwavelength spatial resolution.

Smith, S.; Dhere, R.; Gessert, T.; Stradins, P.; Mascarenhas, A.

2005-01-01T23:59:59.000Z

427

Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells  

DOE Green Energy (OSTI)

Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

Offermann, Dustin T [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

428

Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD  

DOE Green Energy (OSTI)

Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

2008-08-01T23:59:59.000Z

429

Single-photon emission from Ni-related color centers in CVD diamond  

E-Print Network (OSTI)

Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emission, but within a large, phonon-broadened spectrum (~100nm), which strongly limits its applicability for quantum communication. By contrast, Ni-related centers exhibit narrow emission lines at room temperature. We present investigations on single color centers consisting of Ni and Si created by ion implantation into single crystalline IIa diamond. We use systematic variations of ion doses between 10^8/cm^2 and 10^14/cm^2 and energies between 30keV and 1.8MeV. The Ni-related centers show emission in the near infrared spectral range (~770nm to 787nm) with a small line-width (~3nm FWHM). A measurement of the intensity correlation function proves single-photon emission. Saturation measurements yield a rather high saturation count rate of 77.9 kcounts/s. Polarization dependent measurements indicate the presence of two orthogonal dipoles.

David Steinmetz; Elke Neu; Christian Hepp; Roland Albrecht; Wolfgang Bolse; Jan Meijer; Detlef Rogalla; Christoph Becher

2010-03-17T23:59:59.000Z

430

Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors  

Science Conference Proceedings (OSTI)

Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J. [OncoRay-National Center for Radiation Research in Oncology, Technische Universitaet Dresden, Fetscherstr, 74, 01307 Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, P.O. Box 510119, 01314 Dresden (Germany); OncoRay-National Center for Radiation Research in Oncology, Technische Universitaet Dresden, Fetscherstr, 74, 01307 Dresden (Germany) and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, P.O. Box 510119, 01314 Dresden (Germany)

2012-05-15T23:59:59.000Z

431

FEA analysis of diamond as IMCA{close_quote}s monochromator crystal  

SciTech Connect

A great deal of effort has been make in recent years in the field of undulator high heat load optics, and currently there are several tractable options [Rev. Sci. Instrum. {bold 69}, 2792 (1994); Nucl. Instrum. Methods A {bold 266}, 517 (1988); Nucl. Instrum. Methods A {bold 239}, 555 (1993)]. Diamond crystals offer some attractive options{endash}water as the coolant, the use of established monochromator mechanisms, simpler monochromator design as compared to the use of liquid nitrogen or gallium. The use of diamond crystals as the optical elements in a double-crystal monochromator for the IMCA-CAT and MR-CAT ID beamlines has been studied. A first crystal mounting scheme using an indium-gallium eutectic as the heat transfer medium developed in collaboration with DND-CAT and M. Hart will be presented. A FEA analysis of the IMCA-CAT ID beamline arrangement using the APS undulator A as the radiaiton source will be presented. {copyright} {ital 1996 American Institute of Physics.}

Chrzas, J.; Cimpoes, S.; Ivanov, I.N. [CSRRI, Illinois Institute of Technology, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)

1996-09-01T23:59:59.000Z

432

Temperature dependence of mechanical stiffness and dissipation in ultrananocrystalline diamond films grown by the HFCVD techinque.  

SciTech Connect

We have characterized mechanical properties of ultrananocrystalline diamond (UNCD) thin films grown using the hot filament chemical vapor deposition (HFCVD) technique at 680 C, significantly lower than the conventional growth temperature of -800 C. The films have -4.3% sp{sup 2} content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, -1 {micro}m thick, exhibit a net residual compressive stress of 370 {+-} 1 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 838 {+-} 2 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum (UHV) conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 790 {+-} 30 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.057 {+-} 0.038. The quality factors (Q) of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators.

Adiga, V. P.; Sumant, A. V.; Suresh, S.; Gudeman, C.; Auciello, O.; Carlisle, J. A.; Carpick, R. W.; Materials Science Division; Univ. of Pennsylvania; Innovative Micro Tech.; Advanced Diamond Tech.

2009-06-01T23:59:59.000Z

433

The effect of Sn on the reactions of n-hexane and cyclohexane over polycrystalline Pt foils  

Science Conference Proceedings (OSTI)

The modification of the catalytic properties of a polycrystalline platinum foil by the addition of tin was studied by the reactions of n-hexane and cyclohexane in excess H{sub 2}. The reactions were studied at 13.3 kPa of n-hexane, 450 kPa of H{sub 2} and 740 K, and 6.7 kPa of cyclohexane, 450 kPa of H{sub 2} and 573 K. The Pt-Sn catalyst was characterized by Auger electron spectroscopy and by temperature-programmed desorption of CO before and after the reactions. The sites that bind CO most strongly on the Pt foil also have the highest initial turnover rate and are the first ones to be poisoned by carbon deposits from hydrocarbon reactions or by sulfur when a sulfur-containing compound (thiophene) is present in the feed. The addition of tin can block these sites preferentially, thus decreasing the undesirable high initial hydrogenolysis rate of platinum catalysts in reforming reactions and eliminating the need for presulfiding the catalyst. Also, tin suppressed the hydrogenolysis reaction preferentially to the isomerization and cyclization reactions thus increasing the selectivities to isomerization and cyclization. The amount of carbon deposited was smaller on tin containing platinum catalysts during the dehydrogenation of cyclohexane and n-hexane.

Fujikawa, T.; Ribeiro, F.H.; Somorjai, G.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States)

1998-08-15T23:59:59.000Z

434

Salsbury and Diamond: Automated Testing of HVAC Systems for Commissioning -1 -Automated Testing of HVAC Systems for Commissioning  

E-Print Network (OSTI)

and Diamond: Automated Testing of HVAC Systems for Commissioning - 1 - Automated Testing of HVAC Systems This paper describes an approach to the automation of the commissioning of HVAC systems. The approach of many HVAC systems is limited more by poor installation, commissioning, and maintenance than by poor

435

Bonding and Stability of Hybrid Diamond/Nanotube O.A. SHENDEROVA*, D. ARESHKIN and D.W. BRENNER  

E-Print Network (OSTI)

Bonding and Stability of Hybrid Diamond/Nanotube Structures O.A. SHENDEROVA*, D. ARESHKIN and D.W precursors", Nature 364, 607. [6] Shenderova, O. and Brenner, D.W. (1997) "Coexistence of two carbon phases.T. and Brenner, D.W. (1997) "Mechanical Properties of nanotubule fibers and composites determined from

Brenner, Donald W.

436

A comparative study of three different chemical vapor deposition techniques of carbon nanotube growth on diamond films  

Science Conference Proceedings (OSTI)

This paper compares between the methods of growing carbon nanotubes (CNTs) on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power ...

Betty T. Quinton, Paul N. Barnes, Chakrapani V. Varanasi, Jack Burke, Bang-Hung Tsao, Kevin J. Yost, Sharmila M. Mukhopadhyay

2013-01-01T23:59:59.000Z

437

Program plan for the development of advanced synthetic-diamond drill bits for hard-rock drilling  

DOE Green Energy (OSTI)

Eight companys have teamed with Sandia Labs to work on five projects as part of a cooperative effort to advance the state of the ar in synthetic-diamond drill bit design and manufacture. DBS (a Baroid Company), Dennis Tool Company, Hughes Christensen Company, Maurer Engineering, Megadiamond, Security Diamond Products, Slimdril International, and Smith International. Objective of each project is to develop advanced bit technology that results in new commercial products with longer bit life and higher penetration rates in hard formations. Each project explores a different approach to synthetic-diamond cutter and bit design and, consequently, uses different approaches to developing the technology. Each of these approaches builds or the respective companies` capabilities and current product interests. Sandia`s role is to assure integration of the individual projects into a coherent program and tc provide unique testing and analytical capabilities where needed. One additional company, Amoco Production Research, will provide synthetic-diamond drill bit research expertise and field testing services for each project in the program.

Glowka, D.A.; Schafer, D.M.

1993-09-01T23:59:59.000Z

438

A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods  

Science Conference Proceedings (OSTI)

In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm{sup 3} regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Inoue, Toru [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

2009-06-01T23:59:59.000Z

439

Howard J. Diamond, U.S. GCOS Program Manager, National Climatic Data Center (NCDC), National Oceanic and Atmospheric Administration (NOAA)  

E-Print Network (OSTI)

Howard J. Diamond, U.S. GCOS Program Manager, National Climatic Data Center (NCDC), National and System Development Climate Data Management Tropical Cyclone Data and Information Work Communicating System Program Manager Director, World Data Center for Meteorology Formal NOAA Lead on U.S. climate bi

440

Published in J. Mat. Sci. Lettr. 18 (1999) 427-430 Selective Patterned Deposition of Diamond using a New Technique  

E-Print Network (OSTI)

of centrifugation on diamond deposition. It is generally believed that atomic hydrogen at the growth surface deposition were unsuitable for experiments on a centrifuge. Thus, a new closed chemical vapor transport and removal of gas [4]. Graphite was used as a carbon source in the presence of hydrogen at low pressure

Regel, Liya L.

Note: This page contains sample records for the topic "lubricated polycrystalline diamond" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development and evaluation of operational strategies for providing an integrated diamond interchange ramp-metering control system  

E-Print Network (OSTI)

Diamond interchanges and their associated ramps are where the surface street arterial system and the freeway system interface. Historically, these two elements of the system have been operated with little or no coordination between the two. Therefore, there is a lack of both analysis tools and operational strategies for considering them as an integrated system. One drawback of operating the ramp-metering system and the diamond interchange system in isolation is that traffic from the ramp, particularly if it is metered, can spill back into the diamond interchange, causing both congestion and safety concerns at the diamond interchange. While flushing the ramp queues by temporarily suspending ramp metering has been the primary strategy for preventing queue spillback, it can result in freeway system breakdown, which would affect the entire system's efficiency. The aim of this research was to develop operational strategies for managing an integrated diamond interchange ramp-metering system (IDIRMS). Enhanced modeling methodologies were developed for an IDIRMS. A computer model named DRIVE (Diamond Interchange and Ramp Metering Integration Via Evaluation) was developed, which was characterized as a mesoscopic simulation and analysis model. DRIVE incorporated the enhanced modeling methodologies developed in this study and could be used to perform system analysis for an IDIRMS given a set of system input parameters and variables. DRIVE was validated against a VISSIM microscopic simulation model, and general agreement was found between the two models. System operational characteristics were investigated using DRIVE to gain a better understanding of the system features. Integrated control strategies (ICS) were developed based on the two commonly used diamond interchange phasing schemes, basic three-phase and TTI four-phase. The ICS were evaluated using VISSIM microscopic simulation under three general traffic demand scenarios: low, medium, and high, as characterized by the volume-to-capacity ratios at the metered ramps. The results of the evaluation indicate that the integrated operations through an adaptive signal control system were most effective under the medium traffic demand scenario by preventing or delaying the onset of ramp-metering queue flush, thereby minimizing freeway breakdown and system delays.

Tian, Zongzhong

2003-05-01T23:59:59.000Z

442

Device physics of thin-film polycrystalline cells and modules: Phase 1 annual report: February 1998--January 1999  

DOE Green Energy (OSTI)

This report describes work done by Colorado State University (CSU) during Phase 1 of this subcontract. CSU researchers continued to make basic measurements on CI(G)S and CdTe solar cells fabricated at different labs, to quantitatively deduce the loss mechanisms in these cells, and to make appropriate comparisons that illuminate where progress is being made. Cells evaluated included the new record CIGS cell, CIS cells made with and without CdS, and those made by electrodeposition and electroless growth from solution. Work on the role of impurities focused on sodium in CIS. Cells with varying amounts of sodium added during CIS deposition were fabricated at NREL using four types of substrates. The best performance was achieved with 10{sup {minus}2}--10{sup {minus}1} at% sodium, and the relative merits of proposed mechanisms for the sodium effect were compared. Researchers also worked on the construction and testing of a fine-focused laser-beam apparatus to measure local variations in polycrystalline cell performance. A 1{micro}m spot was achieved, spatial reproducibility in one and two dimensions is less than 1 {micro}m, and photocurrent is reliably measured when the 1{micro}m spot is reduced as low as 1-sun in intensity. In elevated-temperature stress tests, typical CdTe cells held at 100 C under illumination and normal resistive loads for extended periods of time were generally very stable; but those held under reverse or large forward bias and those contacted using larger amounts of copper were somewhat less stable. CdTe cell modeling produced reasonable fits to experimental data, including variations in back-contact barriers. A major challenge being addressed is the photovoltaic response of a single simple-geometry crystallite with realistic grain boundaries.

Sites, J. R.

1999-12-21T23:59:59.000Z

443

Device Physics of Thin-Film Polycrystalline Cells and Modules; Final Subcontract Report; 6 December 1993-15 March 1998  

DOE Green Energy (OSTI)

This report describes work performed under this subcontract by Colorado State University (CSU). The results of the subcontract effort included progress in understanding CdTe and Cu(In1-xGax)Se2-based solar cells, in developing additional measurement and analysis techniques at the module level, and in strengthening collaboration within the thin-film polycrystalline solar-cell community. A major part of the CdTe work consisted of elevated-temperature stress tests to determine fabrication and operation conditions that minimize the possibility of long-term performance changes. Other CdTe studies included analysis of the back-contact junction, complete photon accounting, and the tradeoff with thin CdS between photocurrent gain and voltage loss. The Cu(In1-xGax)Se2 studies included work on the role of sodium in enhancing performance, the conditions under which conduction-band offsets affect cell performance, the transient effects of cycling between light and dark conditions, and detailed analysis of several individual series of cells. One aspect of thin-film module analysis has been addressing the differences in approach needed for relatively large individual cells made without grids. Most work, however, focused on analysis of laser-scanning data, including defect signatures, photocurrent/shunting separation, and the effects of forward bias or high-intensity light. Collaborations with other laboratories continued on an individual basis, and starting in 1994, collaboration was through the national R&D photovoltaic teams. CSU has been heavily involved in the structure and logistics of both the CdTe and CIS teams, as well as making frequent technical contributions in both areas.

Sites, J. R. (Department of Physics, Colorado State University, Ft. Collins, Colorado)

1999-05-03T23:59:59.000Z

444

High-Temperature Experiments using a Resistively-Heated High-Pressure Membrane Diamond Anvil Cell  

SciTech Connect

A reliable high-performance heating method using resistive heaters and a membrane driven diamond anvil cell (mDAC) is presented. Two micro-heaters are mounted in a mDAC and use electrical power of less than 150 W to achieve sample temperatures up to 1200 K. For temperature measurement we use two K-type thermocouples mounted near the sample. The approach can be used for in-situ Raman spectroscopy and x-ray diffraction at high pressures and temperatures. A W-Re alloy gasket material permits stable operation of mDAC at high temperature. Using this method, we made an isothermal compression at 900 K to pressures in excess of 100 GPa and isobaric heating at 95 GPa to temperatures in excess of 1000 K. As an example, we present high temperature Raman spectroscopy measurements of nitrogen at high pressures.

Jenei, Z; Visbeck, K; Cynn, H; Yoo, C; Evans, W

2009-04-22T23:59:59.000Z

445

Theoretical tool movement required to diamond turn an off-axis paraboloid on axis  

SciTech Connect

High-quality, off-axis parabolic reflectors, required by the CTR and laser-fusion programs at Lawrence Livermore Laboratory (LLL) and other ERDA laboratories, are currently manufactured by hand. There are several drawbacks to this method, including lead times of up to a year, costs in excess of $75,000 for a small reflector, and unsatisfactory limits to the tolerances obtainable. This situation has led to a search for cheaper and more accurate methods of manufacturing off-axis paraboloids. An alternative method, turning the workpiece about its axis on a diamond-turning machine, is presented, and the equations describing the necessary tool movement are derived. A discussion of a particular case suggests that the proposed technique is feasible. (auth)

Thompson, D.C.

1975-12-19T23:59:59.000Z

446

High-precision measurements of the diamond Hugoniot in and above the melt region  

Science Conference Proceedings (OSTI)

High-precision measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3%-1.1% precision using a velocity interferometer. Impedance-matching analysis, incorporating systematic uncertainties in the equation of state of the quartz standard, was used to determine the Hugoniot with 1.2%-2.7% precision in density. The results are in good agreement with published ab initio calculations, which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments, which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar, the present measurements indicate that the mixed phase is a few percent more dense than what would be expected from a simple interpolation between liquid and solid Hugoniots.

Hicks, D. G.; Celliers, P. M.; Bradley, D. K.; Eggert, J. H.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, New York 14623 (United States); McWilliams, R. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); University of California, Berkeley, California 94720 (United States); Jeanloz, R. [University of California, Berkeley, California 94720 (United States)

2008-11-01T23:59:59.000Z

447

High precision measurements of the diamond Hugoniot in and above the melt region  

Science Conference Proceedings (OSTI)

High precision laser-driven shock wave measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3-1.1% precision using a velocity interferometer. Impedance matching analysis, incorporating systematic errors in the equation-of-state of the quartz standard, was used to determine the Hugoniot with 1.2-2.7% precision in density. The results are in good agreement with published ab initio calculations which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar these measurements indicate that the mixed phase may be slightly more dense than would be expected from a simple interpolation between liquid and solid Hugoniots.

Hicks, D; Boehly, T; Celliers, P; Bradley, D; Eggert, J; McWilliams, R S; Collins, G

2008-08-05T23:59:59.000Z

448

Controlling the quantum dynamics of a mesoscopic spin bath in diamond  

E-Print Network (OSTI)

Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing.

G. de Lange; T. van der Sar; M. S. Blok; Z. H. Wang; V. V. Dobrovitski; R. Hanson

2011-04-24T23:59:59.000Z

449

Richard Diamond  

NLE Websites -- All DOE Office Websites (Extended Search)

on Home Energy Audits: The Role of Auditors, Labels, Reports, and Audit Tools on Homeowner Decision---Making.., 2012. Download: PDF (18.47 MB) Ingle, Aaron, Mithra M. Moezzi,...

450

Band offsets of Al{sub 2}O{sub 3} and HfO{sub 2} oxides deposited by atomic layer deposition technique on hydrogenated diamond  

SciTech Connect

High-k oxide insulators (Al{sub 2}O{sub 3} and HfO{sub 2}) have been deposited on a single crystalline hydrogenated diamond (H-diamond) epilayer by an atomic layer deposition technique at temperature as low as 120 Degree-Sign C. Interfacial electronic band structures are characterized by X-ray photoelectron spectroscopy. Based on core-level binding energies and valence band maximum values, valence band offsets are found to be 2.9 {+-} 0.2 and 2.6 {+-} 0.2 eV for Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions, respectively. Band gaps of the Al{sub 2}O{sub 3} and HfO{sub 2} have been determined to be 7.2 {+-} 0.2 and 5.4 {+-} 0.2 eV by measuring O 1s energy loss spectra, respectively. Both the Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions are concluded to be type-II staggered band configurations with conduction band offsets of 1.2 {+-} 0.2 and 2.7 {+-} 0.2 eV, respectively.

Liu, J. W.; Liao, M. Y.; Imura, M. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Koide, Y. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2012-12-17T23:59:59.000Z

451

Influence of process parameters on rolling-contact-fatigue life of ion plated nickel-copper-silver lubrication  

Science Conference Proceedings (OSTI)

In this paper, we present a connection between argon ion flux, element-mixing, and rolling contact fatigue (RCF) life of a thin film nickel-copper-silver lubricant on ball bearings. The film is deposited on the balls using an ion plating process and tested for RCF in high vacuum. The ion flux is measured using a Langmuir probe and the plane stress within the film during deposition is calculated using a thin film model. Experiments reveal that there is an inverse relationship between ion flux and RCF life for most deposition voltage and pressure combinations tested, specifically, 15.5-18.5 mTorr and 1.5-3.5 kV. For voltages up to 2.5 kV, RCF life decreases as ion flux increases due to increased compressive stress within the film, reaching as high as 2.6 GPa. For voltages between 2.5 and 3.5 kV, interlayer mixing of nickel and copper with the silver layer reduces RCF life due to contamination, even as ion flux and corresponding film compressive stress are reduced. A Monte Carlo-based simulation tool, SRIM is used to track collision cascades of the argon ions and metal atoms within the coating layers. At process voltages above 2.5 kV we observe elemental mixing of copper and nickel with the silver layer using Auger electron spectroscopy of coated steel and Si{sub 3}N{sub 4} balls. The authors conclude that an ion flux greater than 5.0 x 10{sup 14} cm{sup -2} s{sup -1} leads to reduced RCF life due to high film stress. In addition, process voltages greater than 2.5 kV also reduce RCF life due to contamination and interlayer mixing of nickel and copper within the silver layer.

Danyluk, Mike; Dhingra, Anoop [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211-3029 (United States)

2012-05-15T23:59:59.000Z

452

Physical models of thin film polycrystalline solar cells based on measured grain-boundary and electronic-parameter properties. Final report, September 18, 1978-December 31, 1979  

DOE Green Energy (OSTI)

The research has sought the following: to identify and characterize the basic photovoltaic mechanisms that govern the conversion efficiency of polycrystalline thin-film solar cells; to experimentally determine the electronic parameters related to these photovoltaic mechanisms; and to relate these mechanisms and parameters to the conversion efficiency through theoretical physical models developed for engineering design. These objectives are all intimately related. The emphasis of the work has been on polysilicon, although it is building a foundation of understanding useful for similar research in the future on other thin-film materials. Progress is reported. (WHK)

Lindholm, F.A.; Fossum, J.G.; Holloway, P.A.; Neugroschel, A.

1979-01-01T23:59:59.000Z

453

Dynamic polarization of single nuclear spins by optical pumping of NV color centers in diamond at room temperature  

E-Print Network (OSTI)

We report a versatile method to efficiently polarize single nuclear spins in diamond, which is based on optical pumping of a single NV color center and mediated by a level-anti crossing in its excited state. A nuclear spin polarization higher than 98% is achieved at room temperature for the 15N nuclear spin associated to the NV center, corresponding to $\\mu$K effective nuclear spin temperature. We then show simultaneous deterministic initialization of two nuclear spins (13C and 15N) in close vicinity to a NV defect. Such robust control of nuclear spin states is a key ingredient for further scaling up of nuclear-spin based quantum registers in diamond.

V. Jacques; P. Neumann; J. Beck; M. Markham; D. Twitchen; J. Meijer; F. Kaiser; G. Balasubramanian; F. Jelezko; J. Wrachtrup

2008-08-01T23:59:59.000Z