Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

2

Motor gasolines, summer 1979  

SciTech Connect (OSTI)

Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-02-01T23:59:59.000Z

3

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

4

Motor gasolines, summer 1980  

SciTech Connect (OSTI)

Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

Shelton, E.M.

1981-02-01T23:59:59.000Z

5

Motor gasolines, Summer 1982  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

6

Motor gasolines, summer 1981  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 715 samples of motor gasoline were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 33 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing included in this report shows marketing districts into which the country is divided. A map included in this report shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.3 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1982-04-01T23:59:59.000Z

7

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

8

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

9

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

10

EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

11

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

12

EIA-878 Motor Gasoline Price Survey ? Reference Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Motor Gasoline Price Survey - Reference Guide For the purposes of the Motor Gasoline Price Survey (EIA-878), we collect prices for the following gasoline grades as defined by...

13

Motor gasolines, winter 1979-1980  

SciTech Connect (OSTI)

Analytical data for 1857 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report shows marketing areas districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas, 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R+M)/2) averages of gasoline sold in this country were 87.9, 92.1, 89.0, and 93.3 unleaded below 90.0, unleaded 90.0 and above, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-07-01T23:59:59.000Z

14

Motor gasolines, Winter 1980-81  

SciTech Connect (OSTI)

Analytical data for 546 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 23 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.6 unleaded below 90.0, 91.4 unleaded 90.0 and above, 89.1 leaded below 93.0, and 93.3 leaded 93.0 and above grades of gasoline.

Shelton, E.M.

1981-07-01T23:59:59.000Z

15

Summer 2002 Motor Gasoline Outlook2.doc  

Gasoline and Diesel Fuel Update (EIA)

Summer 2002 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2002), rising average crude oil costs are expected to yield above -average seasonal gasoline price increases at the pump. However, year-over-year comparisons for pump prices are still likely to be lower this summer. Inventories are at higher levels than last year in April, so some cushion against early-season price spikes is in place and price levels are expected to range below last year's averages, assuming no unanticipated disruptions. Still, OPEC production restraint and tightening world oil markets now probably mark the end of the brief respite (since last fall) from two years of relatively high gasoline prices. * Retail gasoline prices (regular grade) are expected to average $1.46 per gallon, 5

16

Summer 2003 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike levels in time for the peak driving season, and the impact of recent disruptions in Nigerian oil output. Moreover, unusually low crude oil and gasoline inventory levels at the outset of the driving season are expected to keep prices high throughout much of the

17

Motor gasolines, winter 1981-1982  

SciTech Connect (OSTI)

Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

Shelton, E M

1982-07-01T23:59:59.000Z

18

Motor gasolines, winter 1982-83  

SciTech Connect (OSTI)

Analytical data for 1330 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 28 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.5 for unleaded 90.0 and above, and 89.1 for leaded below 93.0, and no data was reported in this report for leaded gasolines with an antiknock index (R + M)/2 93.0 and above. 21 figures, 5 tables.

Shelton, E.M.

1983-07-01T23:59:59.000Z

19

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

Gasoline and Diesel Fuel Update (EIA)

Demand, Supply, and Price Outlook for Reformulated Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995 by Tancred Lidderdale* Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gaso- line in a number of U.S. metropolitan areas. Refor- mulated motor gasoline is expected to constitute about one-third of total motor gasoline demand in 1995, and refiners will have to change plant opera- tions and modify equipment in order to meet the higher demand. The costs incurred are expected to create a wholesale price premium for reformu- lated motor gasoline of up to 4.0 cents per gallon over the price of conventional motor gasoline. This article discusses the effects of the new regulations on the motor gasoline market and the refining

20

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

22

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

23

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

24

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

25

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

26

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

27

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

28

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

29

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

30

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy Information...

31

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

32

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

33

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

34

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

35

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

36

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

37

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

38

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

39

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

40

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

42

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

43

U.S. Motor Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Total 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 Through Retail Outlets 26,507.1 22,632.7 22,641.3 22,038.2 22,474.5 21,660.0 1983-2013 Sales for Resale, Total NA NA NA NA NA NA 1983-2013 DTW 24,954.1 29,704.3 30,138.3 29,222.8 30,011.9 28,880.3 1994-2013 Rack 236,373.7 242,166.6 243,892.5 243,789.7 248,761.4 237,431.5 1994-2013

44

Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

April 2004 April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to September 2004), retail gasoline prices (regular grade, all formulations) are projected to average $1.76 per gallon, about 20 cents above last summer. A 95-percent confidence range for the summer price average, excluding specific consideration of major

45

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

2003-01-01T23:59:59.000Z

46

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

99.2 - 105.3 See footnotes at end of table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

47

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

66.6 - 72.3 See footnotes at end of table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

48

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

133.6 - 276.4 See footnotes at end of table. 220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

49

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

201.3 - 453.3 See footnotes at end of table. 262 Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

50

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

51

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

52

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

53

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information Administration...

54

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

55

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information Administration...

56

Restructuring: The Changing Face of Motor Gasoline Marketing  

Reports and Publications (EIA)

This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

2001-01-01T23:59:59.000Z

57

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

58

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

59

Estimation of Individual C8 to C10 Aromatic Hydrocarbons in Naphthas and Motor Gasolines by Capillary Gas Chromatography  

Science Journals Connector (OSTI)

......naphthas and motor gasolines is o f great importance...C10 aromatics in straight run, processed naphtha...reformed, and motor gasolines), or i n aromatic...analysis in any straight run, reformed naphthas, and gasolines with final boiling......

Basant Kumar; R.K. Kuchhal; Pradeep Kumar; P.L. Gupta

1986-03-01T23:59:59.000Z

60

Motor Gasoline Market Spring 2007 and Implications for Spring 2008  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Market Spring 2007 Motor Gasoline Market Spring 2007 and Implications for Spring 2008 April 2008 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor. Preface and Contacts

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

1999-01-01T23:59:59.000Z

62

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

56 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

63

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

56 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

64

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

65

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AdministrationPetroleum Marketing Annual 1999 401 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon Excluding...

66

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

67

,"U.S. Motor Gasoline Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices" Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Motor Gasoline Prices",6,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_allmg_c_nus_epm0_dpgal_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_allmg_c_nus_epm0_dpgal_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/2/2013 2:33:46 AM"

68

Why Do Motor Gasoline Prices Vary Regionally? California Case Study  

Reports and Publications (EIA)

Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

1998-01-01T23:59:59.000Z

69

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

78.2 101.8 83.6 87.5 74.7 See footnotes at end of table. A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District, and State, 1984-Present 452 Energy Information...

70

,"U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Users, Total Refiner Motor Gasoline Sales Volumes" Users, Total Refiner Motor Gasoline Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Products for Refiner Gasoline Volumes",1,"Monthly","9/2013","1/15/1983" ,"Data 2","by Grade",3,"Monthly","9/2013","1/15/1983" ,"Data 3","by Formulation",3,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_d_nus_vtr_mgalpd_m.xls"

71

Microsoft Word - Summer 2006 Motor Gasoline Prices.doc  

Gasoline and Diesel Fuel Update (EIA)

Coast Chicago New York Harbor Sources: Ethanol spot prices through July 7, 2006 - Jim Jordan & Associates, Fuels Blendstock Report (www.jordan-associates.com); Gasoline prices -...

72

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

68.6 62.0 70.7 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

73

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

68.9 62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

74

,"U.S. Motor Gasoline Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Motor Gasoline Refiner Sales Volumes",6,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_c_nus_epm0_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refmg_c_nus_epm0_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

75

,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Users, Total Refiner Sales Volumes" Users, Total Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_a_epm0_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refmg_a_epm0_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

76

,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes...  

U.S. Energy Information Administration (EIA) Indexed Site

for Refiner Gasoline Volumes" "Sourcekey","A103700001" "Date","U.S. Total Gasoline WholesaleResale Volume by Refiners (Thousand Gallons per Day)" 30331,217871.4 30362,217946.8...

77

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:19 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

78

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:18 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

79

U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Motor Gasoline 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 by Grade Regular 23,757.8 20,526.5 20,356.1 19,806.6 20,240.9 19,586.1 1983-2013 Midgrade 1,876.1 1,545.0 1,534.8 1,527.0 1,561.5 1,484.7 1988-2013 Premium 2,545.7 2,312.4 2,252.9 2,233.5 2,318.1 2,212.1 1983-2013 by Formulation Conventional 16,716.2 14,277.3 13,878.1 13,588.6 14,053.9 13,516.9 1994-2013 Oxygenated - - - - - - 1994-2013

80

U.S. Sales to End Users Prices for Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gasoline, Average - - - - - - 1983-2013 Regular Gasoline - - - - - - 1983-2013 Midgrade Gasoline - - - - - - 1988-2013 Premium Gasoline - - - - - - 1983-2013 Conventional, Average - - - - - - 1994-2013 Conventional Regular - - - - - - 1994-2013 Conventional Midgrade - - - - - - 1994-2013 Conventional Premium - - - - - - 1994-2013 Oxygenated, Average 1994-2006 Oxygenated Regular

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Determination of Hydrocarbons Types and Oxygenates in Motor Gasoline: A Comparative Study by Different Analytical Techniques  

Science Journals Connector (OSTI)

Various standard and published methods based on chromatographic and spectroscopic techniques are routinely used for hydrocarbon types (aromatics, olefins, oxygenates, etc.) in gasoline range fuel products for the assessment of product quality monitoring (...

V. Bansal; G. J. Krishna; A. P. Singh; A. K. Gupta; A. S. Sarpal

2007-12-04T23:59:59.000Z

82

Reformulated Gasoline Complex Model  

Gasoline and Diesel Fuel Update (EIA)

Refiners Switch to Reformulated Refiners Switch to Reformulated Gasoline Complex Model Contents * Summary * Introduction o Table 1. Comparison of Simple Model and Complex Model RFG Per Gallon Requirements * Statutory, Individual Refinery, and Compliance Baselines o Table 2. Statutory Baseline Fuel Compositions * Simple Model * Complex Model o Table 3. Complex Model Variables * Endnotes Related EIA Short-Term Forecast Analysis Products * RFG Simple and Complex Model Spreadsheets * Areas Particpating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Reformulated Gasoline Foreign Refinery Rules * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 , (Adobe

83

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

84

Synthesis of new high performance lubricants and solid lubricants  

SciTech Connect (OSTI)

We have started to make a number of classes of new perfluoropolyethers both in the solid lubricant area and liquid lubricant area. We have prepared some chlorofluoroethers for testing as additives for normal petroleum and polyalphaolefin lubricants which are so widely used in the United States. Perfluoropolyethers are not soluble in hydrocarbons. On the other hand, these chlorofluoropolyethers are soluble in substantial amounts in simple hydrocarbons. These are uniquely capable of being additives that flow with the motor oil or the polyalphaolefin.

Lagow, R.J.

1992-03-01T23:59:59.000Z

85

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Sampling Methodology Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail gasoline to supplement information on the frame. The individual frame outlets were mapped to counties using their zip codes. The outlets were then assigned to the published geographic areas as defined by the EPA program area, or for conventional gasoline areas, as defined by the Census Bureau's Standard Metropolitan

86

Gasoline Prices: What is Happening?  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Prices: What is Happening? Gasoline Prices: What is Happening? 5/10/01 Click here to start Table of Contents Gasoline Prices: What is Happening? Retail Motor Gasoline Price* Forecast Doesn't Reflect Potential Volatility Midwest Looking Like Last Year RFG Responding More Strongly Gasoline Prices Vary Among Locations.Retail Regular Gasoline Price, Cents per Gallon May 8, 2001 Crude Oil Affects Gasoline Prices WTI Crude Oil Prices Are Expected To Remain Relatively High Through At Least 2001 Low Total OECD Oil Stocks* Keep Market Balance Tight Low U.S. Stocks Indicate Tight U.S. Market Regional Inventories Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) "New Factor" Contributing to Volatility: Excess Capacity is Gone Regional Refinery Utilization Shows Gulf Coast Pressure

87

Gasolin n  

Science Journals Connector (OSTI)

Gasolin n, Gasbenzin n ? natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-colo(u)red and of high API gravity (above 60░), that are produced wit...

2013-01-01T23:59:59.000Z

88

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6o░), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

89

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fleet that operates more than 30,000 motorized vehicles and has hybrid electric (diesel and gasoline) vehicles currently in service. FedEx Express has deployed 20 gasoline...

90

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

91

Microsoft Word - Gasoline_2008 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has contributed to a growing divergence between volume-based and energy-content-based measures of trends in gasoline consumption. * Consumer sensitivity to gasoline price changes increases during periods when

92

Electric car Gasoline car  

E-Print Network [OSTI]

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

93

Large Diesel Engine Lubrication  

Science Journals Connector (OSTI)

Centralized lubrication for slow-speed internal combustion engines ; Marine diesel engine lubrication ...

Hans Gaca; Jan Ruiter; G÷tz Mehr; Theo Mang

2014-01-01T23:59:59.000Z

94

Influence of boric acid additive size on green lubricant performance  

Science Journals Connector (OSTI)

...of these were automotive lubricants-engine oils and transmission fluids-whereas...P. Turgis, and S. Lamouri1996A general approach to discontinuous transfer films...Method to improve lubricity of low-sulfur diesel and gasoline fuelsUS Patent no. 6783561...

2010-01-01T23:59:59.000Z

95

The Performance of Gasoline Fuels and Surrogates in Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline...

96

Experimental and Theoretical Investigation of Lubricant and Additive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Theoretical Investigation of Lubricant and Additive Effects on Engine Friction Combining data from motored engine friction, a theoretical engine model, a line friction contact...

97

Synthesis of new high performance lubricants and solid lubricants. Progress report, June 1991--March 1992  

SciTech Connect (OSTI)

We have started to make a number of classes of new perfluoropolyethers both in the solid lubricant area and liquid lubricant area. We have prepared some chlorofluoroethers for testing as additives for normal petroleum and polyalphaolefin lubricants which are so widely used in the United States. Perfluoropolyethers are not soluble in hydrocarbons. On the other hand, these chlorofluoropolyethers are soluble in substantial amounts in simple hydrocarbons. These are uniquely capable of being additives that flow with the motor oil or the polyalphaolefin.

Lagow, R.J.

1992-03-01T23:59:59.000Z

98

Long-term historical trends in gasoline properties are charted  

SciTech Connect (OSTI)

Trends in motor gasolines between 1942 and 1981 have been evaluated based upon data contained in motor gasoline surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. They have been conducted in cooperation with the American Petroleum Institute since 1949. A typical report covers 2,400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots and properties obtained from a dozen different tests.

Shelton, E.M.; Whisman, M.L.; Woodward, P.W.

1982-08-02T23:59:59.000Z

99

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

100

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Synthesis of new high performance lubricants and solid lubricants  

SciTech Connect (OSTI)

In our second year of funding we began the testing phase of a number of new classes of lubricants. Three different testing collaborations have already begun and a fourth one is In the works with Dr. Stephen Hsu of the National Institute of Standards and Technology. Dr. Hsu also plans to test some of the same materials for us that Shell Development is studying. With Dr. Bill Jones of NASA, we are studying the effects of branching an high temperature lubricant properties in perfluoropolyethers, Initially Bill Jones is comparing the lubrication and physical properties of perfluorotetraglyme and the following two spherical perfluoropolyethers, Note that one contains a fluorocarbon chain and the other one contains a fluorocarbon ether chain. The synthesis of these was reported in the last progress report. With Professor Patricia Thiel of Iowa State University, we are working on studies of perfluoromethylene oxide ethers and have prepared a series of four of these polyethers to study in collaboration with her research group. These perfluoromethylene oxide ethers have the best low temperature properties of any known lubricants. Thiel's group is studying their interactions with metals under extreme conditions. Thirdly, we have also begun an Interaction with W. August Birke of Shell Development Company in Houston for whom we have already prepared samples of the chlorine-substituted fluorocarbon polyether lubricants whose structures appear on page 54 of our research proposal. Each of these four structures is thought to have potential as lubricant additives to motor oils. We also have underway syntheses of other fluorine-containing branched ether lubricants. These new materials which are also promising as antifriction additives for motor oils appear ahead of the perfluoro additives as Appendix I to the progress report. Additionally for Birke and Shell Development we have at their request prepared the novel compound perfluoro salicylic acid. This synthesis was suggested by the Shell staff who thought that esters of perfluoro salicylic acid might be an excellent antifriction additive for motor oil fuels. One of the best additives currently used in motor oils is the hydrocarbon ester of salicylic acid.

Lagow, Richard J.

1993-04-08T23:59:59.000Z

102

Tethered Lubricants  

SciTech Connect (OSTI)

We have performed extensive experimental and theoretical studies of interfacial friction, relaxation dynamics, and thermodynamics of polymer chains tethered to points, planes, and particles. A key result from our tribology studies using lateral force microscopy (LFM) measurements of polydisperse brushes of linear and branched chains densely grafted to planar substrates is that there are exceedingly low friction coefficients for these systems. Specific project achievements include: (1) Synthesis of three-tiered lubricant films containing controlled amounts of free and pendent PDMS chains, and investigated the effect of their molecular weight and volume fraction on interfacial friction. (2.) Detailed studies of a family of hairy particles termed nanoscale organic hybrid materials (NOHMs) and demonstration of their use as lubricants.

Archer, Lynden

2010-09-15T23:59:59.000Z

103

With Mathematica Gasoline Inventory  

E-Print Network [OSTI]

Preprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the station

Reiter, Clifford A.

104

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

105

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

106

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

107

Fact #639: September 6, 2010 Gasoline Tax Rates by State  

Broader source: Energy.gov [DOE]

The Federal Excise Tax on motor gasoline is 18.4 cents per gallon for all states. Each state applies additional taxes which vary from state to state. As of July 2010, Alaska had the lowest overall...

108

Gas Mileage of 1984 Vehicles by American Motors Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 American Motors Corporation Vehicles 4 American Motors Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 20 Combined 22 Highway 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 21 Combined 23 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Automatic 3-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 15 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 16 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 5-spd, Regular Gasoline

109

Measurement of water by oven evaporation using a novel oven design. 2. Water in motor oils and motor oil additives  

Science Journals Connector (OSTI)

The measurement of water in lubricating oils is important because water accelerates the corrosion of metal parts and bearings in motors. Some of the additives added to lubricating ... (KFR) causing a positive bia...

Sam A. Margolis; Kevin Vaishnav; John R. Sieber

2004-11-01T23:59:59.000Z

110

Motor Exhaust-related Occupations and Bladder Cancer  

Science Journals Connector (OSTI)

...effects of diesel and gasoline engine exhaust...from the general population...Registrar General's decennial...14), diesel and traffic...gasoline engines (20, 21...that in the general population...Exposure to Diesel Exhaust...Motor Vehicle Engines; Gaseous...

Debra T. Silverman; Robert N. Hoover; Thomas J. Mason; and G. Marie Swanson

1986-04-01T23:59:59.000Z

111

The potential for low petroleum gasoline  

SciTech Connect (OSTI)

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

112

gasoline | OpenEI  

Open Energy Info (EERE)

gasoline gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

113

Ionic Liquids as Novel Engine Lubricants or Lubricant Additives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additives Ionic Liquids as Novel Engine Lubricants or Lubricant Additives Bench test results showed that compared with fully-formulated engine oils, selected low-viscosity...

114

DIESEL FUEL LUBRICATION  

SciTech Connect (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

115

Fuel and Lubricant Effects  

Broader source: Energy.gov (indexed) [DOE]

Fuel and Lubricant Effects Fuels Research, DOE agreements 13415, 13425 Bruce G. Bunting, Mike Bunce, Kukwon Cho, Jun Qu, Robert Crawford, Jim Szybist, Scott Sluder, John Storey,...

116

Short-Term Energy Outlook April 1999-Summer Gasoline Outlook  

Gasoline and Diesel Fuel Update (EIA)

Summer Motor Gasoline Outlook Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998 level, which was at the high end of the normal range. However, some refinery problems on the West Coast have tightened things up, at least temporarily. * Demand: up 2.0 percent from last summer due to solid economic growth and low (albeit rising) fuel prices; highway travel may reach 1.4 trillion miles for the

117

State Gasoline Taxes  

E-Print Network [OSTI]

BULLETIN OF THE UNIVERSITY OF KANSAS HUMANISTIC STUDIES Vol. III March 15, 192S No. 4 State Gasoline Taxes BY KDMUNI) IV LKAENKI), A. B., A, M. Instructor in Economics and Commerce The Unlvmity of Kansas PUBLISHED BY THE UNIVERSITY l... vast sums of money, Oregon was the first state to adopt a tax on gasoline to provide revenue for building and maintaining roads. Since this adoption in 1919, many states have passed laws provid ing for gasoline taxes until now forty-four states...

Learned, Edmund Philip

1925-03-15T23:59:59.000Z

118

Chapter Five The Classification and Applications of Liquid Lubricants  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the classification and applications of liquid lubricants. As a result of technical developments, currently many types of lubricating oils and special fluids exist. The technical needs are expressed in various commercial criteria used for oil classification. The type of equipment, and its component parts, defines the basis of the oil classification; the operating conditions of the lubricated part provide other important criteria needed to define the characteristics required in the oil. The main oil classifications in terms of equipment are into engine oils, turbine oil, steam turbine oils, etc. Oils for various parts of the equipment include bearing oils, transmission oils, hydraulic oils, etc. Another classification system deals with the special requirements of certain industrial sectors. Thus, for example, textile oils, electrical insulating oils, quenching oils and oils for application in radioactive environments are specially manufactured and classified. Two-stroke gasoline engines used for powering four- and two-wheeled road vehicles, small boats, mowers, etc., can be classified in the context of lubrication under two groups: (1) engines with conventional lubrication systems and (2) engines with separate lubrication systems.

1992-01-01T23:59:59.000Z

119

4 - Hydrodynamic Lubrication  

Science Journals Connector (OSTI)

Publisher Summary In this chapter the basic principles of hydrodynamic lubrication are discussed. The mechanisms of hydrodynamic film generation and the effects of operating variables such as velocity, temperature, load, design parameters, etc., on the performance of such films are outlined. These are explained using bearings commonly found in many engineering applications as examples. Secondary effects in hydrodynamic lubrication such as viscous heating, compressible and non-Newtonian lubricants, bearing-vibration and deformation are described and their influence on bearing-performance assessed. The complete separation of sliding surfaces by a liquid film under full hydrodynamic lubrication can allow bearings to operate indefinitely without any wear. Any liquid or gas can be used for this form of lubrication, provided that no chemical attack on the bearing occurs. The disadvantage of hydrodynamic lubrication is that a non-zero sliding or ôsqueezeö velocity is required before load capacity is obtained. Some damage to bearings during starting or stopping is inevitable because of this condition. Vibration induced by hydrodynamic instability may occur during operation at high speeds and this should always be carefully controlled. Despite these deficiencies, hydrodynamic lubrication is the preferred form of lubrication in most bearing systems.

Gwidon W. Stachowiak; Andrew W. Batchelor

2006-01-01T23:59:59.000Z

120

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Apr Apr '00 to May '00: +3.6% May '99 to May '00: +0.6% YTD '99 to YTD '00: -1.3% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Apr '00 to M ay '00: +3.2% M ay '99 to M ay '00: +5.7% YTD '99 to YTD '00: -0.9% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Apr '00 to May '00: +0.8% May '99 to May '00: +4.0% YTD '99 to YTD '00: +3.9% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Apr '00 to May '00: +0.4% May '99 to May '00: -1.6% YTD '99 to YTD '00: -17.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

122

Motor Gasoline Sales Through Retail Outlets Prices  

Gasoline and Diesel Fuel Update (EIA)

41 2.773 1.894 2.319 - - 1984-2012 41 2.773 1.894 2.319 - - 1984-2012 East Coast (PADD 1) 2.305 2.782 1.879 2.300 - - 1984-2012 New England (PADD 1A) 2.368 2.822 1.960 2.377 - - 1984-2012 Connecticut 2.388 2.808 1.943 2.422 - - 1984-2012 Maine 2.384 2.846 1.984 2.360 - - 1984-2012 Massachusetts 2.367 2.822 1.970 2.360 - - 1984-2012 New Hampshire 2.348 2.818 1.945 2.376 - - 1984-2012 Rhode Island 2.294 2.730 1.896 2.328 - - 1984-2012 Vermont 2.421 2.929 1.990 2.422 - - 1984-2012 Central Atlantic (PADD 1B) 2.310 2.787 1.900 2.328 - - 1984-2012 Delaware 2.274 2.754 1.872 2.313 - - 1984-2012 District of Columbia W W NA 2.449 - - 1984-2012 Maryland 2.321 2.760 1.882 2.321 - - 1984-2012 New Jersey 2.320 2.824 1.924 2.352 - - 1984-2012

123

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Nov Nov '00 to Dec '00: +1.3% Dec '99 to Dec '00: -5.0% YTD '99 to YTD '00: -1.7% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Nov '00 to Dec '00: +8.4% Dec '99 to Dec '00: +3.1% YTD '99 to YTD '00: +2.0% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Nov '00 to Dec '00: -0.4% Dec '99 to Dec '00: -3.0% YTD '99 to YTD '00: +3.9% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

124

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jan Jan '01 to Feb '01: 5.1% Feb '00 to Feb '01: +0.9% YTD '00 to YTD '01: +3.8% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 A djusted Gro wth R ates* Jan '01 to Feb '01: -6.4% Feb '00 to Feb '01: +4.3% YTD '00 to YTD '01: +11.5% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adj usted Growth Rates* Jan '01 to Feb '01: +0.5% Feb '00 to Feb '01: -1.3% YTD '00 to YTD '01: +0.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

125

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

May May '01 to Jun '01: +2.5% Jun '00 to Jun '01: +1.1% YTD '00 to YTD '01: +2.0% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* M ay '01 to Jun '01: -3.2% Jun '00 to Jun '01: -3.3% YTD '00 to YTD '01: +6.3% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* May '01 to Jun '01: +0.0% Jun '00 to Jun '01: -6.6% YTD '00 to YTD '01: -2.2% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

126

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Mar Mar '01 to Apr '01: +1.9% Apr '00 to Apr '01: +3.0% YTD '00 to YTD '01: +2.8% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 A djusted Gro wth R ates* Mar '01 to Apr '01: -5.4% Apr '00 to Apr '01: +9.5% YTD '00 to YTD '01: +10.2% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adj usted Growth Rates* Mar '01 to Apr '01: -2.4% Apr '00 to Apr '01: -4.7% YTD '00 to YTD '01: -1.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

127

Prime Supplier Sales Volumes of Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 376,636.4 362,968.6 362,798.5 365,247.6 354,951.9 347,234.5 1983-2012 East Coast (PADD 1) 134,534.8 128,463.4 129,135.1 128,893.5 125,252.4 119,021.3 1983-2012 New England (PADD 1A) 17,818.7 17,328.6 17,181.3 17,270.6 17,000.4 16,279.8 1983-2012 Connecticut 4,360.7 4,246.8 4,355.4 4,425.7 4,305.0 3,921.4 1983-2012 Maine 2,060.3 1,866.8 1,878.1 1,888.9 1,881.7 1,852.8 1983-2012 Massachusetts 7,598.2 7,425.7 7,022.2 6,997.2 6,993.4 6,821.5 1983-2012 New Hampshire 1,640.1 1,585.1 1,613.9 1,610.0 1,417.5 1,448.0 1983-2012 Rhode Island 1,286.3 1,401.8 1,380.8 1,417.8 1,514.9 1,340.0 1983-2012 Vermont 873.2 802.4 930.9 931.0 887.9 896.0 1983-2012 Central Atlantic (PADD 1B)

128

Motor Gasoline Sales to End Users Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 2.338 2.772 1.893 2.316 - - 1984-2012 East Coast (PADD 1) 2.302 2.780 1.877 2.298 - - 1984-2012 New England (PADD 1A) 2.366 2.819 1.959 2.375 - - 1984-2012 Connecticut 2.381 2.804 1.944 2.415 - - 1984-2012 Maine 2.384 2.848 1.984 2.360 - - 1984-2012 Massachusetts 2.366 2.820 1.969 2.358 - - 1984-2012 New Hampshire 2.348 2.809 1.940 2.375 - - 1984-2012 Rhode Island 2.294 2.729 1.896 2.329 - - 1984-2012 Vermont 2.420 2.925 1.989 2.422 - - 1984-2012 Central Atlantic (PADD 1B) 2.308 2.791 1.900 2.324 - - 1984-2012 Delaware 2.272 2.755 1.874 2.312 - - 1984-2012 District of Columbia 2.280 2.808 NA 2.396 - - 1984-2012 Maryland 2.313 2.808 1.883 2.315 - - 1984-2012

129

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

May May '00 to Jun '00: +0.9% Jun '99 to Jun '00: -2.1% YTD '99 to YTD '00: -1.4% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* May '00 to Jun '00: +0.1% Jun '99 to Jun '00: -0.1% YTD '99 to YTD '00: -0.8% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* May '00 to Jun '00: +6.9% Jun '99 to Jun '00: +8.2% YTD '99 to YTD '00: +4.6% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* May '00 to Jun '00: +12.2% Jun '99 to Jun '00: +5.1% YTD '99 to YTD '00: -14.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

130

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Feb Feb '00 to Mar '00: -0.6% Mar '99 to Mar '00: -3.0% YTD '99 to YTD '00: -2.2% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Feb '00 to M ar '00: -4.7% M ar '99 to M ar '00: -9.2% YTD '99 to YTD '00: -2.6% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Feb '00 to Mar '00: +3.8% Mar '99 to Mar '00: +5.3% YTD '99 to YTD '00: +2.8% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Feb '00 to Mar '00: -12.2% Mar '99 to Mar '00: -22.9% YTD '99 to YTD '00: -22.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of

131

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Mar Mar '00 to Apr '00: +0.3% Apr '99 to Apr '00: -2.2% YTD '99 to YTD '00: -1.8% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Mar '00 to Apr '00: -5.8% Apr '99 to Apr '00: -1.9% YTD '99 to YTD '00: -2.4% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Mar '00 to Apr '00: +0.3% Apr '99 to Apr '00: +5.8% YTD '99 to YTD '00: +3.9% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Mar '00 to Apr '00: -2.2% Apr '99 to Apr '00: -9.0% YTD '99 to YTD '00: -20.4% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

132

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jun Jun '00 to Jul '00: -2.3% Jul '99 to Jul '00: -3.9% YTD '99 to YTD '00: -2.2% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jun '00 to Jul '00: -8.2% Jul '99 to Jul '00: +0.2% YTD '99 to YTD '00: +1.7% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jun '00 to Jul '00: -1.1% Jul '99 to Jul '00: +5.0% YTD '99 to YTD '00: +5.2% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jun '00 to Jul '00: +5.9% Jul '99 to Jul '00: +1.9% YTD '99 to YTD '00: -13.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

133

Stocks of Motor Gasoline Blending Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

187,013 192,571 196,254 197,510 206,627 210,238 1983-2015 PADD 1 46,448 47,840 50,373 50,816 56,416 58,286 2004-2015 PADD 2 38,944 40,652 41,331 43,698 45,607 47,017 2004-2015 PADD...

134

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Aug Aug '00 to Sep '00: -4.5% Sep '99 to Sep '00: -1.0% YTD '99 to YTD '00: -1.6% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Aug '00 to Sep '00: -3.0% Sep '99 to Sep'00: +1.6% YTD '99 to YTD '00: +2.4% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Aug '00 to Sep '00: -0.1% Sep '99 to Sep '00: +7.4% YTD '99 to YTD '00: +5.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Aug '00 to Sep '00: -0.6% Sep '99 to Sep '00: +0.8% YTD '99 to YTD '00: -10.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

135

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jan Jan '00 to Feb '00: +11.1% Feb '99 to Feb '00: -0.5% YTD '99 to YTD '00: -1.8% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jan '00 to Feb '00: +6.7% Feb '99 to Feb '00: +2.5% YTD '99 to YTD '00: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jan '00 to Feb '00: +5.5% Feb '99 to Feb '00: +0.8% YTD '99 to YTD '00: +2.2% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jan '00 to Feb '00: +4.6% Feb '99 to Feb '00: -19.3% YTD '99 to YTD '00: -21.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of

136

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Oct Oct '00 to Nov '00: -0.4% Nov '99 to Nov '00: -0.5% YTD '99 to YTD '00: -1.4% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Oct '00 to Nov '00: -1.3% Nov '99 to Nov '00: -0.7% YTD '99 to YTD '00: +2.0% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Oct '00 to Nov '00: +1.5% Nov '99 to Nov '00: +0.6% YTD '99 to YTD '00: +4.6% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Oct '00 to Nov '00: -7.8% Nov '99 to Nov '00: +1.3% YTD '99 to YTD '00: -7.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

137

Prime Supplier Sales Volumes of Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

351,699.1 357,563.7 359,454.4 355,964.6 360,621.2 344,753.3 351,699.1 357,563.7 359,454.4 355,964.6 360,621.2 344,753.3 1983-2013 East Coast (PADD 1) 119,156.1 119,239.6 119,547.5 117,708.0 119,558.2 116,411.8 1983-2013 New England (PADD 1A) 16,290.9 16,389.7 16,865.8 17,252.5 17,023.4 15,696.1 1983-2013 Connecticut 3,962.5 3,969.5 4,012.0 3,982.9 4,034.9 3,938.4 1983-2013 Maine 1,996.1 2,019.3 2,115.5 2,325.4 2,352.0 1,993.8 1983-2013 Massachusetts 6,548.1 6,503.0 6,738.6 6,583.4 6,362.9 5,878.6 1983-2013 New Hampshire 1,640.7 1,674.8 1,710.0 1,881.9 1,811.8 1,630.1 1983-2013 Rhode Island 1,251.2 1,324.8 1,380.6 1,455.4 1,427.8 1,331.8 1983-2013 Vermont 892.2 898.4 909.2 1,023.5 1,034.1 923.4 1983-2013 Central Atlantic (PADD 1B) 41,665.6 41,737.2 42,371.2 42,040.6 42,068.1 41,170.2 1983-2013

138

Motor Gasoline Sales to End Users Prices  

U.S. Energy Information Administration (EIA) Indexed Site

83-2013 83-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013 New Hampshire - - - - - - 1983-2013 Rhode Island - - - - - - 1983-2013 Vermont - - - - - - 1983-2013 Central Atlantic (PADD 1B) - - - - - - 1983-2013 Delaware - - - - - - 1983-2013 District of Columbia - - - - - - 1983-2013 Maryland - - - - - - 1983-2013 New Jersey - - - - - - 1983-2013 New York - - - - - - 1983-2013 Pennsylvania - - - - - - 1983-2013 Lower Atlantic (PADD 1C) - - - - - - 1983-2013 Florida - - - - - - 1983-2013 Georgia - - - - - - 1983-2013 North Carolina - - - - - - 1983-2013

139

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jul Jul '00 to Aug '00: +2.0% Aug '99 to Aug '00: +0.6% YTD '99 to YTD '00: -1.6% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jul '00 to Aug '00: +12.2% Aug '99 to Aug '00: +8.2% YTD '99 to YTD '00: +2.5% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jul '00 to Aug '00: -1.9% Aug '99 to Aug '00: +4.5% YTD '99 to YTD '00: +5.3% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jul '00 to Aug '00: -4.1% Aug '99 to Aug '00: +0.0% YTD '99 to YTD '00: -11.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

140

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Apr Apr '01 to May '01: +0.6% May '00 to May '01: -0.1% YTD '00 to YTD '01: +2.2% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* Apr '01 to M ay '01: -4.6% M ay '00 to M ay '01: +1.0% YTD '00 to YTD '01: +8.3% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* Apr '01 to May '01: +5.6% May '00 to May '01: -0.2% YTD '00 to YTD '01: -1.1% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Dec Dec '00 to Jan '01: -6.9% Jan '00 to Jan '01: +7.6% YTD '00 to YTD '01: +7.6% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 A djusted Gro wth R ates* Dec '00 to Jan '01: +7.1% Jan '00 to Jan '01: +19.5% YTD '00 to YTD '01: +19.5% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adj usted Growth Rates* Dec '00 to Jan '01: -3.3% Jan '00 to Jan '01: +2.4% YTD '00 to YTD '01: +2.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

142

4 Hydrodynamic Lubrication  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the theory of hydrodynamic lubrication. The chapter demonstrates how a basic property of all liquids, such as viscosity, can be used to produce cheap, reliable bearings that operate with low friction and wear. The mechanisms of hydrodynamic film generation and the effects of operating variables such as velocity, temperature, load, design parameters, etc., on the performance of such films are outlined. This is explained using bearings commonly found in many engineering applications as examples. Secondary effects in hydrodynamic lubrication such as viscous heating, compressible and non-Newtonian lubricants, bearing vibration and deformation is described and their influence on bearing performance is assessed. Like many important scientific principles, chance observation played an important role in the recognition of hydrodynamic action as a basic mechanism of bearing lubrication. The complete separation of sliding surfaces by a liquid film under full hydrodynamic lubrication can allow bearings to operate indefinitely without any wear. Any liquid or gas can be used for this form of lubrication provided that no chemical attack of the bearing occurs. The disadvantage of hydrodynamic lubrication is that a non-zero sliding or ôsqueezeö velocity is required before load capacity is obtained.

1993-01-01T23:59:59.000Z

143

Diesel vs Gasoline Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vs Gasoline Production Diesel vs Gasoline Production A look at refinery decisions that decide "swing" between diesel and gasoline production deer08leister.pdf More Documents &...

144

Hydrogen-free domestic technologies for conversion of low-octane gasoline distillates on zeolite catalysts  

Science Journals Connector (OSTI)

This review is devoted to the problem of the Russian domestic manufacture of high-quality motor fuels using hydrogen-free catalytic conversion of straight-run gasoline on zeolites with a high content of...

L. M. Velichkina

2009-08-01T23:59:59.000Z

145

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

146

El Paso Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Good morning. I┬ĺm glad to be here in El Paso to share some of my agency┬ĺs insights on crude oil and gasoline prices. I represent the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. My division has the responsibility to monitor petroleum supplies and prices in the United States. As part of that work, we operate a number of surveys on a weekly, monthly, and annual basis. One of these is a weekly survey of retail gasoline prices at about 800 stations nationwide. This survey in particular allows us to observe the differences between local gasoline markets in the United States. While we track relatively few stations in the El Paso area, we have compared our price data with that collected by the El Paso City-County Health and Environmental District and

147

Is the gasoline tax regressive?  

E-Print Network [OSTI]

Claims of the regressivity of gasoline taxes typically rely on annual surveys of consumer income and expenditures which show that gasoline expenditures are a larger fraction of income for very low income households than ...

Poterba, James M.

1990-01-01T23:59:59.000Z

148

An experimental investigation into oil mist lubrication  

E-Print Network [OSTI]

Oil mist lubrication offers many advantages over sump lubrication. Unfortunately, mist lubrication generates sub-micrometer sized aerosol particles (fines) that escape from the oil mist lubrication system. These particles are an environmental hazard...

Kannan, Krishna

2012-06-07T23:59:59.000Z

149

Power system with an integrated lubrication circuit  

DOE Patents [OSTI]

A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

Hoff, Brian D. (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL); Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Lane, William H. (Chillicothe, IL)

2009-11-10T23:59:59.000Z

150

Synthesis of new high performance lubricants and solid lubricants  

SciTech Connect (OSTI)

Synthesis and testing was begun on a number of new classes of lubricants: perfluoropolyethers (branching effects), perfluoromethylene oxide ethers, chlorine-substituted fluorocarbon polyethers, fluorine-containing branched ether lubricants, glycerine- based perfluoropolyesters, perfluoro epoxy ether chains, etc.

Lagow, R.J.

1993-04-01T23:59:59.000Z

151

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

152

Gasoline demand in developing Asian countries  

SciTech Connect (OSTI)

This paper presents econometric estimates of motor gasoline demand in eleven developing countries of Asia. The price and GDP per capita elasticities are estimated for each country separately, and for several pooled combinations of the countries. The estimated elasticities for the Asian countries are compared with those of the OECD countries. Generally, one finds that the OECD countries have GDP elasticities that are smaller, and price elasticities that are larger (in absolute value). The price elasticities for the low-income Asian countries are more inelastic than for the middle-income Asian countries, and the GDP elasticities are generally more elastic. 13 refs., 6 tabs.

McRae, R. [Univ. of Calgary, Alberta (Canada)

1994-12-31T23:59:59.000Z

153

Materials - Coatings & Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coatings and Lubricants: Coatings and Lubricants: Super-Hard and Ultra-Low-Friction Films for Friction and Wear Control Ali Erdemir researches nanolubricants. Ali Erdemir researches nanolubricants. The many rolling, rotating and sliding mechanical assemblies in advanced transportation vehicles present friction and wear challenges for automotive engineers. These systems operate under severe conditions-high loads, speeds and temperatures-that currently available materials and lubricants do not tolerate well. Improving the surface friction and wear characteristics of the mechanical system components is an opportunity for engineers, and the use of super-hard, slippery surface films offers promise. Argonne scientists have developed a number of smooth, wear-resistant, low-friction nanocomposite nitride and diamond-like carbon films that have

154

Fuel excise taxes and consumer gasoline demand: comparing average retail price effects and gasoline tax effects .  

E-Print Network [OSTI]

??Interest in using gasoline taxes as a gasoline consumption reduction policy has increased. This study asks three questions to help determine how consumer gasoline consumptionů (more)

Sauer, William

2007-01-01T23:59:59.000Z

155

Vehicle Technologies Office: Fuels and Lubricants Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels and Lubricants Fuels and Lubricants Research to someone by E-mail Share Vehicle Technologies Office: Fuels and Lubricants Research on Facebook Tweet about Vehicle Technologies Office: Fuels and Lubricants Research on Twitter Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Google Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Delicious Rank Vehicle Technologies Office: Fuels and Lubricants Research on Digg Find More places to share Vehicle Technologies Office: Fuels and Lubricants Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

156

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

157

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Pass-through Gasoline Price Pass-through January 2003 by Michael Burdette and John Zyren* The single most visible energy statistic to American consumers is the retail price of gasoline. While the average consumer probably has a general notion that gasoline prices are related to those for crude oil, he or she likely has little idea that gasoline, like most other goods, is priced at many different levels in the marketing chain, and that changes ripple through the system as prices rise and fall. When substantial price changes occur, especially upward, there are often allegations of impropriety, even price gouging, on the part of petroleum refiners and/or marketers. In order to understand the movement of gasoline prices over time, it is necessary to examine the relationship between prices at retail and various wholesale levels.

158

Gas Mileage of 1993 Vehicles by J.K. Motors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 J.K. Motors Vehicles 3 J.K. Motors Vehicles EPA MPG MODEL City Comb Hwy 1993 J.K. Motors 190E 2.3 MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 190E 2.3 MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 230E MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 230E MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 300SL 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 300SL 14 City 15 Combined 16 Highway 1993 J.K. Motors BMW535I 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW535I 12 City 14 Combined 18 Highway 1993 J.K. Motors BMW635CSI 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW635CSI 12 City 14 Combined 18

159

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

160

motor | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279950 Varnish cache server motor Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel gallonage taxes 1950-1995, motor-fuel use 1919-1995, private and commercial highway use of special fuels, by state 1949-1995, highway use of gasoline, by state 1949-1995, gasohol sales by state, 1980-1992, and estimated use of gasohol, 1993-1995. The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT Fuel highway motor vehicle Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Motor-fuel gallonage taxes 1950-1995 (xlsx, 37.3 KiB)

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

14 - Lubricant use and disposal  

Science Journals Connector (OSTI)

Abstract: Criteria are defined for optimum machine-specific selection of conventional, high-performance and specialty lubricants. Lubrication consolidation is indicated as a means of rationalisation of inventories. Intended use of lubricants may be compromised by oxidation, water and air contamination, additive depletion and accumulation of contaminants, including wear debris, and biological degradation. Strategic oil analysis is described from simple in-shop sensory inspections to primary on-site standard testing and more comprehensive secondary testing methods as an operational maintenance tool for machine and lubricant condition monitoring to estimate remaining lubricant life time and prevent premature machine failure. The disposal of spent lubricants, including waste oil legislation and management, and re-refining technologies, are discussed.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

162

Fuel and Lubricant Effects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel and Lubricant Effects Fuel and Lubricant Effects 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

163

Fuel & Lubricant Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Lubricant Technologies Fuel & Lubricant Technologies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

164

Fuel & Lubricant Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel & Lubricant Technologies Fuel & Lubricant Technologies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

165

fuels and lubricants | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels and Lubricants The DOE Vehicle Technologies Office supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that...

166

California Gasoline Price Study  

Gasoline and Diesel Fuel Update (EIA)

DIRECTOR, PETROLEUM DIVISION DIRECTOR, PETROLEUM DIVISION ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY AND RESOURCES COMMITTEE ON GOVERNMENT REFORM U.S. HOUSE OF REPRESENTATIVES MAY 9, 2005 Mr. Chairman, I appreciate this opportunity to testify today on the Energy Information Administration's (EIA) insights into factors affecting recent gasoline prices. EIA is the statutorily chartered statistical and analytical agency within the U.S. Department of Energy. We are charged with providing objective, timely, and relevant data, analysis, and projections for the use of the Department of Energy, other Government agencies, the U.S. Congress, and the public. We produce data and analysis reports that are meant to assist policy makers in determining energy policy. Because we have an element of

167

Extend the Operating Life of Your Motor  

Broader source: Energy.gov [DOE]

Certain components of motors degrade with time and operating stress. Electrical insulation weakens over time with exposure to voltage unbalance, over and undervoltage, voltage disturbances, and temperature. Contact between moving surfaces causes wear. Wear is affected by dirt, moisture, and corrosive fumes and is greatly accelerated when lubricant is misapplied, becomes overheated or contaminated, or is not replaced at regular intervals. When any components are degraded beyond the point of economical repair or replacement, the motorĺs economic life ends.

168

U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012  

U.S. Energy Information Administration (EIA) Indexed Site

average gasoline and diesel fuel prices expected to be average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For the short-term, however, pump prices are expected to peak at $3.73 per gallon in May because of higher seasonal fuel demand and refiners switching their production to make cleaner burning gasoline for the summer. Diesel fuel will continue to cost more than gasoline because of strong global demand for diesel.

169

Gasoline Prices Also Influenced by Regional Gasoline Product Markets  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: Next we examine the wholesale market's added contribution to gasoline price variation and analyze the factors that impact the gasoline balance. There are two points to take away from this chart: The U.S. market moves with the world market, as can be seen with the high inventories in 1998, being drawn down to low levels during 1999. Crude and product markets are not independent. Crude oil and product markets move together fairly closely, with some lead/lag effects during transitions. The relationship between international crude oil markets and domestic product markets raises another issue. A subtle, but very important point, lost in recent discussions of gasoline price increases: The statement has been made that crude markets are not a factor in this past spring's high gasoline prices, since crude prices were

170

Collaborative Lubricating Oil Study on Emissions  

E-Print Network [OSTI]

technologies. The U.S. Department of Energy's Gasoline/Diesel Particulate Matter Split Study1 concluded vehicles fueled with gasoline, 10 percent ethanol in gasoline (commonly known as E10), diesel, biodiesel

171

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Data Collection Procedures Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

172

Gasoline Prices at Historical Lows  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Before looking at El Paso gasoline prices, let┬ĺs take a minute to look at the U.S. average price for context. Gasoline prices this year, adjusted for inflation, are the lowest ever. Back in March, before prices began to rise ahead of the traditional high-demand season, the U.S. average retail price fell to $1.00 per gallon. Prices rose an average of 7.5 cents, less than the typical seasonal runup, to peak in early June. Since then, prices have fallen back to $1.013. Given recent declines in crude oil and wholesale gasoline prices, we expect retail prices to continue to ease over at least the next few weeks. Since their sharp runup during the energy crises of the 1970┬ĺs, gasoline prices have actually been non-inflationary. Adjusting the historical prices by the Consumer Price Index, we can see that today┬ĺs

173

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

differences, whereas stationary series can be estimated in level form. The unit root test could not reject the hypothesis that the retail and spot gasoline price series have a...

174

Defining the role of elastic lubricants and micro textured surfaces in lubricated, sliding friction  

E-Print Network [OSTI]

Solutions for reducing friction in sliding, lubricated systems include modifying lubricant rheology using polymers and adding a micro-scale texture to the sliding surfaces, but the mechanism of how lubrication properties ...

Hupp, Sara J. (Sara Jean), 1979-

2008-01-01T23:59:59.000Z

175

Submersible canned motor transfer pump  

DOE Patents [OSTI]

A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

1997-01-01T23:59:59.000Z

176

Refiner Prices of Gasoline, All Grades - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline - DTW (U.S. only) Regular Gasoline - Rack (U.S. only) Regular Gasoline - Bulk (U.S. only) Midgrade Gasoline - Sales to End Users (U.S. only) Midgrade Gasoline - Through Retail Outlets Midgrade Gasoline - Other End Users Midgrade Gasoline - Sales for Resale Midgrade Gasoline - DTW (U.S. only) Midgrade Gasoline - Rack (U.S. only) Midgrade Gasoline - Bulk (U.S. only) Premium - Sales to End Users (U.S. only) Premium Gasoline - Through Retail Outlets Premium Gasoline - Other End Users Premium Gasoline - Sales for Resale Premium Gasoline - DTW (U.S. only) Premium Gasoline - Rack (U.S. only) Premium Gasoline - Bulk (U.S. only) Period: Monthly Annual

177

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

from among existing gasoline station locations in Sacra-VOC emitted at gasoline service stations, because these arethe gasoline terminal storage and refueling stations, it is

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

178

Path to High Efficiency Gasoline Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10johansson.pdf More Documents & Publications Partially...

179

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion  

Broader source: Energy.gov [DOE]

Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

180

Fuels & Lubricant Technologies- FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels & Lubricants Technology Fuels & Lubricants Technology Fuels and lubricants research at FEERC involves study of the impacts of fuel and lubricant properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes liquid fuels from synthetic and renewable sources as well as conventional and unconventional fossil-based sources. Combustion and emissions studies are leveraged with relevant single and multi-cylinder engine setups in the FEERC and access to a suite of unique diagnostic tools and a vehicle dynamometer laboratory. ORNL/DOE research has been cited by EPA in important decisions such as the 2006 diesel sulfur rule and the 2010/2011 E15 waiver decision. Major program categories and examples

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

Thornhill, D. A.

182

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

183

Gasoline Prices Vary Among Locations  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The public is probably more knowledgeable about what they pay for gasoline than about anything else they use regularly. Most Americans are bombarded several times a day with the price of gasoline. Many people who phone our office don't only want to know why prices have risen, but why their prices are different than prices in some other area - the gasoline station two blocks away, the average price quoted on the news, the price their uncle is paying in a different region of the country. This chart shows some of the different state averages for a specific month. Besides taxes, these differences are due to factors such as distance from refining sources, and mix of reformulated versus conventional fuels. What this snapshot does not show,is that all of these prices can

184

STEO January 2013 - average gasoline prices  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline prices are expected to decline over the next two years. The average pump price for regular unleaded gasoline was 3.63 a gallon during 2012. That is expected to fall...

185

Household gasoline demand in the United States  

E-Print Network [OSTI]

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

186

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI)...

187

2014 Annual Merit Review Results Report - Fuels & Lubricants...  

Energy Savers [EERE]

Fuels & Lubricants Technologies 2014 Annual Merit Review Results Report - Fuels & Lubricants Technologies Merit review of DOE Vehicle Technologies research activities...

188

What Drives U.S. Gasoline Prices?  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

weekly gasoline spot price 2011-14 ... 15 Table 3. Dickey-Fuller test and autocorrelogram results ......

189

Ionic Liquids as Novel Lubricants and /or Lubricant Additives  

SciTech Connect (OSTI)

This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

Qu, J. [ORNL; Viola, M. B. [General Motors Company

2013-10-31T23:59:59.000Z

190

Method For Testing Properties Of Corrosive Lubricants  

DOE Patents [OSTI]

A method of testing corrosive lubricating media using a wear testing apparatus without a mechanical seal. The wear testing apparatus and methods are effective for testing volatile corrosive lubricating media under pressure and at high temperatures.

Ohi, James (Denver, CO); De La Cruz, Jose L. (San Antonio, TX); Lacey, Paul I. (Wexford, IE)

2006-01-03T23:59:59.000Z

191

The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes  

SciTech Connect (OSTI)

Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Andrae, J.C.G. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

2009-05-15T23:59:59.000Z

192

Motor fuel prices in Turkey  

Science Journals Connector (OSTI)

Abstract The world?s most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study.

Erkan Erdogdu

2014-01-01T23:59:59.000Z

193

Motors Motor controllers  

E-Print Network [OSTI]

Aluminium frame Motors Motor controllers Ultrasonic multi-channel acquisition PC Tank Tank 400 600 800 1000 0 50 2 4 6 8 x 10 -3 r/r 0 Range (mm) Depth(mm) 25 /t Tand / or #12;Shallow water

194

Designing Alternatives to State Motor Fuel Taxes  

E-Print Network [OSTI]

Designing Alternatives to State Motor Fuel Taxes All states rely on gasoline taxes as one source efficiency and alternative fuel vehicles reduce both the equity of the revenue source and its growth over, leading to higher fuel efficiency, wide variations in fuel efficiency, and alternative- fuel vehicles

Bertini, Robert L.

195

Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Gasoline Gallon Gasoline Gallon Equivalent (GGE) Definition to someone by E-mail Share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Facebook Tweet about Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Twitter Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Google Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Delicious Rank Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Digg Find More places to share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Gasoline Gallon Equivalent (GGE) Definition

196

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

197

1 What is Oil ? General information  

E-Print Network [OSTI]

of petroleum products manufactured from crude oil. Many are for specific purposes, for example motor gasoline gasoline to heavier ones such as fuel oil. Oil #12;Crude oil Natural gas liquids Other hydrocarbons Aviation gasoline White spirit + SBP Gasoline type jet fuel Lubricants Unleaded gasoline Bitumen Leaded

Kammen, Daniel M.

198

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

84.5 84.5 84.3 77.3 74.4 72.2 75.5 93.4 93.0 82.9 78.3 W 81.7 February ............................. 84.3 84.0 77.5 71.6 71.6 74.6 93.3 92.9 83.1 75.4 81.2 81.0 March .................................. 82.7 82.5 77.8 70.5 71.8 74.1 91.7 91.3 83.3 74.2 W 80.7 April .................................... 82.8 82.6 79.3 68.6 68.2 73.7 91.9 91.5 84.4 72.5 W 80.9 May ..................................... 82.3 81.6 77.5 68.2 63.8 71.9 91.5 90.8 83.2 72.3 W 79.9 June .................................... 80.3 79.4 75.0 63.9 58.9 68.5 89.9 89.0 80.9 68.7 W 77.2 July ..................................... 78.8 78.0 73.0 64.8 59.0 67.9 88.3 87.5 79.0 69.2 W 75.8 August ................................ 85.0 84.5 80.6 74.0 70.7 76.5 94.5 93.9 86.5 78.3 W 83.9 September .......................... 88.1 87.2 83.6 71.9 71.2 77.2 97.6 96.7 89.4 75.8 W

199

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

73.0 73.0 72.5 68.2 57.5 55.3 62.2 82.0 81.4 74.0 61.5 W 70.2 February ............................. 67.2 66.8 62.0 54.9 53.1 57.9 76.8 76.4 67.7 58.9 W 65.0 March .................................. 62.7 62.4 57.3 52.2 49.7 54.3 72.2 71.9 63.2 56.0 W 61.0 April .................................... 65.2 65.0 59.8 55.6 53.9 57.3 74.1 73.9 65.6 59.7 W 63.8 May ..................................... 69.7 69.3 65.1 58.0 53.8 60.7 78.8 78.4 70.9 62.1 W 68.2 June .................................... 68.6 68.0 63.7 54.5 48.4 57.8 77.8 77.3 69.8 58.9 W 66.3 July ..................................... 66.9 66.4 61.6 51.8 47.6 55.5 76.6 76.1 68.0 56.2 W 64.1 August ................................ 65.0 64.4 59.4 48.1 45.2 52.8 75.1 74.5 65.7 52.4 W 61.4 September .......................... 63.4 63.0 58.4 49.1 46.1 52.8 73.4 73.0 64.6 53.1 W

200

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

91.0 91.0 91.0 80.1 77.2 - 78.5 100.2 100.0 84.9 80.2 - 82.6 February ............................. 93.1 92.9 83.8 77.7 - 80.4 101.1 100.8 88.1 80.2 - 84.1 March .................................. 91.7 91.5 85.2 75.1 - 79.8 96.8 96.8 90.1 NA - 84.4 April .................................... 88.3 88.1 79.3 69.6 - NA 94.0 93.9 83.7 70.7 - NA May ..................................... 89.4 89.3 81.7 75.8 - 78.1 95.8 95.7 88.0 76.9 - 81.6 June .................................... 88.5 88.4 79.4 71.7 - 74.6 95.5 95.5 84.5 72.9 - 77.2 July ..................................... 86.2 86.1 75.4 71.2 - 72.8 93.0 93.0 81.2 72.8 - 75.9 August ................................ 89.3 89.2 79.6 77.7 - 78.4 96.6 96.5 85.0 79.2 - 81.3 September .......................... 91.3 91.0 84.4 74.8 - 78.3 97.9 97.7 88.2 77.7 - 81.5 October

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

59.5 59.5 58.9 54.4 42.1 37.1 46.8 70.2 69.7 61.7 46.4 - 56.9 February ............................. 57.3 56.7 52.7 40.6 39.2 45.9 68.2 67.7 60.2 44.8 W 55.3 March .................................. 64.5 64.4 60.1 52.3 48.6 55.3 74.2 73.8 67.6 55.6 W 63.8 April .................................... 82.3 81.6 79.9 62.3 57.2 69.6 92.4 91.6 84.9 65.4 W 78.7 May ..................................... 79.8 78.9 76.3 59.2 54.0 66.0 90.6 89.9 82.9 63.9 W 76.6 June .................................... 74.7 74.6 71.0 61.1 58.0 64.9 85.2 84.8 77.6 64.9 W 73.4 July ..................................... 79.4 79.3 75.9 69.7 66.3 71.9 89.3 88.9 81.9 72.6 NA 78.7 August ................................ 86.5 86.0 82.9 73.3 73.5 77.7 96.4 95.7 88.9 76.6 W 84.8 September .......................... 86.9 86.3 82.0 73.5 70.5 76.9 96.3 95.6 88.7 77.5 W

202

Motor Gasoline Sales to End Users, Total Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 East Coast (PADD 1) 7,388.3 7,633.2 7,424.0 7,266.3 7,278.4 6,996.8 1993-2013 New England (PADD 1A) W W W W W W 1993-2013 Connecticut W W W W W W 1993-2013 Maine - - - - - - 1993-2013 Massachusetts W W W W W W 1993-2013 New Hampshire W W W W W W 1993-2013 Rhode Island W W W W W W 1993-2013 Vermont - - - - - - 1993-2013 Central Atlantic (PADD 1B) 4,037.6 4,235.4 4,284.8 4,251.9 4,152.3 3,982.5 1993-2013 Delaware W W W W W W 1993-2013 District of Columbia W W W - W W 1993-2013 Maryland W W W W W W 1993-2013 New Jersey W W W W W W 1993-2013 New York 2,402.7 2,514.6 2,563.6 2,537.4 2,464.5 2,368.9 1993-2013 Pennsylvania W W 762.9 773.0 767.2 732.1 1993-2013

203

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

83.6 83.6 83.3 77.1 71.3 66.2 71.8 91.6 91.1 82.2 75.5 - 78.4 February ............................. 82.1 81.8 74.8 68.6 64.3 69.3 90.3 89.8 80.0 72.5 - 75.7 March .................................. 79.9 79.7 72.6 66.3 62.6 67.2 88.1 87.8 78.3 70.3 W 73.5 April .................................... 79.0 78.8 72.4 65.2 60.7 66.3 87.3 87.0 77.8 69.3 - 72.7 May ..................................... 79.6 79.5 73.0 67.5 61.8 67.9 87.5 87.2 78.4 70.7 - 73.8 June .................................... 78.9 78.7 70.9 63.9 59.0 65.0 86.8 86.5 76.6 67.2 - 71.0 July ..................................... 77.3 77.2 69.7 63.8 57.6 64.3 85.4 85.1 75.7 67.3 - 70.6 August ................................ 82.1 81.9 75.4 71.0 63.7 70.9 89.9 89.6 81.0 74.8 - 77.3 September .......................... 80.9 80.7 73.3 66.3 60.8 67.1 89.1 88.6 79.2 69.9 -

204

Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 71,470 61,525 55,254 40,534 39,717 37,768 1993-2012 PAD District 1 19,732 16,074 10,858 3,913 3,741 3,513 1993-2012 Connecticut 1993-2004 Delaware 292 105 498 1993-2009 Florida 4,484 1,877 914 586 734 747 1993-2012 Georgia 2,141 1,724 800 374 251 220 1993-2012 Maine 889 374 130 152 1993-2012 Maryland 67 31 1993-2008 Massachusetts 2 4 3 1993-2012 New Hampshire 1993-2005 New Jersey 1,982 2,956 2,026 667 275 795 1993-2012 New York 1,768 1,469 273 194 628 483 1993-2012 North Carolina 1,977 1,724 1,470 591 389 317 1993-2012 Pennsylvania 3,731 3,595 3,421 697 782 188 1993-2012 Rhode Island 1993-2005 South Carolina 839 720 787 444 276 288 1993-2012

205

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

6 6 68.7 60.7 56.0 64.5 85.1 84.6 73.7 64.3 - 70.0 February ............................. 76.3 76.1 67.3 62.9 55.2 65.1 84.6 83.9 70.0 65.5 - 68.2 March .................................. 78.1 77.9 72.0 65.0 W 68.5 84.1 83.8 75.1 66.1 - 70.1 April .................................... 82.6 82.5 76.1 67.9 - 71.4 89.7 89.6 80.0 69.7 - 73.8 May ..................................... 87.9 87.9 79.9 71.8 - 75.1 94.3 94.2 84.6 73.5 - 77.7 June .................................... 90.2 90.2 80.0 66.5 - 72.0 96.4 96.3 84.0 68.7 - 75.0 July ..................................... 86.3 86.4 77.3 62.6 - 68.5 92.5 92.5 78.3 63.9 - 69.6 August ................................ 82.8 82.8 76.3 63.7 - 68.7 87.9 87.8 77.6 65.3 - 69.8 September .......................... 82.4 81.9 73.9 66.4 NA 69.4 NA NA 75.7 68.9 - 72.4 October ...............................

206

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7 7 69.7 61.6 W 65.5 84.2 83.9 75.4 65.0 - 71.8 February ............................. 78.1 77.6 71.3 64.5 - 68.0 85.6 85.1 77.4 67.6 - 73.8 March .................................. 83.3 83.0 79.0 72.2 W 75.7 89.7 89.4 85.1 74.4 - 81.1 April .................................... 92.1 91.9 86.0 76.1 - 79.5 100.6 100.1 93.3 77.6 - 84.9 May ..................................... 96.8 96.4 92.4 76.5 - 81.5 105.4 104.6 99.0 77.5 - 86.2 June .................................... 95.6 95.3 NA 76.7 - 81.6 103.7 103.2 98.0 77.5 - 85.8 July ..................................... 93.8 93.5 NA 75.3 - 80.2 101.5 101.1 96.1 76.2 - 84.7 August ................................ 95.2 95.0 NA 78.5 - 82.7 102.2 102.0 NA 80.0 - 86.7 September .......................... 97.1 96.7 88.1 79.7 - 82.9 104.7 104.4 93.7 82.0 - 87.4 October

207

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

51.0 51.0 50.8 45.0 38.1 33.0 39.1 59.9 59.7 51.9 42.3 - 46.1 February ............................. 49.4 49.3 43.4 36.3 32.8 37.6 58.6 58.4 50.4 40.4 - 44.3 March .................................. 57.2 57.1 52.4 46.9 39.7 47.1 65.7 65.5 58.6 50.5 - 53.7 April .................................... 68.1 68.0 64.2 56.7 47.2 56.2 76.5 76.2 69.8 60.5 - 63.9 May ..................................... 68.9 68.8 63.6 56.3 48.2 56.1 77.4 77.0 69.4 60.0 - 63.4 June .................................... 68.2 68.2 63.7 56.3 48.6 56.7 76.5 76.3 69.1 59.8 - 63.2 July ..................................... 73.6 73.6 69.8 63.6 55.3 63.8 81.8 81.6 75.0 67.2 - 70.0 August ................................ 78.7 78.7 74.6 68.4 62.5 69.0 87.5 87.2 79.9 72.0 - 74.9 September .......................... 82.1 81.9 77.5 71.5 64.7 71.9 90.9 90.5 83.1 75.3 -

208

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

9.0 9.0 68.8 61.7 55.1 51.1 56.0 77.1 76.6 66.9 59.4 - 62.6 February ............................. 69.6 69.4 63.4 56.3 52.0 57.4 77.6 77.2 68.9 60.4 - 64.3 March .................................. 75.3 75.1 69.2 63.6 57.7 64.3 83.2 82.8 74.6 67.5 W 70.8 April .................................... 83.2 83.0 77.3 71.5 64.3 71.6 91.1 90.7 82.5 75.8 - 78.9 May ..................................... 86.2 85.9 79.2 71.7 65.6 72.6 94.1 93.6 84.2 75.8 - 79.5 June .................................... 83.7 83.4 75.2 66.6 59.9 67.4 91.6 90.9 80.2 69.5 - 74.2 July ..................................... 81.8 81.5 74.0 66.6 60.0 67.3 89.6 89.1 79.2 70.2 - 74.2 August ................................ 80.3 80.2 73.1 66.2 60.0 66.9 88.0 87.6 78.4 69.8 W 73.5 September .......................... 80.6 80.5 73.7 67.2 60.4 67.8 88.3 87.9 78.8 70.9 -

209

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

66.1 66.1 65.8 58.4 51.1 49.2 52.4 74.6 74.2 64.6 55.6 - 59.1 February ............................. 63.3 63.2 56.3 50.1 47.4 51.0 72.0 71.6 62.1 54.1 - 57.3 March .................................. 61.3 61.2 54.2 47.9 45.4 48.9 69.9 69.5 60.0 51.9 - 55.0 April .................................... 62.6 62.5 56.3 51.1 47.1 51.5 71.0 70.7 61.8 55.1 - 57.7 May ..................................... 65.3 65.2 58.8 53.8 48.4 53.9 73.5 73.1 64.3 57.6 - 60.3 June .................................... 64.6 64.4 57.4 51.2 46.2 51.7 73.2 72.6 63.2 54.9 W 58.2 July ..................................... 63.4 63.2 56.0 49.8 45.1 50.5 72.2 71.7 62.2 53.4 - 56.9 August ................................ 60.5 60.3 52.9 45.0 41.0 46.3 69.6 69.2 59.2 48.8 - 53.0 September .......................... 59.2 59.1 52.8 45.8 40.8 46.7 68.2 67.9 58.8 49.7 -

210

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

2.2 2.2 71.6 66.6 60.0 56.1 63.1 81.2 80.6 71.7 64.6 - 69.7 February ............................. 72.7 72.2 67.3 60.3 56.4 63.3 81.5 80.9 72.7 64.8 - 70.4 March .................................. 77.0 76.6 71.7 66.0 64.7 68.7 85.9 85.3 77.7 70.0 - 75.5 April .................................... 87.8 87.6 82.8 76.2 76.2 79.5 96.1 95.6 88.4 80.5 - 86.2 May ..................................... 94.1 93.7 89.0 76.6 74.5 82.0 103.1 102.3 93.9 80.5 - 90.1 June .................................... 91.6 91.0 86.1 70.6 67.0 77.6 100.7 99.7 91.6 74.8 - 86.7 July ..................................... 87.8 87.6 83.0 70.8 68.0 76.3 96.9 96.3 88.3 74.9 - 84.3 August ................................ 84.0 83.8 78.3 68.9 65.0 72.8 93.1 92.5 83.5 73.3 W 80.6 September .......................... 82.1 82.0 76.0 69.6 66.1 72.2 91.0 90.6 81.2 73.7 W

211

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

8,502.8 8,502.8 30,091.1 22,860.9 121,863.2 24,529.2 169,253.3 7,955.3 8,081.1 12,658.5 10,618.5 1,152.7 24,429.7 February ............................. 33,160.7 35,054.9 31,625.2 135,105.9 26,023.8 192,754.9 5,205.4 5,273.9 5,951.6 5,714.2 333.0 11,998.8 March .................................. 37,159.8 39,011.8 35,012.6 142,409.7 27,404.1 204,826.5 2,090.0 2,127.2 2,619.4 2,344.1 - 4,963.5 April .................................... 38,869.0 40,735.1 36,827.8 142,606.1 26,540.1 205,973.9 568.3 580.0 980.8 1,461.1 - 2,442.0 May ..................................... 39,582.4 41,396.9 37,319.3 150,843.9 27,558.2 215,721.4 573.6 584.7 957.5 1,537.7 - 2,495.2 June .................................... 40,991.9 42,912.3 37,954.3 156,346.5 32,447.1 226,747.9 591.6 592.0 990.8 1,609.0 -

212

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

220.9 220.9 31,104.3 23,193.9 128,995.0 28,849.6 181,038.6 5,089.3 5,164.2 4,062.8 5,720.8 - 9,783.6 February ............................. 31,284.4 33,213.6 24,062.8 134,673.5 33,175.3 191,911.6 4,908.5 4,980.9 4,025.8 5,317.8 - 9,343.6 March .................................. 34,100.8 36,002.0 25,985.0 139,340.5 30,160.8 195,486.2 2,710.3 2,764.7 2,622.6 2,796.9 - 5,419.5 April .................................... 35,684.3 37,877.0 27,895.8 146,733.8 29,409.3 204,038.9 1,203.7 1,224.2 652.4 2,016.6 - 2,669.0 May ..................................... 35,150.2 36,866.7 27,401.6 148,271.7 28,449.3 204,122.6 1,711.4 1,730.6 1,284.0 2,091.9 - 3,375.9 June .................................... 36,536.0 38,235.2 27,402.2 151,739.3 24,832.7 203,974.3 1,956.2 1,978.1

213

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4,707.0 4,707.0 35,821.0 18,450.2 130,177.8 22,726.5 171,354.5 3,900.7 3,926.0 4,696.8 7,088.7 - 11,785.5 February ............................. 36,412.6 37,699.7 20,174.0 142,313.8 25,388.9 187,876.8 3,924.9 3,949.8 5,137.3 6,882.9 - 12,020.2 March .................................. 36,632.6 38,121.0 21,255.9 152,151.5 30,915.0 204,322.3 3,382.2 3,401.8 4,711.1 5,122.9 - 9,833.9 April .................................... 37,971.4 39,384.5 23,410.4 155,157.1 40,216.9 218,784.4 1,927.8 1,934.5 1,997.5 3,438.3 - 5,435.9 May ..................................... 37,771.0 39,109.5 22,504.7 154,536.5 34,938.2 211,979.5 1,944.7 1,953.1 1,570.1 3,450.5 - 5,020.5 June .................................... 37,777.7 38,969.0 22,350.8 163,781.5 29,805.1 215,937.4 2,027.1

214

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

161.3 161.3 30,767.0 22,353.2 127,342.1 24,284.9 173,980.2 8,319.4 8,460.9 13,456.3 W W 24,653.0 February ............................. 32,286.1 34,080.3 31,066.3 138,106.2 29,977.1 199,149.6 6,264.3 6,341.7 6,239.1 5,890.3 - 12,129.4 March .................................. 36,529.7 38,362.8 35,134.3 141,063.5 25,588.4 201,786.1 2,972.7 3,032.6 2,589.4 W W 4,958.5 April .................................... 36,904.9 38,994.6 31,715.8 147,020.0 33,979.9 212,715.8 1,558.8 1,592.8 1,049.5 1,668.8 - 2,718.3 May ..................................... 36,751.1 38,541.5 28,743.2 148,337.4 29,640.9 206,721.5 1,299.8 1,333.0 1,005.5 1,838.7 - 2,844.3 June .................................... 37,465.1 39,108.4 28,592.7 147,682.3 36,046.6 212,321.6

215

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

3,177.2 3,177.2 34,690.6 19,370.8 133,144.1 32,691.0 185,205.9 4,123.8 4,154.0 3,780.0 6,946.2 - 10,726.2 February ............................. 34,982.2 36,460.3 20,433.1 137,937.1 31,470.5 189,840.6 3,923.6 3,954.4 3,674.9 6,513.4 - 10,188.4 March .................................. 37,598.4 39,137.5 21,474.3 144,372.0 29,697.5 195,543.8 2,947.2 2,972.1 3,243.6 4,126.4 - 7,370.0 April .................................... 34,901.4 36,438.7 22,519.1 148,658.4 39,120.8 210,298.2 2,159.0 2,174.7 1,880.2 3,562.0 - 5,442.2 May ..................................... 35,698.2 37,200.2 22,890.9 150,690.5 35,704.2 209,285.5 2,007.8 2,022.5 1,824.9 3,446.9 - 5,271.8 June .................................... 36,351.1 37,897.0 23,252.4 157,837.8 38,644.7 219,734.8 2,006.0

216

Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 31,576 31,334 35,019 34,533 32,174 27,872 1993-2013 PAD District 1 2,286 2,947 3,296 3,722 3,755 2,837 1993-2013 Connecticut 1993-2005 Delaware 1993-2010 Florida 635 638 666 711 724 563 1993-2013 Georgia 179 213 239 277 244 191 1993-2013 Maine 126 263 324 270 310 112 1993-2013 Maryland 1993-2009 Massachusetts 7 6 7 5 8 7 1993-2013 New Hampshire 1993-2006 New Jersey 206 344 270 604 785 463 1993-2013 New York 325 455 535 508 465 521 1993-2013 North Carolina 251 387 522 535 457 320 1993-2013 Pennsylvania 116 165 232 202 234 178 1993-2013 Rhode Island 1993-2007 South Carolina 250 237 271 306 293 275 1993-2013 Vermont 20 30 19 15 24 19 1993-2013

217

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7.2 7.2 66.8 59.8 52.5 48.2 53.6 75.7 75.1 65.4 57.1 W 60.9 February ............................. 67.0 66.6 60.6 53.5 49.6 54.8 75.4 74.9 66.1 58.1 NA 61.8 March .................................. 67.9 67.6 61.1 54.5 50.4 55.7 75.8 75.3 66.5 58.3 NA 62.2 April .................................... 73.1 72.8 66.9 62.3 56.4 62.6 80.8 80.4 72.4 66.7 W 69.3 May ..................................... 79.0 78.6 72.1 67.7 62.0 68.0 87.2 86.6 77.4 72.5 NA 74.8 June .................................... 79.2 78.6 70.3 62.4 58.5 63.9 87.6 86.8 75.9 66.8 NA 71.0 July ..................................... 75.6 75.0 66.0 56.4 52.9 58.5 83.8 83.0 71.4 60.2 NA 65.5 August ................................ 73.0 72.6 64.8 57.0 51.8 58.3 81.0 80.5 69.8 60.8 NA 64.9 September .......................... 72.0 71.8 64.8 57.7 52.3 58.7 79.8 79.5 69.6

218

U.S. Motor Gasoline Refiner Sales Volumes  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

NA NA NA 1983-2013 DTW 39,898.1 39,895.9 35,650.2 30,105.1 27,170.0 27,572.4 1994-2013 Rack 220,794.8 226,076.6 232,908.6 233,671.8 239,186.6 238,580.7 1994-2013 Bulk 45,667.8...

219

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 62.2 61.7 57.6 46.2 43.3 50.8 72.8 72.3 64.2 50.3 W 59.7 December ... 59.8 59.2 55.2 41.0 37.5 46.8 70.5 70.0 62.2 45.5 W...

220

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 86.2 85.7 80.5 74.4 68.6 75.9 95.2 94.7 86.9 78.5 W 84.2 December ... 88.4 87.8 82.4 74.9 71.5 77.6 97.7 97.1 88.8 79.1 W...

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Refinery & Blender Net Production of Finished Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

2008 2009 2010 2011 2012 2013 View History U.S. 3,128,673 3,206,726 3,306,400 3,306,028 3,267,022 3,370,460 1945-2013 PADD 1 723,212 872,233 993,681 1,055,660 1,044,853 1,062,487...

222

Motor Gasoline Market Spring 2007 and Implications for Spring...  

Gasoline and Diesel Fuel Update (EIA)

positions on policy issues. Because of EIA's statutory independence with respect to the content of its energy information program, the analysis presented herein is strictly its...

223

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4.6 4.6 73.9 70.5 59.6 55.7 64.4 84.2 83.3 75.7 63.9 - 72.4 February ............................. 73.7 73.0 69.3 59.8 57.2 64.1 82.9 82.1 74.2 64.6 - 71.6 March .................................. 72.3 71.6 68.0 57.9 54.1 62.3 81.7 80.8 73.1 62.4 - 70.1 April .................................... 74.8 74.2 70.8 64.0 59.7 67.0 83.8 83.2 75.8 68.3 - 73.7 May ..................................... 80.4 80.0 75.3 69.5 64.6 71.9 89.2 88.6 80.5 74.2 - 78.7 June .................................... 81.7 81.0 75.3 65.9 61.6 70.3 90.3 89.5 80.6 70.7 - 77.7 July ..................................... 78.7 77.8 71.7 60.3 57.9 65.6 87.5 86.5 77.1 65.1 - 73.6 August ................................ 75.5 74.7 68.8 59.9 56.7 63.6 83.9 83.2 73.8 64.5 - 71.0 September .......................... 73.5 72.9 67.4 61.0 56.9 63.4 81.6 81.0 72.2 65.2 -

224

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

225

Renewable Oxygenate Blending Effects on Gasoline Properties  

Science Journals Connector (OSTI)

Renewable Oxygenate Blending Effects on Gasoline Properties ... National Renewable Energy Laboratory, Golden, Colorado 80401, United States ... Energy Fuels, 2011, 25 (10), ...

Earl Christensen; Janet Yanowitz; Matthew Ratcliff; Robert L. McCormick

2011-08-16T23:59:59.000Z

226

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

to achieve cost-effective compliance * minimize precious metal content while maximizing fuel economy * Relevance: - U.S. passenger car fleet is dominated by gasoline-fueled...

227

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

228

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

SCR Urea TankInjector Cost Customer Acceptance Not in Project Scope Specific Key Issues: Cost, Durability, Fuel Penalty, Operating Temp.,+... Lean Gasoline SI Direct Injection...

229

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Pump Components History Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550 15.4 9.0 27.2 48.3 Oct-00 1.532 13.7 10.1 27.5 48.6 Nov-00 1.517 10.4 11.8 27.8 50.0 Dec-00 1.443 8.0 17.9 29.2 44.8 Jan-01 1.447 17.8 10.4 29.2 42.7 Feb-01 1.450 17.3 11.0 29.1 42.6 Mar-01 1.409 18.8 9.7 30.0 41.5

230

Synthesis of new high performance lubricants and solid lubricants. Progress report, April 1992--March 1993  

SciTech Connect (OSTI)

Synthesis and testing was begun on a number of new classes of lubricants: perfluoropolyethers (branching effects), perfluoromethylene oxide ethers, chlorine-substituted fluorocarbon polyethers, fluorine-containing branched ether lubricants, glycerine- based perfluoropolyesters, perfluoro epoxy ether chains, etc.

Lagow, R.J.

1993-04-01T23:59:59.000Z

231

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

232

Submersible canned motor mixer pump  

DOE Patents [OSTI]

A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

Guardiani, Richard F. (Ohio Township, PA); Pollick, Richard D. (Sarver, PA)

1997-01-01T23:59:59.000Z

233

Submersible canned motor mixer pump  

DOE Patents [OSTI]

A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

Guardiani, R.F.; Pollick, R.D.

1997-10-07T23:59:59.000Z

234

Low Reactivity SI Engine Lubricant Program  

Broader source: Energy.gov [DOE]

Results showed that lubricant improvement allowed up to 4 degree improvement in spark advance at knock limited conditions resulting in potentially over 3 percent indicated efficiency improvement

235

Research on Fuels & Lubricants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels lDimethyl Ether Rheology and Materials Studies Natural Oils - The Next Generation of Diesel Engine Lubricants? Combined Heat and Power, Waste Heat, and District Energy...

236

Vehicle Technologies Office: Lubricants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

237

Characteristics and Effects of Lubricant Additive Chemistry...  

Broader source: Energy.gov (indexed) [DOE]

Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel Economy A Consortium to Optimize...

238

From Gasoline Alleys to Electric Avenues  

Science Journals Connector (OSTI)

...From Gasoline Alleys to Electric Avenues 10.1126...for next-generation electric cars could help make...next-generation hybrid vehicle. Like today's hybrids...have dual gasoline and electric engines. But whereas...authorizing $1 million for rebates for future plug-in hybrid...

Eli Kintisch

2008-02-08T23:59:59.000Z

239

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

240

What Drives U.S. Gasoline Prices?  

Reports and Publications (EIA)

This analysis provides context for considering the impact of rising domestic light crude oil production on the price that U.S. consumers pay for gasoline, and provides a framework to consider how changes to existing U.S. crude oil export restrictions might affect gasoline prices.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Design Case Summary: Production of Gasoline and Diesel from Biomass...  

Energy Savers [EERE]

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

242

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

243

Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...  

Energy Savers [EERE]

Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

244

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th...

245

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerfujita.pdf More...

246

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

247

Advantages of Oxygenates Fuels over Gasoline in Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

248

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

249

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

250

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen...

251

Detailed Characterization of Lubricant-Derived Ash-Related Species...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization of Lubricant-Derived Ash-Related Species in Diesel Exhaust and Aftertreatment Systems Detailed Characterization of Lubricant-Derived Ash-Related Species in Diesel...

252

Lubricant Formulation and Consumption Effects on Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine...

253

Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on other critical lubricant metrics...

254

The Role of Lubricant Additives in Fuel Efficiency and Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects...

255

Axial bearing with gas lubrication for marine turbines  

Science Journals Connector (OSTI)

The possibility of enhancing the carrying capacity of the lubricant layer in bearings with gas lubrication is considered, for marine turbines. The basic design features of the hybrid...

M. V. Gribinichenko; A. V. Kurenskii; N. V. Sinenko

2013-10-01T23:59:59.000Z

256

Friction Modeling for Lubricated Engine and Drivetrain Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling for Lubricated Engine and Drivetrain Components Friction Modeling for Lubricated Engine and Drivetrain Components 2010 DOE Vehicle Technologies and Hydrogen Programs...

257

Fuels & Lubricants R&D | Department of Energy  

Office of Environmental Management (EM)

Fuels & Lubricants R&D Fuels & Lubricants R&D 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle...

258

Collaborative Lubricating Oil Study on Emissions (CLOSE) Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Extensive chemical and physical characterization...

259

Biodiesel Impact on Engine Lubricant Oil Dilution | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Impact on Engine Lubricant Oil Dilution Biodiesel Impact on Engine Lubricant Oil Dilution Heavy-duty engine and light-duty vehicle experiments were conducted to investigate the...

260

Reducing Lubricant Ash Impact on Exhaust Aftertreatment with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Under the test...

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant-Ash Requirement and Impact on Emission Aftertreatment Systems via an Oil Conditioning Filter Minimizing Lubricant-Ash Requirement and Impact on Emission...

262

Theoretical study on the lubrication failure for the lubricants with a limiting shear stress  

Science Journals Connector (OSTI)

It is observed that the non-slip boundary conditions in the classical lubrication theory are not valid for lubricant with a limiting shear stress. By determining the position of the maximum shear stress and changing velocity boundary condition to stress condition, slip lubrication equations are deduced. With numerical solution of the equations, the location and scale of the boundary slip are analyzed. Finally, after the influences of the slip on the lubrication properties are discussed, results show that a significant decrease of the load carrying capacity causes slip lubrication failure.

Huang Ping; Luo Jianbin; Wen Shizhu

1999-01-01T23:59:59.000Z

263

Gasoline Price Differences Caused by:  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: While my agency cannot be expert in every local gasoline market in the United States, we are familiar with a number of factors that can account for significant differences in prices between markets: Proximity of supply - distance from the refineries supplying the local market. Additionally, the proximity of those refineries to crude oil supplies can be a factor, as well as shipping logistics, including pipeline or waterborne, from refinery to market. Cost of supply - including crude oil, refinery operating, and transportation costs. Supply/demand balance - some regions are typically in excess or short supply, while others may vary seasonally, or when supply interruptions (such as refinery shutdowns) occur. Competitive environment - including the number of suppliers, and the

264

Tribological Characterization of Carbon Based Solid Lubricants  

E-Print Network [OSTI]

lubrication modes. ..................... 10 Figure 5. Typical Stribeck Curve [22]. ..................................................................... 11 Figure 6. This figure illustrates the lamellar structure of graphite. ........................... 13... or low pressures, and high and low operating speeds. For purposes of this research, the extreme conditions will refer to high temperatures, and low pressures. The most common types of solid lubricants encompass four materials: graphite, molybdenum...

Sanchez, Carlos Joel

2012-10-19T23:59:59.000Z

265

Process for producing gasoline of high octane number, in particular lead-free gasoline  

SciTech Connect (OSTI)

A process is described for producing gasoline of high octane number from C/sub 3/ and C/sub 4/ olefinic cuts, such as those obtained by fractional distillation of a C/sub 3/ / C/sub 4/ catalytic cracking cut. It includes the steps of: (A) oligomerizing propylene of the C/sub 3/ cut to obtain a first gasoline fraction, (B) reacting the isobutene of the C/sub 4/ cut with methanol to produce methyl tert.-butyl ether which is separated from the unreacted C/sub 4/ hydrocarbons to form a second gasoline fraction, (C) alkylating said unreacted C/sub 4/ hydrocarbons with isobutane in the presence of an alkylation catalyst such as hydrofluoric acid, to form a third gasoline fraction, and (D) admixing, at least partially, said first, second and third gasoline fractions, so as to obtain gasoline of high octane number.

Chauvin, Y.; Gaillard, J.; Hellin, M.; Torck, B.; Vu, Q.D.

1981-06-02T23:59:59.000Z

266

Why are gasoline prices falling so rapidly?  

Gasoline and Diesel Fuel Update (EIA)

Why are gasoline prices falling so rapidly? Why are gasoline prices falling so rapidly? As of October 29, 2001, the national average retail price of regular gasoline was $1.235 per gallon, its lowest level since November 8, 1999 (Figure 1). The average price has fallen 29 cents in 6 weeks since September 17, with further declines perhaps to come. The sharpest decline has been in the Midwest (Petroleum Administration for Defense District 2), where the average has dropped 57 cents in 8 weeks since Labor Day (September 3). Additionally, this decline comes on the heels of a 33-cent drop in the national average in 10 weeks from Memorial Day through August 6, interrupted only by a brief 17-cent rise in August. In total, the national average retail gasoline price has fallen nearly 48 cents from its peak on May 14. This is already the widest one-year range in retail prices

267

Eliminating MTBE in Gasoline in 2006  

Gasoline and Diesel Fuel Update (EIA)

02/22/2006 02/22/2006 Eliminating MTBE in Gasoline in 2006 Summary In 2005, a number of petroleum companies announced their intent to remove methyl tertiary-butyl ether (MTBE) from their gasoline in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline, and perceived potential for increased liability exposure due to the elimination of the oxygen content requirement for reformulated gasoline (RFG) included in the Energy Policy Act of 2005. EIA's informal discussions with a number of suppliers indicate that most of the industry is trying to move away from MTBE before the 2006 summer driving season. Currently, the largest use of MTBE is in RFG consumed on the East Coast outside of

268

U.S. gasoline prices increase slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

269

Edgeworth price cycles in retail gasoline markets  

E-Print Network [OSTI]

In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

Noel, Michael David, 1971-

2002-01-01T23:59:59.000Z

270

Chemistry Impacts in Gasoline HCCI  

SciTech Connect (OSTI)

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

271

Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2  

SciTech Connect (OSTI)

Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.

Gunsel, Selda; Pozebanchuk, Michael

1999-04-01T23:59:59.000Z

272

Preparation of synthetic hydrocarbon lubricants  

SciTech Connect (OSTI)

A process is described for preparing synthetic lubricating materials which process comprises: (a) reacting (i) at least a portion of a reaction product of the liquid phase oligomerization of propylene, butylene or mixtures thereof containing a C/sub 6/ olefin component, (ii) a linear olefin reactant having an average carbon number ranging from about 10 to about 18 in the presence of a catalyst, (b) separating from the reaction mixture of (a) hydrocarbons which distill at a temperature above about 660/sup 0/ F. (316/sup 0/ C.), and (c) hydrogenating the reaction product of (b) by contact with hydrogen with or without a catalyst at a temperature ranging from about 25/sup 0/ C. to about 300/sup 0/ C.

Johnson, T.H.

1986-10-07T23:59:59.000Z

273

Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity  

Science Journals Connector (OSTI)

Lubricity of Components of Biodiesel and Petrodiesel. ... The use of vegetable oil based fuels, called biodiesels, lowers particulate emissions due to the increased oxygen content of the fuel. ...

Gerhard Knothe; Kevin R. Steidley

2005-04-06T23:59:59.000Z

274

Metallic Wear in the Presence of Lubricants  

Science Journals Connector (OSTI)

... or adhesion of one to the other leading to a roughness; the extent of this roughening and of the consequent wear is determined by the continuity of the film of lubricant ...

1936-03-28T23:59:59.000Z

275

Biodiesel Impact on Engine Lubricant Oil Dilution  

Broader source: Energy.gov (indexed) [DOE]

Impact on Engine Lubricant Oil Dilution Xin He, Aaron M. Williams, Earl D. Christensen, Jonathan L. Burton, Robert L. McCormick National Renewable Energy Laboratory October 5, 2011...

276

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

277

Low Gasoline Stocks Indicate Increased Odds of Spring Volatility  

Gasoline and Diesel Fuel Update (EIA)

We cannot just focus on distillate. Gasoline will likely be our next We cannot just focus on distillate. Gasoline will likely be our next major concern. Gasoline stock levels have fallen well below the typical band for this time of year, primarily for the same reason distillate stocks fell to low levels -- namely relatively low production due to low margins. At the end of January, total gasoline inventories were almost 13 million barrels (6%) below the low end of the normal band. While gasoline stocks are generally not as important a supply source to the gasoline market this time of year as are distillate stocks to the distillate market, gasoline stocks still are needed. Gasoline stocks are usually used to help meet gasoline demand during February and March as refiners go through maintenance and turnarounds, but we do not have the

278

Advanced lubrication systems and materials. Final report  

SciTech Connect (OSTI)

This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

Hsu, S.

1998-05-07T23:59:59.000Z

279

Gasoline marketing: Octane mislabeling in New York City  

SciTech Connect (OSTI)

The problem of octane mislabeling at gasoline stations in New York City has grown - from 46 or fewer citations in 1981 to 171 citations in 1986. No single source of octane mislabeling exists but the city has found both gasoline station operators and fuel distributors to blame. The problem does not seem to be unique to any one type of gasoline station but 57 percent of the 171 citations issued involved gasoline sold under the name of a major refiner; the rest involved unbranded gasoline. Octane cheating can be lucrative in New York City. A station intentionally mislabeling its gasoline could realize amounts many times the city's maximum $500 fine for cheating.

Not Available

1987-01-01T23:59:59.000Z

280

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1  

SciTech Connect (OSTI)

Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

1997-07-01T23:59:59.000Z

282

1995 Reformulated Gasoline Market Affected Refiners Differently  

Gasoline and Diesel Fuel Update (EIA)

5 Reformulated Gasoline Market Affected 5 Reformulated Gasoline Market Affected Refiners Differently by John Zyren, Charles Dale and Charles Riner Introduction The United States has completed its first summer driving season using reformulated gasoline (RFG). Motorists noticed price increases at the retail level, resulting from the increased cost to produce and deliver the product, as well as from the tight sup- ply/demand balance during the summer. This arti- cle focuses on the costs of producing RFG as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate. RFG Regulatory Requirements The use of RFG is a result of the Clean Air Act Amendments of 1990 (CAAA). The CAAA cover a wide range of programs aimed at improving air qual-

283

A new emergency lubricating-oil system for steam turbine generators: Final report  

SciTech Connect (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

284

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

285

Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 26, 8: February 26, 2007 Gasoline Price Expectations to someone by E-mail Share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Facebook Tweet about Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Twitter Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Google Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Delicious Rank Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Digg Find More places to share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on AddThis.com... Fact #458: February 26, 2007 Gasoline Price Expectations

286

Factors Impacting Gasoline Prices and Areas for Further Study  

Gasoline and Diesel Fuel Update (EIA)

Factors Impacting Gasoline Prices and Areas for Further Study Factors Impacting Gasoline Prices and Areas for Further Study 8/10/01 Click here to start Table of Contents Factors Impacting Gasoline Prices and Areas for Further Study Different Factors Impact Different Aspects of Gasoline Price Correlation of Price to Inventory Levels Crude Prices Strongly Related to OECD.Crude & Product Inventories Gasoline Prices Also Influenced by Regional Gasoline Product Markets Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) Retail Price Changes Lag Spot Prices Cumulative Gasoline Price Pass-through Illustration of How Lag Effect Dampens and Slows Retail Price Changes from Wholesale Recent Weekly Retail Price Changes Have Been as Expected Summary: Most Gasoline Price Movement Can Be Explained As Rational Market Behavior Author: Joanne Shore

287

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

288

U.S. gasoline price falls under $3 (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 U.S. gasoline price falls under 3 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon on...

289

U.S. gasoline price falls under $3 (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

November 3, 2014 U.S. gasoline price falls under 3 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon...

290

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

291

The relationship between crude oil and gasoline prices  

Science Journals Connector (OSTI)

This study investigates the dynamic relationship between crude oil and retail gasoline prices during the last 21 years and determines ... that date, the results show that gasoline prices include higher profit mar...

Ali T. Akarca; Dimitri Andrianacos

1998-08-01T23:59:59.000Z

292

Fact #835: August 25, Average Historical Annual Gasoline Pump...  

Energy Savers [EERE]

5: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation,...

293

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network [OSTI]

Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

294

Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline  

Broader source: Energy.gov [DOE]

Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards)....

295

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Desert Research Institute 2003deerfujita.pdf More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study Long-Term Changes in Gas-...

296

National Survey of E85 and Gasoline Prices  

SciTech Connect (OSTI)

Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

Bergeron, P.

2008-10-01T23:59:59.000Z

297

Catalytic isomerization of the overhead fractions of straight run gasoline  

Science Journals Connector (OSTI)

The isomerization of the pentane and hexane fractions of gasoline on a platinum catalyst was studied, as...

N. R. Bursian; G. N. Maslyanskiiů

1965-06-01T23:59:59.000Z

298

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel  

E-Print Network [OSTI]

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel price +10% gasolinegasoline gasoline diesel... ... 2007 20081998 2009 ...2010 home work home work diesel diesel ... gasoline diesel price -7, households' decisions are affected by various other factors, from the vehicle market offer to governmental

Bierlaire, Michel

299

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel  

E-Print Network [OSTI]

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submecha- nisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good

Utah, University of

300

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry  

E-Print Network [OSTI]

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry Marc Remer August 2, 2010 pricing in the retail gasoline industry, and also documents empirical regularities in the market. I find of asymmetric price movements in the retail gasoline industry. Yet, there is no general agreement as to whether

Niebur, Ernst

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network [OSTI]

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

Boyer, Edmond

302

Ethanol Production and Gasoline Prices: A Spurious Correlation  

E-Print Network [OSTI]

Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron Smith July 12, 2012 Abstract Ethanol made from corn comprises 10% of US gasoline, up from 3% in 2003 proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry

Rothman, Daniel

303

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline  

E-Print Network [OSTI]

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Carbon Monoxide and Technology (NIST) conducted a study for CDC to examine the impact of distance of gasoline-powered portable

304

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays  

E-Print Network [OSTI]

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by ├?ystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

Feigon, Brooke

305

What Do Consumers Believe About Future Gasoline Soren T. Anderson  

E-Print Network [OSTI]

What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

Silver, Whendee

306

Production of high-octane automobile gasolines by the catalytic reforming of straight-run gasoline fractions from mangyshlak crude  

Science Journals Connector (OSTI)

High-octane components for AI-93 and AI-98 automobile gasolines can be obtained in 86 and 82% ... 140, 140ľ180, and 85ľ180░C gasoline fractions from Mangyshlak crude.

V. A. Kuprianov; A. A. Timofeev; V. E. Gavrunů

1971-08-01T23:59:59.000Z

307

Lubricants- Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles  

Broader source: Energy.gov [DOE]

Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on other critical lubricant metrics

308

Renewable Fuels and Lubricants Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Fuels and Lubricants Laboratory State-of-the-Art Fuel and Vehicle Testing The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy's...

309

Overview of DOE Fuel & Lubricant Technologies R&D | Department...  

Office of Environmental Management (EM)

Overview of DOE Fuel & Lubricant Technologies R&D Overview of DOE Fuel & Lubricant Technologies R&D 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

310

Study of methanol-to-gasoline process for production of gasoline from coal  

Science Journals Connector (OSTI)

The methanol-to-gasoline (MTG) process is an efficient way to produce liquid ... The academic basis of the coal-to-liquid process is described and two different synthesis processes are focused on: Fixed MTG process

Tian-cai He; Xiao-han Cheng; Ling Liů

2009-03-01T23:59:59.000Z

311

Reformulated gasoline: Costs and refinery impacts  

SciTech Connect (OSTI)

Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

Hadder, G.R.

1994-02-01T23:59:59.000Z

312

Electric Motors  

Broader source: Energy.gov [DOE]

Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

313

Multi component Nanoparticle Based Lubricant Additive to Improve...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Multi-component Nanoparticle Based Lubricant Additive to Improve Efficiency and Durability in Engines ITP Nanomanufacturing:...

314

Vehicle Technologies Office: Fuels and Lubricants Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

315

Response to Comment on ôEnvironmental Implications on the Oxygenation of Gasoline with Ethanol in the Metropolitan Area of Mexico Cityö  

Science Journals Connector (OSTI)

Motor vehicle population in the MAMC has a model-year distribution typical of developing countries:? Old cars (unequipped with any emissions control technology) make up a great portion of the total population. ... Recently, Mexico's economic stability and lower inflation rates have prompted motor vehicle dealers to lower their down payments and interest rates, thus making it feasible for low income people (e.g., those that own an old car) to buy a new one. ... We have reported recently that TWC performance in brand new vehicles deteriorates considerably after 60?000 km, either because of defective TWC materials or because of the high sulfur content of Mexican gasoline (8). ...

I. Schifter; M. Vera; L. DÝaz; E. Guzmßn; F. Ramos; E. Lˇpez-Salinas

2001-11-15T23:59:59.000Z

316

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE  

E-Print Network [OSTI]

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

317

Tribological behavior of some candidate advanced space lubricants  

SciTech Connect (OSTI)

Performance of a variety of space lubricants was compared under boundary and elastohydrodynamic lubrication (EHL). The types of fluids studied were naphthenic mineral oil, paraffinic mineral oil, polyalphaolefin, and silahydrocarbon. The silahydrocarbon and the polyalphaolefin lubricants exhibited lower traction under similar conditions. A specific additive package increased the traction of the polyalphaolefin. Volatility characteristics of some of these fluids were also studied. 10 refs.

Sharma, S.K.; Snyder, C.E. Jr.; Gschwender, L.J. (USAF, Wright Lab., Wright-Patterson AFB, OH (United States))

1993-04-01T23:59:59.000Z

318

Guidelines for maintaining steam turbine lubrication systems. Final report  

SciTech Connect (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

Lamping, G.A.; Cuellar, J.P. Jr.; Silvus, H.S.; Barsun, H.F.

1986-07-01T23:59:59.000Z

319

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

320

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Inertial Lubrication Theory N. O. Rojas,1  

E-Print Network [OSTI]

Inertial Lubrication Theory N. O. Rojas,1 M. Argentina,1 E. Cerda,2 and E. Tirapegui3 1 Universite on the boundary conditions enforced, the energy input and the specific Reynolds number of the fluid motion. Here input of energy. We derive the minimal set of equations containing inertial effects in this strongly

Argentina, Mederic

322

Why Are Gasoline Prices Rising so Fast  

Gasoline and Diesel Fuel Update (EIA)

Statement of John Cook Statement of John Cook Before the Committee on Government Reform Subcommittee on Energy Policy, Natural Resources and Regulatory Affairs U.S. House of Representatives June 14, 2001 Thank you Mr. Chairman and members of the Committee for the opportunity to testify today. Gasoline prices have begun declining, as expected, from this spring's apparent peak price of $1.71 on May 14, with the national average for regular gasoline at $1.65 per gallon as of June 11 (Figure 1). Between late March and mid-May, retail prices rose 31 cents per gallon, with some regions experiencing even greater increases. Like last year, Midwest consumers saw some of the largest increases, and along with California, some of the highest prices. Prices in the Midwest increased 43 cents per

323

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-03-09T23:59:59.000Z

324

This Week In Petroleum Gasoline Section  

Gasoline and Diesel Fuel Update (EIA)

Regular Gasoline Retail Prices (Dollars per Gallon) Regular Gasoline Retail Prices (Dollars per Gallon) Retail Average Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 U.S. 3.265 3.194 3.219 3.293 3.272 3.269 3.239 3.254 East Coast (PADD 1) 3.289 3.243 3.282 3.386 3.389 3.382 3.373 3.350 Midwest (PADD 2) 3.188 3.074 3.126 3.191 3.121 3.132 3.079 3.144 Gulf Coast (PADD 3) 3.030 2.978 3.004 3.140 3.124 3.104 3.047 3.045 Rocky Mountain (PADD 4) 3.307 3.227 3.183 3.145 3.113 3.077 3.055 3.211 West Coast (PADD 5) 3.564 3.507 3.467 3.457 3.475 3.477 3.472 3.457 Retail Conventional Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13

325

The Extraction of Gasoline from Natural Gas  

E-Print Network [OSTI]

for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gas╗ Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

Schroeder, J. P.

1914-05-15T23:59:59.000Z

326

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

327

Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: October 15, 1: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries to someone by E-mail Share Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Facebook Tweet about Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Twitter Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Google Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Delicious Rank Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Digg Find More places to share Vehicle Technologies Office: Fact #491:

328

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000  

Gasoline and Diesel Fuel Update (EIA)

Demand and Price Outlook for Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o Volatile Organic Compounds (VOC) Reduction o Summary of RFG Production Options * Costs of Reformulated Gasoline o Phase 1 RFG Price Premium o California Clean Gasoline Price Premium o Phase 2 RFG Price Premium o Reduced Fuel Economy

329

Energy Department Announces First Regional Gasoline Reserve to...  

Office of Environmental Management (EM)

Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the Energy Department's lessons...

330

Impacts of Ethanol in Gasoline on Subsurface Contamination.  

E-Print Network [OSTI]

??The increasing use of ethanol as a gasoline additive has raised concerns over the potential impacts ethanol might have on groundwater contamination. In North America,ů (more)

Freitas, Juliana Gardenalli de

2009-01-01T23:59:59.000Z

331

TRUCK ROUTING PROBLEM IN DISTRIBUTION OF GASOLINE TO GAS STATIONS.  

E-Print Network [OSTI]

??This thesis aims at finding a daily routing plan for a fleet of vehicles delivering gasoline to gas stations for an oil company, satisfying allů (more)

Janakiraman, Swagath

2010-01-01T23:59:59.000Z

332

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace064confer2011o.pdf More Documents & Publications Gasoline...

333

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2012o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

334

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

335

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory VW Scholar at the University of Tennessee Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster P-09 2010 DEER Directions...

336

Gasoline-Like Fuel Effects on Advanced Combustion Regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regimes Gasoline-Like Fuel Effects on Advanced Combustion Regimes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

337

Gasoline-like fuel effects on advanced combustion regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regimes Gasoline-like fuel effects on advanced combustion regimes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

338

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End...

339

Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Round 1 Emissions Results from Compressed Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc.

340

Rubber friction on (apparently) smooth lubricated surfaces  

E-Print Network [OSTI]

We study rubber sliding friction on hard lubricated surfaces. We show that even if the hard surface appears smooth to the naked eye, it may exhibit short wavelength roughness, which may give the dominant contribution to rubber friction. That is, the observed sliding friction is mainly due to the viscoelastic deformations of the rubber by the substrate surface asperities. The presented results are of great importance for rubber sealing and other rubber applications involving (apparently) smooth surfaces.

M. Mofidi; B. Prakash; B. N. J. Persson; O. Albohl

2007-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effects of diffusion on lubricant distribution under flying headon thin-film disks  

Science Journals Connector (OSTI)

Lubricants on thin-film disks have large effects on headľdisk interface characteristics. They reduce head and disk wear while thick lubricant film increases friction ... in many cases. Lubricant depletion due to

K. Yanagisawa; Y. Kawakubo; M. Yoshino

2005-01-01T23:59:59.000Z

342

Conversion of methanol to gasoline commercial plant study. Coal to gasoline via methanol  

SciTech Connect (OSTI)

Under the joint sponsorship of the German Federal Minister of Research and Technology (BMFT) and the US Department of Energy (DOE), a research program was initiated concerning the ''Conversion of Methanol to Gasoline (MTG), Engineering, Construction and Operation of a Demonstration Plant''. The purpose of the 100 BPD demonstration plant was to demonstrate the feasibility of and to obtain data required for scale-up of the fluid-bed MTG process to a commercial size plant. As per requirements of Annex 3 of the Governmental Agreement, this study, in addition to the MTG plant, also includes the facilities for the production of methanol. The feedstock basis for the production of methanol shall be coal. Hence this study deals with the production of gasoline from coal (CTG-Coal to Gasoline). The basic objective of this study is to assess the technical feasibility of the conversion of methanol to gasoline in a fluid-bed system and to evaluate the process economies i.e., to evlauate the price of the product in relation to the price of the feedstock and plant capacity. In connection with technical feasibility, the scale up criteria were developed from the results obtained and experience gathered over an operational period of 8600 hours of the ''100 BPD Demonstration Plant''. The scale up philosophy is detailed in chapter 4. The conditions selected for the design of the MTG unit are detailed in chapter 5. The scope of the study covers the production of gasoline from coal, in which MTG section is dealt with in detail (refer to chapter 5). Information on other plant sections in this study are limited to that sufficient to: generate overall mass balance; generate rate of by-products and effluents; incorporate heat integration; generate consumption figures; and establish plant investment cost.

Thiagarajan, N.; Nitschke, E.

1986-03-01T23:59:59.000Z

343

Overview of DOE Fuel & Lubricant Technologies R&D  

Office of Environmental Management (EM)

friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Overview of DOE Fuel & Lubricant Technologies...

344

Controlled Experiments on the Effects of Lubricant/Additive ...  

Broader source: Energy.gov (indexed) [DOE]

Ashless) Characteristics on DPF Degradation Effects of lubricant additive chemistries and exhaust conditions on ash properties affecting diesel particulate filter performance....

345

Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Affecting Fuel Economy and Engine Wear Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Development of High Performance Heavy Duty Engine Oils...

346

Characteristics and Effects of Lubricant Additive Chemistry and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel Economy Characteristics and Effects of...

347

Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality  

E-Print Network [OSTI]

15 for retail gasoline stations and May 1 ľ September 15 forof one if retail gasoline stations in county c are requiredseason for retail gasoline distribution stations is June 1 -

Auffhammer, Maximilian; Kellogg, Ryan

2009-01-01T23:59:59.000Z

348

Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles  

E-Print Network [OSTI]

t as determined by gasoline stations is unlikely to beshows a map of all gasoline stations i n central and easterni n Figure 5: Toronto Gasoline Stations Canadian cents per

Noel, Michael

2007-01-01T23:59:59.000Z

349

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

350

Improving Accuracy in the Determination of Aromatics in Gasoline by Gas ChromatographyŚMass Spectrometry  

Science Journals Connector (OSTI)

......was composed of five gasoline blendstocks: light straight run (LSR) naphtha...consisted of the 21 gasoline fuels used in various...naphtha; LSR, light straight run naphtha; reformate...Because these common gasoline blendstocks contain......

Michael D. Mathiesen; Axel J. Lubeck

1998-09-01T23:59:59.000Z

351

Blended Straight-Run Gasolines with Composite Additives Containing Watery Ethanol  

Science Journals Connector (OSTI)

Cranking and antiknock properties of gasoline-alcohol blends based on straight-run gasoline with additives containing watery ethanol and other ... components are studied. The composition of the gasoline-alcohol b...

Yu. O. Beiko; A. P. Pavlovskii; O. A. Beiko

2014-01-01T23:59:59.000Z

352

Advanced Motors  

SciTech Connect (OSTI)

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?Motors and Generators for the 21st Century├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬Ł. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

353

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

354

Author's personal copy Gasoline prices and traffic safety in Mississippi  

E-Print Network [OSTI]

Drive SE, Minneapolis, MN 55455, USA a b s t r a c ta r t i c l e i n f o Article history: Received 9-grade unleaded gasoline price data from the Energy Information Administration of the U.S. Department of EnergyAuthor's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur

Levinson, David M.

355

E-Print Network 3.0 - advanced lubrication systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cutting Cost: Considering all aspects such as lubricant cost per part, application and removal system... consistent lubrication thickness with proper instrumentation. ......

356

E-Print Network 3.0 - actively lubricated journal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-align and mount to the hydrophilic trench binding sites with electric connections by heat curable lubricant oil... ) lubricant oil covers only hydrophilic nickel surface of PZT...

357

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Includes gasoline, diesel, and electric. The following fourIncludes gasoline, diesel, and electric. In this study, weemissions from diesel-truck delivery and electric generation

Wang, Guihua

2008-01-01T23:59:59.000Z

358

Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest...

359

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

360

Different Factors Impact Different Aspects of Gasoline Price  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: In order to illustrate and quantify, to a large extent, the various market forces driving gasoline prices, we begin by decomposing those factors according to their location within the supply chain, i.e., the international crude market, U.S. wholesale gasoline markets, and the retail segment. Historically, variation in gasoline prices usually stems from changes in crude oil prices. As the major feedstock in the production of gasoline, shifts in the balance between supply and demand in crude markets explain a large portion of observed movements at the retail level. But shifts in the wholesale gasoline supply/demand balance also contribute to price pressure or movements at both the wholesale and retail levels beyond that stemming from crude oil markets.

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Gasoline Price Watch Website and Hotline | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasoline Price Watch Website and Hotline Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors influencing the price consumers are paying at the pump, including growing demand, the high price of crude oil, the lingering effects of last summer's hurricanes on our refining sector and the regular transition of fuel blends as we head into the summer," said Secretary Bodman. "And while the majority of local merchants are fair and

362

Integrated process offers lower gas-to-gasoline investment  

SciTech Connect (OSTI)

Many natural gas fields are in remote locations and of a size which cannot justify construction of a pipeline or liquified natural gas (LNG) plant. In these situations, the natural gas price can be low and the manufacture of gasoline an attractive alternative to producing ammonia or other petro-chemicals. Haldor Topsoe A/S has developed an integrated process scheme to convert natural-gas-derived synthesis gas to gasoline in a single loop. The process, Topsoe integrated gasoline synthesis (Tigas), incorporates Mobil's methanol-to-gasoline (MTG) process. The first step is a synthesis of oxygenates. The second step is the MTG process run at conditions selected to achieve optimum operation of the integrated loop. An industrial pilot plant has been in operation since January 1984. The plant has been running successfully, with long catalyst life, producing high-octane gasoline.

Topp-Jorgensen, J.; Rostrup-Nielsen, J.R.

1986-05-19T23:59:59.000Z

363

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

364

Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery  

Broader source: Energy.gov [DOE]

Chevron, the largest U.S. refiner operating six gasoline-producing refineries, completed a motor system efficiency improvement project in 1997 at its Richmond, California, refinery that resulted in savings of $700,000 annually. This two-page fact sheet describes how they achieved the savings.

365

Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries  

Science Journals Connector (OSTI)

Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995ľ2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between ?á0.2 and ?á0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of +á0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes.

Paul J. Burke; Shuhei Nishitateno

2013-01-01T23:59:59.000Z

366

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

367

2003 California Gasoline Price Study (preliminary version)  

Gasoline and Diesel Fuel Update (EIA)

1 1 2003 California Gasoline Price Study: Preliminary Findings May 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Office of Oil and Gas of the Energy Information Administration (EIA) under the direction of John Cook, Director, Petroleum Division. Questions concerning the report may be directed to Joanne Shore (202/586-4677),

368

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

Wadsley, J; Quinn, T; Wadsley, James; Stadel, Joachim; Quinn, Thomas

2003-01-01T23:59:59.000Z

369

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

James Wadsley; Joachim Stadel; Thomas Quinn

2003-03-24T23:59:59.000Z

370

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining  

Science Journals Connector (OSTI)

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining ...

Dennis W. Brinkman; John R. Dickson

1995-01-01T23:59:59.000Z

371

0-7803-9280-9/05/$20.00 2005 IEEE. 603 Design of a High-Speed Permanent Magnet Motor  

E-Print Network [OSTI]

]: - the hydrogen supply, which often consists of an hydrogen tank associated with a pressure reducer; - the air to maintain gas and membrane hydration; - the cooling circuit, to extract the heat produced during not be lubricated with oil because the FC stack can not support even ppm of oil; FC stack motor cooling ci

Paris-Sud XI, Universit├ę de

372

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

373

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

374

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vehicles currently in service. FedEx Express has deployed 20 gasoline hybrid electric vehicles (gHEVs) on parcel delivery routes in the Sacramento and Los Angeles areas. This...

375

U.S. gasoline prices increase slightly (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

376

U.S. gasoline prices continue to increase (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

The U.S. average retail price for regular gasoline rose to 3.68 a gallon on Monday. That's up 4 12 cents from a week ago, based on the weekly price survey by the U.S. Energy...

377

U.S. gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

average retail price for regular gasoline rose to 3.61 a gallon on Labor Day Monday. That's up 5.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

378

U.S. gasoline prices increase slightly (long version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.36 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

379

U.S. gasoline prices continue to decrease (short version)  

Gasoline and Diesel Fuel Update (EIA)

The U.S. average retail price for regular gasoline fell to 3.51 a gallon on Monday. That's down a penny from a week ago and down 13 cents from a month ago, based on the weekly...

380

U.S. average gasoline price up slightly  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S....

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. gasoline prices increase slightly (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.36 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

382

U.S. gasoline prices continue to increase (long version)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. average retail price for regular gasoline rose to 3.68 a gallon on Monday. That's up 4 12 cents from a week ago, based on the weekly price survey by the U.S. Energy...

383

U.S. Gasoline prices continue to increase (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

average retail price for regular gasoline rose to 3.61 a gallon on Labor Day Monday. That's up 5.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

384

High compression ratio turbo gasoline engine operation using alcohol enhancement  

E-Print Network [OSTI]

Gasoline - ethanol blends were explored as a strategy to mitigate engine knock, a phenomena in spark ignition engine combustion when a portion of the end gas is compressed to the point of spontaneous auto-ignition. This ...

Lewis, Raymond (Raymond A.)

2013-01-01T23:59:59.000Z

385

Gasoline Prices, Fuel Economy, and the Energy Paradox  

E-Print Network [OSTI]

It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

Wozny, Nathan

386

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

387

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

388

The relation of octane number, compression ratio, and exhaust temperature in the gasoline engine  

E-Print Network [OSTI]

THE RELATION OF OCTANE NUMHER& COMPRESSION RATIO& AND EXHAUST TEMPERATURE IN THE GASOLINE ENGINE A Tbeaie Donald George Jentsch THE RELATION OF OCTANE NUMBER, COMHKSSION RATIO, EXHAUST TEMPERATURE IN THE GASOLINE ENGINE By Donald George... throttle settings) a. Table VI - Aviation Gasolines 22 26 b. Table VI (a) ? Automotive Gasolines . . . 33 2. Spark set for maximum power at full throttle (Speed 2000 RPH at various throttle settings) a. Table VII ? Aviation Gasolines . . . . . 34 b...

Jentsch, Donald George

2012-06-07T23:59:59.000Z

389

FY 2012 Progress Report for Fuel & Lubricant Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

911 911 Fuels & Lubricant Technologies VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2012 PROGRESS REPORT FOR FUEL & LUBRICANT TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Office Approved by Kevin Stork Team Leader, Fuel & Lubricant Technologies Vehicle Technologies Office June 2013 DOE/EE-0911 Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

390

CO2 Emission Benefit of Diesel (versus Gasoline) Powered Vehicles  

Science Journals Connector (OSTI)

Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. ... We report herein a quantitative analysis of the CO2 emission benefits of diesel vehicles versus their gasoline equivalents for 2001 MY and 2015 MY in European and North American markets. ... However, more stringent tailpipe NOx emissions standards are likely to have a greater negative impact on diesel engines, further reducing the advantages of future diesels relative to gasoline engines. ...

J. L. Sullivan; R. E. Baker; B. A. Boyer; R. H. Hammerle; T. E. Kenney; L. Muniz; T. J. Wallington

2004-05-13T23:59:59.000Z

391

Determination of lead in gasoline by atomic absorption spectroscopy  

Science Journals Connector (OSTI)

A procedure has been developed for the direct determination of lead in gasoline by atomic absorption spectroscopy. This procedure is rapid, does not require expensive equipment, is remarkably free from interference by other trace elements present, and allows considerable variation in the sulfur and nitrogen content of the gasoline. It compares favorably with other existing procedures for this determination, such as X-ray fluorescence, wet chemical methods, and flame photometry.

J.W. Robinson

1961-01-01T23:59:59.000Z

392

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network [OSTI]

CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2000 Major Subject: Chemical Engineering CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Alkhawaldeh, Ammar

2012-06-07T23:59:59.000Z

393

Gasoline Engine Economy as Affected by the Time of Ignition  

E-Print Network [OSTI]

KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Gasoline Engine Economy as Affected by the Time of Ignition 1907 by George Jay Hopkins This work was digitized by the Scholarly Communications program staff... in the KU Librariesĺ Center for Digital Scholarship. http://kuscholarworks.ku.edu Submitted to the University of Kansas in partial fulfillment of the requirements for the Degree of Bachelor of Science GASOLINE ENCUNE ECONOMY as Affected W the Time...

Hopkins, George Jay

1907-01-01T23:59:59.000Z

394

Gas-chromatographic analysis of straight-run gasolines  

SciTech Connect (OSTI)

A method has been developed for the gas chromatographic determination of the individual hydrocarbons in a wide fraction of straight-run gasoline, using a simple chromatograph equipped with two capillary columns coated with stationary phases of differing polarity in conjunction with a system for the automated treatment of the data. About 150 hydrocarbons present in straight-run gasolines were identified; their retention indices were calculated for a linear temperature programmed regime.

Kvasova, V.A.; Leont'eva, S.A.; Grinberg, A.A.; Rabinovich, A.B.; Shurygina, N.N.

1986-11-10T23:59:59.000Z

395

Production of synthetic gasoline and diesel fuel from nonpetroleum resources  

SciTech Connect (OSTI)

In late 1985, the New Zealand Gas-to-Gasoline Complex was successfully streamed producing high octane gasoline from natural gas. The heart of this complex is the Mobil fixed-bed Methanol-to-Gasoline (MTG) section which represents one of several newly developed technologies for production of synthetic gasoline and diesel fuels. All of these technologies are based on production of methanol by conventional technology, followed by conversion of the methanol to transportation fuel. The fixed-bed (MTG) process has been developed and commercialized. The fluid-bed version of the MTG process, which is now also available for commercial license, has a higher thermal efficiency and possesses substantial yield and octane number advantages over the fixed-bed. Successful scale-up was completed in 1984 in a 100 BPD semi-works plant in Wesseling, Federal Republic of Germany. The project was funded jointly by the U.S. and German governments and by the industrial participants: Mobil, Union Rheinsche Braunkohlen Kraftstoff, AG; and Uhde, GmbH. This fluid-bed MTG project was extended recently to demonstrate a related fluid-bed process for selective conversion of methanol to olefins (MTO). The MTO process can be combined with Mobil's commercially available olefins conversion process (Mobil-Olefins-to-Gasoline-and-Distillate, MOGD) for coproduction of high quality gasoline and distillate via methanol. This MTO process was also successfully demonstrated at the Wesseling semiworks with this project being completed in late 1985.

Tabak, S.A.; Avidan, A.A.; Krambeck, F.J.

1986-04-01T23:59:59.000Z

396

Fractionation of reformate: A new variant of gasoline production technology  

SciTech Connect (OSTI)

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

397

Conversion of gas-condensate straight-run gasolines to high-octane gasolines over zeolite catalysts modified with metal nanopowders  

Science Journals Connector (OSTI)

The acid and catalytic properties of zeolite catalysts modified with metal nanopowders (Cu, Zn, and W) were studied in the conversion of gas-condensate straight-run gasolines to high-liquid high-octane gasolines ...

V. I. Erofeev; A. S. Medvedev; I. S. Khomyakovů

2013-07-01T23:59:59.000Z

398

Manufacture of naphthenic type lubricating oils  

SciTech Connect (OSTI)

A process for making naphthenic type lubricating oils from a low viscosity waxy crude which comprises distilling said low viscosity waxy crude to 500 to 650/sup 0/F. At atmospheric pressure to separate distillable fractions therefrom, subjecting the residue to a vacuum distillation at about 25 to about 125 mm Hg absolute pressure to obtain one or more gas oil fractions, optionally hydrotreating said gas oil fractions in the presence of a Ni/Mo catalyst at 550 to 650/sup 0/F, 0.25 to 1.0 lhsv, and 700-1500 psig, and catalytically dewaxing said distillates in the presence of a H+ form mordenite catalyst containing a group VI or group VIII metal at 550 to 750/sup 0/F, 500 to 1500 psig and 0.25 to 5.0 lhsv, to obtain said naphthenic type oils having pour points of from about -60 to +20/sup 0/F.

Reynolds, R.W.

1981-02-24T23:59:59.000Z

399

Renewable Fuels and Lubricants Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2014-08-01T23:59:59.000Z

400

Development and application of a lubricant composition model to study effects of oil transport, vaporization, fuel dilution, and soot contamination on lubricant rheology and engine friction  

E-Print Network [OSTI]

Engine oil lubricants play a critical role in controlling mechanical friction in internal combustion engines by reducing metal-on-metal contact. This implies the importance of understanding lubricant optimization at the ...

Gu, Grace Xiang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Combustion behavior of gasoline and gasoline/ethanol blends in a modern direct-injection 4-cylinder engine.  

SciTech Connect (OSTI)

Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range.

Wallner, T.; Miers, S. A. (Energy Systems)

2008-04-01T23:59:59.000Z

402

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen

Jawitz, James W.

403

Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication  

Broader source: Energy.gov [DOE]

A group of oil-miscible ionic liquids has been developed by an ORNL-GM team as candidate lubricant additives with promising physical/chemical properties and potential multiple functionalities.

404

Choline for neutralizing naphthenic acid in fuel and lubricating oils  

SciTech Connect (OSTI)

A method is described of neutralizing at least a portion of the naphthenic acids present in fuel and lubricating oils which contain naphthenic acids which comprises treating these oils with a neutralizing amount of choline.

Ries, D.G.; Roof, G.L.

1986-07-15T23:59:59.000Z

405

Notes 01. The fundamental assumptions and equations of lubrication theory  

E-Print Network [OSTI]

The fundamental assumption in Lubrication Theory. Derivation of thin film flow equations from Navier-Stokes equations. Importance of fluid inertia effects in thin film flows. Some fluid physical properties...

San Andres, Luis

2009-01-01T23:59:59.000Z

406

Flying Height Drop Due to Air Entrapment in Lubricant  

Science Journals Connector (OSTI)

Recently, it is found experimentally that the flying height of an air bearing slider is influenced by the lubricant on the disk. It is explained as the air molecules ... in air bearing force, and hence, the flying

Wei Hua; Kang Kee Ng; Shengkai Yu; Bo Liu; Vivian Ng

2013-10-01T23:59:59.000Z

407

Influence of boric acid additive size on green lubricant performance  

Science Journals Connector (OSTI)

...towards green manufacturing processes, there...boric acid powder additives with canola oil...change present manufacturing process lines...powder-based lubricant additives As conceptually...of boric acid additive size on green...towards green manufacturing processes, there...

2010-01-01T23:59:59.000Z

408

Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: April 26, 7: April 26, 2004 State Gasoline Tax Rates to someone by E-mail Share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Facebook Tweet about Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Twitter Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Google Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Delicious Rank Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Digg Find More places to share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on AddThis.com... Fact #317: April 26, 2004 State Gasoline Tax Rates At 7.5 cents per gallon, Georgia had the lowest state gasoline tax in the

409

Farm Motorization, Consumption and Prices of Motor Fuels  

Science Journals Connector (OSTI)

... Development of Farm Motorization and Consumption and Prices of Motor ... of Motor Fuels in Member Countries is the title of a publication recently issued by the Organization for ...

1963-12-21T23:59:59.000Z

410

Use of ethers as high-octane components of gasolines  

SciTech Connect (OSTI)

This article reports on a study of the possible utilization of methyl tert-amyl ether (MTAE) as an automotive gasoline component, both by itself and in combination with methyl tert-butyl ether (MTBE). The naphtha used in these studies consisted of 80% reformer naphtha produced under severe conditions and 20% straight-run IBP-62/sup 0/C cut. The physicochemical properties of the MTAE, the MTBE, and the naphtha base stock are given. It is determined that MTAE, which has a slightly poorer knock resistance than MTBE, is fully equal to MTBE in all other respects and can be used as an automotive gasoline component; that a gasoline blend prepared from 89% naphtha base stock, 5.5% MTAE, and 5.5% MTBE meets all of the requirements of the standard GOST 2084-77 for Grade AI-93 gasoline; and that the use of MTAE offers a means for expanding the resources of high-octane components, lowering the toxicity of the gasolines and the exhaust gas (in comparison with organometallic antiknock agents), and bringing non-petroleum raw materials into the fuel production picture.

Gureev, A.A.; Baranova, G.N.; Korotkov, I.V.; Levinson, G.I.

1984-01-01T23:59:59.000Z

411

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

412

Rotary seal with enhanced lubrication and contaminant flushing  

DOE Patents [OSTI]

A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

Dietle, Lannie L. (Sugar Land, TX)

2000-01-01T23:59:59.000Z

413

Performance of MOV Stem Lubricants at Elevated Temperatures  

SciTech Connect (OSTI)

This paper documents the results of recent tests sponsored by the U. S. Nuclear Regulatory Commission (NRC) and performed by the Idaho National Engineering and Environmental Laboratory (INEEL). These tests address the effectiveness of the lubricant used on the threaded portion of the valve stem, where the stem nut turns on the stem. Recent testing indicates that an elevated temperature environment can lead to significant increases in the friction coefficient at the stem/stem-nut interface. Most valve actuator qualification tests are performed at room temperature. Similarly, in-service tests are run at ambient plant temperatures, usually 70 to 100░F. Since design conditions can lead to valve operating temperatures in the 200 to 300░F range, it is important to know whether a temperature-induced increase in friction at the stem/stem-nut interface will prevent the required operation of critical valves. Lubricant aging is another phenomenon that might have deleterious effects on the thrust output of a valve actuator. Laboratory experience and field experience both indicate that after long periods in elevated temperature environments, the lubricants may lose their lubrication qualities. The scope of the current test program includes testing of five different lubricants on four different valve stems. Pending completion of the testing, results of the tests conducted using two of the four stems are discussed. The test series included collection of baseline data at room temperature, single step temperature tests where the temperature of the test setup was elevated directly to 250░F, and step testing where the temperature was elevated in steps to 130, 190, and 250░F, then returned to 70░F. All greases tested showed evidence of physical change after elevated temperature tests. Except for one particular lubricant, all of the greases tested showed increased coefficients of friction at elevated temperatures. Numerous other preliminary conclusions are presented. Recommendations for future research in the area of aged valve stem lubricant performance at elevated temperatures are also presented.

DeWall, Kevin George; Nitzel, Michael Everett; Watkins, John Clifford

2001-07-01T23:59:59.000Z

414

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliot William

2009-01-01T23:59:59.000Z

415

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliott William

2009-01-01T23:59:59.000Z

416

A Comparison of Ten Different Methods for the Analysis of Saturates, Olefins, Benzene, Total Aromatics, and Oxygenates in Finished Gasolines  

Science Journals Connector (OSTI)

......overview of the changing European gasoline specifications with time...combined. These reformulated gasolines may now contain straight run naphtha, fluid catalytically...analysis of hydrocarbon types in gasoline is the fluorescent indi- cator......

Jan Beens; Hans Thomas Feuerhelm; J÷rg-Christian Fr÷hling; Jerry Watt; Gertjan Schaatsbergen

417

Gasoline Price Volatility Is a Concern This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 of 5 5 of 5 Notes: March began with gasoline spot prices showing large increases over crude oil. Spot prices were nearly 20 cents per gallon over the already high crude oil prices, when normally the spread would be half that size. This spread was comparable to the spread seen in August 1997 when high demand, low stocks, and some refinery problems cause prices to surge. By the end of March the spread had fallen to about 16 cents per gallon, and by mid April was at about 11 cents per gallon as the inventory situation improved. Crude oil prices have also been falling, pulling gasoline spot prices down. Retail prices, which lag behind changes in the spot market, are turning down also. Regular gasoline prices peaked the week of March 20 at $1.53 and fell to $1.48 the week of April 10.

418

Gasoline Price Volatility Is a Concern This Summer  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Last summer's low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories did not recover and the spread remained higher than average through most of the summer. In November and December, as gasoline demand eased, prices relaxed and spreads returned to average levels -- only to rebound again in January and February as refineries began to undergo maintenance and the market watched the already low stock cushion erode further. This February, spreads are higher than last year -- averaging 14 cents so far. This is about twice what we would typically see this time of

419

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

5,473.9 5,473.9 12,853.1 71,584.0 229,911.0 21,437.8 2,118.5 14,630.3 38,186.5 February ................................. 152,443.6 12,574.1 74,038.8 239,056.4 21,643.8 2,053.6 14,806.9 38,504.4 March ...................................... 159,368.9 9,240.4 75,709.6 244,318.9 22,934.3 1,391.4 14,926.4 39,252.1 April ........................................ 166,869.6 7,329.4 77,383.5 251,582.4 23,130.1 1,079.9 14,885.7 39,095.8 May ......................................... 168,973.6 7,229.8 77,450.7 253,654.2 23,375.0 1,046.4 15,162.5 39,583.9 June ........................................ 176,397.4 7,802.8 78,867.3 263,067.5 24,193.9 1,133.7 15,555.5 40,883.1 July ......................................... 175,934.1 7,670.5 79,172.1 262,776.7 24,363.6 1,128.7 15,903.0 41,395.3 August ....................................

420

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 68.4 67.8 61.8 54.9 51.4 55.0 77.5 76.9 68.0 59.1 - 61.2 February ..................... 68.5 67.9 63.4 56.2 52.1 56.4 77.9 77.3 69.7 60.2 - 62.9 March .......................... 74.7 74.1 69.1 63.5 57.8 63.5 83.7 83.2 75.4 67.3 W 69.7 April ............................ 82.9 82.2 77.5 71.5 64.0 70.8 92.0 91.4 83.8 75.7 - 77.9 May ............................. 86.2 85.7 82.1 71.8 65.3 71.9 95.5 95.0 87.7 75.8 - 78.8 June ............................ 83.6 83.0 79.0 66.6 60.0 66.6 92.6 92.0 84.8 69.3 - 73.2 July ............................. 81.2 80.7 76.4 66.6 60.1 66.5 90.3 89.8 82.3 70.1 - 73.1 August ........................ 79.3 78.8 74.3 66.1 60.0 66.1 88.4 87.9 80.6 69.6 W 72.2 September .................. 79.9 79.4 74.7 67.1 60.9 67.1 88.7 88.2 81.0 70.7 - 73.3 October .......................

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1997 January ....................... 35.6 37.6 45.0 122.6 33.7 201.3 8.8 9.1 12.1 15.0 W 27.1 February ..................... 37.8 39.9 46.7 127.7 38.1 212.6 9.1 9.4 12.4 15.5 W 27.9 March .......................... 38.4 40.5 47.0 129.9 35.1 212.0 9.3 9.6 12.3 15.5 NA 27.9 April ............................ 38.5 40.7 47.7 134.5 33.9 216.1 9.3 9.6 12.2 16.1 W 28.3 May ............................. 38.1 39.8 45.9 135.5 34.2 215.7 9.2 9.5 12.2 16.3 W 28.5 June ............................ 39.3 41.0 46.1 138.7 29.1 214.0 9.5 9.8 12.3 16.7 W 29.0 July ............................. 43.2 44.9 45.7 148.0 31.9 225.6 10.4 10.7 12.3 18.0 W 30.3 August ........................ 43.4 45.1 46.3 144.9 33.2 224.5 10.3 10.5 12.2 17.2 W 29.5 September .................. 42.8 44.5 45.2 137.6 33.1 215.9 10.0 10.2 11.6 16.2 W 27.9 October .......................

422

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

68.4 68.4 68.0 63.0 52.6 50.6 55.3 77.1 76.6 69.4 57.1 W 63.2 February ............................. 64.7 64.5 59.0 51.3 48.7 53.1 73.6 73.2 65.0 55.4 W 60.2 March .................................. 61.9 61.8 55.7 48.9 46.3 50.6 70.7 70.3 61.7 52.9 W 57.2 April .................................... 63.5 63.4 57.8 52.1 48.5 53.1 71.9 71.6 63.7 56.1 W 59.8 May ..................................... 66.6 66.4 61.5 54.7 49.6 55.8 75.0 74.6 67.5 58.6 W 63.0 June .................................... 65.8 65.6 60.1 52.0 46.7 53.4 74.6 74.0 66.3 55.9 W 61.0 July ..................................... 64.6 64.3 58.4 50.4 45.8 52.0 73.5 73.0 64.9 54.2 W 59.5 August ................................ 61.8 61.5 55.7 45.8 42.1 48.2 71.2 70.7 62.3 49.8 W 56.0 September .......................... 60.5 60.3 55.3 46.7 42.3 48.6 69.8 69.4 61.7 50.7 W

423

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... - - - - - - - - - - - - November ................... - - - - - - - - - - - - December ................... - - - - - - - - - - - - 1993 ............................... - - - - - - - - - - - -

424

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

47,959.1 47,959.1 11,050.9 67,812.0 226,822.0 21,260.7 1,818.7 15,161.7 38,241.1 February ................................. 154,899.9 10,617.6 70,698.9 236,216.5 22,197.4 1,690.4 15,506.0 39,393.8 March ...................................... 162,738.2 6,536.2 71,600.9 240,875.3 23,091.5 984.2 15,507.0 39,582.7 April ........................................ 169,900.0 3,421.2 73,432.6 246,753.8 24,144.7 484.4 15,580.3 40,209.3 May ......................................... 170,818.8 4,569.6 73,375.3 248,763.8 24,330.4 617.2 15,767.0 40,714.6 June ........................................ 171,972.1 4,606.4 73,655.1 250,233.6 24,625.0 679.7 16,013.5 41,318.2 July ......................................... 178,120.4 4,586.2 75,480.7 258,187.3 26,160.7 674.2 16,449.8 43,284.8 August ....................................

425

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

(Million Gallons per Day) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1994 ................................ 29.7 31.2 36.1 113.5 22.8 172.4 7.6 7.8 10.1 14.6 0.1 24.8 1995 January ....................... 18.5 19.6 13.2 88.3 22.4 123.8 4.9 5.1 3.8 W W 15.1 February ..................... 21.7 23.1 18.6 98.4 23.3 140.2 5.7 5.9 5.2 W W 18.0 March .......................... 23.5 24.8 21.2 103.4 25.1 149.7 6.2 6.5 5.4 W W 19.0 April ............................ 25.9 27.2 22.5 103.9 23.8 150.3 6.4 6.6 5.6 W W 19.1 May ............................. 27.0 28.3 23.1 111.4 25.0 159.5 6.4 6.6 5.8 W W 20.0 June ............................ 28.0 29.3 23.6 116.2 29.3 169.0 6.6 6.8 5.9 W W 20.6

426

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

1,312.3 1,312.3 32,821.9 41,410.1 112,727.4 28,125.2 182,262.7 8,740.5 9,015.4 W 15,226.6 W 27,455.8 February ............................. 33,062.4 34,813.3 43,506.0 120,110.9 28,668.6 192,285.5 9,196.3 9,492.7 W 16,071.5 W 29,126.3 March .................................. 32,634.8 34,295.4 43,645.3 122,321.7 30,937.8 196,904.8 9,385.0 9,689.1 W 16,559.0 W 29,420.1 April .................................... 34,010.4 35,657.9 43,864.5 121,891.1 27,743.2 193,498.9 9,410.9 9,694.5 W 16,548.6 W 29,584.3 May ..................................... 35,529.2 37,016.8 45,031.4 130,346.8 30,182.4 205,560.7 9,402.8 9,689.9 W 17,374.5 W 30,806.5 June .................................... 36,890.5 38,450.5 46,008.3 135,930.8

427

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 7.1 7.4 19.6 W W 40.7 2.8 2.8 7.0 2.8 - 9.8 February ..................... 7.5 7.8 20.5 17.3 5.1 42.9 2.9 3.0 7.4 2.9 - 10.3 March .......................... 7.5 7.8 20.5 17.1 5.8 43.4 3.0 3.1 7.2 3.0 - 10.2 April ............................ 7.7 8.0 20.6 16.9 3.9 41.3 3.0 3.0 7.3 3.0 - 10.3 May ............................. 8.0 8.2 21.2 17.8 5.2 44.1 3.0 3.0 7.5 3.1 - 10.6 June ............................ 8.4 8.6 21.6 18.5 4.8 44.9 3.2 3.2 7.8 3.3 - 11.0 July ............................. 8.1 8.3 20.8 17.6 5.5 44.0 3.0 3.0 7.6 3.2 - 10.8 August ........................ 8.2 8.5 21.0 18.0 6.6 45.7 3.1 3.1 7.6 3.3 - 10.9 September .................. 8.0 8.3 20.4 W W 43.0 3.2 3.2 7.4 3.0 - 10.5 October ....................... 7.7 8.0 20.5 W W 42.8 3.0 3.0 W W - 10.5 November ...................

428

Petroleum Products Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

70.4 70.4 70.1 64.3 56.2 51.8 58.2 78.6 78.2 69.8 60.7 - 65.6 February ............................. 70.8 70.5 65.2 57.2 52.7 59.0 79.0 78.5 70.8 61.5 - 66.5 March .................................. 75.9 75.6 70.3 64.1 59.0 65.4 83.9 83.5 76.0 68.1 W 72.4 April .................................... 84.2 84.0 79.4 72.4 66.4 73.5 92.4 91.9 85.1 76.8 - 81.4 May ..................................... 87.9 87.6 83.2 72.7 68.1 75.2 96.2 95.7 88.8 76.8 - 83.3 June .................................... 85.5 85.1 79.8 67.5 61.3 70.1 93.9 93.1 85.7 70.8 - 78.8 July ..................................... 83.1 82.9 77.7 67.5 61.8 69.6 91.4 90.9 83.5 71.3 - 77.8 August ................................ 81.3 81.1 75.3 66.8 61.3 68.6 89.4 88.9 81.0 70.7 NA 76.1 September .......................... 81.1 81.0 74.9 67.8 61.9 69.2 89.1 88.7 80.1 71.6 W

429

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

70.4 70.4 70.1 64.3 56.2 51.8 58.2 78.6 78.2 69.8 60.7 - 65.6 February ............................. 70.8 70.5 65.2 57.2 52.7 59.0 79.0 78.5 70.8 61.5 - 66.5 March .................................. 75.9 75.6 70.3 64.1 59.0 65.4 83.9 83.5 76.0 68.1 W 72.4 April .................................... 84.2 84.0 79.4 72.4 66.4 73.5 92.4 91.9 85.1 76.8 - 81.4 May ..................................... 87.9 87.6 83.2 72.7 68.1 75.2 96.2 95.7 88.8 76.8 - 83.3 June .................................... 85.5 85.1 79.8 67.5 61.3 70.1 93.9 93.1 85.7 70.8 - 78.8 July ..................................... 83.1 82.9 77.7 67.5 61.8 69.6 91.4 90.9 83.5 71.3 - 77.8 August ................................ 81.3 81.1 75.3 66.8 61.3 68.6 89.4 88.9 81.0 70.7 NA 76.1 September .......................... 81.1 81.0 74.9 67.8 61.9 69.2 89.1 88.7 80.1 71.6 W

430

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 10.7 11.1 26.1 20.5 8.0 54.6 3.3 3.4 7.9 3.3 W 11.3 1997 January ....................... 11.3 11.8 27.2 19.8 7.3 54.3 3.2 3.3 7.9 3.0 W 10.8 February ..................... 12.1 12.6 28.3 20.7 6.9 55.9 3.3 3.4 8.1 3.0 W 11.1 March .......................... 12.4 12.9 28.4 21.2 7.4 57.0 3.4 3.5 8.0 3.1 W 11.1 April ............................ 12.4 12.8 29.0 21.1 7.0 57.1 3.4 3.5 7.9 3.0 W 11.0 May ............................. 12.0 12.4 27.3 21.1 7.9 56.3 3.3 3.4 7.9 3.1 W 11.1 June ............................ 12.2 12.6 27.4 21.5 7.0 56.0 3.4 3.5 7.9 3.2 W 11.1 July ............................. 14.0 14.4 27.5 22.7 6.8 57.0 3.8 3.9 8.0 3.4 W 11.5 August ........................ 14.8 15.1 28.1 23.2 8.5 59.8 3.9 4.0 8.0 3.4 W 11.5 September .................. 14.7 15.1 27.7 22.0 7.3 57.0 3.7 3.8

431

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... 59.4 58.8 54.2 46.0 41.8 46.6 69.8 69.2 60.4 49.8 NA 53.6 February ..................... 61.7 61.1 57.0 49.2 45.0 50.0 71.5 70.9 62.9 53.3 NA 56.9 March .......................... 62.2 61.7 57.4 49.9 46.2 51.3 72.0 71.4 63.3 54.0 NA 58.0 April ............................ 64.9 64.5 60.1 53.5 49.3 54.5 74.6 74.1 66.0 57.6 NA 61.2 May ............................. 66.6 66.2 62.0 54.7 50.3 56.0 76.4 75.9 67.7 58.4 NA 62.6 June ............................ 69.7 69.2 65.3 58.2 53.1 59.3 79.5 78.9 71.2 61.8 NA 65.9 July ............................. 72.6 72.2 68.0 61.0 56.0 62.2 82.3 81.8 73.8 63.9 NA 68.3 August ........................ 77.4 76.9 71.2 63.6 57.9 64.7 86.9 86.3 77.0 66.4 NA 71.0 September .................. 75.5 74.8 68.6 54.6 51.6 57.4 85.2 84.4 74.7 57.1 NA 64.6 October .......................

432

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

8,415.8 8,415.8 39,569.3 40,215.9 122,708.5 26,876.5 189,800.8 10,466.7 10,604.8 10,129.5 14,302.8 - 24,432.4 February ............................. 40,637.5 41,953.1 43,328.9 133,687.6 29,805.9 206,822.4 10,360.0 10,513.3 W 15,544.3 W 26,397.7 March .................................. 41,477.4 43,016.1 45,427.5 141,434.5 35,293.6 222,155.7 10,324.1 10,491.1 W 16,370.9 W 27,381.7 April .................................... 43,183.2 44,648.5 46,529.4 145,575.1 45,194.6 237,299.2 9,958.2 10,130.7 10,397.0 15,931.2 W 26,339.9 May ..................................... 42,591.4 44,151.1 46,198.6 146,358.6 40,692.6 233,249.8 10,265.8 10,423.0 W 16,051.1 W 26,538.5 June .................................... 43,545.0 44,890.8 46,463.3

433

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1984 ...................................... 92.3 84.8 NA NA 102.5 92.4 91.6 84.2 1985 ...................................... 93.6 85.2 NA NA 104.2 93.3 93.4 85.2 1986 ...................................... 63.9 53.2 NA NA 76.1 62.1 65.3 55.2 1987 ...................................... 67.5 57.7 NA NA 80.5 68.2 69.9 60.6 1988 ...................................... 67.1 56.1 NA NA 81.3 68.7 70.8 60.2 1989 ...................................... 74.1 62.7 82.0 70.0 90.5 76.7 79.4 67.9 1990 ...................................... 87.6 77.7 94.8 83.2 101.9 89.0 91.8 81.5 1991 ...................................... 79.2 70.6 87.5 75.7 95.9 83.2 83.8 74.2 1992 ...................................... 74.0 65.1 84.1 71.4 93.0 78.4 79.6 69.3 1993 ...................................... 69.7 59.0 80.2 66.1

434

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... 22.2 23.4 20.4 96.1 20.6 137.2 6.3 6.5 6.5 11.7 0.1 18.3 February ..................... 24.6 26.0 25.6 104.0 19.9 149.6 6.9 7.1 7.9 W W 21.2 March .......................... 31.6 33.2 42.2 113.4 20.6 176.2 7.9 8.2 11.6 W W 26.8 April ............................ 32.9 34.5 43.5 117.7 23.8 185.0 8.1 8.4 11.7 W W 27.0 May ............................. 34.2 35.8 47.6 119.7 24.3 191.6 8.5 8.8 W W 0.1 28.9 June ............................ 35.3 37.1 W W 24.5 197.4 W W W W 0.3 W July ............................. 34.7 36.2 W 122.7 W 191.9 W W W W 0.2 W August ........................ 35.6 37.2 48.6 W W 200.6 W 8.9 13.0 16.6 0.2 29.8 September .................. 34.1 35.6 44.7 123.2 25.0 193.0 8.2 8.5 12.0 W W 27.8 October ....................... 26.7 28.1 27.4 110.9 22.9 161.2 7.2 7.5

435

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

83.0 83.0 73.6 72.4 92.4 79.2 79.1 101.0 83.3 84.5 87.2 75.5 75.0 February ............................. 82.4 72.4 70.4 91.9 78.9 77.5 100.2 84.0 82.6 86.5 74.5 73.0 March .................................. 80.4 70.4 68.7 90.1 78.5 76.0 98.3 82.1 80.6 84.6 72.6 71.4 April .................................... 80.3 68.7 67.7 89.9 79.3 75.4 97.9 NA 79.7 84.4 73.2 70.4 May ..................................... 81.0 69.7 68.6 90.2 77.1 75.7 97.9 86.5 80.5 85.0 73.8 71.3 June .................................... 79.7 67.3 65.6 89.1 73.6 73.0 96.8 82.4 77.5 83.8 70.8 68.4 July ..................................... 77.9 65.4 64.8 87.3 71.4 71.9 95.5 81.2 77.0 82.0 69.2 67.5 August ................................ 83.2 72.1 72.2 92.7 77.9 79.5 100.8 89.6 84.5 87.2 75.8 75.0 September .......................... 83.6 70.7 69.5 93.2 80.4 77.9

436

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

70.5 70.5 58.3 57.7 79.6 61.2 65.4 88.3 67.0 70.1 75.4 60.0 61.0 February ............................. 70.5 58.1 58.4 79.8 61.0 66.1 88.4 66.8 70.6 75.5 59.8 61.6 March .................................. 75.8 64.1 64.9 84.7 67.6 72.0 93.3 72.7 76.9 80.4 65.8 67.9 April .................................... 84.5 72.6 73.2 93.7 76.8 81.3 102.1 81.8 85.8 88.8 74.3 76.1 May ..................................... 89.3 77.4 75.2 99.1 81.0 84.2 106.6 85.6 87.9 93.3 79.0 78.0 June .................................... 86.9 71.5 70.0 96.5 73.6 79.4 103.9 79.2 83.0 91.0 72.8 73.0 July ..................................... 83.9 72.9 69.4 93.4 79.5 78.1 101.1 83.1 82.1 88.0 75.2 72.3 August ................................ 81.2 71.1 68.3 90.6 77.4 76.1 98.3 81.4 80.3 85.4 73.4 71.1 September .......................... 80.8 71.0 68.8 89.8 76.4

437

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 65.7 65.0 59.5 52.3 48.2 52.4 75.7 74.9 66.3 56.8 W 59.2 February ..................... 65.7 65.1 60.6 53.4 49.6 53.7 75.4 74.7 67.4 57.9 W 60.6 March .......................... 66.8 66.2 61.0 54.3 50.7 54.6 76.1 75.4 67.4 58.1 W 60.7 April ............................ 72.2 71.7 66.3 62.2 57.0 62.0 81.2 80.7 72.8 66.6 W 68.4 May ............................. 78.8 78.3 72.5 67.6 62.1 67.4 88.0 87.4 79.2 72.4 W 74.3 June ............................ 79.2 78.6 72.5 62.3 58.5 63.1 88.3 87.6 79.5 66.7 W 70.3 July ............................. 74.9 74.2 68.4 56.3 52.8 57.4 84.0 83.3 74.7 60.0 W 64.2 August ........................ 71.9 71.3 65.5 56.8 52.1 57.2 80.8 80.2 71.1 60.6 NA 63.5 September .................. 71.1 70.6 65.1 57.6 52.5 57.7 79.8 79.3 70.5 61.2 W 63.9 October .......................

438

Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... - - - - - - - - - - - - November ................... 77.9 77.7 72.6 60.3 58.7 65.2 89.8 89.5 77.9 69.0 - 75.4 December ................... 76.4 75.7 72.0 56.7 53.3 63.7 87.8 87.2 77.0 62.5 W 72.6 1994 ...............................

439

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 79.7 79.1 74.3 66.5 60.7 66.4 88.4 87.8 80.1 70.0 NA 72.6 1997 January ....................... 82.4 81.7 76.7 71.2 66.2 70.8 91.4 90.9 83.1 75.4 - 77.2 February ..................... 80.7 80.1 74.9 68.5 64.3 68.3 90.1 89.5 81.3 72.3 - 74.5 March .......................... 78.5 77.9 72.4 66.1 62.7 66.2 88.4 87.9 78.7 70.1 W 72.2 April ............................ 78.7 77.9 73.1 65.0 60.7 65.2 88.3 87.8 78.8 69.0 - 71.4 May ............................. 79.6 79.1 73.4 67.3 61.9 67.1 88.7 88.3 79.1 70.3 - 72.5 June ............................ 78.5 78.0 72.1 63.7 59.1 64.0 87.7 87.2 78.5 66.8 - 69.6 July ............................. 76.6 76.1 69.7 63.6 57.5 63.3 85.8 85.4 76.2 67.1 - 69.1 August ........................ 82.0 81.5 75.8 70.8 63.9 70.3 91.1 90.7 81.9 74.4 - 76.1 September ..................

440

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

1,515.4 1,515.4 24,168.6 49,958.8 205,642.8 21,325.8 3,583.5 13,512.4 38,421.7 February ................................. 150,955.0 13,660.5 51,987.1 216,602.6 25,038.0 1,397.6 14,426.9 40,862.5 March ...................................... 163,625.6 5,783.8 52,023.6 221,433.1 26,758.2 374.3 14,421.6 41,554.1 April ........................................ 168,026.4 2,480.7 51,915.9 222,423.1 27,004.8 215.3 14,404.6 41,624.7 May ......................................... 176,606.8 2,535.4 54,024.9 233,167.2 27,876.2 223.5 14,812.1 42,911.8 June ........................................ 183,750.5 2,633.2 56,295.9 242,679.6 28,544.1 231.4 15,275.8 44,051.2 July ......................................... 178,005.9 2,548.4 53,761.7 234,316.0 28,345.2 228.4 15,005.0 43,578.6 August ....................................

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Petroleum Products Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

1,312.3 1,312.3 32,821.9 41,410.1 112,727.4 28,125.2 182,262.7 8,740.5 9,015.4 W 15,226.6 W 27,455.8 February ............................. 33,062.4 34,813.3 43,506.0 120,110.9 28,668.6 192,285.5 9,196.3 9,492.7 W 16,071.5 W 29,126.3 March .................................. 32,634.8 34,295.4 43,645.3 122,321.7 30,937.8 196,904.8 9,385.0 9,689.1 W 16,559.0 W 29,420.1 April .................................... 34,010.4 35,657.9 43,864.5 121,891.1 27,743.2 193,498.9 9,410.9 9,694.5 W 16,548.6 W 29,584.3 May ..................................... 35,529.2 37,016.8 45,031.4 130,346.8 30,182.4 205,560.7 9,402.8 9,689.9 W 17,374.5 W 30,806.5 June .................................... 36,890.5 38,450.5 46,008.3 135,930.8

442

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1997 January ....................... 83.0 82.5 77.2 71.9 67.8 72.4 92.4 92.0 82.9 76.1 W 79.1 February ..................... 82.4 81.9 77.3 69.3 65.8 70.4 91.9 91.5 82.8 73.2 W 77.5 March .......................... 80.4 79.9 76.6 66.9 64.9 68.7 90.1 89.7 82.3 71.0 74.8 76.0 April ............................ 80.3 79.7 77.7 65.5 62.4 67.7 89.9 89.6 82.9 69.6 W 75.4 May ............................. 81.0 80.5 76.5 67.6 62.3 68.6 90.2 89.9 82.3 70.8 W 75.7 June ............................ 79.7 79.2 74.9 63.9 58.9 65.6 89.1 88.7 80.8 67.2 W 73.0 July ............................. 77.9 77.4 72.4 63.9 57.9 64.8 87.3 86.9 78.4 67.5 W 71.9 August ........................ 83.2 82.8 79.2 71.4 66.1 72.2 92.7 92.3 85.4 75.3 W 79.5 September .................. 83.6 83.1 81.2 67.1 63.4 69.5 93.2 92.9 87.4 71.0 W 77.9 October .......................

443

Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... 7.5 7.8 21.1 10.8 2.1 34.0 1.5 1.5 5.1 W W 7.0 November ................... 9.7 10.0 25.5 15.1 2.3 43.0 1.9 2.0 6.1 W W 8.4 December ................... 10.0 10.3 25.8 14.6 2.7 43.1 2.0 2.0 6.0 W W 8.3 1993 ............................... - - - - - - - - - - - -

444

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

69.6 69.6 54.8 54.8 78.5 58.1 63.1 87.0 63.8 67.2 73.7 56.2 57.6 February ............................. 65.2 53.7 52.5 74.8 55.7 59.7 83.0 61.4 64.4 69.4 54.9 55.1 March .................................. 61.7 51.4 49.7 71.2 52.6 56.4 79.4 58.3 61.1 65.9 52.5 52.3 April .................................... 63.9 53.9 52.3 73.2 56.3 59.2 81.3 62.4 63.8 68.1 55.3 54.9 May ..................................... 67.7 56.6 55.3 76.8 59.1 62.6 84.6 65.9 66.9 71.8 58.1 57.9 June .................................... 67.0 54.3 52.9 76.4 56.9 60.7 84.2 63.0 65.0 71.2 55.7 55.7 July ..................................... 65.5 52.5 51.5 75.3 56.1 59.1 83.4 61.9 63.7 69.9 54.1 54.3 August ................................ 62.7 48.0 47.6 72.8 51.3 55.6 80.7 56.1 60.1 67.2 49.5 50.6 September .......................... 61.5 48.1 48.1 71.4 51.3 55.6

445

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

6,610.0 6,610.0 22,435.3 49,088.9 208,134.2 22,186.7 4,984.3 13,786.2 40,957.2 February ................................. 153,634.8 13,112.4 51,743.2 218,490.3 25,891.2 2,648.7 14,587.8 43,127.7 March ...................................... 164,511.0 5,627.4 54,891.2 225,029.5 27,541.1 1,003.3 14,659.5 43,203.8 April ........................................ 171,743.7 3,242.7 64,778.3 239,764.6 26,368.4 481.6 16,027.4 42,877.4 May ......................................... 174,844.7 3,228.7 71,439.4 249,512.7 24,576.4 457.5 16,101.8 41,135.6 June ........................................ 173,854.4 3,274.9 72,458.5 249,587.8 24,566.8 478.5 16,375.5 41,420.8 July ......................................... 177,228.5 3,307.7 70,689.0 251,225.3 25,495.0 485.5 16,323.6 42,304.1 August ....................................

446

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... - - - - - - - - - - - - November ................... 0.3 0.3 1.7 0.8 1.4 3.9 0.2 0.2 0.4 0.2 - 0.6 December ................... 6.7 7.0 23.0 W W 47.3 2.0 2.0 7.5 W W 10.7 1994 ...............................

447

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... 69.0 68.4 60.0 51.0 45.4 56.3 78.0 77.3 65.7 54.8 W 62.7 February ..................... 68.3 67.8 60.1 53.2 48.7 57.8 78.1 77.4 65.9 56.8 W 63.7 March .......................... 71.0 70.2 62.6 54.1 46.9 59.1 80.4 79.5 65.7 57.1 W 63.8 April ............................ 66.5 66.0 60.8 54.4 49.6 58.3 80.1 79.6 66.5 57.9 W 64.7 May ............................. 70.6 70.5 61.9 61.1 - 61.6 82.5 82.5 W W - 58.8 June ............................ 71.9 71.9 W 64.9 - 63.8 W W W W - W July ............................. 75.1 75.1 W 70.0 W 67.4 W W W W - W August ........................ 81.9 81.8 67.6 75.7 W 70.0 W 98.1 - 69.4 - 69.4 September .................. 80.9 80.5 74.1 65.4 54.6 67.8 94.1 93.5 77.1 62.1 W 71.6 October ....................... 78.7 78.3 73.5 63.7 57.8 69.5 89.5 89.2

448

Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 75.7 75.1 72.1 59.0 56.1 65.0 85.3 84.8 77.1 63.5 - 73.2 February ..................... 74.4 73.8 70.9 59.4 57.5 64.7 83.5 83.1 75.6 64.3 - 72.4 March .......................... 73.0 72.4 69.7 57.4 54.0 62.7 82.1 81.7 74.5 62.1 - 70.9 April ............................ 75.0 74.5 71.4 64.0 59.5 67.3 84.0 83.7 76.4 68.4 - 74.0 May ............................. 80.3 80.0 76.4 69.6 64.8 72.3 89.0 88.8 81.4 74.1 - 79.3 June ............................ 81.8 81.5 77.4 65.9 61.8 71.0 90.4 90.0 81.9 70.8 - 78.6 July ............................. 79.2 78.6 74.2 59.6 58.1 66.3 87.7 87.3 78.2 64.7 - 74.2 August ........................ 75.4 74.8 70.1 59.3 57.5 64.0 83.5 83.1 74.2 64.1 - 71.1 September .................. 72.6 72.2 68.3 60.5 58.0 63.9 80.5 80.2 72.4 64.7 - 70.2 October .......................

449

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... 27.2 28.7 26.9 105.7 16.1 148.6 7.3 7.5 8.0 W W 21.2 November ................... 25.0 26.3 22.1 105.9 14.6 142.6 6.7 7.0 6.7 W W 20.0 December ................... 24.6 25.9 22.2 107.5 18.0 147.6 6.6 6.9 7.0 W W

450

Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 71.4 71.0 67.6 59.2 56.0 63.1 80.9 80.6 72.3 63.8 - 69.9 February ..................... 72.2 71.7 67.8 59.8 56.8 63.2 81.3 81.0 73.1 64.2 - 70.5 March .......................... 76.7 76.3 72.0 65.8 65.5 68.8 86.0 85.7 77.9 70.0 - 75.6 April ............................ 87.7 87.3 83.5 77.0 77.3 80.2 96.5 96.2 88.8 81.4 - 86.7 May ............................. 95.7 95.3 91.7 77.0 74.8 83.4 105.1 104.7 96.8 81.4 - 92.2 June ............................ 93.5 92.9 89.1 70.5 68.0 78.9 103.0 102.4 94.0 75.1 - 88.3 July ............................. 88.8 88.4 85.3 70.7 68.7 77.3 98.6 98.3 90.3 75.2 - 85.6 August ........................ 84.3 84.0 79.9 68.9 65.2 73.4 94.0 93.7 85.1 73.4 W 81.5 September .................. 81.4 81.1 76.8 69.5 66.5 72.6 91.0 90.8 82.3 73.8 W 79.8 October .......................

451

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

2,177.8 2,177.8 33,696.7 41,031.4 115,778.7 25,866.5 182,676.6 9,536.5 9,794.2 12,905.9 15,962.1 - 28,868.0 February ............................. 33,085.6 34,725.7 42,808.2 121,887.8 32,127.0 196,822.9 9,746.2 10,022.4 13,588.9 16,896.7 - 30,485.6 March .................................. 34,978.9 36,685.7 45,070.0 122,489.6 28,845.0 196,404.5 9,984.6 10,254.2 W 16,980.4 W 30,689.3 April .................................... 36,627.7 38,654.6 46,870.7 132,107.0 39,827.2 218,805.0 9,633.1 9,933.5 13,367.1 17,002.1 - 30,369.2 May ..................................... 38,548.0 40,338.1 48,651.6 137,813.8 38,767.1 225,232.5 9,234.8 9,508.1 12,618.4 16,543.3 - 29,161.6 June .................................... 39,265.8 40,954.4 48,139.0 137,339.2 43,089.0

452

Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 2.4 2.5 2.6 2.9 W 5.6 0.5 0.5 0.5 0.4 - 0.9 1997 January ....................... 3.7 3.7 2.9 4.5 - 7.4 0.8 0.8 W 0.5 - 1.1 February ..................... 3.6 3.7 2.9 4.2 - 7.1 0.7 0.7 W 0.5 - 1.0 March .......................... 2.1 2.1 1.9 2.3 - 4.1 0.4 0.4 0.4 0.2 - 0.6 April ............................ 0.9 0.9 0.5 1.6 - 2.1 0.2 0.2 W 0.2 - 0.3 May ............................. 1.3 1.4 1.0 1.7 - 2.7 0.2 0.2 W 0.2 - 0.3 June ............................ 1.5 1.6 1.0 1.8 - 2.8 0.3 0.3 W 0.2 - 0.4 July ............................. 1.3 1.4 1.0 1.8 - 2.8 0.2 0.2 W 0.2 - 0.4 August ........................ 1.3 1.4 1.0 1.9 - 2.8 0.2 0.2 W 0.2 - 0.4 September .................. 1.6 1.6 1.3 2.4 - 3.7 0.2 0.2 W 0.4 - 0.6 October ....................... 2.1 2.2 2.0 4.2 - 6.3 0.4 0.4 W 0.7 - 1.1

453

Petroleum Products Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

7,592.9 7,592.9 38,697.1 41,234.1 134,916.3 28,778.0 204,928.3 8,469.6 8,591.2 8,752.4 13,409.9 - 22,162.3 February ............................. 41,372.4 42,768.1 45,617.8 152,433.3 25,868.1 223,919.1 8,902.4 9,050.1 9,576.8 15,164.2 - 24,741.0 March .................................. 43,908.9 45,486.6 48,663.0 159,013.0 26,574.1 234,250.2 8,334.4 8,483.4 9,042.9 14,281.9 - 23,324.8 April .................................... 41,453.4 42,873.1 46,118.2 157,990.7 37,856.7 241,965.6 8,146.0 8,304.1 8,624.2 14,057.8 - 22,682.0 May ..................................... 43,079.5 44,622.1 47,391.3 165,547.2 35,485.2 248,423.6 8,461.1 8,619.3 8,946.6 15,071.0 - 24,017.6 June .................................... 45,869.9 47,451.1 49,767.2 169,463.5 41,245.2 260,475.9

454

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 70.5 69.9 66.3 55.9 52.2 57.7 79.6 79.1 71.7 60.3 - 65.4 February ..................... 70.5 70.0 66.4 57.0 53.0 58.4 79.8 79.3 72.2 61.1 - 66.1 March .......................... 75.8 75.3 70.9 64.0 59.3 64.9 84.7 84.3 77.0 67.9 W 72.0 April ............................ 84.5 83.9 81.0 72.4 66.6 73.2 93.7 93.2 87.0 76.9 - 81.3 May ............................. 89.3 88.8 88.0 72.7 68.0 75.2 99.1 98.6 93.7 77.0 - 84.2 June ............................ 86.9 86.3 85.2 67.4 61.6 70.0 96.5 95.9 91.0 70.6 - 79.4 July ............................. 83.9 83.4 81.9 67.3 62.0 69.4 93.4 93.0 87.6 71.2 - 78.1 August ........................ 81.2 80.7 78.0 66.7 61.5 68.3 90.6 90.2 83.7 70.5 NA 76.1 September .................. 80.8 80.4 76.4 67.7 62.4 68.8 89.8 89.4 82.1 71.5 W 76.1 October .......................

455

Petroleum Products Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

2,177.8 2,177.8 33,696.7 41,031.4 115,778.7 25,866.5 182,676.6 9,536.5 9,794.2 12,905.9 15,962.1 - 28,868.0 February ............................. 33,085.6 34,725.7 42,808.2 121,887.8 32,127.0 196,822.9 9,746.2 10,022.4 13,588.9 16,896.7 - 30,485.6 March .................................. 34,978.9 36,685.7 45,070.0 122,489.6 28,845.0 196,404.5 9,984.6 10,254.2 W 16,980.4 W 30,689.3 April .................................... 36,627.7 38,654.6 46,870.7 132,107.0 39,827.2 218,805.0 9,633.1 9,933.5 13,367.1 17,002.1 - 30,369.2 May ..................................... 38,548.0 40,338.1 48,651.6 137,813.8 38,767.1 225,232.5 9,234.8 9,508.1 12,618.4 16,543.3 - 29,161.6 June .................................... 39,265.8 40,954.4 48,139.0 137,339.2 43,089.0

456

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... 78.0 77.4 70.6 61.2 53.1 66.5 84.5 83.7 75.1 63.7 W 71.9 November ................... 75.9 75.3 66.8 55.2 47.0 61.6 85.0 84.2 72.1 58.4 W 68.3 December ................... 71.5 70.9 62.2 48.2 42.7 56.2 80.7 79.9 68.1

457

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1994 January ....................... 31.4 32.9 44.3 108.4 22.6 175.3 8.1 8.4 12.1 13.6 0.2 25.9 February ..................... 32.5 34.2 46.7 112.6 21.0 180.2 8.3 8.6 12.2 14.4 0.1 26.7 March .......................... 34.4 36.2 48.0 116.1 21.1 185.3 8.4 8.7 12.8 15.4 0.2 28.4 April ............................ 34.2 35.8 48.0 119.8 24.1 191.9 8.4 8.7 12.9 15.5 0.1 28.6 May ............................. 34.6 36.3 48.2 120.2 24.3 192.7 8.5 8.8 12.9 15.9 0.1 29.0 June ............................ 35.8 37.5 49.2 124.7 24.5 198.4 8.6 8.9 13.3 16.5 0.3 30.1 July ............................. 35.1 36.6 48.4 123.3 21.3 193.0 8.6 8.8 13.0 16.2 0.2 29.5 August ........................ 36.0 37.6 49.0 128.1 25.0 202.0 8.6 8.9 13.0 16.7 0.2 30.0 September .................. 35.1 36.6 47.5 124.8 26.0 198.3 8.3 8.6 12.7 16.0 0.2 28.9 October

458

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 24.1 25.4 17.8 108.5 27.1 153.4 5.7 5.9 4.4 12.9 NA 17.3 1997 January ....................... 20.6 22.0 14.8 98.3 26.4 139.6 4.7 4.9 3.7 11.5 - 15.1 February ..................... 22.1 23.7 15.4 102.9 31.2 149.5 5.0 5.2 3.8 11.9 - 15.7 March .......................... 24.0 25.5 16.8 106.4 27.7 150.9 5.5 5.7 4.0 12.2 W 16.2 April ............................ 25.1 26.9 18.2 111.8 26.9 156.9 5.8 5.9 4.2 12.9 - 17.0 May ............................. 24.7 26.0 17.7 112.7 26.3 156.7 5.7 5.8 4.2 13.0 - 17.1 June ............................ 25.6 26.9 17.7 115.4 22.1 155.2 5.9 6.1 4.2 13.3 - 17.4 July ............................. 27.8 29.1 17.2 123.4 25.2 165.8 6.4 6.6 4.1 14.4 - 18.5 August ........................ 27.3 28.7 17.3 119.9 24.7 161.9 6.2 6.4 4.0 13.5 - 17.6 September ..................

459

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1984 ...................................... 92.3 84.8 NA NA 102.5 92.4 91.6 84.2 1985 ...................................... 93.6 85.2 NA NA 104.2 93.3 93.4 85.2 1986 ...................................... 63.9 53.2 NA NA 76.1 62.1 65.3 55.2 1987 ...................................... 67.5 57.7 NA NA 80.5 68.2 69.9 60.6 1988 ...................................... 67.1 56.1 NA NA 81.3 68.7 70.8 60.2 1989 ...................................... 74.1 62.7 82.0 70.0 90.5 76.7 79.4 67.9 1990 ...................................... 87.6 77.7 94.8 83.2 101.9 89.0 91.8 81.5 1991 ...................................... 79.2 70.6 87.5 75.7 95.9 83.2 83.8 74.2 1992 ...................................... 74.0 65.1 84.1 71.4 93.0 78.4 79.6 69.3 1993 ...................................... 69.7 59.0 80.2 66.1

460

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 76.6 76.4 69.5 60.6 56.1 64.7 85.7 85.6 74.4 64.0 - 70.0 February ..................... 76.2 76.1 69.9 62.8 55.2 66.0 86.3 86.2 73.4 65.3 - 69.2 March .......................... 77.3 77.2 72.4 65.1 - 68.9 85.7 85.6 75.1 66.1 - 70.0 April ............................ 83.4 83.4 76.7 67.9 - 71.5 91.1 90.9 W 69.7 - 73.8 May ............................. 89.0 88.8 80.4 71.8 - 75.2 95.4 95.3 W 73.5 - 77.7 June ............................ 90.7 90.7 80.4 66.5 - 71.9 97.6 97.4 W 68.7 - 75.0 July ............................. 88.1 88.1 77.9 62.6 - 68.5 92.4 92.4 W 63.9 - 69.6 August ........................ 84.8 84.8 76.8 63.7 - 68.7 87.7 87.6 W 65.3 - 69.8 September .................. 83.4 83.1 74.3 66.4 69.3 69.4 85.2 85.1 75.6 69.1 - 72.4 October ....................... 75.6 75.3

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1993 January ....................... 33.5 35.0 - - - 170.6 8.2 8.4 - - - 25.2 February ..................... 35.3 37.0 - - - 179.9 8.6 8.8 - - - 27.0 March .......................... 35.6 37.4 - - - 182.3 8.5 8.8 - - - 26.8 April ............................ 36.5 38.3 - - - 184.4 8.6 8.9 - - - 27.6 May ............................. 36.1 37.7 - - - 182.2 8.6 8.9 - - - 27.1 June ............................ 38.0 39.7 - - - 191.9 8.9 9.2 - - - 28.2 July ............................. 36.5 38.0 - - - 189.3 9.0 9.3 - - - 28.9 August ........................ 36.1 37.7 - - - 187.0 9.0 9.2 - - - 28.4 September .................. 35.5 37.1 - - - 181.9 8.6 8.9 - - - 27.9 October ....................... 34.5 36.2 47.9 116.5 18.2 182.6 8.7 9.0 13.1 14.9 0.2 28.1 November ................... 34.7 36.2

462

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average 1983...

463

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average 1994...

464

Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1993 January...

465

Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...  

Gasoline and Diesel Fuel Update (EIA)

for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average 1993 January...

466

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...  

Gasoline and Diesel Fuel Update (EIA)

Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1983...

467

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1993 January...

468

U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes...

469

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average 1993 January...

470

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

- - - - - - - November ... 0.3 0.3 1.7 0.8 1.4 3.9 0.2 0.2 0.4 0.2 - 0.6 December ... 6.7 7.0 23.0 W W 47.3 2.0 2.0 7.5 W W 10.7 1994...

471

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

16.7 November ... 24.3 25.5 14.7 104.9 25.4 145.1 5.5 5.7 3.5 11.9 - 15.4 December ... 25.1 26.4 14.8 107.4 28.4 150.7 5.8 6.0 3.5 12.6 - 16.1 1997...

472

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

25.1 143.7 5.7 5.9 4.0 13.5 - 17.5 November ... 20.3 21.5 13.9 100.4 26.5 140.8 5.4 5.6 3.9 13.5 - 17.4 December ... 20.3 21.4 13.9 98.4 28.4...

473

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

27.2 28.7 26.9 105.7 16.1 148.6 7.3 7.5 8.0 W W 21.2 November ... 25.0 26.3 22.1 105.9 14.6 142.6 6.7 7.0 6.7 W W 20.0 December ... 24.6 25.9...

474

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 76.3 76.0 70.4 61.4 W 65.6 84.0 83.8 76.0 64.8 - 72.0 February ..................... 77.6 77.4 72.3 64.4 - 68.2 85.7 85.7 78.4 67.4 - 74.2 March .......................... 84.7 84.4 79.5 72.2 W 75.8 90.8 90.8 85.3 74.5 - 81.4 April ............................ 94.0 93.6 87.2 76.1 - 80.0 101.6 101.6 93.6 77.3 - 86.2 May ............................. 99.1 98.6 94.3 76.1 - 82.3 108.1 107.9 99.8 77.3 - 88.1 June ............................ 97.9 97.5 NA 76.5 - 82.3 105.7 105.7 98.3 77.4 - 87.6 July ............................. 95.8 95.4 NA 75.0 - 80.6 103.7 103.6 96.5 76.0 - 85.9 August ........................ 97.2 96.8 NA 78.1 - 83.2 104.3 104.3 NA 79.8 - 87.9 September .................. 97.8 97.3 88.4 79.7 - 83.2 104.5 104.4 94.1 82.5 - 88.4 October .......................

475

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 32.2 33.7 41.0 115.8 25.9 182.7 9.5 9.8 12.9 16.0 - 28.9 February ..................... 33.1 34.7 42.8 121.9 32.1 196.8 9.7 10.0 13.6 16.9 - 30.5 March .......................... 35.0 36.7 45.1 122.5 28.8 196.4 10.0 10.3 13.7 17.0 W 30.7 April ............................ 36.6 38.7 46.9 132.1 39.8 218.8 9.6 9.9 13.4 17.0 - 30.4 May ............................. 38.5 40.3 48.7 137.8 38.8 225.2 9.2 9.5 12.6 16.5 - 29.2 June ............................ 39.3 41.0 48.1 137.3 43.1 228.6 9.6 9.8 12.6 16.6 - 29.3 July ............................. 38.6 40.4 47.3 141.2 40.8 229.4 9.5 9.8 12.6 17.4 - 29.9 August ........................ 38.8 40.7 48.0 141.8 35.2 225.0 9.6 10.0 12.7 17.3 NA 30.1 September .................. 37.9 39.6 46.6 131.4 31.5 209.5 9.4 9.6 12.4 15.9 W 28.4 October .......................

476

Investigating the Effect of Engine Lubricant Viscosity on Engine Friction and Fuel Economy of a Diesel Engine.  

E-Print Network [OSTI]

??Fuel economy is affected, both by fuel and engine lubricant quality. Engine lubricant quality plays a vital role in reduction of fuel consumption by effectiveů (more)

Singh, Devendra

2011-01-01T23:59:59.000Z

477

Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tier 2 Vehicle and Tier 2 Vehicle and Gasoline Sulfur Program to someone by E-mail Share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Facebook Tweet about Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Twitter Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Google Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Delicious Rank Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Digg Find More places to share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tier 2 Vehicle and Gasoline Sulfur Program

478

Overview of sSupply of Chicago/Milwaukee Gasoline This Spring:  

Gasoline and Diesel Fuel Update (EIA)

Supply of Chicago/Milwaukee Gasoline Spring 20001 Supply of Chicago/Milwaukee Gasoline Spring 20001 Joanne Shore, Petroleum Division Tight Supply at the Beginning of Summer Gasoline Season This summer's run-up in Midwest gasoline prices, like other recent price spikes, stemmed from a number of factors. The stage was set for gasoline volatility as a result of tight crude oil supplies, which led to low crude oil and low product stocks and relatively high crude oil prices. With little stock cushion to absorb unexpected events, Midwest gasoline prices surged when a number of supply problems developed, including pipeline and refinery supply problems, and an unexpectedly difficult transition to summer-grade Phase II reformulated gasoline (RFG). Prior to the current summer driving season, gasoline stocks were low

479

Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: May 4, 2009 9: May 4, 2009 Gasoline Prices Around the World to someone by E-mail Share Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Facebook Tweet about Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Twitter Bookmark Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Google Bookmark Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Delicious Rank Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Digg Find More places to share Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on AddThis.com... Fact #569: May 4, 2009 Gasoline Prices Around the World

480

Modeling and Analysis of Natural Gas and Gasoline In A High Compressio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High...

Note: This page contains sample records for the topic "lubricants motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

UNIT NUMBER C-7S0A Gasoline UST UNIT NAME REGULATORY STATUS:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 UNIT NUMBER C-7S0A Gasoline UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Gasoline storage OPERATIONAL...

482

Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships  

E-Print Network [OSTI]

Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships Prices Affect Automobile Manufacturers and Dealerships Abstract Many consumers are keenly aware, by contrast, we investigate how gasoline prices affect the automobile industry: manufacturers and dealerships

Rothman, Daniel

483

U.S. gasoline price falls below $2.90 (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline price falls below 2.90 (short version) The U.S. average retail price for regular gasoline fell to 2.89 a gallon on Monday. That's down 4.7 cents from a week ago, based...

484

Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011  

Broader source: Energy.gov [DOE]

The West Coast region paid the highest prices for gasoline averaging $4.14 for a gallon of regular gasoline while the Rocky Mountain region paid the least at $3.70 per gallon. The southern states,...

485

Rapid determination of trace concentrations of lead in gasoline by anodic stripping voltammetry  

Science Journals Connector (OSTI)

Anodic stripping voltammetry can be used for the determination of ?g/l concentrations of lead in gasoline. A gasoline sample is extracted with iodine monochloride reagent solution. An aliquot of the aqueous ph...

Pentti Laukkanen

486

Remediation of Releases Containing MTBE at Gasoline Station SitesŚENSR Internationalĺs Experience  

Science Journals Connector (OSTI)

This chapter summarizes ENSRĺs national and international experience remediating MTBE and other gasoline constituents in soil and ground water at retail gasoline station sites. ENSR has extensive experience in...

Robert M. Cataldo P.G.

2003-01-01T23:59:59.000Z

487

A short and simple explanation of how oil is converted into gasoline and then brought to  

E-Print Network [OSTI]

A short and simple explanation of how oil is converted into gasoline and then brought to you the products produced from this petroleum, gasoline represents about half of the total product volume

488

U.S. gasoline prices decreases for 16th week in a row; breaking...  

U.S. Energy Information Administration (EIA) Indexed Site

18, 2015 U.S. gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (long version) The U.S. average retail price for regular gasoline fell 7.3...

489

U.S. gasoline price expected to drop further below $3 per gallon  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline price expected to drop further below 3 per gallon The national average pump price of gasoline dropped below 3 per gallon last week for the first time in nearly four...

490

U.S. gasoline price expected to drop further below $3 per gallon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Declining fuel prices to push U.S. gasoline demand to an 8-year high In its new forecast, the U.S. Energy Information Administration said domestic gasoline consumption this year...

491

U.S. gasoline prices continues to decrease at lowest level since...  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2015 U.S. gasoline prices continues to decrease at lowest level since May 2009; 2 states with sub 2 prices (short version) The U.S. average retail price for regular gasoline...

492

U.S. gasoline prices decreases for 16th week in a row; breaking...  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (short version) The U.S. average retail price for regular gasoline fell 7.3 cents from a week...

493

U.S. gasoline prices continues to decrease; 2 states with sub...  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2015 U.S. gasoline prices continues to decrease; 2 states with sub 2 prices (long version) The U.S. average retail price for regular gasoline fell to 2.21 a gallon on Monday....

494

U.S. gasoline price decreases for 17th week in a row (short version...  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline price decreases for 17th week in a row (short version) The U.S. average retail price for regular gasoline fell for the 17th week in a row to 2.04 a gallon on Monday....

495

Destructive hydroisomerization ľ A new method of reducing benzine content in commercial gasoline  

Science Journals Connector (OSTI)

A destructive process of hydroisomerization of straight-run 85ľ185░C gasoline fraction followed by close fractionation of the ... submitted to catalytic reforming under mild conditions. Gasoline with octane numbe...

Kh. I. Abad-Zade; Z. A. Gasymovaů

2012-05-01T23:59:59.000Z

496

Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand  

E-Print Network [OSTI]

demand shocks. Since gasoline demand and oil price areto gasoline demand shocks. In Venezuela, a strike by oildemand is likely correlated with the prices of other refinery outputs via the price of oil.

Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

2007-01-01T23:59:59.000Z

497

In situ control of lubricant properties for reduction of power cylinder friction through thermal barrier coating  

E-Print Network [OSTI]

Lowering lubricant viscosity to reduce friction generally carries a side effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A ...

Molewyk, Mark Allen

2014-01-01T23:59:59.000Z

498

Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter  

Broader source: Energy.gov [DOE]

Under the test conditions used in this study, the strong base filter had a significant and beneficial effect on the rate of oil degradation. The strong base filter reduced lubricant acidity by absorbing acidic contaminants in the lubricant

499

Thickness Change in Molecularly Thin Lubricant Under Flying Head in Hard Disk Drives  

Science Journals Connector (OSTI)

In hard disk drives (HDDs), lubricants on disks are very important material to reduce head and disk wear. Thus, it is necessary to ... thickness to keep lubricant thickness constant on rotating disks. For this pu...

K. Yanagisawa; T. Watanabe; Y. Kawakubo; M. Yoshino

2010-10-01T23:59:59.000Z

500

The Extraction?Flocculation Re-refining Lubricating Oil Process Using Ternary Organic Solvents  

Science Journals Connector (OSTI)

The Extraction?Flocculation Re-refining Lubricating Oil Process Using Ternary Organic Solvents ... Res., 1997, 36 (9), ... Waste lubricating oils may be re-refined with organic solvents that dissolve base oil and segregate the additives and solid particles. ...

J. P. Martins

1997-09-02T23:59:59.000Z