Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lsc floorplan lsc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

United States Geological Survey, LSC | Open Energy Information  

Open Energy Info (EERE)

LSC LSC Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, LSC Address Leetown Science Center, Conte Anadromous Fish Laboratory, 1 Migratory Way Place Turners Falls, Massachusetts Zip 01376 Sector Hydro Phone number (413) 863-9475 Website http://www.lsc.usgs.gov/CAFLin Coordinates 42.5998509°, -72.5679159° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5998509,"lon":-72.5679159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

The LSC Glitch Group : Monitoring Noise Transients during the fifth LIGO Science Run  

E-Print Network (OSTI)

The LIGO Scientific Collaboration (LSC) glitch group is part of the LIGO detector characterization effort. It consists of data analysts and detector experts who, during and after science runs, collaborate for a better understanding of noise transients in the detectors. Goals of the glitch group during the fifth LIGO science run (S5) included (1) offline assessment of the detector data quality, with focus on noise transients, (2) veto recommendations for astrophysical analysis and (3) feedback to the commissioning team on anomalies seen in gravitational wave and auxiliary data channels. Other activities included the study of auto-correlation of triggers from burst searches, stationarity of the detector noise and veto studies. The group identified causes for several noise transients that triggered false alarms in the gravitational wave searches; the times of such transients were identified and vetoed from the data generating the LSC astrophysical results.

L. Blackburn; L. Cadonati; S. Caride; S. Caudill; S. Chatterji; N. Christensen; J. Dalrymple; S. Desai; A. Di Credico; G. Ely; J. Garofoli; L. Goggin; G. Gonzlez; R. Gouaty; C. Gray; A. Gretarsson; D. Hoak; T. Isogai; E. Katsavounidis; J. Kissel; S. Klimenko; R. A. Mercer; S. Mohapatra; S. Mukherjee; F. Raab; K. Riles; P. Saulson; R. Schofield; P. Shawhan; J. Slutsky; J. R. Smith; R. Stone; C. Vorvick; M. Zanolin; N. Zotov; J. Zweizig

2008-04-04T23:59:59.000Z

3

PCCM's partnership with Liberty Science Center (LSC) has grown to improve awareness of materials science engineering among new audiences. In collaboration  

E-Print Network (OSTI)

and Liberty Science Center Expand Partnership (DMR0819860) D. Steinberg, C. Arnold, M. McAlpine, R. RegisterPCCM's partnership with Liberty Science Center (LSC) has grown to improve awareness of materials science engineering among new audiences. In collaboration with Liberty Science Center, PCCM members

Petta, Jason

4

Lederman Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Lederman Science Center: Fermilab Science for Kids and Educators LSC Home Plan a Visit DirectionsMap Exhibits: Overview - List - Physics Playground LSC Floorplan LSC Store...

5

Slicibility of rectangular graphs and floorplan optimization  

Science Conference Proceedings (OSTI)

Keywords: floorplanning, graph dualization, heuristic search, nonslicible floorplans, planar graphs, slicible floorplans, very large scale integration

Partha S. Dasgupta; Susmita Sur-Kolay

1997-04-01T23:59:59.000Z

6

LSC Users Manual David W. Ignat  

E-Print Network (OSTI)

Usage 18 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Description of lower hybrid current drive in the presence of an electric #12;eld.[1] Details of geom- etry, plasma pro

7

LSC Users Manual David W. Ignat  

E-Print Network (OSTI)

Usage 18 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Description of lower hybrid current drive in the presence of an electric field.[1] Details of geom­ etry, plasma

8

Fixed-outline thermal-aware 3D floorplanning  

Science Conference Proceedings (OSTI)

In this paper, we present a novel algorithm for 3D floorplanning with fixed outline constraints and a particular emphasis on thermal awareness. A computationally efficient thermal model that can be used to guide the thermal-aware floorplanning algorithm ...

Linfu Xiao; Subarna Sinha; Jingyu Xu; Evangeline F. Y. Young

2010-01-01T23:59:59.000Z

9

VLSI floorplan generation and area optimization using AND-OR graph search  

Science Conference Proceedings (OSTI)

Floorplan design based on rectangular dualization is considered in two phases. First, given the adjacency graph and sets of aspect ratios of the blocks, a topology is generated which is likely to yield a minimum-area floorplan during the second phase ... Keywords: AND-OR graph search, VLSI, VLSI floorplan generation, adjacency graph, area optimization, aspect ratios, bottom-up polynomial-time algorithm, circuit layout CAD, circuit optimisation, graph theory, heuristic search method, integrated circuit interconnections, minimum-area floorplan, nonslicible floorplans, optimal sizing, rectangular dualization, search effort, top-down first phase

P. S. Dasgupta; S. Sur-Kolay; B. B. Bhattacharya

1995-01-01T23:59:59.000Z

10

UFO: unified convex optimization algorithms for fixed-outline floorplanning  

Science Conference Proceedings (OSTI)

In this paper, we apply two convex optimization methods, named UFO, for fixed-outline floorplanning. Our approach consists of two stages which are a global distribution stage and a local legalization stage. In the first stage, we first transform modules ...

Jai-Ming Lin; Hsi Hung

2010-01-01T23:59:59.000Z

11

A unified approach to topology generation and area optimization of general floorplans  

Science Conference Proceedings (OSTI)

In this paper, it is shown that for any rectangularly dualizable graph, a feasible topology can be obtained by using only either straight or Z-cutlines recursively within a bounding rectangle. Given an adjacency graph, a potential topology, which may ... Keywords: VLSI floorplanning, placement, AND-OR graphs, heuristic search

Partha S. Dasgupta; Susmita Sur-Kolay; Bhargab B. Bhattacharya

1995-12-01T23:59:59.000Z

12

(S11lSC) sruals,(5lueure8euey4les?qete6l's:olndruoc leuosred Jo uoqcnportur eqt reu? perylldurs  

E-Print Network (OSTI)

of Tsunami Deposits . . . . . . . . . . . . . . . 17 3.5 Search Methods Research (NCTR) was established to conduct re- search and development in support of the NOAA mission was a result of search- ing the tsunami runup database by state with no other conditions and divid- ing

Hack, Robert

13

HEADQUARTERS & CONVENTION CENTER FLOORPLANS  

Science Conference Proceedings (OSTI)

Cyber Caf. Moscone West Convention. Center. Lobby. General Poster Session. Moscone West Convention. Center. Exhibit Hall. Employment Referral. Center.

14

Exhibit Hall Floorplan  

Science Conference Proceedings (OSTI)

Apr 21, 2010 ... Johnson Matthey. Jordan Valley Semiconductor. 1. K-Space Associates, Inc. ... 18. Noah Precision. 15. ORS Limited. 25. 28. Power+Energy, Inc.

15

Chromium (III), Titanium (III), and Vanadium (IV) sensitization of rare earth complexes for luminescent solar concentrator applications  

E-Print Network (OSTI)

High optical concentrations without excess heating in a stationary system can be achieved with a luminescent solar concentrator (LSC). Neodymium (Nd) and ytterbium (Yb) are excellent infrared LSC materials: inexpensive, ...

Thompson, Nicholas John

2011-01-01T23:59:59.000Z

16

Quantum Efficiency of Micron Scaled Organic Light Emitting Diodes ...  

Science Conference Proceedings (OSTI)

Jun 1, 2004 ... Quantum Efficiency of Micron Scaled Organic Light Emitting Diodes Using Atomic Force Electroluminescence Microscopy by L.S.C. Pingree...

17

An Attractor-Repeller Approach to Floorplanning  

E-Print Network (OSTI)

ing the optimal positions for a given set of modules of fixed area (but perhaps ...... 51. This problem has 10 mobile modules. (departments) and, in contrast with...

18

OBSERVATORY STUDENT CENTER  

E-Print Network (OSTI)

RECEIVING CENTRAL GROUNDS FIELD HOUSE MORRIS GLENN PLANT #2 CHILL CENTER HEALTH HARTSHORN LORY B-WING GUGGEN- HEIM Theatre LSC GREENHOUSES QUONSETS N S HOLLEY PLANT ENVIRONMENTAL RESEARCH CENTER LAKE SUBSTATION

19

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

dyes. Photovoltaic (PV) solar cells are used to attach atis fa- vored by the silicon PV solar cells for the LSC PVemission properties for PV solar cells. We studied e?ect of

Wang, Chunhua

2011-01-01T23:59:59.000Z

20

IRMACS maps and floorplan. - CECM - Simon Fraser University  

E-Print Network (OSTI)

COMMUNICATION. E38. Robert C. Brown Hall (formerly CC). 6000 Level. COMMUNITY .... TECHNOLOGY &. SCIENCE BUILDING. FUTURE. TECHNOLOGY &.

Note: This page contains sample records for the topic "lsc floorplan lsc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oscillations of the large-scale circulation in turbulent Rayleigh-B\\'{e}nard convection: the off-center mode and its relationship with the torsional mode  

E-Print Network (OSTI)

We report an experimental study of the large-scale circulation (LSC) in a turbulent Rayleigh-B\\'{e}nard convection cell with aspect ratio unity. The temperature-extremum-extraction (TEE) method for obtaining the dynamic information of the LSC is presented. With this method, the azimuthal angular positions of the hot ascending and cold descending flows along the sidewall are identified from the measured instantaneous azimuthal temperature profile. The motion of the LSC is then decomposed into two different modes: the azimuthal mode and the translational or off-center mode. Comparing to the previous sinusoidal-fitting (SF) method, it is found that both methods give the same information about the azimuthal motion of the LSC, but the TEE method in addition can provide information about the off-center motion of the LSC, which is found to oscillate time-periodically around the cell's central vertical axis with an amplitude being nearly independent of the turbulent intensity. It is further found that the azimuthal a...

Zhou, Quan; Zhou, Sheng-Qi; Sun, Chao; Xia, Ke-Qing

2008-01-01T23:59:59.000Z

22

Lighting system combining daylight concentrators and an artificial source  

DOE Patents (OSTI)

A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

1985-01-01T23:59:59.000Z

23

Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre  

E-Print Network (OSTI)

Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar energy, beamed solar energy, LSC, dielectric mirror, optical fibre, Photo-Voltaic

Dutta Majumdar, M R

2007-01-01T23:59:59.000Z

24

Probing the Intrinsic Electronic Structure of the Cubane [4Fe-4S] Cluster: Nature's Favorite Cluster for Electron Transfer and Storage  

Science Conference Proceedings (OSTI)

The cubane [Fe4S4] is the most common multi-nuclear metal center in nature for electron transfer and storage. Using electrospray, we produce a series of gaseous doubly-charged cubane-type complexes, [Fe4S4L4]2- (L=SC2H5, -SH, -C1, -Br, -I) and the Se-analogs [Fe4Se4L4]-2 L=-SC2H5, -C1), and probe their electronic structures with photoelectron spectroscopy and density functional calculations.

Wang, Xue B.; Niu, Shuqiang; Yang, Xin; Ibrahim, S. K.; Pickett, Chris J.; Ichiye, Toshiko; Wang, Lai-Sheng

2003-11-19T23:59:59.000Z

25

Low-coherence enhanced backscattering of light: characteristics and applications for colon cancer screening  

E-Print Network (OSTI)

-cooled atoms,5 liquid crystals,6 photonic crystals,7 amplifying materials,8, 9 and solar system bodies.10 system, we varied the spatial coherence length Lsc of the incident light from 200 µm to 35 µmLow-coherence enhanced backscattering of light: characteristics and applications for colon cancer

Pradhan, Prabhakar

26

Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen  

SciTech Connect

The linearized approximation to the semiclassical initial value representation (LSC-IVR) is used to calculate time correlation functions relevant to the incoherent dynamic structure factor for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were used which, if evaluated exactly, would give identical results, but they do not because the LSC-IVR is approximate. Some of the correlation functions involve only linear operators, and others involve non-linear operators. The consistency of the results obtained with the various time correlation functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its ability to treat correlation functions involving both linear and nonlinear operators in realistic anharmonic systems. The good agreement of the results obtained from different correlation functions, their excellent behavior in the spectral moment tests based on the exact moment constraints, and their semi-quantitative agreement with the inelastic neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short-time approximation for quantum mechanical correlation functions.

Miller, William; Liu, Jian; Miller, William H.

2008-03-15T23:59:59.000Z

27

Gross alpha/beta determination by liquid scintillation counting  

Science Conference Proceedings (OSTI)

Liquid scintillation counting (LSC) is used to assay liquid samples for both gross alpha and gross beta (including tritium) activity in order to declare these samples clean.'' This method provides several advantages over traditional gross assay techniques including easy sample preparation, no sample self-absorption, short counting times, acceptable lower limits of detection (LLD's), and convenient sample disposal.

Leyba, J.D.

1992-03-01T23:59:59.000Z

28

Gross alpha/beta determination by liquid scintillation counting  

Science Conference Proceedings (OSTI)

Liquid scintillation counting (LSC) is used to assay liquid samples for both gross alpha and gross beta (including tritium) activity in order to declare these samples ``clean.`` This method provides several advantages over traditional gross assay techniques including easy sample preparation, no sample self-absorption, short counting times, acceptable lower limits of detection (LLD`s), and convenient sample disposal.

Leyba, J.D.

1992-03-01T23:59:59.000Z

29

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network (OSTI)

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Considerations for Curriculum Planning and Revitalization in Engineering" by Prof. Michael A. de Miranda School of Education and Department of Electrical and Computer Engineering Colorado State University Monday, Feb. 20, 2012, 11:00 a.m. Location: LSC 210 Abstract

30

The Role of LandSea Topography in Blocking Formation in a BlockEddy Interaction Model  

Science Conference Proceedings (OSTI)

This paper is an extension of a theoretical study by Luo on the effect of large-scale landsea contrast (LSC) topography on the formation of an eddy-driven blocking. It is found that the topography term can be included explicitly in the blocking ...

Dehai Luo; Zhe Chen

2006-11-01T23:59:59.000Z

31

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

3.4.2 Concentration Study for CdSe/ZnS QD LSC PVs 3.4.3properties of visible CdSe/ZnS QDs in toluene at di?erentPbS quantum dots, CdSe/ZnS quantum dots, Rhodamine B dye.

Wang, Chunhua

2011-01-01T23:59:59.000Z

32

Optimizing luminescent solar concentrator design.  

DOE Green Energy (OSTI)

Luminescent Solar Concentrators (LSCs) use fluorescent materials and light guides to convert direct and diffuse sunlight into concentrated wavelength-shifted light that produces electrical power in small photovoltaic (PV) cells with the goal of significantly reducing the cost of solar energy utilization. In this paper we present an optimization analysis based on the implementation of a genetic algorithm (GA) subroutine to a numerical ray-tracing Monte Carlo model of an LSC, SIMSOLAR-P. The initial use of the GA implementation in SIMSOLAR-P is to find the optimal parameters of a hypothetical 'perfect luminescent material' that obeys the Kennard Stepanov (K-S) thermodynamic relationship between emission and absorption. The optimization balances the efficiency losses in the wavelength shift and PV conversion with the efficiency losses due to re-scattering of light out of the collector. The theoretical limits of efficiency are provided for one, two and three layer configurations; the results show that a single layer configuration is far from optimal and adding a second layer in the LSC with wavelength shifted material in the near infrared region significantly increases the power output, while the gain in power by adding a third layer is relatively small. The results of this study provide a theoretical upper limit to the performance of an LSC and give guidance for the properties required for luminescent materials, such as quantum nanocrystals, to operate efficiently in planar LSC configurations.

Hernandez-Noyola, H.; Potterveld, D. H.; Holt, R. J.; Darling, S. B. (Center for Nanoscale Materials); ( PHY)

2012-01-01T23:59:59.000Z

33

Trade-off Analysis of Regenerative Power Source for Long Duration Loitering Airship  

E-Print Network (OSTI)

, the airship needs a reliable, low-weight, renewable power generation system. This analysis is focused on solar. Evaluating the trade- offs of the cost against the power consumption, efficiency, and reliability for each by their excessive drag. Flat solar technologies (i.e. thin film, LSC, and flat panel PV) are ranked the highest

34

Aging Studies of Sr-doped LaCrO3/YSZ/Pt Cells for an Electrochemical NOx Sensor  

DOE Green Energy (OSTI)

The stability and NO{sub x} sensing performance of electrochemical cells of the structure Sr-doped LaCrO{sub 3-{delta}} (LSC)/yttria-stabilized zirconia (YSZ)/Pt are being investigated for use in NO{sub x} aftertreatment systems in diesel vehicles. Among the requirements for NO{sub x} sensor materials in these systems are stability and long lifetime (up to ten years) in the exhaust environment. In this study, cell aging effects were explored following extended exposure to a test environment of 10% O{sub 2} at operating temperatures of 600-700 C. The data show that aging results in changes in particle morphology, chemical composition and interfacial structure, Impedance spectroscopy indicated an initial increase in the cell resistance during the early stages of aging, which is correlated to densification of the Pt electrode. Also, x-ray photoelectron spectroscopy indicated formation of SrZrO{sub 2} solid state reaction product in the LSC, a process which is of finite duration. Subsequently, the overall cell resistance decreases with aging time due, in part, to roughening of YSZ-LSC interface, which improves interface adherence and enhances charge transfer kinetics at the O{sub 2}/YSZ/LSC triple phase boundary. This study constitutes a first step in the development of a basic understanding of aging phenomena in solid state electrochemical systems with application not only to sensors, but also to fuel cells, membranes, and electrolyzers.

Song, S; Martin, L P; Glass, R S; Murray, E P; Visser, J H; Soltis, R E; Novak, R F; Kubinski, D J

2005-10-05T23:59:59.000Z

35

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network (OSTI)

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using the RELAP5/MOD3 thermal hydraulic code. The experiment was conducted at the Rig of Safety Assessment (ROSA)-IV/ Large Scale Test Facility (LSTF). The experiment involved a 5% cold leg break along with the loss of the RHR system-The transient was simulated for 3040 seconds. The ROSA-1-V/]LsTF is one of the largest test facilities in the world and is located in Japan. It is a volumetrically scaled (1/48) full height, two loop model of a Westinghouse four loop pressurized water reactor (PWR). The facility consists of pressure vessel, two symmetric loops, a pressurizer and a full emergency core cooling system (ECCS) system. The transient was run on the CRAY-YMP supercomputer at Texas A&M university. Core boiling and primary pressurization followed the initiation of the transient. The time to core boiling was overpredicted. Almost all Primary parameters were predicted well until the occurrence of the loop seal clearing (LSC) at 2400 seconds. The secondary side temperatures were in good agreement with the experimental data until the LSC. Following the LSC, the steam condensation in the tubes was not calculated. This resulted in the overprediction of primary pressures after the LSC. Also, the temperatures in the hot and the cold legs were overpredicted. Because there was no significant condensation in the U-tubes, the core remained uncovered. Moreover, the LSC did not recover. Consequently, secondary side temperatures were underpredicted after the LSC. This indicated the deficiency of the condensation model. The core temperature excursion at the time of the LSC was not predicted, though there was good agreement between the experimental and calculated data for the rest of the transient. Severe oscillations were calculated throughout the course of the transient. Overall, there was reasonable qualitative agreement between the measured and the calculated data.

Banerjee, Sibashis Sanatkumar

1994-01-01T23:59:59.000Z

36

A novel thermal optimization flow using incremental floorplanning for 3D ICs  

Science Conference Proceedings (OSTI)

Thermal issue is a critical challenge in 3D IC design. To eliminate hotspots, physical layouts are always adjusted by shifting or duplicating hot blocks. However, these modifications may degrade the packing area as well as interconnect distribution greatly. ...

Xin Li; Yuchun Ma; Xianlong Hong

2009-01-01T23:59:59.000Z

37

Floorplan Driven High Level Synthesis for Crosstalk Noise Minimization in Macro-cell Based Designs  

Science Conference Proceedings (OSTI)

In DSM regime, due to higher interconnect densities, the coupling noise between adjacent signals is aggravated and can lead to many timing violations. In traditional high-level synthesis (HLS), due to lack detailed physical details, it is difficult to ...

Hariharan Sankaran; Srinivas Katkoori

2009-05-01T23:59:59.000Z

38

Thermal-Aware CAD for Modern Integrated Circuits  

E-Print Network (OSTI)

Thermal Background 3.1 HeatExperiments 9.1 Thermal-Floorplanning9.1.1 Fast Thermal Floorplanning . . . . . . . . . . .

Logan, Sheldon Logan Paul

2013-01-01T23:59:59.000Z

39

Analysis of {sup 32}P-labeled solutions using integrated Bremsstrahlung radiation  

SciTech Connect

Phosphorous-32 is a beta-emitting radionuclide (half-life = 14.3 d) with beta energies ranging from 0 to 1710 keV and an average value of 690 keV. The analysis of {sup 32}P in solutions can be effectively accomplished by liquid-scintillation counting [LSC] An alternate and simpler technique utilizes the direct method of counting the aqueous solution by Cerenkov radiation. Although not as efficient as LSC, the advantage of Cerenkov radiation counting, in addition to its direct applicability, is the absence of the organic cocktail and the problems associated with its disposal. A third but esoteric technique is the direct counting of monoisotopically-labeled energetic beta-emitting radionuclide solutions, which utilizes the integration of bremsstrahlung radiation. This technique, although of limited application, can also be done directly without the use of organic cocktail, and can utilize a detector system designed for gammaray-emitting radionuclides.

Lasen, I.L. [Oak Ridge National Laboratory, TN (United States); Mohrbacher, D.A. [Univ. of Tennessee, Knoxville, TN (United States)

1992-12-31T23:59:59.000Z

40

Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes  

DOE Green Energy (OSTI)

The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

2006-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "lsc floorplan lsc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design space exploration for minimizing multi-project wafer production cost, ASPDAC  

E-Print Network (OSTI)

Abstract- Chip floorplan in a reticle for Multi-Project Wafer (MPW) plays a key role in deciding chip fabrication cost. In this paper 1, we propose a methodology to explore reticle flooplan design space to minimize MPW production cost, facilitated by a new cost model and an efficient reticle floorplanning method. It is shown that a good floorplan saves 47 % and 42 % production cost with respect to a poor floorplan for small and medium volume production, respectively. I.

Rung-bin Lin; Meng-chiou Wu; Wei-chiu Tseng; Ming-hsine Kuo; Tsai-ying Lin; Shr-cheng Tsai

2006-01-01T23:59:59.000Z

42

ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE  

SciTech Connect

Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

Kyser, E.; Fondeur, F.; Crump, S.

2011-12-21T23:59:59.000Z

43

A comparison of methods for gravitational wave burst searches from LIGO and Virgo  

E-Print Network (OSTI)

The search procedure for burst gravitational waves has been studied using 24 hours of simulated data in a network of three interferometers (Hanford 4-km, Livingston 4-km and Virgo 3-km are the example interferometers). Several methods to detect burst events developed in the LIGO Scientific Collaboration (LSC) and Virgo collaboration have been studied and compared. We have performed coincidence analysis of the triggers obtained in the different interferometers with and without simulated signals added to the data. The benefits of having multiple interferometers of similar sensitivity are demonstrated by comparing the detection performance of the joint coincidence analysis with LSC and Virgo only burst searches. Adding Virgo to the LIGO detector network can increase by 50% the detection efficiency for this search. Another advantage of a joint LIGO-Virgo network is the ability to reconstruct the source sky position. The reconstruction accuracy depends on the timing measurement accuracy of the events in each interferometer, and is displayed in this paper with a fixed source position example.

F. Beauville; M. -A. Bizouard; L. Blackburn; L. Bosi; L. Brocco; D. Brown; D. Buskulic; F. Cavalier; S. Chatterji; N. Christensen; A. -C. Clapson; S. Fairhurst; D. Grosjean; G. Guidi; P. Hello; S. Heng; M. Hewitson; E. Katsavounidis; S. Klimenko; M. Knight; A. Lazzarini; N. Leroy; F. Marion; J. Markowitz; C. Melachrinos; B. Mours; F. Ricci; A. Vicer; I. Yakushin; M. Zanolin

2007-01-03T23:59:59.000Z

44

Managing Research Data in Big Science  

E-Print Network (OSTI)

The project which led to this report was funded by JISC in 2010--2011 as part of its 'Managing Research Data' programme, to examine the way in which Big Science data is managed, and produce any recommendations which may be appropriate. Big science data is different: it comes in large volumes, and it is shared and exploited in ways which may differ from other disciplines. This project has explored these differences using as a case-study Gravitational Wave data generated by the LSC, and has produced recommendations intended to be useful variously to JISC, the funding council (STFC) and the LSC community. In Sect. 1 we define what we mean by 'big science', describe the overall data culture there, laying stress on how it necessarily or contingently differs from other disciplines. In Sect. 2 we discuss the benefits of a formal data-preservation strategy, and the cases for open data and for well-preserved data that follow from that. This leads to our recommendations that, in essence, funders should adopt rather lig...

Gray, Norman; Woan, Graham

2012-01-01T23:59:59.000Z

45

CATHODES FOR LOW TEMPERATURE SOFC: ISSUES CONCERNING INTERFERENCE FROM INERT GAS ADSORPTION AND CHARGE TRANSFER  

DOE Green Energy (OSTI)

This report summarizes the work done on the project over the duration of the project, from October 1, 2002 through December 31, 2003, which includes a three month no-cost extension. Effort was directed in the following areas: (1) Fabrication of Sr-doped LaCoO3 (LSC) dense and porous samples. (2) Design and construction of a conductivity relaxation apparatus for the estimation of surface exchange coefficient, k{sub chem}, which depends on adsorption, and oxygen chemical diffusion coefficient, {tilde D}{sub 0}, the parameters which are thought to describe the cathodic activation polarization (overall charge transfer) in mixed ionic electronic conducting (MIEC) cathodes. (3) The measurement of and K{sub chem} and {tilde D}{sub 0} on LSC by conductivity relaxation, as a function of temperature and oxygen partial pressure, p{sub O{sub 2}}. (4) Fabrication of YSZ electrolyte discs with patterned LSM and LSC electrodes with three-phase boundary (TPB) length, l{sub TPB}, varying between 50 and 1200 cm{sup -1}. (5) The measurement of charge transfer resistance, R{sub ct}, and estimation of the charge transfer resistivity, {rho}{sub ct}, as a function of temperature and p{sub O{sub 2}}, and the incorporation of the adsorption step in the analysis. (6) Preliminary cell tests with oxidants having different inert gas diluents; N{sub 2}, Ar, and CO{sub 2}. Dense samples of LSC of thickness as small as 150 microns were fabricated by sintering followed by grinding. Porous samples of LSC were also fabricated wherein the porosity was {approx}30%. Both samples were used in conductivity relaxation experiments. Analysis of data from the dense samples gives both and k{sub chem} and {tilde D}{sub 0}, while that of porous samples gives k{sub chem}. It was observed that at a given temperature, k{sub chem} increases with increasing p{sub O{sub 2}}, while the {tilde D}{sub 0} is essentially a constant. The dependence of k{sub chem} on p{sub O{sub 2}} is attributed to the adsorption step. It was also observed that the porous samples gave a more accurate measurement of k{sub chem}, as the data were not influenced by {tilde D}{sub 0}. By contrast, the results on dense samples were influenced by {tilde D}{sub 0}, especially at lower temperatures. It is thus concluded that the use of porous samples is preferred for the measurement of k{sub chem}. In the case of composite electrodes, such as LSM + YSZ, the relevant parameters are the {rho}{sub ct} (or R{sub ct}) and the ionic resistivity of YSZ {rho}{sub i}, where 1/{rho}{sub ct} is analogous to k{sub chem} and 1/{rho}{sub i} is analogous to {tilde D}{sub 0}. LSM patterned electrodes were deposited on YSZ discs using photomicrolithography. The R{sub ct} was measured as a function of temperature and p{sub O{sub 2}}using complex impedance techniques, on samples with l{sub TPB} varying between 50 and 1200 cm{sup -1}. The plot of 1/R{sub ct} vs. l{sub TPB} was linear, consistent with the occurrence of charge transfer at TPB. Also, the data plotted on the assumption of dissociative adsorption was consistent with the model. The significance of the role of adsorption is discussed. Similar results were observed with LSC, indicating a similar role of adsorption. In the case of LSC, however, a significant transport of oxygen also occurs through the dense part of the electrode. Preliminary work was conducted on the testing of button cells with mixtures of O{sub 2} + N{sub 2}, O{sub 2} + Ar, and O{sub 2} + CO{sub 2} as oxidants, wherein the p{sub O{sub 2}} was varied between {approx}0.05 and {approx}1.0 atm. As expected, the results showed that the higher the p{sub O{sub 2}}, the better was the performance. In pure oxygen, the maximum power density at 800 C was {approx}2.9 W/cm{sup 2}. However, in 5% O{sub 2}, it was {approx}0.6 W/cm{sup 2}. This difference is attributed to adsorption, indicating that both charge transfer and adsorption needs to be addressed in order to improve cathode performance at lower temperatures and under high oxidant utilization (in low p{sub O{sub 2}} atmospheres). Data at low current dens

Anil V. Virkar

2004-05-05T23:59:59.000Z

46

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jeff Kimball Jeff Kimball Technical Staff Defense Nuclear Facilities Safety Board (jeffreyk@dnfsb.gov) September 19, 2012 1 The views expressed are solely those of the author and no official support or endorsement of this presentation by the Defense Nuclear Facilities Safety Board or the federal government is intended or should be inferred.  Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic)  Design Basis and Beyond Design Basis Seismic Events  Seismic Risk Implications - Key Parameters and Insights  Conclusions 2 DOE Approach to Seismic Design is Performance Based 3 Damage is Assessed Using Limit States (LS) * Elastic - no permanent deformation. {LS-D} * Fully Operational - limited permanent deformation but can perform function. {LS-C}

47

Data:094ee03b-0cb5-4458-b14a-848b16f0069f | Open Energy Information  

Open Energy Info (EERE)

0cb5-4458-b14a-848b16f0069f 0cb5-4458-b14a-848b16f0069f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Merced Irrigation District Effective date: 2010/01/01 End date if known: Rate name: SCHEDULE LSC-1 STREET LIGHTING - DISTRICT OWNED OR MAINTAINED-Sodium Vapor Lamp 200W Sector: Lighting Description: APPLICABILITY: This schedule is applicable to MID owned or maintained lighting installations which illuminate streets, highways and other public dedicated outdoor ways and places which generally utilize MID distribution facilities. Monthly Usage: 81kWh Source or reference: http://www.mercedid.org/index.cfm/power/energy-rulesfeesrates/electric-rates/

48

Conte Large Flume | Open Energy Information  

Open Energy Info (EERE)

Conte Large Flume Conte Large Flume Overseeing Organization United States Geological Survey, LSC Hydrodynamic Testing Facility Type Flume Length(m) 38.1 Beam(m) 6.1 Depth(m) 5.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView and other data acquisition systems Number of channels 12 Bandwidth(kHz) 44 Cameras Yes Number of Color Cameras 5 Description of Camera Types Conventional underwater video, 4; high speed (1000 fps), 1 Available Sensors Displacement, Flow, Pressure Range(psi), Thermal, Turbulence, Velocity Data Generation Capability

49

Category:Testing Facility Operators | Open Energy Information  

Open Energy Info (EERE)

Facility Operators Facility Operators Jump to: navigation, search This category contains facilities for research on renewable technologies and uses the form Testing Facility Operator. Pages in category "Testing Facility Operators" The following 26 pages are in this category, out of 26 total. A Alden Research Laboratory, Inc B Bucknell University C Colorado State University Hydrodynamics Cornell University Hydrodynamics M Massachusetts Institute of Technology Hydrodynamics O Ohmsett Oregon State University Hydrodynamics P Pennsylvania State University Hydrodynamics S Sandia National Laboratories Hydrodynamics S cont. Stevens Institute of Technology T Texas A&M (Haynes) Texas A&M (OTRC) U United States Army Corp of Engineers (ERDC) United States Geological Survey, HIF United States Geological Survey, LSC

50

Conte Small Flume | Open Energy Information  

Open Energy Info (EERE)

Small Flume Small Flume Overseeing Organization United States Geological Survey, LSC Hydrodynamic Testing Facility Type Flume Length(m) 38.1 Beam(m) 3.0 Depth(m) 5.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView and other data acquisition systems Number of channels 12 Bandwidth(kHz) 44 Cameras Yes Number of Color Cameras 5 Description of Camera Types Conventional underwater video, 4; high speed (1000 fps), 1 Available Sensors Displacement, Flow, Pressure Range(psi), Thermal, Turbulence, Velocity Data Generation Capability

51

OXYGEN TRANSPORT CERAMIC MEMBRANES  

Science Conference Proceedings (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

52

The NEXT experiment: A high pressure xenon gas TPC for neutrinoless double beta decay searches  

E-Print Network (OSTI)

Neutrinoless double beta decay is a hypothetical, very slow nuclear transition in which two neutrons undergo beta decay simultaneously and without the emission of neutrinos. The importance of this process goes beyond its intrinsic interest: an unambiguous observation would establish a Majorana nature for the neutrino and prove the violation of lepton number. NEXT is a new experiment to search for neutrinoless double beta decay using a radiopure high-pressure xenon gas TPC, filled with 100 kg of Xe enriched in Xe-136. NEXT will be the first large high-pressure gas TPC to use electroluminescence readout with SOFT (Separated, Optimized FuncTions) technology. The design consists in asymmetric TPC, with photomultipliers behind a transparent cathode and position-sensitive light pixels behind the anode. The experiment is approved to start data taking at the Laboratorio Subterr\\'aneo de Canfranc (LSC), Spain, in 2014.

D. Lorca; J. Martn-Albo; F. Monrabal; for the NEXT Collaboration

2012-10-15T23:59:59.000Z

53

Luminescent solar concentrator development: Final subcontract report, 1 June 1982-31 December 1984  

DOE Green Energy (OSTI)

An investigation of luminescent solar concentrators (LSCs) was begun by the US Department of Energy (DOE) at Owens-Illinois, Inc., in 1978. Experimental and theoretical results of that investigation are summarized in this report. An assessment of the LSC technology was compiled to provide a concise description to guide future research in this field. Since 1978, tremendous progress was made in the development of this device as a practical nonimaging concentrator for achieving solar concentration ratios on the order of 10X. The two most important technical achievements appear to be first, the understanding that dye self-absorption of radiated energy is not as serious a problem as originally thought; and second, the demonstration that organic dyes in polymeric hosts are capable of surviving outdoors in bright sunlight for years without serious degradation. System efficiencies approaching 4% have been achieved for photovoltaic conversion and theoretical efficiencies on the order of 9% appear feasible for large-area devices.

Friedman, P.S.; Parent, C.R.

1987-04-01T23:59:59.000Z

54

Managing Research Data in Big Science  

E-Print Network (OSTI)

The project which led to this report was funded by JISC in 2010--2011 as part of its 'Managing Research Data' programme, to examine the way in which Big Science data is managed, and produce any recommendations which may be appropriate. Big science data is different: it comes in large volumes, and it is shared and exploited in ways which may differ from other disciplines. This project has explored these differences using as a case-study Gravitational Wave data generated by the LSC, and has produced recommendations intended to be useful variously to JISC, the funding council (STFC) and the LSC community. In Sect. 1 we define what we mean by 'big science', describe the overall data culture there, laying stress on how it necessarily or contingently differs from other disciplines. In Sect. 2 we discuss the benefits of a formal data-preservation strategy, and the cases for open data and for well-preserved data that follow from that. This leads to our recommendations that, in essence, funders should adopt rather light-touch prescriptions regarding data preservation planning: normal data management practice, in the areas under study, corresponds to notably good practice in most other areas, so that the only change we suggest is to make this planning more formal, which makes it more easily auditable, and more amenable to constructive criticism. In Sect. 3 we briefly discuss the LIGO data management plan, and pull together whatever information is available on the estimation of digital preservation costs. The report is informed, throughout, by the OAIS reference model for an open archive.

Norman Gray; Tobia Carozzi; Graham Woan

2012-07-17T23:59:59.000Z

55

Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide  

SciTech Connect

Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

2012-07-31T23:59:59.000Z

56

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

DOE Green Energy (OSTI)

This report summarizes the work done during the eleventh quarter of the project. Conductivity relaxation experiments were conducted on porous La{sub 0.5}Sr{sub 0.5}CoO{sub (3-{delta})} (LSC50) samples over a temperature range from 350 to 750 C, and over an oxygen partial pressure, p{sub O{sub 2}}, switch between 0.04 and 0.06 atm in order to determine the surface exchange coefficient, k{sub chem}. The normalized conductivity data could be fitted to a first order kinetic equation. The time constant decreased with decreasing temperature between {approx}750 and {approx}450 C, but sharply increased with decreasing temperature between 450 and 350 C. The corresponding k{sub chem} was estimated using three models: (a) A porous body model wherein it is assumed that the kinetics of surface exchange is the slowest. (b) Solution to the diffusion equation assuming the particles can be approximated as spheres. (c) Solution to the diffusion equation assuming the particles can be approximated as cylinders. The values of k{sub chem} obtained from the three models were in good agreement. In all cases, it was observed that k{sub chem} increases with decreasing temperature between 750 and 450 C, but below 450 C, it sharply decreases with further decrease in temperature.

Anil V. Virkar

2005-09-21T23:59:59.000Z

57

Measurement of {sup 210}Pb and its Application to Evaluate Contamination in an Area Affected by NORM Releases  

SciTech Connect

Liquid scintillation counting (LSC) is an easy and straightforward technique, and combined with its low limit of detection, makes it a powerful tool for both routine and low level measurements that can be applied to {sup 210}Pb low level counting in environmental samples. {sup 210}Pb can be easily measured following a sulphate co-precipitation method; the addition of a carrier and the weighing of the recovered amount is a widespread technique to evaluate radiochemical yield, however, this evaluation of the recovery is sometimes questioned. The samples employed in this work were recollected in 1999 and 2005 from the estuary of the Odiel and Tinto rivers (SW of Spain), which were affected by phosphogypsum (pg.) discharges until 1998. Phosphogypsum contains most of the {sup 210}Pb from the treated raw material, for that reason analysed riverbed sediments have enhanced {sup 210}Pb activity concentrations and hence, enhanced activity concentration of its daughter {sup 210}Po, both in secular equilibrium after two years.

Mosqueda, F.; Vaca, F. [Dpto. de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, 21007-Huelva (Spain); Villa, M.; Hurtado, S. [Centro de Investigacion, Tecnologia e Innovacion, CITIUS, Universidad de Sevilla, Av. Reina Mercedes 4B. 41012-Sevilla (Spain); Absi, A.; Manjon, G.; Garcia-Tenorio, R. [E. T. S. Arquitectura, Dpto. de Fisica Aplicada II, Universidad de Sevilla. Av. Reina Mercedes, 2, 41012-Sevilla (Spain)

2008-08-07T23:59:59.000Z

58

Development of the Low Swirl Injector for Fuel-Flexible GasTurbines  

DOE Green Energy (OSTI)

Industrial gas turbines are primarily fueled with natural gas. However, changes in fuel cost and availability, and a desire to control carbon dioxide emissions, are creating pressure to utilize other fuels. There is an increased interest in the use of fuels from coal gasification, such as syngas and hydrogen, and renewable fuels, such as biogas and biodiesel. Current turbine fuel injectors have had years of development to optimize their performance with natural gas. The new fuels appearing on the horizon can have combustion properties that differ substantially from natural gas. Factors such as turbulent flame speed, heat content, autoignition characteristics, and range of flammability must be considered when evaluating injector performance. The low swirl injector utilizes a unique flame stabilization mechanism and is under development for gas turbine applications. Its design and mode of operation allow it to operate effectively over a wide range of conditions. Studies conducted at LBNL indicate that the LSI can operate on fuels with a wide range of flame speeds, including hydrogen. It can also utilize low heat content fuels, such as biogas and syngas. We will discuss the low swirl injector operating parameters, and how the LSC performs with various alternative fuels.

Littlejohn, D.; Cheng, R.K.; Nazeer,W.A.; Smith, K.O

2007-02-14T23:59:59.000Z

59

Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting  

SciTech Connect

For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

Sue A. Carter

2012-09-07T23:59:59.000Z

60

Testing of a coal-fired diesel power plant  

DOE Green Energy (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Rao, K.; Schaub, F. (Cooper-Bessemer, Mount Vernon, OH (United States)); Kimberley, J. (AMBAC, West Springfield, MA (United States)); Itse, D. (PSI Technology Co., Andover, MA (United States))

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lsc floorplan lsc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Testing of a coal-fired diesel power plant  

DOE Green Energy (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, K.; Schaub, F. [Cooper-Bessemer, Mount Vernon, OH (United States); Kimberley, J. [AMBAC, West Springfield, MA (United States); Itse, D. [PSI Technology Co., Andover, MA (United States)

1993-01-01T23:59:59.000Z

62

Lighting  

DOE Green Energy (OSTI)

For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

Sue A. Carter

2012-09-07T23:59:59.000Z

63

Inverse Free Electron Laser Heater for the LCLS  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) free electron laser employs an RF photocathode gun that yields a 1nC bunch a few picoseconds long, which must be further compressed to yield the high current required for Self Amplified Spontaneous Emission (SASE) gain. The electron beam from the RF photocathode gun is quite sensitive to microbunching instabilities such as coherent synchrotron radiation (CSR) in the compressor chicanes and longitudinal space charge (LSC) in the linac. These effects can be Landau damped by adding energy spread to the electron bunch prior to compression. They propose to do this by co-propagating an infrared laser beam with the electron bunch in an undulator in the LCLS injector beamline. The undulator is placed in a four bend magnet chicane to allow the Ir laser beam to propagate colinearly with the e-beam while it oscillates in the undulator. The IR laser beam is derived from the photocathode gun drive laser, so the two beams are synchronized. Simulations presented elsewhere in these proceedings show that the laser interaction damps the microbunching instabilities to a very great extent. This paper is a description of the design of the laser heater.

Bentson, L.D.; Bolton, P.; Carr, R.; Dowell, D.; Emma, P.; Gilevich, S.; Huang, Z.; Welch, J.J.; Wu, J.; /SLAC

2005-05-11T23:59:59.000Z

64

Geometric bipartitioning problem and its applications to VLSI  

Science Conference Proceedings (OSTI)

We identify a new problem called geometric bipartitioning that is useful in VLSI layout design. Given a floorplan with rectilinear modules, the problem is to partition the floor by a staircase (monotone increasing) channel from one corner of the floor ... Keywords: NP-complete, VLSI, absolute value, branch-and-bound, circuit layout CAD, classical graph bisection problem, computational complexity, designated nodes, edge weights, floorplan, geometric bipartitioning problem, geometry, graph theory, heuristic algorithm, hierarchical decomposition, integer edge weights, layout design, monotone increasing, network routing, rectilinear modules, routing, search problems, staircase, weighted permutation graph

P. S. Dasgupta; A. K. Sen; S. C. Nandy; B. B. Bhattacharya

1996-01-01T23:59:59.000Z

65

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

Anil V. Virkar

2001-09-26T23:59:59.000Z

66

Chancellor Water Colloids: Characterization and Radionuclide Association  

Science Conference Proceedings (OSTI)

Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the subsurface.

Abdel-Fattah, Amr I. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

67

Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak  

SciTech Connect

On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

2009-11-20T23:59:59.000Z

68

Design and verification of high-speed VLSI physical design  

Science Conference Proceedings (OSTI)

With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provide readers with some recent progress ... Keywords: VLSI, buffer insertion, clock distribution, delay, floorplanning and placement, interconnect, order reduction, parameter extraction, physical design, power, power grid, wire sizing

Dian Zhou; Rui-Ming Li

2005-03-01T23:59:59.000Z

69

3D thermal-aware floorplanner using a MOEA approximation  

Science Conference Proceedings (OSTI)

Two of the major concerns in 3D stacked technology are heat removal and power density distribution. In our work, we propose a novel 3D thermal-aware floorplanner. Our contributions include:1.A novel multi-objective formulation to consider the thermal ... Keywords: 3D architecture, Evolutionary algorithm, Hot spots, Reliability, Temperature, Thermal-aware floorplan, Through silicon vias optimization

David Cuesta; Jos L. Risco-Martin; Jos L. Ayala; J. Ignacio Hidalgo

2013-01-01T23:59:59.000Z

70

Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis  

DOE Green Energy (OSTI)

An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: Delamination of the O2-electrode and bond layer on the steam/O2-electrode side Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple phase boundary) Loss of electrical/ionic conductivity of electrolyte.

M.S. Sohal; J.E. O'Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

2009-05-01T23:59:59.000Z

71

The Mixed Waste Management Facility. Preliminary design review  

Science Conference Proceedings (OSTI)

This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

NONE

1995-12-31T23:59:59.000Z

72

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

Professor Anil V. Virkar

2003-05-23T23:59:59.000Z

73

Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach  

SciTech Connect

One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex systems is described. We proposed the use of a semiclassical correction term to a preliminary quantum calculation using, for instance, a variational approach. This allows us to increase the accuracy significantly. Modeling Nonadiabatic dynamics has always been a challenge to classical simulations because the multi-state nature of the dynamics cannot be described accurately by the time evolution on a single average surface, as is the classical approach. We show that using the Meyer-Miller-Stock-Thoss (MMST) representation of the exact vibronic Hamiltonian in combination with the IVR allows us to accurately describe dynamics where the non Born-Oppenheimer regime. One final problem that we address is that of extending this method to the long time regime. We propose the use of a time independent sampling function in the Monte Carlo integration over the phase space of initial trajectory conditions. This allows us to better choose the regions of importance at the various points in time; by using more trajectories in the important regions, we show that the integration can be converged much easier. An algorithm based loosely on the methods of Diffusion Monte Carlo is developed that allows us to carry out this time dependent sampling in a most efficient manner.

Gliebe, Cheryn E; Ananth, Nandini

2008-05-22T23:59:59.000Z

74

SOEC efficiency and cost improvement Part 1 and 2.  

DOE Green Energy (OSTI)

Part I: Electrochemical and X-ray Characterization of Solid-Oxide Electrolysis Cell Oxygen Electrodes on Electrolyte Substrates--The governing reaction mechanisms, and the electrode and electrolyte material compositions and structures, that controls the efficiency and durability of the solid oxide electrolysis cells (SOEC) need to be identified and well-understood for a significant improvement in nuclear hydrogen production using high temperature steam electrolysis. ANL conducted experimental analysis of SOEC electrolyte and electrodes to progress in this objective. Our study on the oxygen electrode focused on specifically the effect of electrode crystal structure on its electrochemical performance, and the evolution of the electronic and structural properties of the electrodes while under electrochemical conditions and high temperature. We found through electrochemical impedance spectroscopy experiments that, while different crystal orientations in La{sub 0.8}Sr{sub 0.2}MnO{sub 3+d} (LSM) show different initial performance and different electrochemical activation under SOEC conditions, a good mixed ionic electronic conductor La{sub 0.8}Sr{sub 0.2}CoO{sub 3+d} (LSC) does not seem to exhibit similar variations. Our in-situ x-ray and electrochemical measurements at the Advanced Photon Source of ANL have identified the chemical states of the A-site elements of the doped lanthanum manganite electrodes. We found that the changes in the concentration and in the electronic state of the La and Sr (the A-site elements of the perovskite) occurring only at the top airelectrode film interface can be responsible from the electrochemical improvement of the SOEC anode under DC current. Our observation related to the La chemical state change is unexpected and probably unique to the electrochemical current-conditioning. Part II: Progress Towards the Atomic Layer Deposition of Lanthanum Strontium Manganate--Lanthanum strontium manganate (LSM) is the most commonly used cathode material for solid oxide fuel cells (SOFC) and also solid oxide electrolysis cells (SOEC) for hydrogen production through steam electrolysis. The ability to deposit LSM in the form of thin, conformal films onto high surface area support materials will enable the development of more efficient SOFC and SOEC devices. Moreover, thin, uniform LSM films prepared on flat surfaces are ideal for performing synchrotron X-ray experiments aimed at understanding the materials issues that control SOEC performance. Atomic layer deposition (ALD) is a very effective technology for fabricating thin, conformal films on flat surfaces as well as high surface area supports. In this study, we describe our work developing ALD methods for depositing La{sub 2}O{sub 3}, MnO{sub 2}, and mixtures of these oxides using cyclopentadienyl precursors. We have utilized in situ quartz crystal microbalance (QCM) measurements to explore the range of conditions for growth of these materials as well as to determine the appropriate oxygen sources. In addition, thin films of La{sub 2}O{sub 3} and MnO{sub 2} were deposited on Si(100) substrates and analyzed using spectroscopic ellipsometry to determine the refractive index and growth rates of these materials. Finally, mixed-oxide films La{sub 2}O{sub 3} and MnO{sub 2} were prepared and analyzed with X-ray fluorescence to determine the composition of the films.

Yildiz, B.; Chang, K.-C.; Meyers, D. J.; You, H.; Carter, J. D.; Elam, J. W.; Honegger, D. A.; Libera, J. A.; Pellin, M. J.

2007-06-20T23:59:59.000Z

75

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility Stable Beams Radioactive Beams CARIBU Beams Floorplan Phone Map Experimental Equipment Control System (internal) The ATLAS Facility ATLAS Operations Group The ATLAS Operations Group. ATLAS (the Argonne Tandem Linac Accelerator System) is the world's first superconducting accelerator for projectiles heavier than the electron. This unique system is a DOE National Collaborative Research Facility open to scientists from all over the world. ATLAS consists of a sequence of machines where each accelerates charged atoms and then feeds the beam into the next section for additional energy gain. The beams are provided by one of two 'injector' accelerators, either a 9 million volt (MV) electrostatic tandem Van de Graff, or a new 12-MV low-velocity linac and electron

76

Delaware correctional center: exhibit building. Final technical report  

Science Conference Proceedings (OSTI)

This project involved the design, manufacture and display of exhibits that explain how active and passive solar energy systems work. 20 identical exhibits contain the following: a model suburan house, built of balsa wood and cardboard, which features a phtovoltaic attic fan that actually works, a passive solar hot water heater, a greenhouse, trombe wall, energy-efficient design and super-insulation; a hinged 8' x 8' illustrated backboard with floor-plans, charts, illustrations and text that explain the systems working in the model house; a script for an oral presentation that a teacher or lecturer could use with an audience; and a flyer that an interested person can take home from the exhibit.

Brabner, J.

1983-05-12T23:59:59.000Z

77

Bit-serial RISC processing element for parallel processing  

E-Print Network (OSTI)

Over the past five decades, electronic computers have gone through five generations of development. Each generation is distinguished by the tremendous improvement in performance over its predecessors. The improvements are mostly attributed to the increase in the chip and memory transistor density. Now, chip density and complexity are approaching their physical limits due to limitations imposed by the speed of light. This has prompted interset in scaling system resources by the number of processors used, and enlarging memory capacity. Scalable architectures delivering a sustained performance are desired in both sequential and parallel computers. However, parallel computers having a higher potential to deliver scalable performance are poised to become the new generation of electronic computers. The processing element architecture of this thesis is a unique combination of new computer generation concepts and early computers simplicity. This is a desirable combination of techniques and architecture for a processing element designed to be used in scalable massively parallel systems where it is advantageous to reduce space and power needs without sacrificing independent processor operation. The research that was conducted includes the design and development of a bitserial processing element and its associated on-chip memory. The goal of this design effort was to obtain a stand-alone processor with communication capabilities using a minimum number of instructions and a small instruction and data memory suitable for Fine-grain computing. The processing element has a two-phase clocking scheme where each clock can run at 40 MHZ. The processing chip is setup to be programmed to a Field Programmable Gate Array (FPGA) device using Altera programming software. The minimum requirement for the FPGA device is 56 input/output pins with a maximum 25ns delay and a 65 mm floorplan size.

Haidar, Faisal A

1994-01-01T23:59:59.000Z