Sample records for lsc floorplan lsc

  1. LSC Users Manual David W. Ignat

    E-Print Network [OSTI]

    conditions. The code includes provisions for modeling the control system, external heating, and fusion . . . . . . . . . . . . . . . . . . . . . . . 44 2 #12; Chapter 1 Introduction The Lower hybrid Simulation Code (LSC) is a computational model of lower hybrid current drive in the presence of an electric field.[1] Details of geom­ etry, plasma

  2. LSC Users Manual David W. Ignat

    E-Print Network [OSTI]

    conditions. The code includes provisions for modeling the control system, external heating, and fusion . . . . . . . . . . . . . . . . . . . . . . . 44 2 #12;Chapter 1 Introduction The Lower hybrid Simulation Code (LSC) is a computational model of lower hybrid current drive in the presence of an electric #12;eld.[1] Details of geom- etry, plasma pro

  3. United States Geological Survey, LSC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC Jump to:

  4. The LSC Glitch Group : Monitoring Noise Transients during the fifth LIGO Science Run

    E-Print Network [OSTI]

    L. Blackburn; L. Cadonati; S. Caride; S. Caudill; S. Chatterji; N. Christensen; J. Dalrymple; S. Desai; A. Di Credico; G. Ely; J. Garofoli; L. Goggin; G. González; R. Gouaty; C. Gray; A. Gretarsson; D. Hoak; T. Isogai; E. Katsavounidis; J. Kissel; S. Klimenko; R. A. Mercer; S. Mohapatra; S. Mukherjee; F. Raab; K. Riles; P. Saulson; R. Schofield; P. Shawhan; J. Slutsky; J. R. Smith; R. Stone; C. Vorvick; M. Zanolin; N. Zotov; J. Zweizig

    2008-07-14T23:59:59.000Z

    The LIGO Scientific Collaboration (LSC) glitch group is part of the LIGO detector characterization effort. It consists of data analysts and detector experts who, during and after science runs, collaborate for a better understanding of noise transients in the detectors. Goals of the glitch group during the fifth LIGO science run (S5) included (1) offline assessment of the detector data quality, with focus on noise transients, (2) veto recommendations for astrophysical analysis and (3) feedback to the commissioning team on anomalies seen in gravitational wave and auxiliary data channels. Other activities included the study of auto-correlation of triggers from burst searches, stationarity of the detector noise and veto studies. The group identified causes for several noise transients that triggered false alarms in the gravitational wave searches; the times of such transients were identified and vetoed from the data generating the LSC astrophysical results.

  5. Cornell's (LSC) project began providing 16,000 tons of cooling (1 ton of cooling = 12,000 Btu/hr, or approximately one large residential window air conditioner) to Cornell University's Ithaca

    E-Print Network [OSTI]

    Keinan, Alon

    window air conditioner) to Cornell University's Ithaca campus in July of 2000. This project has almost completely replaced mechanical refrigeration for the Cornell district cooling system with the following benefits: · Greater LSC has replaced

  6. Temperature Dependent Wire Delay Estimation in Floorplanning

    E-Print Network [OSTI]

    Nannarelli, Alberto

    Temperature Dependent Wire Delay Estimation in Floorplanning Andreas Thor Winther, Wei Liu, Alberto, Arizona State University, Tempe, USA Abstract--Due to large variations in temperature in VLSI cir- cuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length

  7. Net Balanced Floorplanning Based on Elastic Energy Model

    E-Print Network [OSTI]

    Nannarelli, Alberto

    Net Balanced Floorplanning Based on Elastic Energy Model Wei Liu and Alberto Nannarelli Dept variations can introduce extra signal skew, it is desirable to have floorplans with balanced net delays based on the elastic energy model. The B*-tree, which is based on an ordered binary tree, is used

  8. Temperature Aware Microprocessor Floorplanning Considering Application Dependent Power Load

    E-Print Network [OSTI]

    He, Lei

    heat diffusion model taking into account the ap- plication dependent power load for thermal analysis is calculated to evaluate each new floorplan, which is time-consuming. [7] proposed a simple deterministic heatTemperature Aware Microprocessor Floorplanning Considering Application Dependent Power Load Chun

  9. Unification of Partitioning, Placement and Floorplanning Saurabh N. Adya

    E-Print Network [OSTI]

    Markov, Igor

    to solve the more general placement problem, which in- cludes cell placement, floorplanning, mixed-size placement and achi- eving routability. At every step of min-cut placement, either parti- tioning to 70% by 2005, and 90% by 2011. This growth is mostly fueled by chips for high-bandwidth communication

  10. Oxygen Transport Ceramic Membranes Quarterly Report

    E-Print Network [OSTI]

    Eagar, Thomas W.

    . Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical

  11. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photo shows one The

  12. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.stacked LSC plates for photovoltaics with the green LSC onsolar concentra- tors for photovoltaics. Science, 321(5886):

  13. Chromium (III), Titanium (III), and Vanadium (IV) sensitization of rare earth complexes for luminescent solar concentrator applications

    E-Print Network [OSTI]

    Thompson, Nicholas John

    2011-01-01T23:59:59.000Z

    High optical concentrations without excess heating in a stationary system can be achieved with a luminescent solar concentrator (LSC). Neodymium (Nd) and ytterbium (Yb) are excellent infrared LSC materials: inexpensive, ...

  14. Collective behavior of semiconductor nanoparticles for use in solar energy harvesting

    E-Print Network [OSTI]

    Shcherbatyuk, Georgiy

    2012-01-01T23:59:59.000Z

    as the normalized short circuit current (I LSC ) generatedwhere I PV is the short circuit current generated by the PV

  15. Engineering Exploration Day Saturday, February 13, 2010

    E-Print Network [OSTI]

    Rutledge, Steven

    Engineering Exploration Day Saturday, February 13, 2010 Fort Collins, Colorado #12;2 EXPLORATION Engineering, Dr. Ken Reardon LSC Room 224-226 Electrical & Computer Engineering, Karen Ungerer LSC Room 228 Environmental Engineering, Dr. Sybil Sharvelle LSC Room 230 Mechanical Engineering, Dr. Patrick Fitzhorn

  16. GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability

    E-Print Network [OSTI]

    Brownstone, Rob

    Caption. LSC Solar thermal panels installed 20102011. #12;Page | 1 TableofContents Table ......................................................................................... 35 Appendix I: Nova Scotia Power Emission Factors ......

  17. GrGrfico de Controle por Atributosfico de Controle por Atributos VVctorctor HugoHugo LachosLachos DDvilavila

    E-Print Network [OSTI]

    Lachos, Victor

    número observado de itens não conformes. Uma estimativa da fração não conforme é : n pp pLSC pLM n pp p,0 )1( 3 05,0 096,0 25 95,005,0 305,0 )1( 3 = × -= - -= == = × += - += n pp pLSC pLM n pp pLSC #12 controle para fração não conforme: i i n pp pLIC pLM n pp pLSC )1( 3 )1( 3 - -= = - += = = = m i i m i i

  18. Accelerated Analyte Uptake on Single Beads in Microliter-scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the plutonium remaining in solution after specific elapsed time intervals, using liquid scintillation counting (LSC) for nanomolar concentrations and thermal ionization mass...

  19. Integration formulas via the Legendre-Fenchel Subdifferential of ...

    E-Print Network [OSTI]

    2011-05-25T23:59:59.000Z

    setting of locally convex spaces, the above integration formula was established in [15] for proper lsc convex functions. Moreover, a criterion using only the exact ...

  20. Session Title What Can an Education Abroad Teach Our Future Leaders About Sustainability?

    E-Print Network [OSTI]

    Barnes, Elizabeth A.

    2:30 - 4 p.m. LSC Grey Rock Organizer and Moderator Laura Thornes Methods in Belize Rodolfo Valdes-Vasquez Assistant Professor

  1. Radiation-Detection Instrument Registration RSO Form 51 (11/04)

    E-Print Network [OSTI]

    Wilcock, William

    GM Based Exposure Rate (EXP) instrument ­ e.g. Xetex, GM Dose Rate Moveable Plug-In Ion Chamber (IC radiation-detection instrument - e.g. MCA, gas-flow ion chamber, MDH 3. Instrument Data Readout Unit LSC, GC only): Detector Unit: Type (Check One): GM NaI ZnS LSC Ion Chamber Other Manufacturer: Serial

  2. HOLA status February 2011 What's been done

    E-Print Network [OSTI]

    to set up a test stand What needs to be done: Finish up a full FEMB/LSC/LDC/ROMB testbench in Modelsim chip (DAQ LDC) Serial connection (via optical transceiver) FPGA provides a parallel interface transceiver) (only forward channel shown) TLK2501 chip (FTK LDC) TLK2501 chip (DAQ LDC) OLD LSC CORE (altera

  3. Dye-doped polymer nanoparticles for flexible, bulk luminescent solar concentrators

    E-Print Network [OSTI]

    Rosenberg, Ron, S.B. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Bulk luminescent solar concentrators (LSC) cannot make use of Forster resonance energy transfer (FRET) due to necessarily low dye concentrations. In this thesis, we attempt to present a poly-vinylalcohol (PVA) waveguide ...

  4. Engineering Exploration Day Schedule 8:00 a.m. -9:00 a.m. -Registration/Check-In Lory Student Center 228 (All Tracks)

    E-Print Network [OSTI]

    Interactive Medical Exercise Robot) ­ ENGR B106 · Engineering Science Overview ­ Dr. Thomas Siller, Associate-Ozbek, Assistant Professor ­ LSC 224-6 · Environmental Engineering Lab ­ Water Quality Teaching Lab ­ 268 SCOTT

  5. ADAPTIVE REGULARIZED SELF-CONSISTENT FIELD ITERATION ...

    E-Print Network [OSTI]

    2012-10-08T23:59:59.000Z

    †Department of Mathematics, MOE-LSC and Institute of Natural Sciences, Shanghai Jiaotong University, China. (zw2109@sjtu.edu.cn). Research ...... [9] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp.

  6. Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell

    E-Print Network [OSTI]

    Tong, Penger

    , such as the mean velocity profile in the LSC plane, the boundary layer thickness and its scaling with Ra and Pr and organize their motions spatially between the top and bottom plates, leading to an oscillatory motion

  7. Applications of non-imaging micro-optic systems

    E-Print Network [OSTI]

    Baker, Katherine Anne

    2012-01-01T23:59:59.000Z

    LIST OF ABBREVIATIONS AR CPV CSP DEP F F/# ITO LSC Nm PMSCadapt the solar concentrator for CSP using (a) two parabolicfor concentrated solar power (CSP), also known as solar

  8. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    parts of the solar spectrum, the power output of the LSC PVson our lab. The power output of the solar simulator is aboutinput solar radiation, the higher the power output. Solar

  9. Electrochemically-Controlled Compositional Oscillations of Oxide Surfaces

    SciTech Connect (OSTI)

    Mutoro, Eva [Massachusetts Institute of Technology (MIT); Crumlin, Ethan [Massachusetts Institute of Technology (MIT); Pöpke, Hendrik [Institute of Physical Chemistry, Justus-Liebig-University Giessen; Luerssen, Bjoern [Institute of Physical Chemistry, Justus-Liebig-University Giessen; Amati, Matteo [Sincrotrone Trieste Elettra; Abyaneh, Majid [Sincrotrone Trieste, Basovizza, Italy; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Gregoratti, Luca [Sincrotrone Trieste, Basovizza, Italy; Janek, Jürgen [Institute of Physical Chemistry, Justus-Liebig-University Giessen; Shao-Horn, Yang [Massachusetts Institute of Technology (MIT)

    2012-01-01T23:59:59.000Z

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically and/or ionically conducting, and thus they have been used in a number of solid-state devices such as solid oxide fuel cells and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface chemistries is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface chemistry changes of La0.8Sr0.2CoO3 (LSC113), LaSrCoO4 (LSC214), and LSC214-decorated LSC113 films (LSC113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr was found for the LSC113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites.

  10. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation

    SciTech Connect (OSTI)

    Liu, Jian; Miller, William H.

    2008-08-01T23:59:59.000Z

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. The LSC-IVR provides a very effective 'prior' for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25K and 14K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR, for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T = 25K, but the MEAC procedure produces a significant correction at the lower temperature (T = 14K). Comparisons are also made to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  11. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling

    SciTech Connect (OSTI)

    Mulder, Carlijn L.; Reusswig, Phil D.; Velazquez, Amador M.; Kim, Heekyung; Rotschild, Carmel; Baldo, Marc

    2010-01-01T23:59:59.000Z

    Luminescent solar concentrators (LSCs) use dye molecules embedded in a flat-plate waveguide to absorb solar radiation. Ideally, the dyes re-emit the absorbed light into waveguide modes that are coupled to solar cells. But some photons are always lost, re-emitted through the face of the LSC and coupled out of the waveguide. In this work, we improve the fundamental efficiency limit of an LSC by controlling the orientation of dye molecules using a liquid crystalline host. First, we present a theoretical model for the waveguide trapping efficiency as a function of dipole orientation. Next, we demonstrate an increase in the trapping efficiency from 66% for LSCs with no dye alignment to 81% for a LSC with vertical dye alignment. Finally, we show that the enhanced trapping efficiency is preserved for geometric gains up to 30, and demonstrate that an external diffuser can alleviate weak absorption in LSCs with vertically-aligned dyes.

  12. Lighting system combining daylight concentrators and an artificial source

    DOE Patents [OSTI]

    Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

    1985-01-01T23:59:59.000Z

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  13. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    E-Print Network [OSTI]

    Dutta Majumdar, M R

    2007-01-01T23:59:59.000Z

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar energy, beamed solar energy, LSC, dielectric mirror, optical fibre, Photo-Voltaic

  14. The Centre for Blood Research Seminar Series

    E-Print Network [OSTI]

    Strynadka, Natalie

    The Centre for Blood Research Seminar Series Wednesday, July 17th, 2013 LSC 3 - Life Sciences. The latter represents challenges in regard to cost, safety, ecological friendliness, and process equipment that including >50 mM salts such as NaCitrate with 8 to 10% (w/w) solutions of PAA allowed for almost complete

  15. Stochastic 3D Modeling of La0.6Sr0.4CoO3-Cathodes Based on Structural Segmentation of FIB-SEM Images

    E-Print Network [OSTI]

    Schmidt, Volker

    Graph, SOFC, Sphere Representation, Watershed Transformation 1. Introduction In this paper the microstructure of La0.6Sr0.4CoO3- (LSC) cathodes in solid oxide fuel cells (SOFC) is investigated. For classical SOFC electrodes (e.g. Ni- YSZ anodes or LSM-YSZ cathodes) microstructure effects are widely discussed

  16. J. Fluid Mech. (2009), vol. 638, pp. 383400. c Cambridge University Press 2009 doi:10.1017/S0022112009991224

    E-Print Network [OSTI]

    Haller, Gary L.

    , amplitude and probability distributions of the displacements. 1. Introduction Rayleigh­B´enard convection of the LSC orientation (Sun, Xi & Xia 2005a; Brown & Ahlers 2006a,b; Xi, Zhou & Xia 2006) and reorientations fluctuations. It has long been observed that there are temperature and velocity oscillations with frequencies

  17. Revised for 2012-2013 Find the Biology Curricula on the Web At

    E-Print Network [OSTI]

    Raina, Ramesh

    on Environmental Sciences BA Degree in Biology BS Degree in Biochemistry BS Degree in Biotechnology Minor.S. Biotechnology; B.S. Biology with Focus in Environmental Sciences; and a Minor in Biology. Short. Douglas Frank, Undergraduate Advisor for BS with Environmental Focus Room 446, LSC, 443-4529 dafrank

  18. DUAL-OUTPUT HOLA MAY 2011 STATUS

    E-Print Network [OSTI]

    control from FTK D[16] @ 100 MHz #12;Testbench 6 A similar testbench (with two LDC+ROMB receivers) was implemented in Mentor Graphics Modelsim. FEMB, LDC, and ROMB were simulated functionally, while LSC ­ using (based on S32PCI64): · Implements S-LINK protocol · Provides access to S-LINK via PCI bus 8 S-LINK LDC

  19. LASER SAFETY COMMITTEE CHARTER November, 2005

    E-Print Network [OSTI]

    Knowles, David William

    LASER SAFETY COMMITTEE CHARTER November, 2005 Function The Safety Review Committee (SRC) performs-committees to address specific health and safety matters. The Laser Safety Committee (LSC) is one of the SRC expert sub-committees. The Laser SafetyCommittee recommends policies and practices regarding the conduct and regulatory compliance

  20. Cycling and Transit Green Buildings

    E-Print Network [OSTI]

    Lotze, Heike K.

    solar thermal panels at the LSC. 2. Solar wall on the Mona Campbell Bld. 3. 80 solar Photovoltaic (PV) panels installed in front of a solar wall system on the roof of the Computer Science Bld. Water Green Buildings Renewable Energy 1. Solar Thermal and PV Panels are mounted on C Building for research

  1. Trade-off Analysis of Regenerative Power Source for Long Duration Loitering Airship

    E-Print Network [OSTI]

    : photovoltaic flat panels, thin film photovoltaic panels, trough solar concentrators, Stirling dish solar by their excessive drag. Flat solar technologies (i.e. thin film, LSC, and flat panel PV) are ranked the highest, the airship needs a reliable, low-weight, renewable power generation system. This analysis is focused on solar

  2. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Geometry as a Prior in Signal Processing" by Yuejie Chi Electrical Engineering Princeton University Monday, March 19, 2012, 11:00 a.m. Location LSC 210 Abstract processing. Biography: Yuejie Chi is a Ph.D. candidate in Electrical Engineering at Princeton University

  3. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Considerations for Curriculum Planning and Revitalization in Engineering" by Prof. Michael A. de Miranda School of Education and Department of Electrical and Computer Engineering Colorado State University Monday, Feb. 20, 2012, 11:00 a.m. Location: LSC 210 Abstract

  4. The Generic Graph Component Library Dr. Dobb's Journal September 2000

    E-Print Network [OSTI]

    Lumsdaine, Andrew

    .nd.edu, and lumsg@lsc.nd.edu, respectively. The Standard Template Library has established a solid foundation generic programming has to offer. In January, 1999, we did a survey of existing graph libraries. Some.mpi-sb.mpg.de/LEDA/leda.html), the Graph Template Library (GTL) (by Michael Forster, Andreas Pick, and Marcus Raitner, http

  5. Passport to Leadership Series Course Descriptions 11/2011 Passport to Leadership Series

    E-Print Network [OSTI]

    New Mexico, University of

    Passport to Leadership Series Course Descriptions 11/2011 Passport to Leadership Series Course # Course Title Description LSC100 Essentials of Leadership This course is intended for individuals with leadership/management experience. Learn the challenges of leadership today; be introduced to the interaction

  6. Cathode side hardware for carbonate fuel cells

    DOE Patents [OSTI]

    Xu, Gengfu (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2011-03-29T23:59:59.000Z

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of LSC (La.sub.0.8Sr.sub.0.2CoO.sub.3) and lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1).

  7. Isotope-labeled immunoassays without radiation waste

    E-Print Network [OSTI]

    Hammock, Bruce D.

    of California, Davis, CA 95616; and Center for Accelerator Mass Spectrometry, Lawrence Livermore National, such as liquid scintillation counting (LSC) and autoradiography, use the radiation generated in the isotope in areas such as environmental monitoring and food analysis. Accelerator mass spectrometry (AMS) developed

  8. The Centre for Blood Research Dr. Scott Tebbutt

    E-Print Network [OSTI]

    Strynadka, Natalie

    The Centre for Blood Research Dr. Scott Tebbutt Associate Professor, UBC Chief Scientific Officer, October 3, 2012 12:00 pm in LSC3 Life Sciences Centre 2350 Health Sciences Mall "Blood-based signatures, CBR Director, Professor of Medicine, UBC Peripheral whole blood is often the sample of choice

  9. The Centre for Blood Research Seminar Series

    E-Print Network [OSTI]

    Strynadka, Natalie

    The Centre for Blood Research Seminar Series Wednesday, April 24th, 2013 LSC 3 - Life Sciences Red Blood Cells" The glycoprotein, Band 3 or anion exchanger 1 (AE1) catalyzes the electro per cell, similar to Glycophorin A with which it interacts forming the Wright (Wr) blood group antigen

  10. The Centre for Blood Research Seminar Series

    E-Print Network [OSTI]

    Strynadka, Natalie

    The Centre for Blood Research Seminar Series Wednesday, March 13th, 2013 LSC 3 - Life Sciences "PARticipating in Metalloprotease Signaling in Blood Vessels" When plaques coating blood vessel walls rupture and expose collagen, platelets spring into action to form a blood clot at the damaged site. Dr. Kuliopulois

  11. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering

    E-Print Network [OSTI]

    Miller, William H.

    functions in application to inelastic neutron scattering from liquid para-hydrogen Jian Liua and William H for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short

  12. Optical design and efficiency improvement for organic luminescent solar concentrators

    E-Print Network [OSTI]

    Hirst, Linda

    and hybrid photovoltaic/thermal solar conversation systems1 . Generally, an organic LSC is a piece of highly solar energy. We designed, fabricated organic LSCs at different sizes and characterized their optical and electrical properties. The output efficiency enhancement methods for LSCs photovoltaics (PVs) are explored

  13. CrowdInside: Automatic Construction of Indoor Floorplans Moustafa Alzantot

    E-Print Network [OSTI]

    Huang, Yan

    Egypt-Japan Univ. of Sc. and Tech. (E-JUST) Alexandria, Egypt moustafa.alzantot@ejust.edu.eg Moustafa Youssef Wireless Research Center Egypt-Japan Univ. of Sc. and Tech. (E-JUST) Alexandria, Egypt moustafa

  14. Development of an expert system for generating optimum floorplans for VLSI circuits

    E-Print Network [OSTI]

    Mehta, Ketan R

    1987-01-01T23:59:59.000Z

    . The modules of importance are: (a) HCIP ? 2-Dimensional Constructive Initial Placement: The method of placement implemented is similar to that described by Scheiwkert [8]. The horizontal cell rows on the placement surface of the chip are divided...(n!). Hence, numerous heuristic procedures have been proposed to solve this placement problem. 19 B. MODULE PLACEMENT BASED ON RESISTIVE NETWORK OPTIMIZATION In this method, the placement problem is solved using a resistive network analogy. The idea...

  15. Bus-Aware Microarchitectural Floorplanning Dae Hyun Kim Sung Kyu Lim

    E-Print Network [OSTI]

    Lim, Sung Kyu

    architects to efficiently tackle issues such as interconnect delay, thermal coupling, etc. On the other hand] by allowing bends in the buses, but this is not suitable for microarchitecture design as it forces, performance and power under thermal constraint. Our thermal analyzer models the heat dissipated by the buses

  16. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    SciTech Connect (OSTI)

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31T23:59:59.000Z

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  17. Background studies for NaI(Tl) detectors in the ANAIS dark matter project

    SciTech Connect (OSTI)

    Amaré, J.; Borjabad, S.; Cebrián, S.; Cuesta, C.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Solórzano, A. Ortiz de; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain and Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain)] [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain and Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain)

    2013-08-08T23:59:59.000Z

    Several large NaI(Tl) detectors, produced by different companies, have been operated in the Canfranc Underground Laboratory (LSC) in the frame of the ANAIS (Annual modulation with NaI Scintillators) project devoted to the direct detection of dark matter. A complete background model has been developed for a 9.6 kg detector (referred as ANAIS-0 prototype) after a long data taking at LSC. Activities from the natural chains of {sup 238}U and {sup 232}Th, and {sup 40}K in the NaI(Tl) crystal were evaluated applying different methods: discrimination of alpha particles vs beta/gamma background by Pulse Shape Analysis for quantifying the content of the natural chains and coincidence techniques for {sup 40}K. Radioactive contaminations in the detector and shielding components were also determined by HPGe spectrometry. Monte Carlo simulations using Geant4 package were carried out to evaluate their contribution. At high energies, most of the measured background is nicely reproduced; at low energy some non-explained components are still present, although some plausible background sources have been analyzed. The {sup 40}K content of the NaI(Tl) crystal has been confirmed to be the dominant contributor to the measured background with this detector. In addition, preliminary results of the background characterization, presently underway at the LSC, of two recently produced NaI(Tl) detectors, with 12.5 kg mass each, will be presented: cosmogenic induced activity has been clearly observed and is being quantified, and {sup 40}K activity at a level ten times lower than in ANAIS-0 has been determined.

  18. Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers

    SciTech Connect (OSTI)

    Mulder, Carlijn L.; Reusswig, Phil D.; Beyler, A. P.; Kim, Heekyung; Rotschild, Carmel; Baldo, Marc

    2010-01-01T23:59:59.000Z

    We describe Linearly Polarized Luminescent Solar Concentrators (LP-LSCs) to replace conventional, purely absorptive, linear polarizers in energy harvesting applications. As a proof of concept, we align 3-(2-Benzothiazolyl)-N,N-diethylumbelliferylamine (Coumarin 6) and 4-dicyanomethyl-6-dimethylaminostiryl-4H-pyran (DCM) dye molecules linearly in the plane of the substrate using a polymerizable liquid crystal host. We show that up to 38% of the photons polarized on the long axis of the dye molecules can be coupled to the edge of the device for an LP-LSC based on Coumarin 6 with an order parameter of 0.52.

  19. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure

    E-Print Network [OSTI]

    Zhang, Jinwei; Siew, Keith; Macartney, Thomas; O'Shaughnessy, Kevin M.; Alessi, Dario R.

    2015-05-20T23:59:59.000Z

    ) and ERK1 total anti- body (full-length human ERK1 protein, S221B). The anti-GAPDH antibody (ab8245), anti-NCC-total [SLC12A3] (AB95302) and the anti-parvalbumin antibody (ab11427) were purchased from Abcam. Anti-PVALB (Parvalbumin PV25) from Swant. Anti... -NKCC2- total (LS-C313275) from LifeSpan BioSciences. The anti-ERK1/2 antibody (9102) was purchased from Cell Signalling Technology. The anti-FLAG antibody (F1804) was purchased from Sigma– Aldrich. Secondary antibodies coupled to horseradish peroxidase...

  20. Conte Small Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC Hydrodynamic Testing

  1. Contemporary Strain Rates in the Northern Basin and Range Province from GPS

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC Hydrodynamic TestingData |

  2. Contemporary Tectonic Deformation of the Basin and Range Province, Western

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC Hydrodynamic TestingData

  3. Conti Enterprises Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC Hydrodynamic

  4. Continuous Diagnostics Advisor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC HydrodynamicContinuous

  5. Contour Global L P | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC HydrodynamicContinuousP

  6. Contra Costa County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC

  7. United States Green Building Council (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC Jump

  8. United States Naval Surface Warfare Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC JumpNaval

  9. United States Virgin Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC

  10. Broadband enhancement of light harvesting in luminescent solar concentrator

    E-Print Network [OSTI]

    Xiao, Yun-Feng; Xiao, Lixin; Sun, Fang-Wen; Gong, Qihuang

    2010-01-01T23:59:59.000Z

    Luminescent solar concentrator (LSC) can absorb large-area incident sunlight, then emit luminescence with high quantum efficiency, which finally be collected by a small photovoltaic (PV) system. The light-harvesting area of the PV system is much smaller than that of the LSC system, potentially improving the efficiency and reducing the cost of solar cells. Here, based on Fermi-golden rule, we present a theoretical description of the luminescent process in nanoscale LSCs where the conventional ray-optics model is no longer applicable. As an example calculated with this new model, we demonstrate that a slot waveguide consisting of a nanometer-sized low-index slot region sandwiched by two high-index regions provides a broadband enhancement of light harvesting by the luminescent centers in the slot region. This is because the slot waveguide can (1) greatly enhance the spontaneous emission due to the Purcell effect, (2) dramatically increase the effective absorption cross-section of luminescent centers, and (3) str...

  11. Status of ArDM-1t: First observations from operation with a full ton-scale liquid argon target

    E-Print Network [OSTI]

    ArDM Collaboration; J. Calvo; C. Cantini; M. Daniel; U. Degunda; S. Di Luise; L. Epprecht; A. Gendotti; S. Horikawa; L. Knecht; B. Montes; W. Mu; M. Munoz; S. Murphy; G. Natterer; K. Nguyen; K. Nikolics; L. Periale; C. Regenfus; L. Romero; A. Rubbia; R. Santorelli; F. Sergiampietri; D. Sgalaberna; T. Viant; S. Wu

    2015-05-10T23:59:59.000Z

    ArDM-1t is the first operating ton-scale liquid argon detector for direct search of Dark Matter particles. Developed at CERN as Recognized Experiment RE18, the experiment has been approved in 2010 to be installed in the Spanish underground site LSC (Laboratorio Subterraneo de Canfranc). Under the label of LSC EXP-08-2010 the ArDM detector underwent an intensive period of technical completion and safety approval until the recent filling of the target vessel with almost 2 ton of liquid argon. This report describes the experimental achievements during commissioning of ArDM and the transition into a stage of first physics data taking in single phase operational mode. We present preliminary observations from this run. A first indication for the background discrimination power of LAr detectors at the ton-scale is shown. We present an outlook for completing the detector with the electric drift field and upgrade of the scintillation light readout system with novel detector modules based on SiPMs in order to improve the light yield.

  12. Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    E-Print Network [OSTI]

    F. J. Iguaz; S. Aune; F. Aznar; J. F. Castel; T. Dafni; M. Davenport; E. Ferrer-Ribas; J. Galan; J. A. Garcia; J. G. Garza; I. Giomataris; I. G. Irastorza; T. Papaevangelou; A. Rodriguez; A. Tomas; T. Vafeiadis; S. C. Yildiz

    2015-01-07T23:59:59.000Z

    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10$^{-6}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10$^{-7}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$ and show good prospects for the application of this technology in IAXO. Finally, we present some ideas and results for reducing the energy threshold of these detectors below 1 keV, using high-transparent windows, autotrigger electronics and studying the cluster shape at different energies. As a high flux of axion-like-particles is expected in this energy range, a sub-keV threshold detector could enlarge the physics case of axion helioscopes.

  13. Semiclassical (SC) Description of Electronically Non-AdiabaticDynamics via the Initial Value Representation (IVR)

    SciTech Connect (OSTI)

    Ananth, V.; Venkataraman, C.; Miller, W.H.

    2007-06-22T23:59:59.000Z

    The initial value representation (IVR) of semiclassical (SC) theory is used in conjunction with the Meyer-Miller/Stock-Thoss description of electronic degrees of freedom in order to treat electronically non-adiabatic processes. It is emphasized that the classical equations of motion for the nuclear and electronic degrees of freedom that emerge in this description are precisely the Ehrenfest equations of motion (the force on the nuclei is the force averaged over the electronic wavefunction), but that the trajectories given by these equations of motion do not have the usual shortcomings of the traditional Ehrenfest model when they are used within the SC-IVR framework. For example, in the traditional Ehrenfest model (a mixed quantum-classical approach) the nuclear motion emerges from a non-adiabatic encounter on an average potential energy surface (a weighted average according to the population in the various electronic states), while the SC-IVR describes the correct correlation between electronic and nuclear dynamics, i.e., the nuclear motion is on one potential energy surface or the other depending on the electronic state. Calculations using forward-backward versions of SC-IVR theory (FB-IVR) are presented to illustrate this behavior. An even more approximate version of the SC-IVR, the linearized approximation (LSC-IVR), is slightly better than the traditional Ehrenfest model, but since it cannot describe quantum coherence effects, the LSC-IVR is also not able to describe the correct correlation between nuclear and electronic dynamics.

  14. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    SciTech Connect (OSTI)

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21T23:59:59.000Z

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

  15. A REUSABLE METHODOLOGY FOR NON-SLICING FLOORPLANNING Jer-Ming Hsu, and Yao-Wen Chang

    E-Print Network [OSTI]

    Chang, Yao-Wen

    not correspond to most real designs. Further, it does not consider interconnection cost which is a crucial metric placements and interconnection costs. Our floorplanner with the estimated uncertain data can effectively the dimensions and interconnections of modules are not fully determined. In this paper, we propose a sequence

  16. Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces

    SciTech Connect (OSTI)

    Kevin Blinn; Yongman Choi; Meilin Liu

    2009-08-11T23:59:59.000Z

    The objective of this project is to gain a fundamental understanding of the oxygen-reduction mechanism on mixed conducting cathode materials by means of quantum-chemical calculations coupled with direct experimental measurements, such as vibrational spectroscopy. We have made progress in the elucidation of the mechanisms of oxygen reduction of perovkite-type cathode materials for SOFCs using these quantum chemical calculations. We established computational framework for predicting properties such as oxygen diffusivity and reaction rate constants for adsorption, incorporation, and TPB reactions, and formulated predictions for LSM- and LSC-based cathode materials. We have also further developed Raman spectroscopy as well as SERS as a characterization tool for SOFC cathode materials. Raman spectroscopy was used to detect chemical changes in the cathode from operation conditions, and SERS was used to probe for pertinent adsorbed species in oxygen reduction. However, much work on the subject of unraveling oxygen reduction for SOFC cathodes remains to be done.

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01T23:59:59.000Z

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  18. Half-life of {sup 151}Sm remeasured

    SciTech Connect (OSTI)

    He Ming; Shen Hongtao; Shi Guozhu; Yin Xinyi; Tian Weizhi; Jiang Shan [Department of Nuclear Physics, China Institute of Atomic Energy, Post Office Box 275-50, Beijing 102413 (China)

    2009-12-15T23:59:59.000Z

    The half-life of {sup 151}Sm was redetermined and compared with literature values. A {sup 151}Sm{sub 2}O{sub 3} sample was produced by exposing {sup 150}Sm{sub 2}O{sub 3} to the high neutron flux of the heavy water research reactor at the China Institute of Atomic Energy (CIAE). The number of atoms and the activity of {sup 151}Sm in the sample were measured by thermal ionization mass spectrometry (TIMS) and liquid scintillation counting (LSC), respectively. The half-life of {sup 151}Sm determined in this work is 96.6 yr, with a standard uncertainty of 2.4 yr based on a quadratic summation of the uncertainty components from the measurements of the number of atoms and the activity of {sup 151}Sm.

  19. The NEXT experiment: A high pressure xenon gas TPC for neutrinoless double beta decay searches

    E-Print Network [OSTI]

    D. Lorca; J. Martín-Albo; F. Monrabal; for the NEXT Collaboration

    2012-10-15T23:59:59.000Z

    Neutrinoless double beta decay is a hypothetical, very slow nuclear transition in which two neutrons undergo beta decay simultaneously and without the emission of neutrinos. The importance of this process goes beyond its intrinsic interest: an unambiguous observation would establish a Majorana nature for the neutrino and prove the violation of lepton number. NEXT is a new experiment to search for neutrinoless double beta decay using a radiopure high-pressure xenon gas TPC, filled with 100 kg of Xe enriched in Xe-136. NEXT will be the first large high-pressure gas TPC to use electroluminescence readout with SOFT (Separated, Optimized FuncTions) technology. The design consists in asymmetric TPC, with photomultipliers behind a transparent cathode and position-sensitive light pixels behind the anode. The experiment is approved to start data taking at the Laboratorio Subterr\\'aneo de Canfranc (LSC), Spain, in 2014.

  20. Synchrotron Investigations of SOFC Cathode Degradation

    SciTech Connect (OSTI)

    Idzerda, Yves

    2013-09-30T23:59:59.000Z

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-?} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  1. The use of low-level liquid scintillation spectrometry for rapid measurement and decision making

    SciTech Connect (OSTI)

    Schoenhofer, F. [Federal Inst. for Food Control and Research (Austria)

    1998-12-31T23:59:59.000Z

    Liquid scintillation spectrometry (LSC) has proved over the last fifteen years to be an excellent tool for low-level counting of beta- and alpha-particle emitters. Using low-level instruments the determination of, for instance {sup 90}Sr, could be considerably simplified in the laboratory, saving time and also money for chemicals and manpower. Furthermore, low-level instruments have been successfully used for measurements when fast analysis was required. The four instruments (Quantulus, Wallac Oy), that the author uses, have not only very low background, which cuts measurement time considerably; but from the pulse- height spectra much information about the nature of the radionuclides present and the absence of specific radionuclides can be extracted. From the absence of high-energy beta-particle activity in the pulse-height spectra of precipitation in the first days after the Chernobyl accident the author could draw the conclusion, that practically no {sup 90}Y was present and therefore only small amounts of {sup 90}Sr, if any, could be expected in precipitation and later in food. This enabled them to make the decision not to waste time with a large number of {sup 90}Sr analyses. Large numbers of drinking water samples could be screened for contamination much more sensitively and faster than by gamma-ray spectrometry. More examples will be presented of cases where rapid information was needed; how contamination and nuclear installations can be easily checked and how LSC helped to cut down the time required, the manpower and the costs for radon measurements and environmental surveillance.

  2. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31T23:59:59.000Z

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  3. To appear in IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems Min-Cut Floorplacement

    E-Print Network [OSTI]

    Markov, Igor

    determined manually. Moreover, this step is generally performed only once and separate from cell placement, which includes cell placement, floorplanning, mixed-size placement and achieving routability. At every step of min-cut placement, either partitioning or wirelength- driven, fixed-outline floorplanning

  4. Commercial Feedings Stuffs 1913: Feed Law. 

    E-Print Network [OSTI]

    Youngblood, B.

    1914-01-01T23:59:59.000Z

    PJLLJy 79u 9T?SRCTLLh cuU5LSJP 7SR9 R9J LT7 9TP R9J cuWDS?JWcJ uD R9J DJJ?JyP TW? R9J 5C?LSc aJWJyTLLh TW? t TEXAS AGRICULTURAL EXPERIMENT STATION. T?uS?P R9J CWWJcJPPTyh Jg5JWPJ TW? R9J CWPT?uyh yJ5CRTRSuW SWcS?JWR Ru 5yuPJcCRSuW Duy ?SuLTRSuWPl What... cuyW ?yTWm ?Luu? UJTLm ?SaJPRJy RTW?TaJm cyTc?LSWaPm UJTR PcyT5m UJTR UJTLm UJTR TW? ?uWJ PcyT5m UJTR TW? ?uWJ UJTLm ?Cc?79JTR P9uyRPm cuyW aJyU UJTLm DLTg 5LTWR ?hI5yu?CcRPm uTR ayuTRPm uTR US??LSWaPm 5uCLRyh DJJ?m uTR P9uyRPm USgJ? DJJ?Pm TW? TLL...

  5. Waste properties of a strippable coating used for the TMI-2 reactor building decontamination

    SciTech Connect (OSTI)

    Dougherty, D.R.; Adams, J.W.; Barletta, R.E.

    1982-01-01T23:59:59.000Z

    Strippable coating material considered for use in the TMI-2 reactor building decontamination has been tested for Sr, Cs, and Co leachability, for radiation stability, and for resistance to biodegradation. It was also immersion tested in water, a water solution saturated with toluene and xylene, toluene, xylene, and liquid scintillation counting (LSC) cocktail. Leach testing, performed using a modified IAEA procedure, resulted in all of the Cs and Co activity and most of the Sr activity being released from the coating in just a few days. Immersion resulted in swelling of the coating in all of the liquids tested. Gamma irradiation of the coating did not produce any apparent physical changes in the coating to a dose of 1 x 10/sup 8/ rad, however, radiolytic gas generation of H/sub 2/, CO, and CO/sub 2/ was observed. Biodegradation testing was performed in soil samples from the Barnwell, South Carolina, and Hanford, Washington, low-level waste disposal sites. These test results indicate that strippable coating radwaste of itself will not meet the requirements for stabilized Class B waste outlined in 10 CFR 61 (proposed) and the NRC Draft Branch Technical Position on Waste Form.

  6. Strippable coating used for the TMI-2 reactor building decontamination

    SciTech Connect (OSTI)

    Adams, J.W.; Dougherty, D.R.; Barletta, R.E.

    1984-01-01T23:59:59.000Z

    Strippable coating material used in the TMI-2 reactor building decontamination has been tested for Sr, Cs, and Co leachability, for radiation stability, thermal stability, and for resistance to biodegradation. It was also immersion tested in water, a water solution saturated with toluene and xylene, toluene, xylene, and liquid scintillation counting (LSC) cocktail. Leach testing resulted in all of the Cs and Co activity and most of the Sr activity being released from the coating in just a few days. Immersion resulted in swelling of the coating in all of the liquids tested. Gamma irradiation and heating of the coating did not produce any apparent physical changes in the coating to 1 x 10/sup 8/ rad and 100/sup 0/C; however, gas generation of H/sub 2/, CO, CO/sub 2/ was observed in both cases. Biodegradation of the coating occurred readily in soils as indicated by monitoring CO/sub 2/ produced from microbial respiration. These test results indicate that strippable coating radwaste would have to be stabilized to meet the requirements for Class B waste outlined in 10 CFR Part 61 and the NRC Draft Technical Position on Waste Form.

  7. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    SciTech Connect (OSTI)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik [Korea Power Engineering Company, Seoul (Korea, Republic of)

    1997-04-01T23:59:59.000Z

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  8. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    SciTech Connect (OSTI)

    Sue A. Carter

    2012-09-07T23:59:59.000Z

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  9. Low Background Micromegas in CAST

    E-Print Network [OSTI]

    J. G. Garza; S. Aune; D. Calvet; J. F. Castel; F. E. Christensen; T. Dafni; M. Davenport; T. Decker; E. Ferrer-Ribas; J. Galán; J. A. García; I. Giomataris; R. M. Hill; F. J. Iguaz; I. G. Irastorza; A. C. Jakobsen; D. Jourde; H. Mirallas; I. Ortega; T. Papaevangelou; M. J. Pivovaroff; J. Ruz; A. Tomás; T. Vafeiadis; J. K. Vogel

    2015-03-17T23:59:59.000Z

    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 10$^{-6}$ counts/keV/cm$^2$/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 10$^{-7}$ counts/keV/cm$^2$/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as the strategies to further reduce the background level. Finally, we will describe the R&D paths to achieve sub-keV energy thresholds, which could broaden the physics case of axion helioscopes.

  10. Neutron flux estimations based on niobium impurities in reactor pressure vessel steel

    SciTech Connect (OSTI)

    Baers, L.B.; Hasanen, E.K. [Technical Research Centre of Finland, Espoo (Finland). Reactor Lab.

    1994-12-31T23:59:59.000Z

    The use of (ppm level) niobium impurities in reactor pressure vessel (RPV) steel for neutron flux estimations based on the reaction {sup 93}Nb (n,n{prime}) {sup 93m}Nb has been reported previously. The method has now been further investigated and refined. Small niobium fractions in RPV steel ({approx} ppm) and plating ({approx} 1%) materials have been separated by ion exchange chromatography in one to three steps. The measured Nb fractions in samples from some four pressure vessel (RPV) base materials were 1 to 3 ppm. The purification of tens of milligrams of RPV material provides sufficient amounts of niobium for mass determination with a highly sensitive (10{sup {minus}5} ppm) Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The {sup 93m}Nb and small remaining {sup 54}Mn activities were measured with a Calibrated Liquid Scintillation Counter (LSC) based on dual label technique and almost 100% efficiency to {sup 93m}Nb. One purification is needed for plating materials ({approx}1% Nb) and two purifications of about one gram of steel with Nb impurities in order to resolve the needed activities ({approx}10 Bq {sup 93m}Nb/{mu}g Nb). The achieved accuracy of the measured specific {sup 93m}Nb activities was about {+-} 3% (1{sigma}) in irradiated RPV plating materials and about {+-} 4% for Nb ppm impurities.

  11. Mitigation Plans for the Microbunching-Instability-Related COTR at ASTA/FNAL

    SciTech Connect (OSTI)

    Lumpkin, A. H.; Johnson, A. M.

    2013-05-01T23:59:59.000Z

    At the Advanced Superconducting Test Accelerator (ASTA) now under construction at Fermilab, we anticipate the appearance of the microbunching instability related to the longitudinal space charge (LSC) impedances. With a photoinjector source and up to two chicane compressors planned, the conditions should result in the shift of some microbunched features into the visible light regime. The presence of longitudinal microstructures (microbunching) in the electron beam or the leading edge spikes can result in strong, spatially localized coherent enhancements of optical transition radiation (COTR) that mask the actual beam profile. Several efforts on mitigation of the effects in the diagnostics task have been identified. At ASTA we have designed the beam profiling stations to have mitigation features based on spectral filtering, scintillator choice, and the timing of the trigger to the digital camera's CCD chip. Since the COTR is more intense in the NIR than UV we have selectable bandpass filters centered at 420 nm which also overlap the spectral emissions of the LYSO:Ce scintillators. By delaying the CCD trigger timing of the integration window by 40-50 ns, we can reject the prompt OTR signal and integrate on the delayed scintillator light predominately. This combination of options should allow mitigation of COTR enhancements of order 100-1000 in the distribution.

  12. Accelerated Analyte Uptake on Single Beads in Microliter-scale Batch Separations using Acoustic Streaming: Plutonium Uptake by Anion Exchange for Analysis by Mass Spectrometry

    SciTech Connect (OSTI)

    Paxton, Walter F.; O'Hara, Matthew J.; Peper, Shane M.; Petersen, Steven L.; Grate, Jay W.

    2008-06-01T23:59:59.000Z

    The use of acoustic streaming as a non-contact mixing platform to accelerate mass transport-limited diffusion processes in small volume heterogeneous reactions has been investigated. Single bead anion exchange of plutonium at nanomolar and sub-picomolar concentrations in 20 microliter liquid volumes was used to demonstrate the effect of acoustic mixing. Pu uptake rates on individual ~760 micrometer diameter AG 1x4 anion exchange resin beads were determined using acoustic mixing and compared with Pu uptake rates achieved by static diffusion alone. An 82 MHz surface acoustic wave (SAW) device was placed in contact with the underside of a 384-well microplate containing flat-bottomed semiconical wells. Acoustic energy was coupled into the solution in the well, inducing acoustic streaming. Pu uptake rates were determined by the plutonium remaining in solution after specific elapsed time intervals, using liquid scintillation counting (LSC) for nanomolar concentrations and thermal ionization mass spectrometry (TIMS) analysis for the sub-picomolar concentration experiments. It was found that this small batch uptake reaction could be accelerated by a factor of about five-fold or more, depending on the acoustic power applied.

  13. Accelerator waste - A new challenge for radio-analytics

    SciTech Connect (OSTI)

    Schumann, Dorothea; Neuhausen, Joer; Wohlmuther, Michaelg [Paul Scherrer Institute 5232, Villigen PSI (Switzerland)

    2007-07-01T23:59:59.000Z

    The Paul Scherrer Institute (PSI) at Villigen (Switzerland) operates the most powerful accelerator facility in Europe. Due to the increasing quantities of accelerator waste with almost unknown radionuclide inventory, the development of new radio-analytical methods is an urgent task. Besides the characterization by {gamma}-measurements and dose rate determinations, also the investigation of long-lived radionuclides, being probably essential for a final disposal, is required from Swiss authorities. Chemical separation is necessary for the determination of the majority of these isotopes. As a representative example for such studies, the analytics of a beam dump assembly is introduced. Samples were taken from the target E beam dump station from the 590 MeV proton accelerator facility. The content of several radionuclides with half-lives between 2 and 10{sup 7} years was determined by {gamma}-spectrometry and, after chemical separation, by Liquid Scintillation Counting (LSC) as well as Accelerator Mass Spectrometry (AMS). The results are compared with theoretical predictions. Long-term object of these studies is the elaboration of nuclide vectors, which allow the estimation of nuclide inventories by simple calculations. (authors)

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07T23:59:59.000Z

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  15. Upper and lower limits on the Crab pulsar's astrophysical parameters set from gravitational wave observations by LIGO: braking index and energy considerations

    E-Print Network [OSTI]

    Giovanni Santostasi

    2008-07-16T23:59:59.000Z

    The Laser Interferometer Gravitational Observatory (LIGO) has recently reached the end of its fifth science run (S5), having collected more than a year worth of data. Analysis of the data is still ongoing but a positive detection of gravitational waves, while possible, is not realistically expected for most likely sources. This is particularly true for what concerns gravitational waves from known pulsars. In fact, even under the most optimistic (and not very realistic) assumption that all the pulsar's observed spin-down is due to gravitational waves, the gravitational wave strain at earth from all the known isolated pulsars (with the only notable exception of the Crab pulsar) would not be strong enough to be detectable by existing detectors. By August 2006, LIGO had produced enough data for a coherent integration capable to extract signal from noise that was weaker than the one expected from the Crab pulsar's spin-down limit. No signal was detected, but beating the spin-down limit is a considerable achievement for the LIGO Scientific Collaboration (LSC). It is customary to translate the upper limit on strain from a pulsar into a more astrophysically significant upper limit on ellipticity. Once the spin-down limit has been beaten, it is possible to release the constraint that all the spin-down is due to gravitational wave emission. A more complete model with diverse braking mechanisms can be used to set limits on several astrophysical parameters of the pulsar. This paper shows possible values of such parameters for the Crab pulsar given the current limit on gravitational waves from this neutron star.

  16. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

    SciTech Connect (OSTI)

    M.S. Sohal; J.E. O'Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

    2009-05-01T23:59:59.000Z

    An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple phase boundary) • Loss of electrical/ionic conductivity of electrolyte.

  17. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    SciTech Connect (OSTI)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01T23:59:59.000Z

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  18. Material Sample Collection with Tritium and Gamma Analyses at the University of Illinois's Nuclear Research Laboratory TRIGA Nuclear Research Reactor

    SciTech Connect (OSTI)

    Charters, G.; Aggarwal, S. [New Millennium Nuclear Technologies, 575 Union Blvd, Suite 102, Lakewood, CO 80228 (United States)

    2006-07-01T23:59:59.000Z

    The University of Illinois in Champaign-Urbana has an Advanced TRIGA reactor facility which was built in 1960 and operated until August 1998. The facility was shutdown for a variety of reasons, primarily due to a lack of usage by the host institution. In 1998 the reactor went into SAFSTOR and finally shipped its fuel in 2004. At the present time a site characterization and decommissioning plan are in process and hope to be submitted to the NRC in early 2006. The facility had to be fully characterized and part of this characterization involved the collection and analysis of samples. This included various solid media such as, concrete, graphite, metals, and sub-slab surface soils for immediate analysis of Activation and Tritium contamination well below the easily measured surfaces. This detailed facility investigation provided a case to eliminate historical unknowns, increasing the confidence for the segregation and packaging of high specific activity Low Level Radwaste (LLRW), from which a strategy of 'surgical-demolition' and segregation could be derived thus maximizing the volumes of 'clean material'. Performing quantitative volumetric concrete or metal radio-analyses safer and faster (without lab intervention) was a key objective of this dynamic characterization approach. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilises or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the are a around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated that needs to be treated and stabilized before disposal. The goal was to avoid those field activities that could cause this type of release. Therefore, TRUPRO{sup R}, a sampling and profiling tool in conjunction with radiometric instrumentation was utilized to produce contamination profiles through the material being studied. All samples (except metals) on-site were analyzed within 10 minutes for tritium using a calibrated portable liquid scintillation counter (LSC) and analyzed for gamma activation products using a calibrated ISOCS. Improved sample collection with near real time analysis along with more historical hazard analysis enhanced significantly over the baseline coring approach the understanding of the depth distribution of contaminants. The water used in traditional coring can result in a radioactive liquid waste that needs to be dealt with. This would have been an issue at University of Illinois. Considerable time, risk reduction and money are saved using this profiling approach. (authors)

  19. Epoch 3.2.2: Experiences of a First-Time User

    E-Print Network [OSTI]

    Haynal, Steve

    Out Select Hold #12;Compressor Power Rail Problems l Custom more compact arrangement of DP led Diagram l Floorplanning l Compression l Algorithm l Why This Compression? l Datapath l Power Rail Problems #12;Rogue Chip Block Diagram IN FIFO OUT FIFO TEST COMPRESSOR MID FIFO & SWITCHING DES 10 10 10 10

  20. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Professor Anil V. Virkar

    2003-05-23T23:59:59.000Z

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

  1. Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

    SciTech Connect (OSTI)

    Gliebe, Cheryn E; Ananth, Nandini

    2008-05-22T23:59:59.000Z

    One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex systems is described. We proposed the use of a semiclassical correction term to a preliminary quantum calculation using, for instance, a variational approach. This allows us to increase the accuracy significantly. Modeling Nonadiabatic dynamics has always been a challenge to classical simulations because the multi-state nature of the dynamics cannot be described accurately by the time evolution on a single average surface, as is the classical approach. We show that using the Meyer-Miller-Stock-Thoss (MMST) representation of the exact vibronic Hamiltonian in combination with the IVR allows us to accurately describe dynamics where the non Born-Oppenheimer regime. One final problem that we address is that of extending this method to the long time regime. We propose the use of a time independent sampling function in the Monte Carlo integration over the phase space of initial trajectory conditions. This allows us to better choose the regions of importance at the various points in time; by using more trajectories in the important regions, we show that the integration can be converged much easier. An algorithm based loosely on the methods of Diffusion Monte Carlo is developed that allows us to carry out this time dependent sampling in a most efficient manner.

  2. The Mixed Waste Management Facility. Preliminary design review

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  3. Experimental Techniques for the Study of Liquid Monopropellant Combustion

    E-Print Network [OSTI]

    Warren, William

    2012-07-16T23:59:59.000Z

    . An abbreviated procedure for an individual experiment is as follows. The bolt is cleaned with acetone and allowed to dry. A nickel chromium wire is wrapped around each of the 26 leads and suspended as far into the propellant cavity as possible without... (1953), Kelzenberg et al. (1999), and Raikova et al. (1977) .......................... 14 2 Floorplan of Propellant Lab: (a) fume hood, (b) flammable waste bin, (c) work bench, (d) flammable fuels cabinet, (e) explosives magazine, (f) liquid...

  4. Architectural considerations in the design of a superconducting quantum annealing processor

    E-Print Network [OSTI]

    P. I. Bunyk; E. Hoskinson; M. W. Johnson; E. Tolkacheva; F. Altomare; A. J. Berkley; R. Harris; J. P. Hilton; T. Lanting; J. Whittaker

    2014-01-21T23:59:59.000Z

    We have developed a quantum annealing processor, based on an array of tunably coupled rf-SQUID flux qubits, fabricated in a superconducting integrated circuit process [1]. Implementing this type of processor at a scale of 512 qubits and 1472 programmable inter-qubit couplers and operating at ~ 20 mK has required attention to a number of considerations that one may ignore at the smaller scale of a few dozen or so devices. Here we discuss some of these considerations, and the delicate balance necessary for the construction of a practical processor that respects the demanding physical requirements imposed by a quantum algorithm. In particular we will review some of the design trade-offs at play in the floor-planning of the physical layout, driven by the desire to have an algorithmically useful set of inter-qubit couplers, and the simultaneous need to embed programmable control circuitry into the processor fabric. In this context we have developed a new ultra-low power embedded superconducting digital-to-analog flux converters (DACs) used to program the processor with zero static power dissipation, optimized to achieve maximum flux storage density per unit area. The 512 single-stage, 3520 two-stage, and 512 three-stage flux-DACs are controlled with an XYZ addressing scheme requiring 56 wires. Our estimate of on-chip dissipated energy for worst-case reprogramming of the whole processor is ~ 65 fJ. Several chips based on this architecture have been fabricated and operated successfully at our facility, as well as two outside facilities (see for example [2]).