Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Experience with Bi-Fuel LPG Pickups in Texas  

DOE Green Energy (OSTI)

The State of Texas requires state agencies to purchase alternative fuel vehicles (AFVs). In 1996, Texas Department of Transportation (TxDOT) representatives added about 400 bi-fuel liquefied petroleum gas (LPG) pickup trucks to their fleet. The fleet managers were willing to share information about their fleets and the operation of these vehicles, so a study was launched to collect operations, maintenance, and cost data for selected LPG and gasoline vehicles (as controls) throughout 18 months of vehicle operation. This case study presents the results of that data collection and its subsequent analysis.

Whalen, P.

1999-05-12T23:59:59.000Z

2

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

DOE Green Energy (OSTI)

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

3

Catalytic conversion of LPG  

Science Conference Proceedings (OSTI)

The low reactivity of light paraffins has long hindered their utilization as petrochemical feedstocks. Except for their use in ethylene crackers, LPG fractions have traditionally been consumed as fuel. New catalytic processes now being commercialized open new avenues for the utilization of LPG as sources of valuable petrochemical intermediates. This paper discusses processes for the dehydrogenation and aromatization of LPG.

Pujado, P.R.; Vora, B.V.; Mowry, J.R.; Anderson, R.F.

1986-01-01T23:59:59.000Z

4

LPG in Venezuela  

SciTech Connect

The use of LPG for domestic consumption in Venezuela began in late 1929 when LPG was imported in lots of 500 cylinders. These cylinders were then returned to the U.S. for refilling. Total consumption at that time was some 40M/sup 3/ (250 barrels) per year and by 1937 had grown to some 540M/sup 3/ (3,400 barrels) per year. Local production of LPG from gas began in the mid thirties with a small cooling plant in the Mene Grande Field in the Lake Maracaibo area, the first field to produce oil in Venezuela (1914). This plant produced gasoline for a refinery and some of the first LPG used in Venezuela for domestic consumption. The capacity of this plant was insufficient to satisfy the growing demand for LPG which was supplied from refinery production until the development of the natural gas processing industry. At the present time, Venezuelan refineries are net consumers of LPG.

Romero, O.

1986-01-01T23:59:59.000Z

5

LPG in Mexico  

SciTech Connect

The authors review LPG in Mexico. They attempt to project numbers to the year 2000 using a supply/demand comparison.

Miles, E.L.

1986-01-01T23:59:59.000Z

6

LPG in Missouri  

SciTech Connect

This study presents a brief history of the LPG industry, the overall consumption and sector usage for both the U.S. and Missouri, the movement and storage of LPG, the future supply and demand, and the identification of various state and federal regulations.

1978-01-01T23:59:59.000Z

7

Make aromatics from LPG  

SciTech Connect

Liquefied petroleum gas (LPG) consists mainly of the propane and butane fraction recovered from gas fields, associated petroleum gas and refinery operations. Apart from its use in steam cracking and stream reforming, LPG has few petrochemical applications. The relative abundance of LPG and the strong demand for aromatics - benzene, toluene and xylenes (BTX) - make it economically attractive to produce aromatics via the aromatization of propane and butanes. This paper describes the Cyclar process, which is based on a catalyst formulation developed by BP and which uses UOP's CCR catalyst regeneration technology, converts propane, butanes or mixtures thereof to petrochemical-quality aromatics in a single step.

Doolan, P.C. (BP Exploration Co. Ltd., London (GB)); Pujado, P.R. (UOP, Des Plaines, IL (US))

1989-09-01T23:59:59.000Z

8

Jet fuel from LPG  

SciTech Connect

Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

Maples, R.E.; Jones, J.R.

1983-02-01T23:59:59.000Z

9

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

10

LPG | OpenEI  

Open Energy Info (EERE)

LPG LPG Dataset Summary Description The JodiOil World Database is freely available from the Joint Organisations Data Initiative (JODI) and is updated on or around the 20th of each month. Source JODI Date Released October 01st, 2004 (10 years ago) Date Updated March 21st, 2011 (3 years ago) Keywords crude oil diesel fuel oil gasoline kerosene LPG Data application/zip icon Text file, all JODI Database data: Jan 2002 - Jan 2011 (zip, 14.5 MiB) application/pdf icon Definitions of Abbreviations and Codes (pdf, 698.3 KiB) application/pdf icon Column Headings for Dataset (pdf, 13.4 KiB) Quality Metrics Level of Review Some Review Comment Some of the data has "some review" and some of the data has "no review"; the supplemental documentation provides definitions for the assessment codes for each piece of data in the datasets (essentially, 1 = some review, 2 = use with caution, 3 = not reviewed)

11

LPG fuel shutoff system  

SciTech Connect

An LPG fuel shutoff system for use with a vehicle having an LPG fuel engine and having a solenoid valve to supply and shut off LPG fuel is described including: a relay having a relay contact which is closed when an electric current is fed to a coil of the relay; a pressure switch having a first position and a second position and adapted to be in the first position when engine oil pressure rises above a predetermined level; and an oil lamp adapted to light when the engine oil pressure is below the predetermined level, and wherein a solenoid coil of the solenoid valve is connected at one side to a battery through an ignition switch and a fuel switch. The solenoid coil also is connected, at another side of the solenoid coil, in series to the relay contact and the pressure switch in the second position respectively, the coil of the relay is connected to the solenoid valve side of the ignition switch through a starting switch, the oil lamp is connected between the ignition switch and the pressure switch.

Watanabe, T.; Miyata, K.

1988-01-26T23:59:59.000Z

12

The SONATRACH jumbo LPG plant  

SciTech Connect

The authors aim is to give to the 17 TH world gas conference a general idea on SONATRACH LPG PLANT which is located in the ARZEW area. They develop this communication as follows: general presentation of LPG plant: During the communication, the author's will give the assistance all the information concerning the contractions the erection's date and the LPG PLANT process, start-up of the plant: In this chapter, the authors's will describe the start-up condition, the performance test result, the flexibility test result and the total mechanical achievement of the plant; operation by SONATRACH: After the success that obtained during the mechanical achievement and performance test, the contractor handed over the plant to SONATRACH.

Ahmed Khodja, A.; Bennaceur, A.

1988-01-01T23:59:59.000Z

13

LPG storage vessel cracking experience  

SciTech Connect

In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

Cantwell, J.E. (Caltex Petroleum Corp., P.O. Box 619500, Dallas, TX (US))

1988-10-01T23:59:59.000Z

14

LPG storage vessel cracking experience  

SciTech Connect

As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

Cantwell, J.E.

1988-01-01T23:59:59.000Z

15

Improved water-driven lpg slug process  

SciTech Connect

The economics of oil recovery by the LPG-slug process depends upon increasing the sweep efficiency and recovering the injected LPG. There are 2 basic forms of the LPG-slug processes--the gas-driven and the water-driven. The pressure required for miscibility between dry gas and LPG prohibits the use of the gas-driven LPG process in shallow reservoirs. The water-driven LPG slug process normally exhibits good sweep efficiency. However, displacement of the LPG by water is poor. An improvement in this process appears possible by injecting a slug of carbon dioxide between the LPG slug and the water drive. Laboratory experiments were conducted in linear core systems to determine the effect of pressure on the various displacement zones. A displacement test was conducted with LPG and carbon dioxide slugs large enough to avoid interference between the oil-LPG, LPG-carbon dioxide and carbon dioxide- water displacement zones. Under these conditions, essentially complete oil and LPG recovery was obtained. However, a substantial amount of carbon dioxide was left in the core at water breakthrough.

Thompson, J.L.

1966-01-01T23:59:59.000Z

16

Industrial cooperation in the field of LPG  

SciTech Connect

The years to come should confirm the availability of LPG worldwide and enable future users in developing countries to satisfy energy requirements which today are only partly covered, if at all. This paper is designed to point the benefits that these new LPG markets could derive from active cooperation with experienced companies operating in mature LPG markets.

Stefano, M.; Trollux, J.; Dune, J.J.

1988-01-01T23:59:59.000Z

17

Utilization of LPG for vehicles in Japan  

SciTech Connect

LPG demand for vehicles amounts to 1.8 MM tons annually, equivalent to about 11% of the total LPG consumption in Japan. The feature which dominates the demand of LPG as a vehicle fuel in Japan is the high penetration of LPG powered vehicles into taxi fleets. This has been made possible following the rationalization in the taxi business in the early 1960s. Today, three quarters of LPG vehicles, numbering some 235,000 while representing only about 1% of the total number of vehicles, account for nearly 93% of all taxicabs.

Kusakabe, M.; Makino, M.; Tokunoh, M.

1988-01-01T23:59:59.000Z

18

GAO report sabotages LPG industry  

SciTech Connect

A massive report by the U.S. General Accounting Office (GAO) on the liquefied energy gases (LEG), which include LPG and LNG, covers the possible hazards and recommends that facilities either be located in rural areas or, if in urban areas, be operated according to nuclear plant standards. One section concerns the ability of storage tanks to withstand earthquakes, floods, winds, and tornadoes. Another section treats transportation recommendations to eliminate as far as possible all opportunities for injury or destruction due to tank car or tank truck accidents. A discussion of the GAO report, only a portion of which has been released, sees the far-ranging recommendations as a threat to the LPG industry; notes that a great deal of information pertinent to the industry is presented in pointing out the problems, but finds that the GAO seems to have encountered considerable difficulty in finding practical solutions to the problems, e.g., in finding suitable sites for LPG terminals so that all such terminals can be in non-urban areas by 1980.

Roberts, B.

1978-03-01T23:59:59.000Z

19

Dehydrocyclodimerization, converting LPG to aromatics  

SciTech Connect

British Petroleum (BP) recognized the potential need for ways of exploiting feedstocks with low opportunity cost and commenced a research program at its Sunbury Research Center to discover and develop a catalyst for the conversion of LPG to a liquid product. The successful outcome of this research program is the Cyclar /SUP SM/ process, a joint development of UOP Process Division and British Petroleum. The Cyclar process offers a single-step conversion of LPG to an aromatic product which has a highvalue, is easily transported and useful both to fuel and petrochemical applications. The LPG producer can invest in a single unit, avoiding the need to identify and develop markets for multiple C/sub 3/ and C/sub 4/ products. This catalytic process, which employs UOP Continuous Catalyst Regeneration (CCR) technology, can also be applied to refinery light ends to produce a high-quality gasoline. Aromatic and hydrogen yields from propane and butane feeds surpass those obtained from catalytic reforming of Light Arabian naphtha. This paper describes the principles of the Cyclar process and illustrates yields and economics for several interesting applications.

Johnson, J.A.; Hilder, G.K.

1984-03-01T23:59:59.000Z

20

New LPG loss-control standards  

SciTech Connect

API'S (American Petroleum Institute) Committee on Liquified Hydrocarbon Gas and the Committee and Safety and Fire Protection have modified Standard 2510 and added a supplemental Standard 2510A, in response to bad LPG incidents. Requirements have been tightened, with a major objective to prevent LPG releases. Fire protection Standards for the design and operation of LPG facilities are specifically revised. Following important changes are specifically discussed: Versel design, site selection, spacing and impounding; foundations and supports; and piping requirements.

Blomquist, D.L. (Chevron Corp., San Francisco, CA (US))

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Impact of foreign LPG operations on domestic LPG markets  

SciTech Connect

During 1978 the federal government passed legislation allowing a major increase in natural gas prices and offering hope that some portion of the supply will be allowed to reach free market levels. The mechanism for decontrol of crude oil was also put into effect. This favorable government action and higher world oil prices have led to a major resurgence in domestic exploration. In addition to the supply effects, there appears to have been a substantial demand response to the latest round of world oil price increases. The purpose of this paper is to discuss how these events have affected domestic LPG markets and pricing.

Jones, C.

1981-01-01T23:59:59.000Z

22

LPG dealers, manufacturers report diverse effects of recession and war  

SciTech Connect

The author presents a survey of LPG marketers. The effects of the Persian Gulf War and U.S. recession on the LPG industry are discussed.

Prowler, S.

1991-01-01T23:59:59.000Z

23

Algeria LPG pipeline is build by Bechtel  

SciTech Connect

The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

Horner, C.

1984-08-01T23:59:59.000Z

24

Venezuela. [LPG marketing and production  

SciTech Connect

Liquefied petroleum gas marketing and production from Venezuela are not very complicated or big in the business. There is moderate LPG production since the main production comes from oil. There is about 2.3 million bpd of oil production compared with less than 70,000 bpd of gas liquids. Of more than 95% of the associated gas produced with the oil, 50% is injected as a condensate recovery process. Up to now, the LPG plants have been producing only a trickle, most of it from gas before it was injected. In the future program for gas utilization, it is estimated that by 1980 about twice the liquid that is now being produced would be available for exportation to natural markets of the Gulf of Mexico and the east coast. The production of about 7 million tons until the year 2000 can be continued with good conservation and with the future potential area that has been discovered in the south part of the lake and offshore Venezuela.

Reyes, A.

1977-01-01T23:59:59.000Z

25

Africa gaining importance in world LPG trade  

Science Conference Proceedings (OSTI)

Major LPG projects planned or under way in Africa will increase the importance of that region`s presence in world LPG trade. Supplies will nearly double between 1995 and 2005, at which time they will remain steady for at least 10 years. At the same time that exports are leveling, however, increasing domestic demand for PG is likely to reduce export-market participation by Algeria, Nigeria, Egypt, and Libya. The growth of Africa`s participation in world LPG supply is reflected in comparisons for the next 15--20 years. Total world supply of LPG in 1995 was about 165 million metric tons (tonnes), of which Africans share was 7.8 million tonnes. By 2000, world supply will grow to slightly more than 200 million tonnes, with Africa`s share expected to increase to 13.2 million tonnes (6.6%). And by 2005, world LPG supply will reach nearly 230 million tonnes; Africa`s overall supply volumes by that year will be nearly 16.2 million tonnes (7%). World LPG supply for export in 1995 was on order of 44 million tonnes with Africa supply about 4 million tonnes (9%). By 2005, world export volumes of LPG will reach nearly 70 million tonnes; Africa`s share will have grown by nearly 10 million tonnes (14.3%).

Haun, R.R. [Purvin and Gertz Inc., Dallas, TX (United States); Otto, K.W.; Whitley, S.C. [Purvin and Gertz Inc., Houston, TX (United States)

1997-05-12T23:59:59.000Z

26

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-12-31T23:59:59.000Z

27

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

28

Overfilling of cavern blamed for LPG blasts  

Science Conference Proceedings (OSTI)

Three explosions and a fire Apr. 7 at an LPG salt dome storage cavern near Brenham, Tex., were triggered when the cavern was overfilled, the Texas Railroad Commission (TRC) has reported. This paper reports that a TRC investigation found that LPG escaped to the surface at the Brenham site through brine injection tubing after excessive fill from an LPG line forced the cavern's water level below the brine tubing's bottom. At the surface, LPG was released into a brine storage pit where it turned into a dense, explosive vapor. At 7:08 a.m., the vapor was ignited by an unknown source. The resulting blast killed three persons and injured 19 and brought operations at the site to a halt.

Not Available

1992-07-06T23:59:59.000Z

29

New method developed for LPG offshore loading  

SciTech Connect

An innovative concept for refrigerated LPG offshore loading has been developed by TOTAL and Enterprise D'Equipments Mecaniques at Hydrauliques. Known as CHAGAL, the system integrates with the catenary anchor leg mooring offshore loading system commonly used for crude oil. CHAGAL provides a suitable answer to short-term development schemes of LPG trade. It can be adapted for possible extrapolation to cryogenic temperatures of LNG and it opens a new way to the development of offshore liquefaction projects for which the offloading of production is still an unsolved key problem.

1985-10-01T23:59:59.000Z

30

Custody transfer measurements for LNG/LPG  

SciTech Connect

The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

Williams, R.A.

1984-04-01T23:59:59.000Z

31

Future of LPG as a petrochemical feedstock  

SciTech Connect

An evaluation is made of probable LPG (primarily propane) supplies and demand factors through 1985. The analysis indicates that because of diminishing domestic supplies and the transportation economics for foreign supplies the petrochemical industry will be forced to convert to the use of naphtha or heavy crude components for ethylene production. (JSR)

Skillern, M.P.

1976-10-01T23:59:59.000Z

32

Product transfer service chosen over LPG flaring  

SciTech Connect

Seadrift Pipeline Corp. recently decommissioned its Ella Pipeline, an 108-mile, 8-in. line between the King Ranch and a Union Carbide plant at Seadrift, Texas. The pipeline company opted for the product transfer services of pipeline Dehydrators Inc. to evacuate the ethane-rich LPG mixture from the pipeline instead of flaring the LPG or displacing it with nitrogen at operating pressures into another pipeline. The product transfer system of Pipeline Dehydrators incorporates the use of highly specialized portable compressors, heat exchangers and interconnected piping. The product transfer process of evacuating a pipeline is an economically viable method that safely recovers a very high percentage of the product while maintaining product purity. Using positive-displacement compressors, PLD transferred the LPG from the idled 8-in. Ella line into an adjacent 12-in. ethane pipeline that remained in service at approximately 800 psig. Approximately 4.3 million lb of LPG (97% ethane, 2.7% methane and 0.3% propane) were transferred into the ethane pipeline, lowering the pressure on the Ella Pipeline from 800 psig to 65 psig.

Horn, J.; Powers, M.

1994-07-01T23:59:59.000Z

33

Fire safety of LPG in marine transportation  

SciTech Connect

This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

1980-08-01T23:59:59.000Z

34

Use expander cycles for LPG recovery  

SciTech Connect

Expander-type cycles are competitive with other gas recovery processes even when applied to relatively rich gas feeds for a high recovery of only propane plus. These cycles are the most economical to use when (1) ''free pressure drop'' is available between feed and residue gas pressure; (2) product requires demethanization only; (3) feed is very lean and propane plus heavier components are required; (4) a small, unattended, prefabricated unit for LPG recovery is needed; (5) an offshore LPG facility is required to be built on a platform where space and weight allowance is at a premium; (6) a facility is initially built for propane recovery, but is planned for future conversion to ethane recovery; and (7) relatively low-pressure gas feeds (which are usually quite rich) must be processed for a high recovery of ethane. A flow chart for an oil absorption plant is presented.

Valdes, A.R.

1974-01-01T23:59:59.000Z

35

Risk analysis of an LPG facility  

SciTech Connect

This paper describes methods used to conduct a safety review of an existing LPG loading, processing, and storage facility. An engineering team conducted a Hazard and Operability study of the plant to identify potential problems. A Probabilistic Risk Assessment was also made on the facility where the probability and consequences of worst case accidents were estimated. Stone and Webster recently completed an analysis of an LPG terminal to determine if there were any engineering, design, or operating deficiencies which could jeopardize the operability of the facility or make operation hazardous. The facility includes a dock for off-loading refrigerated propane and butane, transfer piping from the dock to storage, a heating system, pressurized storage, dehydration, product transfer and loading.

Daley, H.F.; Chapman, P.D.L.

1986-01-01T23:59:59.000Z

36

Blast rips Texas LPG storage site  

SciTech Connect

This paper reports that Seminole Pipeline Co. at presstime last week had planned to reopen its 775 mile liquefied petroleum gas pipeline in South Texas by Apr. 12 after a huge explosion devastated the area around a Seminole LPG storage salt dome near Brenham, Tex., forcing the pipeline shutdown. A large fire was still burning at the storage site at presstime last week. The blast - shortly after 7 a.m. Apr. 7 - occurred at a pipeline connecting the main Seminole line with the storage facility and caused shock waves felt 130 miles away. A 5 year old boy who lived in a trailer near Seminole's LPG storage dome was killed, and 20 persons were injured.

1992-04-13T23:59:59.000Z

37

Monitoring system tested during LPG tanker unloading  

SciTech Connect

A specially developed computer-based hazardous-materials monitoring system has been successfully field tested. The test of the portable system occurred during the unloading of 45,000 metric tons of LPG from a 740-ft tanker at the petroleum dock of a plant along the Mississippi River. The function of this system is to detect, report, alarm, and record unacceptable concentrations of hazardous vapors during marine-transfer operations.

1990-05-14T23:59:59.000Z

38

The operation of LPG relief valves  

SciTech Connect

As stipulated by NFPA 58, all LPG storage containers must be equipped with one or more pressure relief devices. These devices are sized to prevent rupture of a normally charged container when exposed to fire. This paper describes in detail the functioning of the spring-loaded relief valve. The author discusses how the venting of LPGs can produce unacceptable risks and how training is a necessary part of controlling such a situation.

Stannard, J.H. Jr

1989-11-01T23:59:59.000Z

39

Risks of LNG and LPG. [Review  

SciTech Connect

Since the use of liquefied natural gas (LNG) and liquefied petroleum gases (LPG) as fuels is likely to increase and will certainly persist for some time to come, assessment of the safety of LNG/LPG systems will continue to draw attention and is quite likely to force continuing review of operating and design standards for LNG/LPG facilities. Scientific investigations to date appear to have identified the major hazards. Except for the dispersive behavior of vapor clouds - a not-insignificant factor in risk evaluation - the consequences of spills are well circumscribed by current analyses. The physically significant effects accompanying nonexplosive combustion of spilled material are fairly well documented; yet, potentially substantial uncertainties remain. Catastrophic spills of 10/sup 4/-10/sup 5/ m/sup 3/ on land or water are possible, given the current size of storage vessels. Almost all experimental spills have used less than 10 m/sup 3/ of liquid. There is thus some uncertainty regarding the accuracy and validity of extrapolation of current empirical information and physical models to spills of catastrophic size. The less-likely but still-possible explosive or fireball combustion modes are not well understood in respect to their inception. The troubling experience with such violent combustion of similar combustible vapors suggests that this possibility will need further definition. Extant LNG and LPG risk analyses illustrate the difficulties of substantiating the numerous event probabilities and the determination of all event sequences that can lead to hazardous consequences. Their disparate results show that significant improvements are needed. Most importantly, a detailed critique of past efforts and a determination of an exhaustive set of criteria for evaluating the adequacy of a risk analysis should precede any further attempts to improve on existing studies. 44 references, 1 table.

Fay, J.A.

1980-01-01T23:59:59.000Z

40

LPG Electrical, Inc | Open Energy Information  

Open Energy Info (EERE)

LPG Electrical, Inc LPG Electrical, Inc Jump to: navigation, search Name LPG Electrical, Inc Address 13833 Wellington Trace Rd. #4 Place Wellington, Florida Zip 33414 Sector Services Product underwater power generators Year founded 2009 Number of employees 1-10 Phone number 5615786611 Website [www.lpgelectrical.com www.lpgelectrical.com ] Coordinates 26.663684°, -80.267246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.663684,"lon":-80.267246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mounded LPG storage - Experience and developments  

SciTech Connect

Liquefied petroleum gas (LPG) is stored after production, and for distribution and use, in pressure vessels which vary in size from a few kilogrammes to many thousands of tons. The types of LPG under consideration are commercial butane, commercial propane, or mixtures of the two gases in varying proportions. Mounded storage systems are becoming popular as an alternative to the better-known traditional systems. The most widely used and therefore best-known of the traditional systems are the above-ground pressure-vessel designs. These more commonly comprise factory-made cylinders which are installed horizontally, being supported on saddles at each end of the vessel. When such vessels are installed in an LPG terminal, depot, or filling plant, they are required in multiple units to facilitate the storage of more than one grade of product and to enable regular maintenance and inspection to be carried out. Today's safety regulations require such installations to be divided into sub-groups of six tanks, with all the tanks located at a safe distance from one another, and from other facilities in the immediate area. These safety distances are being increased as a result of experience, which means terminals now require large areas of land.

Barber, D.

1988-01-01T23:59:59.000Z

42

U.S. LPG pipeline begins deliveries to Pemex terminal  

SciTech Connect

LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

Bodenhamer, K.C. [Mid-America Pipeline Co., Tulsa, OK (United States)

1997-08-11T23:59:59.000Z

43

Combination process for the conversion of heavy distillates to LPG  

SciTech Connect

Maximum conversion of heavy distillates to LPG is achieved through a combination process involving two-stage hydrocracking. 9 claims, no drawings.

Hilfman, L.

1976-06-15T23:59:59.000Z

44

LPG fuel supply system. [Patent for automotive  

SciTech Connect

A fuel supply system for an internal combustion engine operated on gaseous fuels, for example, liquid petroleum gas (Lpg). The system includes a housing having a chamber for vaporizing liquid gas, including means for heating the vaporizing chamber. Also included in the housing is a mixing chamber for mixing the vaporized gas with incoming air for delivery to the intake manifold of an internal combustion engine through a standard carburetor. The fuel supply system includes means for mounting the system on the carburetor, including means for supporting an air filter circumjacent the mixing chamber.

Pierson, W.V.

1982-09-07T23:59:59.000Z

45

Current and future USA-world seaborne imports at LPG  

SciTech Connect

An outline of the current and historical situation of the international LPG trade and comparison between the US and other countries covers methods of marine transportation, including fully refrigerated vessels, semirefrigerated vessels, pressure vessels, and LNG ships fitted for LPG; the temporary abundance of LPG; a comparison of the markets in Japan, Europe, South America, and the US to indicate the potential market in the future, e.g., the need in Japan for LPG as a basic fuel, main use in Europe as a feedstock and as domestic fuel, use as a basic fuel but mainly in the winter months inSouth America, and the volatile spot market in the US; and the conclusion that the capacity to produce LPG will keep pace with demand only as long as adequate prices are paid to offset production costs.

Bassa, G.

1980-01-01T23:59:59.000Z

46

Legal nature of LPG (liquefied petroleum gas) regulation  

SciTech Connect

The commercial exploitation of Liquefied Petroleum Gas (LPG) in New Zealand has occurred without a particular and comprehensive concern for any legal implications. The paper in Part I examines definitional questions, assesses in Part II the ability of courts and quasi-courts to evaluate risks associated with the product, examines in Part III the utility of common law remedies for injuries or associated with or arising from LPG, analyzes in Part IV the statutory regulation of LPG, concentrating particularly on the Dangerous Goods (Class 2 - Gases) Regulations 1980, discusses in Part V recent planning case-law concerning LPG development, and concludes that some reform is necessary to produce a more-coherent and precise regulatory regime that takes into account both the needs of developers and those affected by the development of LPG.

Liddell, G.

1986-08-01T23:59:59.000Z

47

End to deficit of LPG. [Argentina  

SciTech Connect

In the Buenos Aires province of Argentina, Gas de Estado is constructing the future heart of the petrochemical complex, Bahia Blanca. The complex contains 2 absorption-refrigeration plants, a gas compressing plant, equipment maintenance shops and an important operations base for the Argentine truck gas pipelines. This will be the largest LPG plant in Latin America. The General Cerri plant, under construction, is located in an area of 40,000 sq m with new installations to extract ethane and higher hydrocarbons. The design optimizes the extraction of hydrocarbons from the natural gas and recovers 76% of the ethane. Selection of the process resulted from an investigation that compared the system with processes that use water cooling and absorption with refrigerated oil.

Andrich, V.

1980-03-01T23:59:59.000Z

48

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

49

Charcoal versus LPG grilling: A carbon-footprint comparison  

SciTech Connect

Undoubtedly, grilling is popular. Britons fire up their barbeques some 60 million times a year, consuming many thousands of tonnes of fuel. In milder climates consumption is even higher, and in the developing world, charcoal continues to be an essential cooking fuel. So it is worth comparing the carbon footprints of the two major grill types, charcoal and LPG, and that was the purpose of the study this paper documents. Charcoal and LPG grill systems were defined, and their carbon footprints were calculated for a base case and for some plausible variations to that base case. In the base case, the charcoal grilling footprint of 998 kg CO{sub 2}e is almost three times as large as that for LPG grilling, 349 kg CO{sub 2}e. The relationship is robust under all plausible sensitivities. The overwhelming factors are that as a fuel, LPG is dramatically more efficient than charcoal in its production and considerably more efficient in cooking. Secondary factors are: use of firelighters, which LPG does not need; LPG's use of a heavier, more complicated grill; and LPG's use of cylinders that charcoal does not need.

Johnson, Eric, E-mail: ejohnson@ecosite.co.u [Atlantic Consulting, Obstgartenstrasse 14, 8136 Gattikon (Switzerland)

2009-11-15T23:59:59.000Z

50

LPG export growth will exceed demand by 2000  

SciTech Connect

LPG supplies for international trade will increase sharply through 2000 and begin to outstrip demand by 1997 or 1998. This outlook depends on several production projects proceeding as planned. Leading the way to increased volumes are projects in Algeria, Nigeria, and Australia, among others. Purvin and Gertz, Dallas, projected this trend earlier this year at an international LPG seminar near Houston. Representatives from LPG-supplying countries also presented information to support this view and subsequently supplied more specifics to OGJ in response to questions. This paper discusses this information. Trends in Africa, Australia, North America, and South America are forecast.

True, W.R.

1994-08-08T23:59:59.000Z

51

Letter to the editor/Shell treats LPG  

SciTech Connect

In response to an article on the MALAPROP process Shell International Petroleum Mij. B.V. notes that Shell's Adip process has gained a solid position world-wide in economically treating very large amounts of LPG for the removal of hydrogen sulfide and carbonyl sulfide. Most Shell refineries are equipped with the Adip process, which cumulatively treates approx. 7000 tons/day of LPG. Middle East LPG facilities designed for the Arabian American Oil Co. treat 30,000 tons/day, and an additional 16,000 will come on stream in Jan. 1983. The removal of carbonyl sulfide to a few parts-per-million is easy.

1979-10-01T23:59:59.000Z

52

LPG-recovery processes for baseload LNG plants examined  

SciTech Connect

With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

Chiu, C.H. [Bechtel Corp., Houston, TX (United States)

1997-11-24T23:59:59.000Z

53

FCC LPG olefinicity and branching enhanced by octane catalysts  

SciTech Connect

Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

1989-05-29T23:59:59.000Z

54

Monitoring, safety systems for LNG and LPG operators  

Science Conference Proceedings (OSTI)

Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

True, W.R.

1998-11-16T23:59:59.000Z

55

World lpg forecast and implications for the U. S. Merchant Marine, 1978-1990  

SciTech Connect

This study summarizes historical and current LPG trade and vessels operating worldwide. It also forecasts LPG trade required for the U.S. and other major markets through 1990. Using an economic model to assess the market for LPG ships, the study forecasts vessel requirements for U.S. LPG trade and prospects for building required vessels in the U.S.

1978-05-01T23:59:59.000Z

56

LNG-LPG marine transportation and terminal safety  

SciTech Connect

A discussion of the vapor cloud behavior study the US Coast Guard has been carrying out since 1973 to develop design and operational controls for LNG and LPG ships and port facilities covers a brief review of the research work in the third phase of this study and the safety measures proposed by the Coast Guard and other regulatory bodies for operating LNG and LPG ships and waterfront facilities.

Bonekemper, E.H.

1977-01-01T23:59:59.000Z

57

River resort owners find LPG a power behind their success  

SciTech Connect

This paper reports on a restaurant and resort which runs entirely on LPG. It has two generators converted to LPG that supply the power for the complex. Energy supplied from the propane is used in the kitchens, to drive the water pump and provide electricity for lighting and other power needs, and to heat the swimming pool. Far more importantly for the owners has been the fuel cost savings of at least 60%.

1991-01-01T23:59:59.000Z

58

Accurate LPG analysis begins with sampling procedures, equipment  

SciTech Connect

Proper equipment and procedures are essential for obtaining representative samples from an LPG stream. This paper discusses how sampling of light liquid hydrocarbons generally involves one of two methods: flow- proportional composite sampling by a mechanical device or physical transfer of hydrocarbon fluids from a flowing pipeline or other source into a suitable portable sample container. If sampling by proper techniques and equipment supports careful chromatographic analysis, full advantage of accurate mass measurement of LPG can be realized.

Wilkins, C.M. (Koch Pipelines, Inc., Medford, OK (US))

1990-11-05T23:59:59.000Z

59

World`s LPG supply picture will change by 2000  

SciTech Connect

Middle East LPG producers will continue to dominate world export markets in 1996. Led by Saudi Arabia, the Middle East will produce nearly 26 million metric tons of LPG in million metric tons of LPG in 1996, more than 54% of the world`s almost 48 million metric tons of export LPG. In 2000, however, with world exports of LPG expanding to 58.9 million metric tons, Middle East suppliers; share will have remained flat, making up 31.7 million metric tons, or 53.9%. Saudi Arabia`s contribution will exceed 15 million metric tons, reflecting essentially no growth since 1995. These and other patterns, from data compiled by Purvin and Gertz, Dallas, and published earlier this year, show other suppliers of LPG, especially African (Algeria/Nigeria), North Sea, and Latin American (Venezuela/Argentina), picking up larger shares in the last 5 years of this decade. This scenario assumes completion of several major supply projects that are either panned, under construction, or nearing start up in most of these areas. The paper discusses the global picture, the supply situation in the Middle East, Africa, the North Sea, and South America.

True, W.R.

1995-11-06T23:59:59.000Z

60

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Propane (LPG)

62

Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Propane (LPG) The list below contains summaries of all Iowa laws and incentives related

63

Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Propane (LPG) The list below contains summaries of all Utah laws and incentives related

64

Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Propane (LPG) The list below contains summaries of all Texas laws and incentives related

65

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

66

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

67

Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Propane (LPG)

68

Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Propane (LPG)

69

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

70

Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Propane (LPG) The list below contains summaries of all Idaho laws and incentives related

71

Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Propane (LPG) The list below contains summaries of all Ohio laws and incentives related

72

Indonesia's Arun LPG plant production is unique in Far East markets  

Science Conference Proceedings (OSTI)

Entry of the Arun (Indonesia) LNG plant into the LPG Far East markets is significant because its supplies for those markets are not tied to gas being extracted in association with crude oil. Arun LPG products are extracted from gas that is processed into and marketed as LNG. This article on the Arun LNG plant analyzes its LPG process and the significance of the LPG project on the plant's markets. Particular attention is paid to: 1.) LPG recovery; 2.) LPG fractionation; and 3.) Far East trade.

Naklie, M.M.; Penick, D.P.; Denton, L.A.; Kartiyoso, I.

1987-08-03T23:59:59.000Z

73

The importance of FCC catalyst selection on LPG profitability  

SciTech Connect

Recently the value of LPG in chemical operations downstream of the FCC unit has increased. Such downstream operations utilize propylene not only in alkylate, but also in rapid growth petrochemical applications such as for a raw material in the manufacture of polypropylene and propylene oxide. Isobutane and the butenes (particularly butene-2 in sulfuric acid catalyzed alkylation units) are prized for alkylate feed. The profit potential and incentives to use other LPG components such as isobutene to make MTBE is now increased because of legislative actions and increased octane performance demand; and because of the greater isobutene content in the LPG from the new FCC octane catalysts. A low non-framework alumina (NFA) zeolite studied made a more olefinic LPG with higher iso-to normal C4 ratio than the other zeolites. Pilot plant data has also shown the new low NFA zeolite gave not only outstanding motor octane (MON) performance, but produced an LPG with better propylene to propane ratio, more isobutene, more n-butenes and more C4 branching than other RE promoted zeolite catalysts. Commercial results have verified the improved performance and profitability for the new low-NFA type zeolite catalysts. Three commercial examples are described.

Keyworth, D.A.; Gilman, R.; Pearce, J.R. (AKZO Catalysts, 13000 Bay Park Road, Pasadena, TX (US))

1989-01-01T23:59:59.000Z

74

Demand for petrochem feedstock to buoy world LPG industry  

Science Conference Proceedings (OSTI)

This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990.

Not Available

1992-05-18T23:59:59.000Z

75

Determination of usage patterns and emissions for propane/LPG in California. Final report  

SciTech Connect

The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

Sullivan, M.

1992-05-01T23:59:59.000Z

76

The Fuel Control System and Performance Optimization of a Spark-Ignition LPG Engine  

Science Conference Proceedings (OSTI)

This paper presents an approach to control air fuel ratio of a Liquefied Petroleum Gas (LPG) automotive engine. The optimization of compression ratio is also described in this paper. HC, CO & NOx emissions of LPG engines can be reduced after the application ... Keywords: control, LPG engine, air fuel ratio, optimization

Hongwei Cui

2009-04-01T23:59:59.000Z

77

Assessment of research and development (R and D) needs in LPG safety and environmental control  

Science Conference Proceedings (OSTI)

The report characterizes the LPG industry covering all operations from production to end use, reviews current knowledge of LPG release phenomenology, summarizes the status of current LPG release prevention and control methodology, and identifies any remaining safety and environmental problems and recommends R and D strategies that may mitigate these problems. (ACR)

DeSteese, J.G.

1982-05-01T23:59:59.000Z

78

Control and extinguishment of LPG fires. Final report  

SciTech Connect

Approximately 100 fire control and fire extinguishment tests were run on free-burning LPG pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

1980-06-01T23:59:59.000Z

79

Fire safety of LPG in marine transportation. Final report  

SciTech Connect

This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

1980-06-01T23:59:59.000Z

80

U.S. LPG's Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. LPG's Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 8,966: 8,021: 9,466: 11,962 ...

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Control and extinguishment of LPG fires. Final report  

SciTech Connect

Approximately 100 fire control and fire extinguishment tests were run on free-burning liquefied petroleum gases (LPG) pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

Johnson, D.W.; Martinsen, W.E.; Cavin, W.D.; Chilton, P.D.; Lawson, H.P.; Welker, J.R.

1980-08-01T23:59:59.000Z

82

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

83

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

84

Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process  

SciTech Connect

The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

1989-04-28T23:59:59.000Z

85

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

86

Atomic Force Microscopy Studies of Lipophosphoglycan (LPG) Molecules in Lipid Bilayers  

SciTech Connect

Lipophosphoglycan (LPG) is a lypopolysaccharide found on the surface of the parasite Leishmania donovani that is thought to play an essential role in the infection of humans with leishamniasis. LPG acts as an adhesion point for the parasite to the gut of the sand fly, whose bite is responsible for transmitting the disease. In addition, LPG acts to inhibit protein kinase C (PKC) in the human macrophage, possibly by structural changes in the membrane. The Ca{sup 2+} ion is believed to play a role in the infection cycle, acting both as a crosslinker between LPG molecules and by playing a part in modulating PKC activity. To gain insight into the structure of LPG within a supported lipid membrane and into the structural changes that occur due to Ca{sup 2+} ions, we have employed the atomic force microscope (AFM). We have observed that the LPG molecules inhibit bilayer fusion, resulting in bilayer islands on the mica surface. One experiment suggests that the LPG molecules are parallel to the mica surface and that the structure of the LPG changes upon addition of Ca{sup 2+}, with an increase in the height of the LPG molecules from the bilayer surface and an almost complete coverage of LPG on the bilayer island.

LAST, JULIE A.; HUBER, TINA; SASAKI, DARRYL Y.; SALVATORE, BRIAN; TURCO, SALVATORE J.

2003-03-01T23:59:59.000Z

87

Successful operation of a large LPG plant. [Kuwait  

SciTech Connect

The LPG plant located at Mina-Al Ahmadi, Kuwait, is the heart of Kuwait Oil Co.'s massive Gas Project to use the associated gas from Kuwait's oil production. Operation of this three-train plant has been very successful. A description is given of the three process trains consisting of four basic units: extraction, fractionation, product treating, and refrigeration. Initial problems relating to extraction, fractionation, product treating and, refrigeration are discussed. 1 ref.

Shtayieh, S.; Durr, C.A.; McMillan, J.C.; Collins, C.

1982-03-01T23:59:59.000Z

88

New construction era reflected in East Texas LPG pipeline  

SciTech Connect

Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

Mittler, T.J. (Texas Eastman Co., Longview, TX (US))

1990-04-02T23:59:59.000Z

89

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 through 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

Martinsen, W.E.; Cavin, W.D.

1981-09-01T23:59:59.000Z

90

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 to 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

1981-09-01T23:59:59.000Z

91

Far East LPG sales will grow faster than in West  

SciTech Connect

LPG sales through 2010 in regions east of the Suez Canal (East of Suez) will grow at more than twice those in regions west of the canal. East-of-Suez sales will grow at more than 4.0%/year, compared to slightly less than 2.0%/year growth in sales West of Suez. East-of-Suez sales will reach 92 million tons/year (tpy) by 2010, accounting for 39% of the worldwide total. This share was 31% in1995 and only 27% in 1990. LPG sales worldwide will reach 192 million tons in 2000 and 243 million tpy by 2010. In 1995, they were 163 million tons. These are some of the major conclusions of a recent study by Frank R. Spadine, Christine Kozar, and Rudy Clark of New York City-based consultant Poten and Partners Inc. Details of the study are in the fall report ``World Trade in LPG 1990--2010``. This paper discusses demand segments, seaborne balance, Western sources, largest trading region, North American supplies, and other supplies.

1996-12-30T23:59:59.000Z

92

Table A58. Capability to Switch from LPG to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

8. Capability to Switch from LPG to Alternative Energy Sources by" 8. Capability to Switch from LPG to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991" " (Estimates in Thousand Barrels)" ,," LPG",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity",,,,,,,"Row" ,,"Consumed(b)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","and Breeze","Other(e)","Factors"

93

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

DOE Green Energy (OSTI)

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

94

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

SciTech Connect

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

95

Asia, North America lead way in growth of NGL, LPG trade  

SciTech Connect

Recent analyses of world NGL trade indicate that important changes in LPG supply and demand are under way in Asia and North America. LPG markets in the 1990s reflect a rapidly shifting balance between East-of-Suez and West-of-Suez markets. This shift has increased concern about availability of future LPG supplies for Asia. The paper discusses world developments, East versus West of Suez, end uses and supplies in Asia, Canadian ethane, propane, butane, and natural gasoline, Mexican ethane, LPG, and natural gasoline, US ethane, propane, butanes, and iso-C{sub 4} and C{sub 5}.

Otto, K.; Gist, R.; Whitley, C. [Purvin and Gertz Inc., Houston, TX (United States); Haun, R. [Purvin and Gertz Inc., Dallas, TX (United States)

1998-01-12T23:59:59.000Z

96

Fuel switching from wood to LPG can benefit the environment  

SciTech Connect

The Himalaya in India is one of the world's biodiversity hotspots. Various scientific studies have reported and proven that many factors are responsible for the tremendous decline of the Himalayan forests. Extraction of wood biomass from the forests for fuel is one of the factors, as rural households rely entirely on this for their domestic energy. Efforts continue for both conservation and development of the Himalayan forests and landscape. It has been reported that people are still looking for more viable solutions that could help them to improve their lifestyle as well as facilitate ecosystem conservation and preservation of existing biodiversity. In this direction, we have documented the potential of the introduction of liquefied petroleum gas (LPG), which is one of the solutions that have been offered to the local people as a substitute for woodfuel to help meet their domestic energy demand. The results of the current study found dramatic change in per capita woodfuel consumption in the last two decades in the villages where people are using LPG. The outcome showed that woodfuel consumption had been about 475 kg per capita per year in the region, but after introduction of LPG, this was reduced to 285 kg per capita per year in 1990-1995, and was further reduced to 46 kg per capita per year in 2000-2005. Besides improving the living conditions of the local people, this transformation has had great environmental consequences. Empirical evidence shows that this new paradigm shift is having positive external effects on the surrounding forests. Consequently, we have observed a high density of tree saplings and seedlings in adjacent forests, which serves as an assessment indicator of forest health. With the help of the current study, we propose that when thinking about a top-down approach to conservation, better solutions, which are often ignored, should be offered to local people.

Nautiyal, Sunil [Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Socioeconomics, Eberswalder Str. 84, 15374 Muencheberg (Germany)], E-mail: sunil.nautiyal@zalf.de; Kaechele, Harald [Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Socioeconomics, Eberswalder Str. 84, 15374 Muencheberg (Germany)

2008-11-15T23:59:59.000Z

97

Cause not found for Texas LPG site blast  

SciTech Connect

This paper reports that National Transportation Safety Board investigators completed the first phase of tests at Seminole Pipeline Co.'s liquid petroleum gas storage dome near Brenham, Tex., without finding the cause of an explosion there Apr. 7. But in a week of investigation, NTSB determined that a release of brine and product occurred at the 350,000 bbl LPG storage dome, about 45 miles northwest of Houston, just before the blast. The explosion sent shock waves felt as far as 130 miles away. Three persons have died from injuries suffered in the accident. Another 18 were injured.

1992-04-20T23:59:59.000Z

98

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

May, R.L.; Sinclair, B.W.

1984-07-31T23:59:59.000Z

99

What's ahead for LNG/LPG  

SciTech Connect

The growth of the LNG, LPG, and pipeline bulk distribution gas markets depends on the availability of capital, including an estimated $60 billion by the end of the 1980's for LNG alone to support a network of projects moving approx. 15 billion cu ft/day throughout the world, which will require long-term (averaging over 20 yr) index-linked contracts for the gas. According to the American Gas Association, import of LNG as opposed to an equivalent amount of energy from crude oil would offer the U.S. several advantages, including significant capital investment for LNG facilities in the U.S. and a larger proportion of imports moving in U.S. owned and constructed tankers. The growth of international LNG trade will also depend on the extent to which gas processing and transportation costs can be decreased by increasing LNG tanker size, on the demand for natural gas, and on U.S. gas pricing policy. Plausible trends in LNG/LPG trade through the 1980's, and the requirement for high gas prices as an incentive for gas resource development in several countries, including the U.S., are discussed.

Remington, P.; Fraser, M.

1979-09-01T23:59:59.000Z

100

New pemex agency, smog checks greet Mexican LPG vehicle users  

Science Conference Proceedings (OSTI)

This paper reports that the relaxation of prohibitions on the use of propane as a motor fuel has spurred sizeable business activity in carburetion and higher demand for LPG throughout Mexico and particularly in Mexico City. However, a number of unforeseen problems have developed that required tough, immediate solutions. After the alternative fuels project began at city hall in Mexico City, publicity spread nationwide, reportedly spurring conversion activity in many other cities. That led to additional demand for fuel of a magnitude that few people had anticipated. In order to assume control of the situation, the national oil company, Pemex, established an official LPG Motor Fuel Department on June 1. Operating in conjunction with the Ministry of Industry, the new department has been busy registering every major propane-powered fleet in the country. Most important, the rate of conversion work must now be pegged to the availability of fuel. It is believed that conversion activity has become more evenly paced since the new Pemex agency took over.over.

Not Available

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative fuel information: Facts about CNG and LPG conversion  

DOE Green Energy (OSTI)

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

102

Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use  

SciTech Connect

Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

Armstrong, R.

1980-01-01T23:59:59.000Z

103

Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities  

SciTech Connect

This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

1989-01-01T23:59:59.000Z

104

Table 4. LPG Consumption and Expeditures in U.S. Households by End ...  

U.S. Energy Information Administration (EIA)

Table 4. LPG Consumption and Expeditures in U.S. Households by End Uses and Census Region, 2001 RSE Column Factor: Total U.S. Census Region RSE Row

105

Method and apparatus for transfer of liquefied gas. [hydrogen, LPG, or LNG  

SciTech Connect

A method and apparatus for transferring a liquefied gas (hydrogen, LPG, or LNG) from a first container into a second container without removal of vapor from the second container is disclosed.

Gee, D.E.; Worboys, R.V.

1976-06-15T23:59:59.000Z

106

Century-Midas steps slowly into the RV (recreational vehicles) LPG conversion market  

SciTech Connect

Midas International will obtain LPG carburetion equipment from Century for installation in up to 20,000 RV. The market for gasoline-powered RV has been depressed since the surge in gasoline prices, and the installation of Century's equipment represents an attempt to attract customers by reducing RV operating costs. According to J. Kincaid (Midas Inst.), propane, besides being cheaper than gasoline, is also cheaper than diesel fuel, despite the better mileage obtained with diesel fuel, because the use of diesel fuel requires the installation of a diesel engine, which is far more expensive than installation of LPG carburetion. Although most of the LPG carburetion manufacturers, with a backlog of orders, did not evince interest in Midas' search for conversion equipment for RV, Century responded, at least partly because Midas also manufactures fleet delivery trucks, which represent a potentially much larger market for LPG conversion and use.

Kincaid, J.

1980-02-01T23:59:59.000Z

107

Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report  

DOE Green Energy (OSTI)

SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

Bass, E.A. [Southwest Research Inst., San Antonio, TX (US)] [Southwest Research Inst., San Antonio, TX (US)

1993-06-01T23:59:59.000Z

108

Offshore refrigerated LPG loading/unloading terminal using a CALM buoy  

SciTech Connect

In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

Bonjour, E.L.; Simon, J.M.

1985-03-01T23:59:59.000Z

109

Getting performance without sacrificing economy or emissions control in a heavy-duty LPG engine  

SciTech Connect

A commercial 637 CID liquefied petroleum gas (LPG) engine was evaluated as a candidate powerplant for new bus purchases and/or as a replacement for obsolete LPG engines currently being used in metropolitan Chicago bus service. Limited route service experience with LPG conversion of a gasoline engine indicated both its potential and the need for its optimization in order to take advantage of the unique characteristics of LPG. The engine-dynamometer study, with emphasis on fuel system-ignition relationships, led to substantial improvement in fuel economy without depreciation of engine power. The 637 CID LPG engine fuel economy was increased from an average of 1.77 mpg for 1965 to 1971 to 2.60 mpg for the Dec. 1971 to April 1972 period in Chicago field tests. Cylinder head redesign permitted lean mixture operation that reduced exhaust emissions to levels calculated to conform to the 1973 Federal standards and the 1973-1974 California Air Resources Board requirements for heavy-duty engines. The exhaust emissions data obtained with the optimized 7.5:1 CR engine based on the California 13-mode cycle were 8.3 g/bhp/hr carbon monoxide and 9.9 g/bhp/hr hydrocarbons plus nitrogen dioxide.

Mengelkamp, R.A.; Linnard, R.E.

1973-01-01T23:59:59.000Z

110

Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products  

SciTech Connect

This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

Whitney, K.A.; Bailey, B.K.

1994-10-01T23:59:59.000Z

111

Cascaded'' pilot regulators help reduce LPG loss in hot weather  

SciTech Connect

Fina Oil and Chemical Co. and Fisher Controls International used engineering resourcefulness to overcome heat-induced product loss from LPG storage bullets at Fina's Port Arthur, Tex., refinery. Fina had installed Fisher's Easy Joe 399A-6365, a pilot-operated, back-pressure-type regulator, on its LPG storage facility in 1991 as part of a fuel products modernization project. The regulators helped control the accumulation of noncondensible vapors, which collect in the storage bullets above the LPG. But summer heat extremes and surges in the tanks and lines made it possible for the operating pressure to increase so that the safety relief valve was activated before the pilot regulator was able to stabilize the pressure. The installation of pilot-type regulators, in cascaded, or series, formation, reduced product venting through relief valves.

1994-08-08T23:59:59.000Z

112

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

May, R.L.; Snow, N.J. Jr.

1983-12-06T23:59:59.000Z

113

New and existing gas wells promise bountiful LPG output in Michigan  

SciTech Connect

Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

1991-01-01T23:59:59.000Z

114

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

115

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

116

Alvord (3,000-ft strawn) LPG flood - design and performance evaluation  

SciTech Connect

Mitchell Energy Corporation has implemented a LPG-dry gas miscible process in the Alvord (3000' Strawn) Unit in Wise County, Texas utilizing the DOE tertiary incentive program. The field had been waterflooded for 14 years and was producing near its economic limit at the time this project was started. This paper presents the results of the reservoir simulation study that was conducted to evaluate pattern configuration and operating alternatives so as to maximize LPG containment and oil recovery performance. Several recommendations resulting from this study were implemented for the project. Based on the model predictions, tertiary oil recovery is expected to be between 100,000 and 130,000 bbls, or about 7 percent of the oil originally in place in the Unit. 12 refs.

Frazier, G.D.; Todd, M.R.

1982-01-01T23:59:59.000Z

117

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

118

Converting LPG caverns to natural-gas storage permits fast response to market  

Science Conference Proceedings (OSTI)

Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

1996-02-19T23:59:59.000Z

119

LPG buses in southern California leave the competition at the curb  

SciTech Connect

This paper reports that after the first year of a landmark experiment in which LPG has been competing against methanol and CNG in city buses, propane appears to be pulling out in front of the pack. According to Efren Medellin, superintendent of vehicle maintenance at the Orange County Transit Authority, two LPG buses had registered a total of 31,000 moles with relatively little, if any, downtime. The two methanol buses had run a total of 30,000 miles while the two CNG buses had traveled only 5000 miles. Furthermore the methanol and CNG buses have had their share of downtime for new parts and other problems. The propane-powered buses appear to be running consistently well without mechanical difficulties. The only problem that occurred was occasional backfiring. As a result, the electronic controls were replaced and no subsequent complaints were heard.

1992-03-01T23:59:59.000Z

120

Conception and construction of an LPG tank using a composite membrane technology  

SciTech Connect

TECHNIGAZ and TOTAL C.F.P. have developed a new LPG storage technology derived from the membrane concept used for LNG storage and transportation. This technology called GMS uses a composite membrane as primary barrier. A 2 000 m/sup 3/ storage pilot unit, based on that concept, is under construction in TOTAL's refinery at DUNKIRK (France) since September 1983.

Fuvel, P.; Claude, J.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radiological health implications of lead-210 and polonium-210 accumulations in LPG refineries  

SciTech Connect

Radon-222, a naturally occurring radioactive noble gas, is often a contaminant in natural gas. During fractionation at processing plants, Radon tends to be concentrated in the Liquified Petroleum Gas (LPG) product stream. Radon-222 decays into a number of radioactive metallic daughters which can plate out on the interior surfaces of plant machinery. The hazards associated with gamma-emitting short-lived radon daughters have been investigated previously. The present work reports an analysis of the hazards associated with the long-lived daughters; Pb-210, Bi-210, and Po-210. These nuclides do not emit appreciable penetrating radiation, and hence do not represent a hazard as long as they remain on the inside surfaces of equipment. However, when equipment that has had prolonged exposure to an LPG stream is disassembled for repair or routine maintenance, opportunities for exposure to radioactive materials can occur. A series of measurements made on an impeller taken from a pump in an LPG facility is reported. Alpha spectroscopy revealed the presence of Po-210, and further measurements showed that the amount on the impeller surface was well above the exempt quantity. Breathing zone measurements made in the course of cleaning the impeller showed that an inhalation exposure equivalent to breathing Po-210 at the Maximum Permissible Concentration (MPC) for 60 hours could be delivered in less than half an hour. It was concluded that maintenance and repair work on LPG and derivitive product stream equipment must be carried out with the realization that a potential radiological health problem exists.

Summerlin, J. Jr.; Prichard, H.M.

1985-04-01T23:59:59.000Z

122

N/sub 2/-driven LPG achieves miscibitity at high temperatures  

SciTech Connect

Shows that miscibility can be achieved at very low pressures above the critical temperature of propane. One can calculate the critical pressure and temperature for a variety of fluids of practical interest in achieving miscibility between the miscible slug and driving gas when applying enhanced oil recovery programs. A study of the critical properties of normally available reservoir fluids indicates that one method of achieving miscibility at lower pressures, even at high reservoir temperatures, might be to use LPG slugs pushed by nitrogen. Table gives the oil recovery for different LPG slug sizes when operating at a reservoir pressure of 2,000 psig and a reservoir temperature of 250F. Diagram shows the approximate critical temperature loci for ternary systems made up of 3 components from the group nitrogen, methane, ethane, and propane. By finding the desired reservoir temperature and then estimating the critical pressure required, one may select compositions and operating pressures required to achieve critical slug-driving gas mixtures for use in enhanced oil recovery programs. When using CO/sub 2/ for miscibility, the miscibility pressure increases with temperature. Use of LPG slugs results in a substantial reduction in the pressure required for miscibility.

Carlisle, L.; Crawford, P.B.; Montes, M. Jr.; Reeves, S.

1982-11-01T23:59:59.000Z

123

Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996  

SciTech Connect

This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

Atallah, S.; Janardhan, A.

1996-02-01T23:59:59.000Z

124

LPG--a direct source of C/sub 3/-C/sub 4/ olefins  

SciTech Connect

This article describes the selective production of olefins by the catalytic dehydrogenation of the corresponding paraffins by means of UOP's Oleflex process. In this process, propylene can be obtained at about 85 mol % selectivity by the catalytic dehydrogenation of propane. Isobutylene can be obtained at selectivities in excess of 90 mol % from isobutane, and n-butenes (1-butene plus 2-butene) at about 80 mol % from n-butane. The availability of this technology, coupled with an abundant supply of LPG (C/sub 3/ and C/sub 4/ paraffins), opens new avenues for the selective production of propylene and butylenes.

Pujado, P.R.; Berg, R.C.; Vora, B.V.

1983-03-28T23:59:59.000Z

125

Planning and care mark repair of 14-year old leak in Kuwait Oil Co. LPG tank 95  

SciTech Connect

This paper points out that the leak, which had been present for such a long time, completely saturated the perlite insulation with hydrocarbons, thus rendering the entire operation of inspection, repair, and maintenance of the inner tank a hazardous operation. It emphasizes the safety aspects, which were complicated by the saturated perlite as well as by the fact that the tank is situated in the middle of the LPG storage area with LPG tanks on either side. Tank design, making preparations, inspection, and repair are discussed. The fact that the leaking flanges were originally installed damaged, indicated the future need of tighter company quality control of all contractors work.

Shtayieh, S.

1983-01-10T23:59:59.000Z

126

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

127

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

Willson, B. [Colorado State Univ., Fort Collins, CO (United States)

1992-09-01T23:59:59.000Z

128

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

SciTech Connect

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

129

New concept: deepwater NGL/LPG plant. [Natural gas liquids and liquefied petroleum gas  

SciTech Connect

Floating platforms for processing natural gas liquids and liquefied petroleum gas (NGL/LPG) need to be stable for the processing and transfer of the products. Floating platforms are economically more attractive for producing marginal fields in deeper waters. Most of the proposed designs for crude oil and natural gas production have been tension-leg platforms, but 3 Norwegian companies are offering a converted ship as an alternative. The 3 companies will used a ship fitted with pontoons that can be raised and lowered to increase the vessel's stability. The NGL/LPG system was designed for a North Sea oil field. The feasibility study which the 3 companies completed was for a liquefaction and storage ship with a capacity of 75,000 cu m. The joint venture feels a ship has several advantages: large payload capacity; large storage capacity; ample deck space for equipment; easy to maintain; can be drydocked if necessary; and has a lower building cost. The 2 key elements to the system are the stabilization system and the turret platform.

1978-12-01T23:59:59.000Z

130

Six years' operating experience at Ardjuna field helps prove out LPG SBS system  

SciTech Connect

The permanent yoke mooring system and the two-product flexpipe riser of the Arjuna Sakti LPG storage barge have completely lived up to their expectations. The LPG offtake system, the terminaling function of the storage unit, has also performed extremely well. Experience gained at Ardjuna provides confidence for future openocean mooring of large methanol or LNG plants. Mooring systems of these future units will likely have a different configuration, such as the single anchor leg storage (SALS) mooring. However, the basic system components have been used, both at Ardjuna and in comparable situations elsewhere in the world. Engineers who are working on floating, large scale, gas processing plants for mooring in the open ocean could profitably join their efforts in a team comprised of process specialists, naval architects, and mooring experts. Specific areas of consideration should be: length-to-beam and lengthto-depth ratios and shape of bow. This could result in a storage/process barge design with better motion characteristics and lower mooring forces than proposed at present.

Smulders, L.H.

1983-02-21T23:59:59.000Z

131

Chemically reactive coatings for passive fire protection in LNG and LPG storage and transporation  

SciTech Connect

According to Van Dyke Associates and TSI Inc., supporting and containing steels used to store and transport LNG and LPG are best protected in case of fire by thermally reactive subliming compounds. When exposed to fire, such compounds undergo an endothermic reaction; thus the substrate material beneath the coating will not heat up beyond the temperature at which this reaction occurs. Gases released by the sublimation reaction pass outward through the pores of the char, breaking down further as they absorb more energy. Numerous tests confirm that in comparison with other types of coatings, subliming compounds require the smallest thickness of coating for any specified level of protection. Routine spraying application techniques further reduce the cost of this passive fire-protection method.

Van Dyke, B.H.; Kawaller, S.T.

1979-01-01T23:59:59.000Z

132

Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report  

SciTech Connect

Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

1982-05-01T23:59:59.000Z

133

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

134

Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

represent selected fuel economy data.) ...11 Figure 4. Monthly purchase prices of gasoline and LPG (Note: the price of LPG was higher in the Corpus district than...

135

Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; Hathaway, W.T.; Kangas, R.

1996-09-01T23:59:59.000Z

136

Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG  

Science Conference Proceedings (OSTI)

The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

2009-08-15T23:59:59.000Z

137

Landi-Hartog U. S. A. adjusts to the U. S. market. [Marketing of LPG carburetor systems for using propane as an automotive fuel  

SciTech Connect

Landi-Hartog U.S.A. has adjusted to the U.S. market in providing LPG carburetor systems for passenger cars. Landi-Hartog (LH) had to completely redesign the components on the system to be compatible with U.S. 300-525 cu in. engines. The company has California Air Resources Board approval for 300 cu in. engines and above in dual-fuel service. However, the U.S. market will remain severely restricted unless basic distribution (and the political) changes are made. The U.S. is st

1980-10-01T23:59:59.000Z

138

Volume Transfer, LPG Prover  

Science Conference Proceedings (OSTI)

... the prover is drained for a 30 ( 5) second period after cessation of the main flow. ... 87, i, Include a Pressure Correction Table 1 and Chart with your ...

2013-05-22T23:59:59.000Z

139

Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report  

DOE Green Energy (OSTI)

Alternative fuels may be an effective means for decreasing America's dependence on imported oil; creating new jobs; and reducing emissions of greenhouse gases, exhaust toxics, and ozone-forming hydrocarbons. However, data regarding in-use fuel economy and maintenance characteristics of alternative fuel vehicles (AFVs) have been limited in availability. This study was undertaken to compare the operating and maintenance characteristics of bi-fuel vehicles (which use liquefied petroleum gas, or propane, as the primary fuel) to those of nominally identical gasoline vehicles. In Texas, liquefied petroleum gas is one of the most widely used alternative fuels. The largest fleet in Texas, operated by the Texas Department of Transportation (TxDOT), has hundred of bi-fuel (LPG and gasoline) vehicles operating in normal daily service. The project was conducted over a 2-year period, including 18 months (April 1997-September 1998) of data collection on operations, maintenance, and fuel consumption of the vehicles under study. This report summarizes the project and its results.

Huang, Y.; Matthews, R. D.; Popova, E. T.

1999-05-24T23:59:59.000Z

140

Periodic review enhances LPG metering performance  

SciTech Connect

Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

Van Orsdol, F.G.

1988-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - The National Energy Modeling System: An Overview 2003-Transporta...  

Annual Energy Outlook 2012 (EIA)

sets include: Conventional fuel capable (gasoline, diesel, bi-fuel and flex-fuel), Hybrid (gasoline and diesel), Dedicated alternative fuel (CNG, LPG, methanol, and...

142

TEXAS LPG FUEL CELL DEVELOPMENT AND DEMONSTRATION PROJECT Full-Text - Submission contains both citation data and full-text of the journal article. Full-text can be either a pre-print or post-print, but not the copyrighted article.  

Science Conference Proceedings (OSTI)

The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix?s LPG fuel processor system integrated into Plug Power?s residential-scale GenSys? 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program?s primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation?s TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units. For further information please contact Mary-Jo Rowan at mary-jo.rowan@cpa.state.tx.us

SOUTHWEST RESEARCH LABORATORY SUBMITTED BY SUBCONTRACTOR, RAILROAD COMMISSION OF TEXAS

2004-07-26T23:59:59.000Z

143

Improving combustion stability in a bi-fuel engine  

Science Conference Proceedings (OSTI)

This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

NONE

1995-06-01T23:59:59.000Z

144

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

145

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

,32,1688,378,0,58,0,15.7 3274," Lime","Q",657,"W","Q",657,"W",0,0,0,33.9 3296," Mineral Wool","W","W","W",113,34,"W","W","W",0,2 33,"Primary Metal Industries","W",5117,"W",2433,494...

146

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

E-Print Network (OSTI)

Petroleum gases, such as propane and butane, are liquefiedIn this study, we focused on propane (C 3 H 8 ) as the mostis capable of treating propane in the same way as other

Yamamoto, Hajime; Pruess, Karsten

2004-01-01T23:59:59.000Z

147

Ford F-250 Fact Sheet: Bi-fuel propane pickup  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. A 1999 F-250 bi-fuel propane pickup was run through a series of tests while operating on LPB and gasoline. The tests are explained briefly in this fact sheet.

Eudy, L.

1999-12-27T23:59:59.000Z

148

Neural network control of air-to-fuel ratio in a bi-fuel engine  

Science Conference Proceedings (OSTI)

In this paper, a neural network-based control system is proposed for fine control of the intake air/fuel ratio in a bi-fuel engine. This control system is an add-on module for an existing vehicle manufacturer's electronic control units (ECUs). Typically ... Keywords: Artificial neural networks, bi-fuel engines, compressed natural gas (CNG), fuel injection control

G. Gnanam; S. R. Habibi; R. T. Burton; M. T. Sulatisky

2006-09-01T23:59:59.000Z

149

Liquefied Petroleum Gas (LPG) storage facility study Fort Gordon, Georgia. Final report  

SciTech Connect

Fort Gordon currently purchases natural gas from Atlanta Gas Light Company under a rate schedule for Large Commercial Interruptible Service. This offers a very favorable rate for `interruptible` gas service, however, Fort Gordon must maintain a base level of `firm gas`, purchased at a significantly higher cost, to assure adequate natural gas supplies during periods of curtailment to support family housing requirements and other single fuel users. It is desirable to provide a standby fuel source to meet the needs of family housing and other single fuel users and eliminate the extra costs for the firm gas commitment to Atlanta Gas Light Company. Therefore, a propane-air standby fuel system is proposed to be installed at Fort Gordon.

NONE

1992-09-01T23:59:59.000Z

150

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

151

Table 4. LPG Consumption and Expenditures in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Notes: To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. Because of rounding, data may not sum to totals.

152

Adhesion Force Control and Active Gravitational Compensation for Autonomous Inspection in LPG Storage Spheres  

Science Conference Proceedings (OSTI)

This paper presents a climbing robot based in wheel locomotion and magnetic adherence, a common mechanical topology applicable to a wide range of industrial tasks. The robot is applied to perform internal/external inspection in liquefied petroleum gas ... Keywords: climbing robot, adherence, storage spheres, dynamic control

Andre Schneider de Oliveira; Lucia Valeria Ramos de Arruda; Flavio Neves Jr.; Rodrigo Valerio Espinoza; Joao Pedro Battistella Nadas

2012-10-01T23:59:59.000Z

153

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

hydrogen, LPG = liquefied petroleum gases. 1) The gasolinegas; LPG = liquefied petroleum gases; cell. = cellulosic; EV177 Other petroleum fuel sulfur

Delucchi, Mark

2005-01-01T23:59:59.000Z

154

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

hydrogen, LPG = liquefied petroleum gases. 1) The gasolinegas; LPG = liquefied petroleum gases; cell. = cellulosic; EV177 Other petroleum fuel sulfur

Delucchi, Mark

2005-01-01T23:59:59.000Z

155

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

156

Model curriculum outline for Alternatively Fueled Vehicle (AFV) automotive technician training in light and medium duty CNG and LPG  

DOE Green Energy (OSTI)

This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of six experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.

NONE

1997-04-01T23:59:59.000Z

157

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

gasoline, methanol, ethanol, CNG, and LPG vehicles, Januaryemissions-profile data base for CNG, and LPG vehicles, MarchCarpool or vanpool? gasoline CNG car n.a. no LPG CNG van LRT

Delucchi, Mark

1996-01-01T23:59:59.000Z

158

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

Central Air, Fuels = Oil and Gas, Other = LPG and Misc. (3)Central Air, Fuels = Oil and Gas, LPG and Misc. (3) Sources:Central Air, Fuels = Oil and Gas, Other = LPG and Misc. (3)

Johnson, F.X.

2010-01-01T23:59:59.000Z

159

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

South Gas LPG Oil Electricity Source: US DOE 1995 forLPG -- FRN RM - Oil - OTH Other Source: US DOE 1995b. OilLPG H20 FRN - Oil RM OTH Other Source: US DOE 1995b. Oil

Wenzel, T.P.

2010-01-01T23:59:59.000Z

160

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

to approximate propane, butane, and LPG purchases, and U.S.Groundwater (MJ/L) Electricity NG Propane/ Butane/LPG DieselElectricity NG Propane/ Butane/ LPG Diesel AL 2.1E-05 N/A N/

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

CNG ICEV, LPG ICEV, corn ethanol ICEV, cell. ethanol BatteryCNG ICEV, LPG ICEV, corn ethanol ICEV, cell. ethanol BatteryCNG ICEV, LPG ICEV, corn ethanol ICEV, cell. ethanol Battery

Delucchi, Mark

2005-01-01T23:59:59.000Z

162

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

CNG ICEV, LPG ICEV, corn ethanol ICEV, cell. ethanol BatteryCNG ICEV, LPG ICEV, corn ethanol ICEV, cell. ethanol BatteryCNG ICEV, LPG ICEV, corn ethanol ICEV, cell. ethanol Battery

Delucchi, Mark

2005-01-01T23:59:59.000Z

163

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

Oil LPG Refinery Gas Other Petroleum Products Natural GasOil LPG Refinery Gas Other Petroleum Products Natural GasEquipment Chemicals Food Petroleum & Coking Textiles Paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

164

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Heater Heat Pumps Replacing Your Electric Furnace and CAC with a Heat Pump Sealing Home Air Leaks LPG Furnaces Efficient LPG-fired Water Heaters Oil Furnaces Efficient...

165

PROPELLED EXTINGUISHING AGENT TECHNOLOGIES ...  

Science Conference Proceedings (OSTI)

... Boiler rooms Armored vehicles (engine compartment) Automotive (LPG /LNG) Navy ships (large engine rooms) Cable tunnels ...

2011-11-01T23:59:59.000Z

166

Photovoltaics Life Cycle Analysis  

E-Print Network (OSTI)

Comparisons of Estimated Maximum Consequences Coal Oil NG LPG Nuclear (Chernobyl) Nuclear (except Chernobyl

167

Classic Template - Blue  

Science Conference Proceedings (OSTI)

... Fire detecting and extinguishing equipment Liquefied Petroleum Gas (LPG) utilization equipment (commercial and industrial) ...

2012-10-30T23:59:59.000Z

168

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

gases (LPG) and compressed natural gas (CNG) have persistedbenefits from compressed natural gas, ethanol, methanol,

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

169

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

n.a. n.a. n.a. n.a. n.a. Coke oil n.a. n.a. n.a. n.a. n.a.CG RFG Diesel FTD Fuel oil Stillgas Coke LPG LPG CNG NuclearFTD NG Fuel oil Still gas Coke oil oil oil LPG oil LPG NGL57

Delucchi, Mark

2005-01-01T23:59:59.000Z

170

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

n.a. n.a. n.a. n.a. n.a. Coke oil n.a. n.a. n.a. n.a. n.a.CG RFG Diesel FTD Fuel oil Stillgas Coke LPG LPG CNG NuclearFTD NG Fuel oil Still gas Coke oil oil oil LPG oil LPG NGL57

Delucchi, Mark

2005-01-01T23:59:59.000Z

171

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

172

Untitled-1  

NLE Websites -- All DOE Office Websites (Extended Search)

www.fueleconomy.gov www.fueleconomy.gov ABBREVIATIONS: A- .......... Automatic Transmission A-S ........ Special Automatic Transmission AV ......... Continuously Variable Transmission City ........ MPG on City Test Procedure CNG ...... Compressed Natural Gas Conv ...... Convertible E85 ........ 85% Ethanol/15% Gasoline Eng Size Engine Volume in Liters FFV ....... Flexible Fuel Vehicle Hwy ....... MPG on Highway Test Procedure LPG ....... Liquified Petroleum Gas M- .......... Manual Transmission NA ......... Not Available Trans ..... Transmission Type COMPRESSED NATURAL GAS VEHICLES This section supplies the driving range and fuel economy values for vehicles designed to be operated on compressed natural gas (CNG). For bi-fuel vehicles, the values for both gasoline and CNG are shown. Bi-fuel vehicles are designed to be operated on either

173

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

174

Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Propane (LPG)

175

Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Propane (LPG)

176

Alternative Fuels Data Center: Illinois Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Propane (LPG)

177

Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Propane (LPG)

178

Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Propane (LPG)

179

Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Propane (LPG)

180

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: New Hampshire Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Hampshire Laws and Incentives for Propane (LPG)

182

Alternative Fuels Data Center: Missouri Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Propane (LPG)

183

Alternative Fuels Data Center: Colorado Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Propane (LPG)

184

Alternative Fuels Data Center: Massachusetts Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Massachusetts Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Massachusetts Laws and Incentives for Propane (LPG)

185

Alternative Fuels Data Center: Arizona Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Propane (LPG)

186

Alternative Fuels Data Center: Alabama Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Propane (LPG)

187

Alternative Fuels Data Center: Georgia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Propane (LPG)

188

Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Propane (LPG)

189

Alternative Fuels Data Center: Washington Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Propane (LPG)

190

Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Propane (LPG)

191

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Propane (LPG)

192

Alternative Fuels Data Center: West Virginia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives for Propane (LPG)

193

Alternative Fuels Data Center: California Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Propane (LPG)

194

Alternative Fuels Data Center: Michigan Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Propane (LPG)

195

Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Propane (LPG)

196

Alternative Fuels Data Center: Montana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Propane (LPG)

197

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Propane (LPG)

198

Alternative Fuels Data Center: New York Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Propane (LPG)

199

Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Propane (LPG)

200

Alternative Fuels Data Center: Indiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Florida Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Propane (LPG)

202

Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Propane (LPG)

203

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

204

Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Propane (LPG)

205

Alternative Fuels Data Center: Vermont Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Propane (LPG)

206

Alternative Fuels Data Center: Maryland Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Propane (LPG)

207

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Propane (LPG)

208

Alternative Fuels Data Center: Virginia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Propane (LPG)

209

Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Propane (LPG)

210

Alternative Fuels Data Center: North Carolina Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

211

Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

212

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

change to Ethanol, E85 corn, C0/NG50/B50, where the B50on five fuels: RFG, M85, E85, LPG, and CNG. The vehicle wasPM E85 CNG LPG Off-cycle emissions,

Delucchi, Mark

2003-01-01T23:59:59.000Z

213

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

sulfur) ICEV, natural gas (CNG) ICEV, LPG (P95/BU5) ICEV,Methanol Ethanol Methane (CNG, LNG) Propane (LPG) Hydrogen (M85 (wood) Natural gas CNG (wood) Note: percentage changes

Delucchi, Mark

2006-01-01T23:59:59.000Z

214

Development of a robot localization and environment mapping system  

E-Print Network (OSTI)

The intent of this research is to develop a robust, efficient, self-contained localization module for use in a robotic liquefied petroleum gas (LPG) tank inspection system. Inspecting large LPG tanks for defects is difficult, ...

Panas, Cynthia Dawn Walker

2012-01-01T23:59:59.000Z

215

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

rural, k=Kerosene m=rural, k=biogas m =urban, k=LPG m=urban,k=LPG k=wood k=kerosene k=biogas k=electricity k=electricity

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

216

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

oil hydronic, electric room, and electric (air source) heatFuels = Oil and Gas, LPG and Misc. (3) Sources: 1990 RECS (Fuels = Oil and Gas, Other = LPG and Misc. (3) Sources: 1990

Johnson, F.X.

2010-01-01T23:59:59.000Z

217

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

LPG Cooking and Water Heating Wood Figure 2 shows theLPG Cooking and Water Heating Wood PJ Rural Urban 4. Theand wood were entirely assigned to cooking and water heating

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

218

Alternative Fuels Data Center: South Carolina Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

219

Development of Energy Balances for the State of California  

E-Print Network (OSTI)

refinery gases, petroleum coke, and distillate fuel oil) forFuel Residual Fuel Petroleum Coke LPG Others Total PetroleumFuel Residual Fuel Petroleum Coke LPG Others Total Petroleum

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

220

Evaporative Testing Requirements for Dual-Fuel Compressed Natural Gas (CNG)/Gasoline and Liquefied Petroleum Gas (LPG)/Gasoline Vehicles Revision of MAC #99-01 To Allow Subtraction of Methane Emissions from  

E-Print Network (OSTI)

The attached MAC clarifies the Air Resources Board's procedures regarding evaporative emission testing of dual-fuel CNG/gasoline vehicles. This MAC revises and supersedes MAC #99-01 by allowing manufacturers to determine, report, and subtract methane emissions when a dual-fuel CNG/gasoline vehicle is tested for evaporative emissions. A related revision clarifies that for dual-fuel CNG/gasoline medium-duty vehicles, the applicable LEV I evaporative emission standards, which are dependent on the fuel tank capacity of the medium-duty vehicles, are determined solely on the fuel tank capacity of the gasoline fuel system. If you have any questions or comments, please contact Mr. Steven Hada, Air

Alan C. Lloyd, Ph.D.; Arnold Schwarzenegger; All Heavy-duty Vehicle Manufacturers

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

China Energy Primer  

E-Print Network (OSTI)

appliances. Shares of district heating (1.7% to 7.6%), LPG (sector. Generally, district heating in the residential

Ni, Chun Chun

2010-01-01T23:59:59.000Z

222

C:\\...\\mailquestionnaire. [PFP#1121010499  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas from underground pipes Bottled gas (LPG or propane) Fuel oil Kerosene Wood Some other fuel (Specify): ...

223

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... Author(s): Thomas J. Bruno; Title: Process to Remove Carbonyl Sulfide From LPG. Published: Date Unknown. Abstract: Not Applicable. ...

2012-04-09T23:59:59.000Z

224

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

Biotech + , Energy Company + , Biotech has developed biogas digesters for domestic use (LPG replacement) and larger municipal sites (electricity generation). + ,...

225

Direct liquid injection of liquid petroleum gas  

SciTech Connect

A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

Lewis, D.J.; Phipps, J.R.

1984-02-14T23:59:59.000Z

226

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

227

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

228

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

229

Carbon Taxes: A Review of Experience and Policy Design Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

oil Light only Liquified petroleum gas (LPG) Home heating oil Permitted facilities Tax Rate As shown in Figure 1, carbon...

230

Section H: FUELS USED - Energy Information Administration  

U.S. Energy Information Administration (EIA)

underground pipes and bottled gas (LPG or propane) in your home. ... Heating your home .....1.....0 Heating water ...

231

Development of Energy Balances for the State of California  

E-Print Network (OSTI)

Additives & Ethanol Crude Still Gas LPG Motor Gas Aviation Gas Jet Fuel Kerosene Dist Fuel Res Fuel Pet Coke Lubricants

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

232

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

for Vehicles Running of E85, Addendum: Tenth internationalPM tire-weard N2O exhausta CH4 exhausta LPG CNG E85 M85LPG CNG E85 M85 LPG input mass inpu mas Notes: see next

Delucchi, Mark

1996-01-01T23:59:59.000Z

233

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

LPG oil LPG NGL57 n.e. LPG CNG NG NG n.a. 2649% 2617% n.a.diesel b ZM F-T D SD100 M100 CNG CH2c E100 calc. calc. calc.Highway k exp. Diesel M100 CNG Gas LNG LNG CH2 CH2 LH2 LH2

Delucchi, Mark

2003-01-01T23:59:59.000Z

234

Liquefied natural gas and liquefied petroleum gas, views and practices, policy and safety  

SciTech Connect

Public concern over the dangers of LNG and LPG has necessitated the publication of a set of LNG and LPG regulations covering 1) properties and hazards, 2) carrier design and construction, 3) facilities and operational controls, and 4) personnel training and qualifications. The appendixes to these rules provide answers to common questions concerning LNG and LPG, as well as a bibliography for further reading.

1980-01-01T23:59:59.000Z

235

Petroleum supply monthly, November 1983  

SciTech Connect

Background data relating to Liquefied Petroleum Gas (LPG) are discussed. International developments, US trends, and EIA's projections for the near future and the longer term are included. This article is supplemented by some common LPG terminology and a simplified diagram illustrating the flow between LPG sources and processing stages.

1983-11-23T23:59:59.000Z

236

Titania Prepared by Ball Milling: Its Characterization and Application as Liquefied Petroleum Gas Sensor  

E-Print Network (OSTI)

Present paper reports the LPG sensing of TiO2 obtained through ball milling. The milled powder was characterized by XRD, TEM and UV-visible spectroscopy. Further the ball milled powder was compressed in to pellet using hydraulic press. This pellet was investigated with the exposure of LPG. Variations in resistance with exposure of LPG to the sensing pellet were recorded. The sensitivity of the sensor was ~ 11 for 5 vol.% of LPG. Response and recovery times of the sensor were ~ 100 and 250 sec. The sensor was quite sensitive to LPG and results were found reproducible within 91%.

Yadav, B C; Singh, Satyendra; Yadav, T P

2012-01-01T23:59:59.000Z

237

World NGL markets continue rapid expansion  

Science Conference Proceedings (OSTI)

The international LPG industry has expanded rapidly during the 1990s and undergone significant changes. LPG consumption has expanded at nearly twice the rate of world petroleum demand. In particular, LPG use in residential and commercial markets has more than doubled in many developing countries. Markets for LPG and other petroleum products have been opened in many countries, accelerating demand growth and creating investment opportunities in all downstream segments. This has led to an overall strengthening of global LPG pricing and the development of many new export gas-processing projects. The paper discusses world LPG demand in residential and commercial markets and in petrochemicals, world LPG supply, regional increases, international trade, the US situation in natural gas, NGL supply, and NGL demand.

Otto, K.; Gist, R.; Whitley, C. [Purvin and Gertz, Houston, TX (United States); Haun, R. [Purvin and Gertz, Dallas, TX (United States)

1998-06-08T23:59:59.000Z

238

FEG2002 9_30_01.p65  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 ABBREVIATIONS: A- .......... Automatic Transmission A-S ........ Special Automatic Transmission AV ......... Continuously variable Transmission Cty ......... MPG on City Test Procedure CNG ...... Compressed Natural Gas Cyl ......... Number of Cylinders E85 ........ 85% Ethanol/15% Gasoline Eng ........ Engine Volume in Liters FFV ....... Flexible Fuel Vehicle Hwy ....... MPG on Highway Test Procedure LPG ....... Liquified Petroleum Gas M- .......... Manual Transmission NA ......... Not Available Trans ..... Transmission Type COMPRESSED NATURAL GAS VEHICLES This section supplies the driving range and fuel economy values for vehicles designed to be operated on compressed natural gas (CNG). For dual-fuel (or bi-fuel) vehicles, the values for both gasoline and CNG are shown. Dual-fuel vehicles are designed to be

239

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

a Primary Consumption for All Purposes Inputs for Heat, Power, and Generation of Electricity Primary Consumption for Nonfuel Purposes RSE Row Factors LPG Distillate b...

240

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

Industry Primary Consumption for All Purposes Inputs for Heat, Power, and Generation of Electricity Primary Consumption for Nonfuel Purposes RSE Row Factors LPG Distillate b...

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Global gas processing will strengthen to meet expanding markets  

SciTech Connect

The worldwide LPG industry continues to expand faster than the petroleum industry -- 4%/year for LPG vs. 2%/year for petroleum in 1995 and less than 1%/year in the early 1990s. This rapid expansion of LPG markets is occurring in virtually every region of the world, including such developing countries as China. The Far East is the focus of much of the LPG industry`s attention, but many opportunities exist in other regions such as the Indian subcontinent, Southeast Asia, and Latin America. The investment climate is improving in all phases of downstream LPG marketing, including terminaling, storage, and wholesale and retail distribution. The world LPG supply/demand balance has been relatively tight since the Gulf War and should remain so. Base demand (the portion of demand that is not highly price-sensitive) is expanding more rapidly than supplies. As a result, the proportion of total LPG supplies available for price-sensitive petrochemical feedstock markets is declining, at least in the short term. The paper discusses importers, price patterns, world LPG demand, world LPG supply, US NGL supply, US gas processing, ethane and propane supply, butane, isobutane, and natural gasoline supply, and US NGL demand.

Haun, R.R. [Purvin and Gertz Inc., Dallas, TX (United States); Otto, K.W.; Whitley, S.C.; Gist, R.L. [Purvin and Gertz Inc., Houston, TX (United States)

1996-07-01T23:59:59.000Z

242

OpenEI - hydrogen  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

243

OpenEI - ethanol  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

244

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

plants, petroleum refineries, and other sources. We useLPG from petroleum Wood for power production Source: updatedfrom petroleum refining, and emissions from other sources

Delucchi, Mark

1996-01-01T23:59:59.000Z

245

Florida's 16th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Florida's 16th congressional district Kitson Partners LPG Electrical, Inc SEPCO - Solar Electric Power Company Retrieved from "http:en.openei.orgwindex.php?titleFlorida%27s16...

246

A B  

Gasoline and Diesel Fuel Update (EIA)

oils and diesel) Crude oil and lease condensate Motor gasoline LPG (Ethane, ethylene, propane, propylene, butane, butylene) Natural gas Anthracite Bituminous and subbituminous...

247

Section B: KITCHEN APPLIANCES  

U.S. Energy Information Administration (EIA)

Which of these cooking appliances do you have in your kitchen? (Mark all ... Natural gas from underground pipes . 01 Bottled gas (LPG or Propane) ...

248

Table 2.5 Household Energy Consumption and Expenditures by End ...  

U.S. Energy Information Administration (EIA)

Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec-tricity 3: Fuel Oil ...

249

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Air Conditioning: Water Heating: Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec ...

250

A Set of Comparable Carbon Footprints for Auto, Truck and Transit...  

NLE Websites -- All DOE Office Websites (Extended Search)

gasoline, diesel, liquefied petroleum gas (LPG), liquid and compressed natural gas (LNG and CNG), kerosene, bio-diesel and electricity. 2) Fuel consumption was then converted...

251

Fuel Efficient Vehicle Tax Incentives Information Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Credits AFVs include vehicles using compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), hydrogen, or any liquid at least 85% methanol by...

252

OFF-HIGHWAY TRANSPORTATION-RELATED FUEL USE  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway Administration FOKS Fuel Oil and Kerosene Sales GGE gasoline gallons equivalent LNG liquid natural gas LPG liquid petroleum gas MBPD million barrels per day MPH miles per...

253

Para Vehculos Eficientes en Consumo de Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

incluyen vehculos que utilizan gas natural comprimido (CNG), gas natural lquido (LNG), gas lquido de petrleo (LPG), hidrgeno, o cualquier otro lquido de por lo...

254

Federal Tax Credits for Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

of the following alternative fuels: Compressed natural gas (CNG) Liquefied natural gas (LNG) Liquefied petroleum gas (LPG) Hydrogen Any liquid at least 85% methanol by volume...

255

Technical Approach: DHS needs to establish M&S technical ...  

Science Conference Proceedings (OSTI)

... Liquids such as liquefied natural gas (LNG), liquefied petroleum gas (LPG) and others are routinely stored at low temperatures and on their release ...

2011-06-07T23:59:59.000Z

256

Acronyms and Abbreviations: 2005 DOE Hydrogen Program Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

LMDS Laser modulation differential spectroscopy Lmin, lmin Liter(s) per minute LNG Liquefied natural gas LP Lattice parameter LPG Liquefied petroleum gas LPM Liters per...

257

ENECO Ltd | Open Energy Information  

Open Energy Info (EERE)

vehicles for urban environments, using Series Hybrid technology for petrol, diesel, LPG, CNG, or bio-diesel applications. It has experience in the development of Alkaline fuel cell...

258

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India  

E-Print Network (OSTI)

hand, compressed natural gas (CNG) and liquefied petroleumcost of owning and operating CNG and LPG vehicles couldto store the fuels. Each CNG bus, for example, currently

2001-01-01T23:59:59.000Z

259

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Compressed Natural Gas (CNG), synthetic diesel, methanol,FCX Fuels Gasoline, Diesel, CNG, FT diesel, methanol, H2,H2, electricity Gasoline, diesel, CNG, biogas, LPG, ethanol,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

260

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG, consisting predominantly of propane) or renewable fuels such as biogas from wastewater treatments plants. Fuel cells for auxiliary power units in trucks will...

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microsoft PowerPoint - IGFC_Cleanup_SECA_Presentation_072910...  

NLE Websites -- All DOE Office Websites (Extended Search)

the removal of organic sulfur species from various hydrocarbons * Natural gas, LPG and biogas desulfurization * Warm gas and hot reformate gas desulfurization * Diesel fuel and...

262

Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke  

E-Print Network (OSTI)

other cleaner burning fuels (biogas or LPG) for cooking andstove with improved stove or biogas can be suggested, if thegaseous-burning-fuel stove (biogas, liquefied petroleum gas,

Pokhrel, Amod Kumar

2010-01-01T23:59:59.000Z

263

Greening Our Future By Educating Tomorrow's Workforce ...  

Science Conference Proceedings (OSTI)

... Wood Crude Oil Fuel Oil Bio Diesel Gasoline Propane (LPG) Natural Gas Biogas Nuclear Renewables High Carbon Lower Carbon What about ...

2012-07-02T23:59:59.000Z

264

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

comparative analysis of biodiesel and FT diesel. Energy and5.9 Schematic flow diagram for biodiesel production fromGas (LPG), ethanol, biodiesel, hydrogen, Dimethyl Ether (

Lu, Xiaoming

2012-01-01T23:59:59.000Z

265

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

Gas and LPG consumption by 2030 The methodology results inin natural gas consumption by 2030 resulting from upcomingthe 2008- 2013 trend to 2030. Based on these assumptions,

Letschert, Virginie

2010-01-01T23:59:59.000Z

266

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

3 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

267

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

268

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

269

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

270

US National Work Group for the Development of Commercial ...  

Science Conference Proceedings (OSTI)

... Oxygenated Blends, Diesel Fuel, Aviation Turbine Fuels, LPG ... flow-rates for devices measuring gases shall be ... and the quantity of gas measured by ...

2012-01-24T23:59:59.000Z

271

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

like fuel via the Fischer-Tropsch process, or emissions fromvehicles. FTD = Fischer-Tropsch diesel, CNG = compressedvolume % in LPG) FTD = Fischer-Tropsch dieses (volume % in

Delucchi, Mark

2005-01-01T23:59:59.000Z

272

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

like fuel via the Fischer-Tropsch process, or emissions fromvehicles. FTD = Fischer-Tropsch diesel, CNG = compressedvolume % in LPG) FTD = Fischer-Tropsch dieses (volume % in

Delucchi, Mark

2005-01-01T23:59:59.000Z

273

U.S. exports of liquefied petroleum gases projected to continue ...  

U.S. Energy Information Administration (EIA)

In that scenario, LPG exports decline ... Further detail on EIA's analysis of the effect of natural gas liquids growth can be found in the full Annual Energy Outlook ...

274

Where Does All the Energy Go? The HEEP and BEES Studies in New...  

NLE Websites -- All DOE Office Websites (Extended Search)

gas, LPG, wood, coal, oil, etc) and energy services (room temperatures, hot water, appliances, etc) for a full year each in 400 randomly selected houses throughout New...

275

Use characteristics and mode choice behavior of electric bike users in China  

E-Print Network (OSTI)

in the household Car* Bicycle Electric bike Motorcyclehousehold Car Motorcycle Bicycle Electric bike LPG scooteror a 21 few) electric bike users shifted to cars? The safety

Cherry, Christopher; Cervero, Robert

2007-01-01T23:59:59.000Z

276

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- Ferrario Ford LPG Fueling Site ONLY 03 23 2010 Scarpinm Digitally signed by Scarpinm DN: cnScarpinm...

277

Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality  

Science Conference Proceedings (OSTI)

Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

Blake, D.R.; Rowland, F.S. [Univ. of California, Irvine, CA (United States)

1995-08-18T23:59:59.000Z

278

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- HOOSIC VALLEY CSD LPG FUELING SITE ONLY 03 23 2010 Scarpinm Digitally signed by Scarpinm DN: cnScarpinm...

279

Potential Impact of Adopting Maximum Technologies as Minimum...  

NLE Websites -- All DOE Office Websites (Extended Search)

residential sector (50% of the electricity consumption and 80% of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings...

280

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- Monroe County CSD LPG Fueling Site ONLY 03 23 2010 Scarpinm Digitally signed by Scarpinm DN: cnScarpinm...

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Distributed Fiber Optic Gas Sensing for Harsh Environments  

NLE Websites -- All DOE Office Websites (Extended Search)

primary technology products include: * High-quality sapphire long period grating (LPG) or fiber Bragg grating (FBG) sensors - both single and multiple grating devices, *...

282

Clean-Burning Motor Fuel or Electric Vehicle Personal Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

283

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

" Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal...

284

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- Ballston Spa LPG TASKS ONLY 09 12 2011 Michael Scarpino Digitally signed by Michael Scarpino DN:...

285

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

286

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect

This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

1980-10-01T23:59:59.000Z

287

Answers to Frequently Asked Questions About the Household Bottled ...  

U.S. Energy Information Administration (EIA)

Form EIA-457D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

288

2  

NLE Websites -- All DOE Office Websites (Extended Search)

in producing products such as polyethylene, polypropylene, methanol, diesel, naphtha and LPG, etc. NETL CO2 Capture Technology Meeting, July 9-12, 2012 in Pittsburgh, PA CHINA...

289

Clean-Burning Motor Fuel or Electric Vehicle Corporate Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

290

BlackBerry Torch 9800 Smartphone - Gvenlik ve rn ...  

Science Conference Proceedings (OSTI)

... Bu ortamlar aras?nda benzin istasyonlar?; teknelerin alt gverteleri; yak?t ya da kimyasal madde ta??ma ya da depolama tesisleri; LPG (propan ya da ...

2012-11-15T23:59:59.000Z

291

Fire protection of railroad tank cars carrying hazardous materials - analytical calculations and laboratory screening of thermal insulation candidates  

SciTech Connect

In recent years there have been a number of incidents in which railroad tank cars carrying liquefied petroleum gas (LPG) have been engulfed in fires. The LPG cars have ruptured from the fires, causing extensive property damage and loss of life. This report describes a laboratory screening program to select two thermal insulation candidates for use in future fire tests of fifth-scale and full scale LPG tank cars. Also included are analytical calculations to predict pressures and liquid levels in LPG tank cars being heated by fires.

Levine, D.; Dancer, D.M.

1972-07-21T23:59:59.000Z

292

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

of Lubricants for motorists and industries; Storage and Distribution of Oils and LPG; Marine and Aviation; Off-Shore Exploration + , Casablanca + , Morocco + PhoneNumber...

293

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... we summarize the results from studies that address the issue of COS hydrolysis in propane, thought to be a major problem in the LPG industry. ...

2012-04-09T23:59:59.000Z

294

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the development of unique alt. fuel refueling locations.- DuPage Forest Preserve CNG & LPG TASKS ONLY. 2 17 2011 Michael Scarpino Digitally signed by Michael Scarpino DN:...

295

Alternative Fuel Vehicle Conversion Rebate Program (Arkansas...  

Open Energy Info (EERE)

Incentive Programs Amount 50% Maximum Incentive 2,000 or 1,000 for ethanol, methane, LPG Program Administrator Arkansas Department of Economic Development Date added to DSIRE...

296

Development of Metal Oxide Nanostructure-Based Optical Sensors...  

NLE Websites -- All DOE Office Websites (Extended Search)

pollution. Conceptual drawing of coated fiber Bragg grating and photo of Long Period gratings (LPG) on fiber. Figure and photo provided courtesy of University of Pittsburgh....

297

Biotech | Open Energy Information  

Open Energy Info (EERE)

India Zip 695 014 Product Biotech has developed biogas digesters for domestic use (LPG replacement) and larger municipal sites (electricity generation). Coordinates...

298

Aquaint Dialogue Experiment  

Science Conference Proceedings (OSTI)

... three - company joint venture established two years ago by the Seoul Office , together with both Japanese and South Korean LPG container makers ...

2002-11-18T23:59:59.000Z

299

1?10 kW Stationary Combined Heat and Power Systems Status and...  

NLE Websites -- All DOE Office Websites (Extended Search)

These systems are fueled using reformate from natural gas, liquefied petroleum gas (LPG), and even kerosene in some demonstrations being conducted in Japan. LT-PEM fuel cell...

300

Michigan - State Energy Profile Analysis - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... and the State ranks in the top ten in the use of LPG as an alternative vehicle fuel. ... two renewable energy technology manufacturers bought an abandoned ...

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

www.eia.gov  

U.S. Energy Information Administration (EIA)

Idaho Commercial Consumption Coal CLCCB Natural Gas NNCCB Petroleum Distillate Fuel DFCCB Kerosene KSCCB LPG LGCCB Motor Gasoline MGCCB Residual Fuel ...

302

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

(Estimates in Thousand Barrels) SIC Code a Industry Groups and Industry LPG Alternative Types of Energy b RSE Row Factors Total Consumed c Switchable Not Switchable Electricity...

303

Table WH5. Total Expenditures for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Total Table WH5. Total Expenditures for Water Heating by Major Fuels Used, 2005 Billion Dollars Electricity Natural Gas Fuel Oil LPG U.S. Households

304

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... a 1/2-ton and a 1-ton truck run on three different fuels gasoline, compressed natural gas (CNG) and liquefied petroleum gas or propane (LPG) were ...

305

REVISION OF THE MCSAP ALLOCATION FORMULA: SUMMARY REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Transportation Efficiency Act ITS Intelligent Transportation System LPG Liquid Propane Gas MCMIS Motor Carrier Management Information System MCSAP Motor Carrier Safety...

306

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

US to achieve 18% reduction in its electricity demand compared to the base case by 2030 and 11% in Natural Gas and LPG consumption.

Letschert, Virginie

2010-01-01T23:59:59.000Z

307

Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 6, No. 2  

DOE Green Energy (OSTI)

Official publication of the Clean Cities Network and the Alternative Fuels Data Center featuring LPG Around the World, AFVs in National Parks, and Federal and State news.

Not Available

2002-10-01T23:59:59.000Z

308

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

309

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

van bus no CNG = compressed natural gas; LPG = liquefiedcylinders for compressed natural gas). We also have added ae.g. , cylinders for compressed natural gas). The parameters

Delucchi, Mark

1996-01-01T23:59:59.000Z

310

"Table A40. Average Prices of Selected Purchased Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

"SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Group and Industry","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","Factors"...

311

NIST NanoFab News  

Science Conference Proceedings (OSTI)

... Direct Wafer Writing with the Heidelberg LPG ... Generator can be ... National Institute of Standards and Technology 100 Bureau Drive, MS 6200 ...

2013-01-18T23:59:59.000Z

312

Alternative Fuels News, Volume 6, No. 2  

NLE Websites -- All DOE Office Websites (Extended Search)

widely among regions. More than 90 percent of worldwide LPG consumption is for cooking, heating, and other non-automotive purposes. Leading Nations Countries leading the way in...

313

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2010...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG), which is predominately butane in South Korea (as opposed to Propane in the United States). Another notable feature of this vehicle is its lithium polymer...

314

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

315

Thermal Radiation from Large Pool Fires  

Science Conference Proceedings (OSTI)

... to fires involving LPG and LNG in which a ... fueled by gases leaking from storage tanks can cause ... Expanding Vapor Explosion) within a tank that not ...

2004-06-22T23:59:59.000Z

316

Table AP6. Average Consumption for Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

Natural Gas LPG Total Refrigerators Other Appliances and Lighting Table AP6. Average Consumption for Home Appliances and Lighting by Fuels Used, 2005

317

"RSE Table N11.1. Relative Standard Errors for Table N11.1;...  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table N11.1;" " Unit: Percents." " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and...

318

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... ton and a 1-ton truck run on ... by suing the alternate fuels (CNG or LPG ... Keywords: motor vehicles; gasoline; natural gas; propane; exhaust emissions ...

1974-11-17T23:59:59.000Z

319

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

r---1 DF LPG M85 FFV J E85 FFV M100 FFV S/ton (Thousands)Vehicles MI00 DedL Vehicles E85 FFVs LPGVs Dual-Fuel CNGVsM85 Dedi. M1 00 DF LPG M85 FFV E85 FFV M100 FFV S/ton 3O (

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

320

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

LPG 57NGL n.e. LPG NG n.e. CNG NG n.e. n.a. 11618% Table Y-active in model (M85) M100 NGV active in model (CNG)CNG LNG Compressed hydrogen (CH2) Liquified hydrogen (LH2)

Delucchi, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

LPG 57NGL n.e. LPG NG n.e. CNG NG n.e. n.a. 11618% Table Y-active in model (M85) M100 NGV active in model (CNG)CNG LNG Compressed hydrogen (CH2) Liquified hydrogen (LH2)

Delucchi, Mark

2005-01-01T23:59:59.000Z

322

CALIFORNIA INVESTMENT PLAN FOR  

E-Print Network (OSTI)

in dramatic decreases in sales. Global climate change is becoming a key issue with growing pressure to reduce of alternative fuels, gaseous fuels (including CNG, LPG, LNG, H2) and systems for onboard storage and boosting Petrol direct injection; LPG, CNG Direct injection Flexible, reconfigurable vehicle concepts

323

LCA Applied to Perennial Cropping Systems: a Review Focused on the Farm Stage C. Bessou 1  

E-Print Network (OSTI)

of LPG Because it is widely available (over 700 retail stations in Texas), LPG is the most commonly used. Since biodiesel is not a fossil fuel, it can cut greenhouse-gas emissions as well as ordinary pollutants the minimum requirements for alternative fuels use and add the following: 100% BioDiesel (also known as B100

324

Engineering new oil recovery methods. [1800-3,000 psi  

SciTech Connect

In the LPG slug process, propane under normal pressures of a few hundred psi and temperatures in the order of 150/sup 0/F is a liquid. With the methane-LPG slugs, an LPG slug miscible displacement program may be operated at fairly shallow depths. Even if the reservoir depth is only 1,500 ft, it would be possible to carry out an LPG slug miscible displacement program. It is not difficult to maintain miscibility between methane and propane. A crude of very low viscosity should be selected to reduce solvent dispersion and costs of a miscible displacement project. It is necessary that the LPG slug be of sufficient size so that miscibility does not break down prematurely and result in a very low oil recovery. Enriched gas drives are designed to achieve miscible displacement at pressures ranging from about 1,800 to 3,000 psi. Miscibility may also be achieved at pressures outside this range.The cost of establishing a miscible zone in LPG or enriched gas drives can be quite expensive. In the case of an enriched gas drive, size of the zone becomes quite large. Although the size of the zone may be fairly small for the case of LPG slugs, the cost of acquiring the LPG can be prohibitive, in some cases.

Crawford, P.B.

1969-06-01T23:59:59.000Z

325

LNG plant ranks with world's largest  

SciTech Connect

Products from Indonesia's Arun LNG plant, one of the world's largest, have recently entered the Far East LPG markets. This is the first of two articles about the plant and its processes for producing both LNG and LPG's.

Naklie, M.M.; Penick, D.P.; Denton, L.A.; Kartiyoso, I.

1987-06-15T23:59:59.000Z

326

6, 36873707, 2006 Vehicular fuel  

E-Print Network (OSTI)

) samples were collected only in Hong Kong and were comprised mainly of n-butane, propane and i-butane found that the relative amount of propane, i-butane, and n-butane increased between 2001 to 2003, consistent with the 40% increase in LPG fueled vehicles. Propane to butanes ratios were calculated for LPG

Paris-Sud XI, Université de

327

Experimental studies on the thermal stratification and its influence on BLEVEs  

SciTech Connect

The thermal stratification of Liquefied Petroleum Gas (LPG) and its effect on the occurrence of the boiling liquid expanding vapor explosion (BLEVE) have been investigated experimentally. Stratifications in liquid and vapor occur when the LPG tank is heated. The degree of the liquid stratification {beta} increases with an increasing heat flux and decreasing filling ratio. The effect of stratification on the BLEVE has been examined with depressurization tests of LPG. The results show that the pressure recovery for the stratified LPG ({beta} = 1.4) upon sudden depressurization is much lower than that for the isothermal LPG ({beta} = 1). It can be concluded that the liquid stratification decreases the liquid energy and the occurrence of the BLEVE. (author)

Lin, Wensheng; Gong, Yanwu; Gao, Ting; Gu, Anzhong; Lu, Xuesheng [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240 (China)

2010-10-15T23:59:59.000Z

328

NGL (natural gas liquids) shipping and terminals. [Japan, Europe, USA  

SciTech Connect

An analysis of the world LPG market covers the need for a world-wide planning organization to develop that market; the shortage of ships between 1000 and 20,000 cu m capacity and the excess of large ships (> 50,000 cu m capacity); the status of the Japanese and European LPG markets; the failure of the U.S. LPG market to develop as expected; and the need for the U.S. to keep its gas for the future by putting a very high price at the well head, to build terminals and ships so as to minimize the effect of LPG and LNG imports on the balance-of-payment deficit; and the availability of LPG from nearby sources (Venezuela, Mexico, the North Sea, and Algeria).

Boudet, R.

1979-01-01T23:59:59.000Z

329

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

330

Laboratory investigation of the performance of a Holden engine operating on liquified petroleum gas  

SciTech Connect

A laboratory investigation into the relative performances of an engine when operated on both liquified petroleum gas (LPG) and petrol showed that the engine operated at higher termal efficiency on LPG and also that it would operate satisfactorily at leaner air-fuel mixtures on this fuel. Engine performance was less affected by retarded ignition for LPG than for petrol. Furthermore a large increase in dwell angle from the recommended setting had no significant effect on LPG performance. The LPG carburettor when installed in its normal configuration maintained an essentially constant mixture strength with no part throttle leaning of mixtures to give better efficiency nor corresponding full throttle enrichment to give best engine torque.

Webb, N.

1979-08-01T23:59:59.000Z

331

Pipeline expansion to aid East, Midwest  

SciTech Connect

Texas Eastern Transmission Corp.'s expanded capacity of 25,000 barrels per day will benefit Midwestern and Eastern industries and utilities by adding a parallel pipeline to a storage terminal in Arkansas. Confidence in the market potential of liquid petroleum gas (LPG) is reflected in this move and in predictions that increased imports of LPG will reach 655,000 barrels per day in 1980 compared to 34,000 in 1976. Industries are expected to use butane interchangeably with propane in the future. Regulations governing the future of the LPG market require competitive pricing, long-term supply and shipping agreements, and the use of foreign LPG as a feedstock for synthetic natural gas if LPG use is to continue expanding. (DCK)

Crawford, E.

1977-06-06T23:59:59.000Z

332

Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981  

SciTech Connect

An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

Chang, H.R.; Reid, R.C.

1981-04-01T23:59:59.000Z

333

The growing world LP-gas supply  

Science Conference Proceedings (OSTI)

The possible range of future (LPG) export availabilities is huge, but actual production levels depend on factors, many of which are beyond our direct control - world demand for crude oil and gas, developments in technology, and the price of both energy in general and LPG specifically. Although these factors limit some of the potential developments, a substantial increase in LPG supply is certain, and this is likely to depress its price relative to other products. Over the last few years, a dramatic expansion has taken place in the industry. From 1980 to 1987, non-Communist world production of LPG increased by close to 35%, to a total of 115 million tonnes. If this is set against the general energy scene, LPG represented 3.7% of crude oil production by weight in 1980, rising to 5.4% in 1987. This growth reflects rise in consciousness around the world of the value of the product. LPG is no longer regarded as a byproduct, which is flared or disposed of at low value, but increasingly as a co-product, and much of the growth in production has been due to the installation of tailored recovery systems. LPG markets historically developed around sources of supply, constrained by the costs of transportation. The major exceptions, of course, were the Middle East, the large exporter, and Japan, the large importer.

Hoare, M.C.

1988-11-01T23:59:59.000Z

334

Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

Motta, R.C.; Kelly, K.J.; Warnock, W.W.

1996-04-01T23:59:59.000Z

335

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)"

336

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

337

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

338

Residential energy conservation and price response  

SciTech Connect

This paper examines the factors affecting the quantity of home heating fuel used and compares the willingness of consumers of natural gas (NG) and liquified petroleum gas (LPG) to adjust to very different changes in their heating costs over similar periods of time. LPG households made more and bigger temporary changes than did NG households and were more persistent in maintaining their behavior. LPG households also made structural improvements to the heat resistance of their homes while few NG households did so. Although people can adjust their fuel-use habits, a substantial economic incentive is required to create a significant and sustained response.

Ogus, M.R.

1982-03-01T23:59:59.000Z

339

Petroleum recovery materials and process  

SciTech Connect

A petroleum recovery process uses micellar solutions made from liquefied petroleum gas (LPG). During the process, microemulsions utilizing LPG in the external phase are injected through at least one injection well into the oil-bearing formations. The microemulsions are driven toward at least one recovery well and crude petroleum is recovered through the recovery well. The LPG in the micellar system may be propane or butane. Corrosion inhibitors can be used in sour fields, and bactericides can be used where necessary. The microemulsions used contain up to about 10-20% water and about 8% surfactant. (4 claims)

Gogarty, W.B.; Olson, R.W.

1967-01-31T23:59:59.000Z

340

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; " 2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)"

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 10.23;" 3 Relative Standard Errors for Table 10.23;" " Unit: Percents." ,,,,"Reasons that Made LPG Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","LPG Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","as a Fuel","LPG Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

342

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network (OSTI)

LPG Furnace Oil Furnace Electric Heat Pump Gas BoilerOil Boiler Electric Room Heater Gas Room Heater Wood Stove (Electric Heat Pump Gas Boiler Oil Boiler Electric Room Gas

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

343

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) End-Use Categories Net Demand for Electricity a Residual Fuel Oil Distillate Fuel Oil and Diesel Fuel b Natural Gas c LPG Coal (excluding Coal Coke...

344

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

345

S S E S S M E N ARCTIC COUNCIL  

E-Print Network (OSTI)

Marine Ecosystem LNG liquefied natural gas LPG liquefied petroleum gas M/V Motor Vessel MARPOL 73 Administration (U.S.) NOx nitrogen oxide NSR Northern Sea Route NWP Northwest Passage PAME Protection

Corbett, James J.

346

Atmos. Chem. Phys., 7, 22772285, 2007 www.atmos-chem-phys.net/7/2277/2007/  

E-Print Network (OSTI)

hydrocarbons in the presence of nitrogen dioxide (NO2), it is a direct measure of the peroxyacyl radical levels in the city due to controls on olefins in liquefied petroleum gas (LPG) and also due to the significant number

Paris-Sud XI, Université de

347

"Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f...

348

www.eia.gov  

U.S. Energy Information Administration (EIA)

Table 8 FIG_CO2IDX1 FIG_CO2IDX2 FIG_CO2SEC GRAF Petroleum LPG Distillate Fuel Kerosene Coal Natural Gas Total aShare of total electric power sector carbon dioxide ...

349

www.eia.gov  

U.S. Energy Information Administration (EIA)

Table 10 FIG_CO2IDX1 FIG_CO2IDX2 FIG_CO2SEC GRAF Petroleum LPG Distillate Fuel Kerosene Coal Natural Gas Total Motor Gasoline Residual Fuel Lubricants Asphalt & Road Oil

350

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and...

351

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

352

Alternative Fuels Data Center: Wisconsin Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as follows: 0.226 per gallon of propane; 0.247 per...

353

Trainers & Speakers - Clean Cities Transportation Workshop for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mr. Gert-Jan Rap is more than 25 years active in the field of gaseous fuels LPG, CNG, LNG and Hydrogen for use as vehicle fuel. Download Mr. Gert-Jan Rap's Executive Bio...

354

Overview of the Quality and Completeness of Resource Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

K K K KK KK x fs AES APEC BOB CRIB PI CWEEDS PERC HDR IRR ITCZ JMA LNG LPG MSW NBS NREL NSRDB PV RDF SOLMET SOLRAD WMO WRDC WTG Ac ronyms Atmospheric...

355

Investigation of Class 2b Trucks (Vehicles of 8,500 to 10,000...  

NLE Websites -- All DOE Office Websites (Extended Search)

weight rating HD heavy-duty lbs pounds LDT light-duty trucks LEV low-emission vehicle LNG liquefied natural gas LPG liquefied petroleum gas MDPV medium-duty passenger vehicle MY...

356

Alternative Fuel News Volume 2 Number 2  

NLE Websites -- All DOE Office Websites (Extended Search)

www.afdc.doe.govrefuel. The AFDC lists refueling site locations for CNG, E85, M85, LPG, LNG, and EV charging stations located throughout the United States. The information is...

357

Acronyms and Abbreviations for Advanced Technology Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project LDV Light-duty vehicle LEV Low emission vehicle LF Low-floor Li Lithium LNG Liquid natural gas LPG Liquid petroleum gas LSR Low storage requirement MCI Motor Coach...

358

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

359

The Rapid Rise of Middle-Class Vehicle Ownership in Mumbai  

E-Print Network (OSTI)

used Compressed Natural Gas (CNG); in the Thane region, 69%in Greater Mumbai 89% used CNG, 5% used petrol, 3% used35% used diesel, 12% used CNG and 1% used LPG. In the bus

Shirgaokar, Manish

2012-01-01T23:59:59.000Z

360

Mind the Gap: The Vicious Circle of Measuring Automobile Fuel Use  

E-Print Network (OSTI)

Italy, the USA)they use LPG, CNG even alcohol fuels. orItaly, a small amount of CNG also is included. For Holland,As noted above, LPGand even CNG have appeared as third or

Schipper, Lee; Figueroa, Maria J.; Price, Lynn; Espey, Molly

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and alternative fueling stations across Ohio. FOR VEHICLE CONVERSIONS TO LPG AND CNG ACTIONS ONLY. 05 18 2010 Erin Russell-Story Digitally signed by Erin Russell-Story DN:...

362

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

363

www.eia.gov  

U.S. Energy Information Administration (EIA)

Natural Gas Nonfuel Products from Refineries Coal and Coal Coke Fuel Oil and LPG Resid ... Wood-Related and Paper-Related Refuse Net Steam/Hot Water Miscellaneous

364

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

for fuels, such as crude oil and raw coal, and these valuesOther Gas Other Coking Products Crude Oil Gasoline KeroseneDiesel Fuel Oil LPG Refinery Gas Other Petroleum Products

Lu, Hongyou

2013-01-01T23:59:59.000Z

365

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

5% gasoline, 8% LPG, and 22% fuel oil. Sources: U.S. Census,4 . Natural gas and diesel oil were the main fuels used inof $2.81 per gallon, fuel oil price of $1.38 per gallon (

Kermeli, Katerina

2013-01-01T23:59:59.000Z

366

Ris-R-1504(EN) Safety assessment of ammonia as a  

E-Print Network (OSTI)

as part of the EU supported project "Ammonia Cracking for Clean Electric Power Technology" The study scenarios 17 2.4 Comparison with LPG driven vehicles 17 2.5 Comparison with gasoline-driven cars 18 2

367

International Energy Agency (IEA) PVPS Task 12: Environment, Health and Safety  

E-Print Network (OSTI)

Nuclear Issues Workshop, Sacramento, CA, June 28, 2007 Coal Oil NG LPG Nuclear (Chernobyl) Nuclear (except Chernobyl) PV, PSI Fatalities 434 3000 100 600 125 PV, BNL 2 9000-33000 100 105 104 103 102 101 100 PSI #12

368

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network (OSTI)

, propane, wind, solar, methanol, ethanol, bio- diesel etc.) but to decrease the dependence on fossil fuels from a variety of sources including fossil fuels (coal, natural gas, LPG, gasoline, diesel, methane

Khandekar, Sameer

369

Overcoming Fuel Gas Containment Limitations to Energy Improvement  

E-Print Network (OSTI)

Oil refineries convert crude oil into high value products such as gasoline, diesel, liquefied petroleum gas (LPG), and petrochemical feedstocks. After squeezing as much saleable product from the crude oil as possible, there remains a light gas stream, typ

Davis, J.

2004-01-01T23:59:59.000Z

370

Hydrocarbon pool and vapor fire data analysis. Final report  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

371

Exemption + Fee for Alternative Fuel Vehicles (Oklahoma) | Open...  

Open Energy Info (EERE)

tax by purchasing a flat fee decal rather than paying excise tax at the pump. Propane or LPG is taxed at a rate of 50 per year, per vehicle of less than 1-ton capacity. AFVs...

372

Conceptual design of a coal-to-methanol-to-gasoline commercial plant. Volume V. Alternate design studies. Second interim final report, August 31, 1977-March 1, 1979  

SciTech Connect

Three design cases have been investigated for converting methanol to gasoline using the Mobil process. These are defined as Case A, which produces gasoline and byproduct LPG; Case B, which produces gasoline, high Btu gas, and byproduct LPG; and Case C which produces gasoline only. The LPG includes propane LPG and high purity isobutane. Base Case B is described in Volumes I and IV of this report. Alternate Cases A and C are described in part I of Volume V. Part II of this volume (V) contains additional process studies. Under Contract EX-76-C-01-2416 Modification No. A006, item (4) of the General Requirements requires economy of scale evaluations, and item (24) of the Scope of Work includes studies of Lurgi methanol synthesis recommendations, integration of Methanol-to-Gasoline facilities with a refinery, and recovery of aromatics from stabilized synthetic gasoline.

1979-03-01T23:59:59.000Z

373

RECIPIENT: Piug Power Inc U.S. DEPARTlVIENT OF ENERGY EERE PROJECT...  

NLE Websites -- All DOE Office Websites (Extended Search)

The objective for this Plug Power Project is to deploy and test hybrid hydrogen I LPG or natural gas Emergency Backup Power Systems. Twenty units would be installed at two...

374

Dual-fueled taxis will ease air pollution problem in Tehran  

SciTech Connect

According to emissions tests of standard and converted taxis, CO, hydrocarbon NO/sub x/, and SO/sub 2/ air pollution in Tehran could be reduced by converting the 15,000 taxis in that city to dual-fuel systems which would permit the taxis to use gasoline or LPG. Complete conversion to LPG is impractical because of the lack of service stations dispersing it. Tehran, with a limited mass transit system, has a relatively high percentage of taxis among all gasoline-powered cars, and these taxis are responsible for about 25% of the vehicular air pollution, a figure which could be reduced to an estimated 7% by the conversion. The conversion to LPG would also be economical, since the price of gasoline has increased by 20% in Iran in the past two years and will probably continue to increase, but the price of LPG has remained almost constant.

Ebtekar, T.

1979-07-01T23:59:59.000Z

375

Alternative Fueled Vehicle Charging Station Credit (Connecticut...  

Open Energy Info (EERE)

or improvements to existing stations which allow that station to provide CNG, LNG, or LPG (propane); 2) equipment used to convert vehicles to run exclusively on one of these...

376

Cracking in liquid petroleum gas Horton spheres  

Science Conference Proceedings (OSTI)

A gas processing plant on the western coast of India produces sweet gas after processing sour natural gas. Liquid petroleum gas (LPG) is recovered from the sweet gas. The LPG, containing a H{sub 2}S concentration of 10 ppm to 20 ppm, is stored in Horton spheres, each 17 m in diameter with a capacity of {minus}27 C to 55 C. Horton spheres for containing liquid petroleum gas (LPG) were fabricated on-site using prestressed plates of high-strength carbon steel (CS) SA 537 Class-1 with post-weld heat treatment. High-residual tensile stresses and hydrogen absorption from H{sub 2}S present in LPG could be the cause of cracking at weld and heat-affected zone interfaces at high hardness locations. Recommendations are given for inspection and use of lower-strength CS and improved welding procedures.

Trivedi, D.K. Gupta, S.C. [Oil and Natural Gas Corp., Surat (India). Hazari Gas Processing Complex

1997-07-01T23:59:59.000Z

377

RECIPIENT: Plug Power Inc U.S. DEPARTlVIENT OF ENERGY EERE PROJECT...  

NLE Websites -- All DOE Office Websites (Extended Search)

: The objective for this Plug Power Project is to deploy and test hybrid hydrogen I LPG or natural gas Emergency Backup Power Systems. Twenty units would be installed at two...

378

7zXZ*??F*!**t/??*? ]9IW*K?*?C?[Px((U  

Science Conference Proceedings (OSTI)

... r??AM*]?????5??g?*???-?}?z?h? yT??*??,??V/. ??GWi`?*a??*?mqa$?Kb?*o?*'t?*z?*?lpg*?? Cz ...

2013-07-24T23:59:59.000Z

379

North and west central Texas. Mitchell EOR (enhanced oil recovery) projects yield tertiary oil in Wise and Jack counties  

SciTech Connect

An enhanced oil recovery project utilizing a miscible LPG process provides Mitchell Energy and Development Corp. engineers with a springboard for other miscible flood projects while yielding incremental tertiary oil that otherwise would remain in the ground. The LPG flood project is in the Alvord (3,000-ft Strawn) Unit in Wise County, Texas. The field had been waterflooded for 14 yr, and was producing near its economic limit under waterflood, the alternative to starting a tertiary project would have been to abandon the field. The LPG flood process was chosen because liquefied petroleum gases are miscible with oil at the low pressures that must be maintained in shallow reservoirs such as the Alvord Strawn. Propane was determined to be the suitable LPG for the project because of its availability and ease of handling.

Mickey, V.

1982-09-01T23:59:59.000Z

380

X-ray photoelectron spectroscopy studies on Pd doped SnO{sub 2} liquid petroleum gas sensor  

Science Conference Proceedings (OSTI)

The present investigation deals with the electrical response of palladium doped tin oxide, as a means of improving the selectivity for liquid petroleum gas (LPG) in the presence of CO, CH{sub 4}. The sensor element with the composition of Pd(1.5 wt{percent}) in the base material SnO{sub 2} sintered at 800{degree}C, has shown a high sensitivity towards LPG with a negligible cross interference of CO and CH{sub 4} at an operating temperature of 350{degree}C. This greatly suggests the possibility of utilizing the sensor for the detection of LPG. X-ray photoelectron spectroscopy studies have been carried out to determine the possible chemical species involved in the gas-solid interaction and the enhancing mechanism of the Pd doped SnO{sub 2} sensor element, towards LPG sensitivity. {copyright} {ital 1997 American Institute of Physics.}

Phani, A.R. [Department of Physics, University of LAquila, 67040, LAquila (Italy)

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Exemption + Fee for Alternative Fuel Vehicles (Oklahoma) Personal...  

Open Energy Info (EERE)

tax by purchasing a flat fee decal rather than paying excise tax at the pump. Propane or LPG is taxed at a rate of 50 per year, per vehicle of less than 1-ton capacity. AFVs...

382

Compressed natural gas and liquefied petroleum gas as alternative fuels  

Science Conference Proceedings (OSTI)

The use of alternative fuels in the transportation industry has gained a strong support in recent years. In this paper an attempt was made to evaluate the use of liquefied petroleum gas (LPG) and compressed natural gas (NG) by 25 LPG-bifuel and 14 NG-bifuel vehicles that are operated by 33 transit systems throughout Nebraska. A set of performance measures such as average fuel efficiency in kilometers per liter, average fuel cost per kilometer, average oil consumption, and average operation and maintenance cost for alternatively fueled vehicles were calculated and compared with similar performance measures of gasoline powered vehicles. The results of the study showed that the average fuel efficiency of gasoline is greater than those of LPG and NG, and the average fuel costs (dollars per kilometer) for LPG and NG are smaller than those for gasoline for most of the vehicles under this study.

Moussavi, M.; Al-Turk, M. (Univ. of Nebraska, Omaha, NE (United States). Civil Engineering Dept.)

1993-12-01T23:59:59.000Z

383

Hydrocarbon pool and vapor fire data analysis  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

384

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

and diesel can be refined. Fuel gases like methane (SNG) and liquefied petroleum gas (LPG; mostly propane and butane) are usually also formed in small amounts by CTL but are...

385

China's Industrial Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline 43,070 TJMt Kerosene 43,070 TJMt Diesel 42,652 TJMt Fuel Oil 41,816 TJMt LPG 50,179 TJMt Refinery Gas 46,055 TJMt Other Petroleum Products 38,368 TJMt Natural...

386

Gas Sensing Properties of Platinum Doped Nanocrystalline SnO2 ...  

Science Conference Proceedings (OSTI)

The sensors dip coated for 5 minutes and sintered at 750oC show the highest sensitivity towards H2, Co and LPG which is ten times higher than undoped SnO2...

387

1 Analysis of DNA Single Nucleotide Polymorphisms by Mass ...  

Science Conference Proceedings (OSTI)

... Web Address NCBI SNP Database http://www.ncbi.nlm.nih.gov/SNP/ The SNP Consortium http://snp.cshl.org/ NCI CGAP-GAI http://lpg.nci.nih.gov ...

2006-08-29T23:59:59.000Z

388

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... 3.6. Fuel Oils. 3.6.1. Labeling of Grade Required. Fuel Oil shall be identified by the grades of No. ... 3.10. Liquefied Petroleum Gas (LPG). ...

2013-10-25T23:59:59.000Z

389

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

390

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

391

Case Study: Ebus Hybrid Electric Buses and Trolleys  

NLE Websites -- All DOE Office Websites (Extended Search)

successful in terms of cost per mile and fuel economy. vii KAT * KAT observed an average fuel economy of 3.22 mpg (diesel equivalent gallons for LPG use). * KAT observed a...

392

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke...

393

Table CE5-7c. Appliances Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Other Appliances and Lighting (kWh) ..... 5,412 3,903 3,739 6,722 6,222 4.1 Natural Gas (thousand cf) ..... 9 7 9 11 13 7.1 LPG (gallons ...

394

" Row: NAICS Codes (3-Digit Only); Column...  

U.S. Energy Information Administration (EIA) Indexed Site

l","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Fact...

395

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

water (3%). Finally oil is a source of energy for theOil Diesel Oil LPG Electricity Source: CEA, 2006; MOSPI,countries, oil remains an important source of energy for

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

396

INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE  

E-Print Network (OSTI)

heaters. For oil and gas these two sources are split almostto the original sources -- namely oil or natural I! -D-2LPG is included in oil, since the sources that disaggregate

Schipper, L.

2013-01-01T23:59:59.000Z

397

Policy Strategies and Paths to promote Sustainable Energy Systems - The dynamic Invert Simulation Tool  

E-Print Network (OSTI)

of wood storage for wood heating systems, etc. E.g. comfort,gas district heating oil electricity wood chip s Figure 4.2:district heating. Wood LPG District heating Coal, coke Oil

Stadler, Michael; Kranzl, Lukas; Huber, Claus; Haas, Reinhard; Tsioliaridou, Elena

2006-01-01T23:59:59.000Z

398

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

4 Water Heater Stock for Commercial Buildings, By Fuel Type Fuel Type Electric 41% Natural Gas 31% Fuel Oil 2% PropaneLPG 3% District Heat 1% No Water Heating 25% Note(s):...

399

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

1 Water Heater Stock for Residential Buildings, By Fuel Type Electric Natural Gas Fuel Oil PropaneLPG Other 0.2 0.2% Total (1) Note(s): Souce(s): According to RECS, 1.1 million...

400

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network (OSTI)

gasoline. CNG is compressed natural gas. BTL is biomass-gasoline. CNG is compressed natural gas. BTL is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

gasoline. CNG is compressed natural gas. BTL is biomass-gasoline. CNG is compressed natural gas. BTL is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

402

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

ICEVs; ethanol ICEVs; compressed natural-gas (CNG)natural-gas (LNG) ICEVs; liquefied-petroleum-gas (LPG) ICEVs; liquefied-hydrogen (LH2) ICEVs; hydride-hydrogen ICEVs; compressed-

Delucchi, Mark

2005-01-01T23:59:59.000Z

403

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

ICEVs; ethanol ICEVs; compressed natural-gas (CNG)natural-gas (LNG) ICEVs; liquefied-petroleum-gas (LPG) ICEVs; liquefied-hydrogen (LH2) ICEVs; hydride-hydrogen ICEVs; compressed-

Delucchi, Mark

2005-01-01T23:59:59.000Z

404

Safe Operating Procedure (Revised 7/09)  

E-Print Network (OSTI)

://ehs.unl.edu/) LPG includes propane, butane, and butylenes used for heating, cooking, and fuel. The purpose Food Service No more than two 10 ounce non-refillable butane cylinders in use per appliance

Farritor, Shane

405

Annual Energy Outlook 2010: With Projections to 2035  

Annual Energy Outlook 2012 (EIA)

ITC Investment tax credit LCFS Low Carbon Fuel Standard (California) LED Light-emitting diode LDV Light-duty vehicle LNG Liquefied natural gas LPG Liquid petroleum gas MHEV...

406

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

407

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze...

408

" Level: National Data and Regional Totals...  

U.S. Energy Information Administration (EIA) Indexed Site

"," ",,"Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal",...

409

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

sidual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural...

410

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) SIC Code a Industry Groups and Industry Total Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE...

411

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) SIC Code a Industry Groups and Industry Total Net Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e...

412

Olefin-capacity surge will tighten feedstock supplies  

SciTech Connect

This article covers the following areas; More ethane used; LPG use to grow; Naphtha needed; Gas oil need limited; U.S. developments; Europe; Far east; Middle east/Africa.

Otto, K.W.

1989-07-03T23:59:59.000Z

413

Analysis of Federal Policy Options for Improving U.S.Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

are considered, as appropriate to each end-use: electricity, natural gas (utility gas), heating oil, and LPG. The national version of the model, which treats the country as a...

414

Flame Spray Synthesis and Characterization of Nanocrystalline ...  

Science Conference Proceedings (OSTI)

The precursor solution was atomized by a jet nebulizer and allowed to pass through a co-flow diffusion burner in a reactor. A flame was generated by using LPG...

415

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas b Petroleum Retail Elec- tricity f Total g Aviation Gasoline Distillate Fuel Oil c Jet Fuel LPG d Lubri- cants Motor Gasoline e Residual Fuel Oil Total 1973 Total...

416

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

and Industry Total Net Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE Row Factors Total United States RSE Column...

417

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

Code a Industry Groups and Industry Total Residual Fuel Oil Distillate Fuel Oil b Natural Gas c LPG Coal Coke and Breeze Other d RSE Row Factors Total United States RSE Column...

418

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network (OSTI)

Homes End-Use Equipment Type Equipment Market Shares Index Heating ElecFurnace Gas Furnace LPG Furnace OilHomes (millions) End-Use Equipment Type Appliance stock in millions of units Index Heating FJec Furnace Gas Furnace L P G Furnace OilHomes End-Use Equipment Type Units Efficiency for Stock Equipment Index Heating Elec Furnace Btu.out/Wh.in Gas Furnace AFUE LPG Furnace AFUE Oil

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

419

Confined boiling rates of liquefied petroleum gas on water  

SciTech Connect

Results of a program to measure the rate of boiling of liquefied petroleum gas (LPG) on water surface and to develop an analytical model to describe the phenomena involved are reported. Primary emphasis was placed on liquid propane or LPG mixtures containing small quantities of ethane or butane or both. A few exploratory tests were, however, made with pure liquid ethane, ethylene, and n-butane. The investigation was conducted to provide quantitative data and analytical models to delineate the rate of vaporization, the spread rate and the degree of fractionation, should an LPG tanker suffer an accident leading to a major spill on water. For propane or LPG spills on water, immediately following the contact, violent boiling commenced. Ice quickly formed; in most cases, ice was even thrown onto the sidewalls of the vessel. In some instances sprays of water/ice and propane were ejected from the calorimeter. Within a few seconds, however, the interaction quieted and the surface was covered by a rough ice sheet. The LPG boiled on the surface of this ice, but large gas bubbles occasionally appeared under the ice shield and were trapped. The boiling rate decreased with time with a concomitant increase in the thickness of the ice shield. In the first second or two, very high boiling heat fluxes were experienced. The mass of LPG lost was approximately half that spilled originally. It is estimated that only 5 to 15% could have been ejected as liquid if the water loss is used as a reference. However, since the water surface is very agitated during this period, it is not possible to obtain reliable quantitative values of the boiling flux. Also, as noted, the mass lost in the very early time period was approximately proportional to the original mass of LPG used. It may be inferred that larger spills lead to more mixing and boiling before the ice shield prevents a direct contact between the LPG and the water.

Reid, R.C.; Smith, K.A.

1978-05-01T23:59:59.000Z

420

Assessment of particulate concentrations from domestic biomass combustion in rural Mexico  

SciTech Connect

Recent evidence has suggested that woodsmoke exposure in developed countries is associated with acute and chronic health impacts. Particulate concentrations were measured in rural Mexican kitchens using biomass combustion for cooking. To investigate differences in indoor particle concentrations between kitchens using different fuels and stove types, measurements were made in eight kitchens using only biomass, six using only liquefied petroleum gas (LPG), six using a combination of biomass and LPG, and three using biomass in ventilated stoves. Outdoor samples were collected at the same time as the indoor samples. PM{sub 10} and PM{sub 2.5} measurements were made with inertial impactors, and particle light scattering was measured continuously with an integrating nephelometer. PM{sub 10} and PM{sub 2.5} concentrations (mean concentrations of 768 and 555 {mu}g m{sup -3}, respectively) in the kitchens burning only biomass were greater than in all other types (biomass > biomass + LPG > ventilated > LPG > outdoor). A similar trend was evident for the indoor/outdoor concentration ratio. Based on the short-term measurements estimated from the nephelometer data, PM{sub 10} and PM{sub 2.5} cooking period average and 5-min peak concentrations were significantly higher (p < 0.05) in kitchens using only biomass than in those using LPG, a combination of LPG and biomass, or a ventilated biomass stove. 20 refs., 3 figs., 3 tabs.

Brauer, M.; Bartlett, K. [Univ. of British Columbia, Vancouer (Canada); Regalado-Pineda, J.; Perez-Padilla, R. [Instituto Nacional de Enfermedades Respiratorias, Tlalpan (Mexico)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Propane extractor could allow small dealers to obtain product as in 'old days'  

SciTech Connect

A growing trend for small natural gas plant operators to install cryogenic demethanizers lets them recover ethane and heavier hydrocarbons as a single raw-make product for pipelining to a central location for fractionation, instead of producing LPG for local sales. The local LPG dealers must then transport LPG a substantial distance from the central fractionator. A possible solution to the dealers' supply problem is proposed: construct small portable processing units (computer-controlled for unattended operation) which would receive a portion of the raw-make liquid from a pipeline, extract propane as LPG, and return the balance of the stream to the pipeline, storing LPG for loading local transports. Not only would transportation costs be reduced, but local key operated loading facilities would be open at all hours of the day or night, seven days a week; the alternative would be long lines of transports waiting to load at central facilties during limited loading times. In Texas, residential LPG usage of about 40,000 bbl/day (10% of estimated raw liquid volumes) would require greater than 80 units of the new Propane Extraction Process. Diagrams are included.

Ainsworth, A.G.; McClanahan, D.N.

1977-12-01T23:59:59.000Z

422

Measurement of liquified petroleum gas  

SciTech Connect

Propane, iso-butane, and normal butane commonly referred to as Liquified Petroleum Gases or LPG's are used as heating and transportation fuels, feed-stocks for petrochemical plants, gasoline additives, and aerosol propellents. These liquids are commonly stored in high pressure vessels, underground caverns, or salt domes. Pipelines, trucks, and rail cars are used for transporting these fluids. LPG's must conform to industry accepted specifications regarding their composition and the allowable amounts of contaminants that may be present such as sulphur, heavy hydrocarbons, and water. GPA Standard 2140-80, Liquified Petroleum Gas Specifications and Test Methods, outlines the test procedures to be followed in determining product quality. The physical properties of LPG's including low specific gravities (0.498 to 0.584), high vapor pressures, low boiling points, and lack of lubricity must be considered when storing, transporting, or measuring them. LPG's are easily measured if certain precautions are taken. The equipment must be properly installed, maintained, and calibrated. If meters are used, product flow must be in liquid phase. Due to the considerable effect of temperature and pressure on LPG's, volumes obtained at operating conditions must be reduced to standard conditions.

Vehe, R.E.

1984-04-01T23:59:59.000Z

423

Risk assessment of storage and transport of liquefied natural gas and LP-gas. Final report  

SciTech Connect

A method for assessing the societal risk of transporting liquefied petroleum gas (LPG) and liquefied natural gas (LNG) is described, and is illustrated by application to the transport of LPG by tank truck and LNG by tanker ship in the U.S. Data on past experience and projected future handling of these liquefied gases are used with analysis of flammable plume formation and ignition, and population distributions, to estimate the risks of fatalities from tank truck and tanker ship accidents. From an estimated 52 significant accidents per year with LPG tank trucks at the present truck-associated transportation rate of 20 billion gallons of LPG per year, a fatality rate of 1.2 per year is calculated. For the projected 1980 importation of 33 billion gallons by tanker ship, a fatality rate of 0.4 per year is calculated, using a conservatively high one chance in 20,000 of a significant accident per trip. Comparison with fires and explosions from all causes in the U.S. and Canada leading to 10 or more fatalities shows that these are 100 times more frequent than the predicted frequency of comparable LPG and LNG accidents. Tabulations of experience with spills of flammable volatile liquids are included. (GRA)

Simmons, J.A.

1974-11-25T23:59:59.000Z

424

LP-Gas transport safety claims confirmed  

SciTech Connect

According to data compiled by the National LPG Association and the National Fire Protection Association (NFPA), the majority of accidents involving LPG transport are not caused by the LPG or by malfunction of the container. In a 34 yr period, only 14 incidents occurred in which permanent storage tanks larger than 500 gal were ruptured. Fewer than 600 of the 44,432 railroad derailments between 1969 and 1975 involved uninsulated pressure-tank cars (generally but not entirely cars containing LPG), and of these derailed cars, only 170 lost some or all of their lading. Over 70% of the derailments were caused by track or equipment problems. LPG trucks in the last five years were involved in only 192 highway and bulk plant incidents; of these, 50 involved tank trucks with leakage which was controlled, and 32 involved fire or container rupture. Most fire or rupture accidents occurred in bulk plant facilities during loading operations, but the installation of new emergency shutoff valves, required by NFPA 58, should diminish this type of accident.

1979-08-01T23:59:59.000Z

425

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

D (2005) - Household Propane (Bottled Gas or LPG) Usage Form D (2005) - Household Propane (Bottled Gas or LPG) Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Propane (Bottled Gas or LPG) Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality

426

Methane production from hog manure in small-scale units  

SciTech Connect

Fuel gas production from manure on small-sized (100 to 500 hogs) family-operated farms can become an economically sound proposition within a decade if current price rise trends for fossil fuels continue. Minimum plant cost resulting from an optimistic assumption of the state of digestion technology leads to a fuel gas cost about equal to LPG cost on a Btu basis. Hog farms with over 3000 animals would permit digester gas costs, which would match LPG cost. It may be better to build a plant before LPG costs rise to meet gas costs in order to take advantage of lower plant costs, which will generate future cost savings. The credit for gas produced makes digestion competitive with aerobic methods for manure disposal whose capital costs are much lower.

Silveston, P.L.

1976-01-01T23:59:59.000Z

427

Respiratory symptoms in Indian women using domestic cooking fuels  

SciTech Connect

The effect of domestic cooking fuels producing various respiratory symptoms was studied in 3,701 women. Of these, 3,608 were nonsmoking women who used four different types of cooking fuels: biomass, LPG, kerosene, and mixed fuels. The overall respiratory symptoms were observed in 13 percent of patients. Mixed fuel users experienced more respiratory symptoms (16.7 percent), followed by biomass (12.6 percent), stove (11.4 percent), and LPG (9.9 percent). Chronic bronchitis in chulla users was significantly higher than that in kerosene and LPG users (p less than 0.05). Dyspnea and postnasal drip were significantly higher in the women using mixed fuels. Smoking women who are also exposed to cooking fuels experienced respiratory symptoms more often than nonsmokers (33.3 percent vs 13 percent).

Behera, D.; Jindal, S.K. (Postgraduate Institute of Medical Education and Research, Chandigarh (India))

1991-08-01T23:59:59.000Z

428

Design features and availability of liquefied gas carriers  

SciTech Connect

A discussion covers the growth of seaborne LPG trade, various designs of liquefied gas carriers (independent tank, of semimembrane, and integral tank) for the transportation of LPG within the framework of the Intergovernmental Maritime Consultative Organization (IMCO) code as well as U.S. Coast Guard regulations including insulation systems, ballast storage between the cargo tank and the hull, and methods by which the cargo tank either supports the weight of the cargo or transfers it to the hull; the development of the world liquefied gas carrier fleet including pressurized ships, combination ships (which can carry cargo either partially or fully pressurized and/or fully refrigerated) and the fully refrigerated ships; new design developments; tanker availability; and their economic impact on the transportation costs of seaborne LPG.

Rasch, J.M.B.

1978-01-01T23:59:59.000Z

429

Safety audit of refrigerated liquefied gas facilities  

SciTech Connect

An Exxon Research and Engineering Co. comprehensive review of engineering practices and application of safety requirements at Exxon's world-wide refrigerated liquefied hydrocarbon gas storage and handling installations, which included a field audit of about 90 tanks at 30 locations, showed that catastrophic tank failure was not a credible event with properly operated and maintained tanks designed, constructed, and tested in accordance with API Standard 620, Design and Construction of Large Welded Low-Pressure Storage Tanks, although supplemental requirements were suggested to further enhance safety. The review also showed that any meaningful safety audit should be comprehensive and must include all facilities with careful attention to detail. The review embraces products of -1 to -167C and included LNG, ethylene, LPG, and LPG olefins. Recent and proposed LNG safety legislation; some field audit results; and recommendations as to design, construction, and operation of LNG and LPG storage facilities, marine terminals, and tankers, are also discussed.

Feely, F.J.; Sommer, E.C.; Marshall, B.T.; Palmer, A.J.

1980-01-01T23:59:59.000Z

430

In Sweden, big business is the biggest customer of LP firms  

SciTech Connect

This paper reports that unwittingly, in all likelihood, big brother natural gas, which so often proves detrimental to the interests of LPG marketers by moving into their long-established territories, has actually proven a double-barreled boon in Sweden. On the one hand it has made the national LPG-conscious. On the other hand, because of the sparseness of the population its market area is limited to the western edge of the country as it is not a competitor, nor is it likely to become one in the foreseeable future. It was the introduction of natural gas that gave a healthy boost to LPG's fortune in 1985. In the following year, the market, which had been essentially flat since 1975, suddenly began to expand, and it continued to do so through 1990. Since then, however, it has once again flattened out because of the worldwide recession, from which not nation is totally immune.

Clark, W.W.

1992-10-01T23:59:59.000Z

431

2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Bottled Gas (LPG or Propane) Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

432

Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

he introduction in 1992 of an he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford has produced 1600 units and ordered 600 more, for a total of 2200 units. That's triple the number of LPG units produced and ordered at the same time last year. In addition, the possibility of applying federal and state tax credits is being investigated. Cummins B 5.9G Natural Gas

433

Technology and market assessment of gas-fueled vehicles in New York State. Volume III. Institutional barriers and market assessment. Final report  

SciTech Connect

Volume III deals primarily with the institutional barriers and market forces affecting the potential conversion of vehicles in New York State (NYS) to gaseous fuels. The results of a market research survey are presented along wth the current supply conditions for fuels in NYS. The indigenous resources of gaseous fuels in NYS are identified and quantified. The potential number of vehicles in NYS that are favorable candidates for conversion are estimated, and the effect of these potential gaseous-fueled vehicles on NYS gaseous fuels supplies is presented. The market research survey found that fleet managers appear to be more aware of the specifics of LPG vehicles relative to CNG vehicles. In those fleets with some LPG or CNG vehicles, a tentativeness to further conversion was detected. Many fleet managers are deferring conversion plans due to uncertain conversion costs and future fuel prices. The need for fleet manager education about gaseous fuel vehicle (GFV) operation and economics was identified. NYS currently has an excess supply of natural gas and could support a significant GFV population. However, the pipeline system serving NYS may not be able to serve a growing GFV population without curtailment in the future if natural gas demands in other sectors increase. LPG supply in NYS is dependent primarily on how much LPG can be imported into NYS. A widespread distribution system (pipeline and truck transport) exists in NYS and could likely support a signficant LPG vehicle population. It is estimated that about 35% of the passenger cars and 43% of the trucks in NYS are potential candidates for conversion to CNG. For LPG, about 36% and 46% of passenger cars and trucks are potential candidates. Applying a gross economic screen results in an estimated potential liquid fuel displacement of 1.3 billion gallons in 1990. 20 figs., 63 tabs.

1983-08-01T23:59:59.000Z

434

Field Evaluation of Fumigation Bi-Fuel Systems Installed on Diesel Engine-Generators  

Science Conference Proceedings (OSTI)

Thousands of megawatts of emergency generation provide backup power to industry and businesses in the United States and Canada. Typically, individual size is relatively small, ranging from 100 kW to 2000 kW. Most are diesel-fueled generators. Diesel generators are generally the low-cost option. Their application also allows compliance with regulatory requirements for on-site fuel storage. Use of these generators other than for emergency power is coming under increased scrutiny by environmental regulatory...

2006-01-10T23:59:59.000Z

435

Bi-Fuel Home Refueling (Extended-Range NGV) Assessment (Piped...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Vehicles (PHEV & BEV) Using Standard Dynamometer Protocols Michael Duoba Argonne National Laboratory 6th US - CHINA Electric Vehicles and Battery Technology WORKSHOP August...

436

Storage opportunities in Arizona bedded evaporites  

DOE Green Energy (OSTI)

Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-01T23:59:59.000Z

437

Oil, gas tanker industry responding to demand, contract changes  

SciTech Connect

Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

True, W.R.

1998-03-02T23:59:59.000Z

438

,"Energy Source","State Energy Data System","Annual/Monthly Energy Review"  

U.S. Energy Information Administration (EIA) Indexed Site

A. Comparison of fuel detail for the State Energy Data System and the Annual and Monthly Energy Review data systems" A. Comparison of fuel detail for the State Energy Data System and the Annual and Monthly Energy Review data systems" ,"Energy Source","State Energy Data System","Annual/Monthly Energy Review" "Consumption Sector","Category","Fuel Detail","Fuel Detail" "Residential ","Coal","Coal","Coal" "Residential ","Natural Gas","Natural Gas","Natural Gas" "Residential ","Petroleum","Distillate Fuel","Distillate Fuel" "Residential ","Petroleum","Kerosene","Kerosene" "Residential ","Petroleum","LPG","LPG"

439

Japan taxis already on LNG  

SciTech Connect

Most of Japan's taxi fleet has been using liquefied propane or butane gas for more than a decade. About 45,000 taxis in Tokyo, logging an average of approx. 75,000 mi/yr, use LPG because of significant (50%) savings on fuel costs. LPG use requires good engineering of the vehicle and rigorous maintenance, including a mandatory change of gas tanks every two years. Peoples Gas Light and Coke Co. is planning to fuel its fleet of automotive vehicles with natural gas.

Kikuchi, K.D.

1980-09-15T23:59:59.000Z

440

Ford Motor's Feaheny urges action on alternative fuels  

SciTech Connect

The privately operated automobile and truck are seen as the dominant transportation system for people and for goods, now and in the future. Alternative forms of fuel are discussed: propane or LPG, alcohol-methanol and/or ethanol, electric vehicles, hydrogen, and natural gas. It is concluded that alternate fuel development should proceed now; that LPG or propane at Ford is feasible now; that methanol, made from natural gas or coal gas is probably the long term answer; and that compressed natural gas should be developed.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technology's role in Alberta's Golden Spike miscible project  

SciTech Connect

A gravity-controlled gas-driven miscible bank is expected to recover 95% of the 320 million bbl of oil-in- place in Golden Spike, a Devonian pinnacle reef reservoir. Field application required both advanced technology to demonstrate feasibility, and an economic solution to the problem of obtaining the vast quantities of LPG required. The miscible bank is generated by stripping LPG from the reservoir oil which is cycled through surface facilities and returned to the reservoir. Technology's part included studies to resolve bank placement, size and composition, and to overcome plugging problems encountered in injecting the stripped crude.

Larson, V.C.; Peterson, R.B.; Lacey, J.W.

1967-01-01T23:59:59.000Z

442

Upgrading of light Fischer-Tropsch products  

SciTech Connect

Work during this quarter concentrated on Task 4 of the study. The objective of this task is to evaluate the application of the UOP/BP Cyclar* process to the upgrading of Fischer-Tropsch LPG products into aromatics. Results from pilot plant studies were translated into commercial yield estimates as described in Quarterly Report No. 7. This quarterly report documents an economic evaluation of the Cyclar process for converting LPG into aromatics in a Fischer-Tropsch upgrading complex. 1 ref., 11 figs., 9 tabs.

1989-07-11T23:59:59.000Z

443

Shipping LNG: new regulations and the 1964-77 record  

SciTech Connect

A discussion covers the Port and Tanker Safety Act of 1978 which was signed into U.S. law 10/17/78, and its various special requirements for LPG or LNG shipments entering U.S. ports: a major report from Poten and Partners Inc. on the safety record of liquefied gas ships, which shows that the cargoes remained unaffected despite incidents common to all shipping; the potential effects of U.S. requirements for segregated ballast and for fixed inert gas systems, especially for U.S. fleets of ships largely more than 15 years old; and the media furor over the docking of the LPG carrier Cavendis.

1979-02-01T23:59:59.000Z

444

Gas, Mister, not gasoline  

SciTech Connect

A prototype rechargeable CNG commuter car with an LP-gas standby reserve avoids the need for area fueling stations while providing an emergency range-extending technique through its LPG system. Operating on a household power line, the charging compressor fills each tank to 1000 psig at an electric cost of less than 7 cents/100 CF of compressed gas. The four fuel tanks weigh only 120 lb and give the small Opel GT car a range of 75 miles. A 10-gal LPG tank adds 300 miles to this range.

Axworthy, R.T.

1982-10-01T23:59:59.000Z

445

Process for recovery of liquid hydrocarbons  

SciTech Connect

Methane is recovered as a gas for discharge to a pipeline from a gas stream containing methane and heavier hydrocarbons, principally ethane and propane. Separation is accomplished by condensing the heavier hydrocarbons and distilling the methane therefrom. A liquid product (LPG) comprising the heavier hydrocarbons is subsequently recovered and transferred to storage. Prior to being discharged to a pipeline, the recovered methane gas is compressed and in undergoing compression the gas is heated. The heat content of the gas is employed to reboil the refrigerant in an absorption refrigeration unit. The refrigeration unit is used to cool the LPG prior to its storage.

Millar, J.F.; Cockshott, J.E.

1978-04-11T23:59:59.000Z

446

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.3 Relative Standard Errors for Table 4.3;" 4.3 Relative Standard Errors for Table 4.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)" ,"Total United States" "Value of Shipments and Receipts"

447

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

448

Alternative Fueling Station Locations

Alternative fueling...  

Open Energy Info (EERE)

propaneliquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas (LNG), as of April 4, 2012.

2010-12-14T00:04:52Z 2012-04-04T21:12:52Z To...

449

Published: April 28, 2011 r 2011 American Chemical Society 629 dx.doi.org/10.1021/cs200092c |ACS Catal. 2011, 1, 629635  

E-Print Network (OSTI)

and diesel generate harmful pollutants such as nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC), particulates, and sulfur oxides (SOx). Liquefied petroleum gas (LPG), an alternative cleaner burning fuel, is gaining ground for use in internal combustion engines.1 Liquefied petroleum gas has

Poeppelmeier, Kenneth R.

450

Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors  

E-Print Network (OSTI)

...................................................................................................................................... 14 Nitrous Oxide Emissions from Nitrogen Fertilizer Applications in Corn Fields........................................................ 34 Appendix B: Nitrous Oxide Emissions from Nitrogen Fertilizer Applications in Corn Fields) LHV lower heating value LPG liquefied petroleum gas LS low-sulfur LSD low-sulfur diesel MTBE methyl

Argonne National Laboratory

451

Atmospheric Environment 39 (2005) 28292838 Diurnal and seasonal cycles of ozone precursors observed from  

E-Print Network (OSTI)

characteristics. Ethane and propane, largely originated from leakage of natural gas or liquefied petroleum gases); Non-methane hydrocarbons (NMHCs); Liquefied petroleum gases (LPG); Temperature inversion ARTICLE) and nitrogen oxides (NO+NO2 ¼ NOx), ozone is photochemically pro- duced and can accumulate to hazardous levels

Wingenter, Oliver W.

452

V O L U M E 3 Well-to-Tank Energy Use and  

E-Print Network (OSTI)

Change L.H2 liquid hydrogen xi #12;LNG liquefied natural gas LP linear programming LPG liquefied;1 Introduction Various fuels are being proposed for use in fuel-cell vehicles (FCVs) and hybrid electric vehicles). We call the newly proposed diesel fuel FLSD. In October 1993, California began to require use

Argonne National Laboratory

453

You Are At Risk! Water supply  

E-Print Network (OSTI)

that ignited after the firefighters left.) Place liquefied petroleum gas (LPG) tanks and fuel storage. This will eliminate an ignition source for firebrands, especially during hot, dry weather. Remember, after you have run on batteries, some run on household current and others get their main power source form

454

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

Gases Natural Gas Petroleum Coke Source: U.S. DOE/EIA, 2010gpetroleum products Tar Benzene IEA-Typical IEA-Typical Sourcepetroleum 0.45% Electricity products LPG 0.01% Raw coal Purchased coke Washed coal Other washed coal Source:

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

455

Reversible Fuel Cells Workshop Summary Report  

E-Print Network (OSTI)

% Natural Gas ICE 23% 35% Diesel ICE 44% NG PEMFC 24% 36% NG PEMFC (DOE target) 40% 40% NG SOFC 30% 48% LPG SOFC 47% Diesel SOFC 46% NG PAFC 40% NG MCFC 49% US average mix (baseline) 38% 38% CA average mix,000 NG ICE NG PEMFC NG PEMFC (DOE target) NG SOFC US Electricity Mix Coal Electricity NG Electricity CA

456

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

457

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

458

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

459

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

460

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural ","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

462

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

463

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2010;" 3 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

464

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

465

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

466

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

467

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

468

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

469

Table E1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

470

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

471

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel Purposes by" Nonfuel Purposes by" " Census Region, Industry Group, and Selected Industries, 1994: Part 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Residual","Distillate","Natural Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000 ","Other(d)","Row"

472

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," ",," ",," "," "," ",," ",," "," "," " " "," "," ",,,," "," ",,," ",," ",," ",,"Shipments" "NAICS"," ",,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke and"," ",,"of Energy Sources"

473

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

474

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

475

Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

476

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010;" 3 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

477

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

478

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section V. Integrated Hydrogen and Fuel Cell  

E-Print Network (OSTI)

refineries HC hydrocarbon RFG reformulated gasoline NA North American NNA non-North American FG flared gas CNG compressed natural gas LNG liquefied natural gas LPG liquefied petroleum gas (propane) Et compressed hydrogen. The 40-foot buses will be built on a Van Hool (from Belgium) bus platform in a hybrid

479

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

CH2 NG MeOH NG n.e. MeOH coal n.e. MeOH Ethanol Ethanol woodTO END USERS (U. S. Fuel --> Coal CG RFG Diesel FTD Fuel oilLPG CNG Nuclear Feedstock ----> Coal Fuel dispensing Fuel

Delucchi, Mark

2005-01-01T23:59:59.000Z

480

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

CH2 NG MeOH NG n.e. MeOH coal n.e. MeOH Ethanol Ethanol woodTO END USERS (U. S. Fuel --> Coal CG RFG Diesel FTD Fuel oilLPG CNG Nuclear Feedstock ----> Coal Fuel dispensing Fuel

Delucchi, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg lpg bi-fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Postgraduate Handbook Courses, programs and any arrangements for programs including staff  

E-Print Network (OSTI)

corn oil; Camelina oil. One of the following: Trans-Esterification, Esterification, Hydrotreating-process renewable biomass and petroleum. 5 POTENTIALLY RELEVANT I Naphtha, LPG Camelina oil Hydrotreating 5 including peat, dung, plant-oils, bees wax, rendered animal fats, draft animals, natural derived sources

Benatallah, Boualem

482

Introduction  

Science Conference Proceedings (OSTI)

...parameter In natural logarithm (base e ) LNG liquefied natural gas log common logarithm (base 10) LPG liquefied petroleum gas LSI large-scale integrated (circuit) LT long transverse (direction) LTE local thermodynamic equilibrium LTS low-temperature sensitization LVDT linear variable...

483

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

~ of AFVs, Including Air-Toxic Vehicle Type Dedi. CNGDF CNG EV Dedi. M85 EE3 DedL M100 r---1 DF LPG M85 FFV J E85decrease. Vehicle Type Oedi. CNG DF CNG EV Dedi. M85 Dedi.

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

484

Alternative Fueling Options for the University of Colorado Fleet Admir Draganovic1  

E-Print Network (OSTI)

Sales (million) H2 hybrid fuel cell Electric CNG/LPG Plugin hybrid diesel Diesel hybrid Conventional and wasteful for everyone · 30 years ago ­ Synfuels (oil shale, coal) · 22 years ago ­ Methanol (and CNG) · 18 for everyone · 30 years ago ­ Synfuels (oil shale, coal) · 22 years ago ­ Methanol (and CNG) · 18 years ago

Colorado at Boulder, University of

485

Published by ORNL's Energy Efficiency and Renewable Energy Program (www.ornl.gov/Energy_Eff) No. 1 1999 In addition to saving  

E-Print Network (OSTI)

800 1995 2000 2005 Year #Vehicles LPG CNG/LNG M85/M100 E85/E95 Electricity Hydrogen Total #12;CURRENT 2030 2035 2040 2045 2050 Year AlternativeVehicle(%ofallLDVs). New vehicle sales Total market penetration Early Com m ercialization Pre-Com m ercial Sales Prototype Dem onstration & Product Developm ent

486

Sustainable Transportation Energy Pathways Research  

E-Print Network (OSTI)

800 1995 2000 2005 Year #Vehicles LPG CNG/LNG M85/M100 E85/E95 Electricity Hydrogen Total #12;CURRENT 2030 2035 2040 2045 2050 Year AlternativeVehicle(%ofallLDVs). New vehicle sales Total market penetration Early Com m ercialization Pre-Com m ercial Sales Prototype Dem onstration & Product Developm ent

Handy, Susan L.

487

Transportation Strategies to Improve Air Quality  

E-Print Network (OSTI)

800 1995 2000 2005 Year #Vehicles LPG CNG/LNG M85/M100 E85/E95 Electricity Hydrogen Total #12;CURRENT 2030 2035 2040 2045 2050 Year AlternativeVehicle(%ofallLDVs). New vehicle sales Total market penetration Early Com m ercialization Pre-Com m ercial Sales Prototype Dem onstration & Product Developm ent

Delaware, University of

488

DeRuyter Feasibility Report, May 2012 Page 1 ACKNOWLEDGEMENTS  

E-Print Network (OSTI)

Sales (million) H2 hybrid fuel cell Electric CNG/LPG Plugin hybrid diesel Diesel hybrid Conventional and wasteful for everyone · 30 years ago ­ Synfuels (oil shale, coal) · 22 years ago ­ Methanol (and CNG) · 18 for everyone · 30 years ago ­ Synfuels (oil shale, coal) · 22 years ago ­ Methanol (and CNG) · 18 years ago

Collins, Gary S.

489

Mevr. Laurence Turcksin verdedigt haar doctoraat op maandag 27 juni 2011 De openbare verdediging tot het behalen van de academische graad van Doctor in de Toegepaste  

E-Print Network (OSTI)

vehicle technologies (such as LPG, CNG, biofuels, electric or hybrid electric cars) can provide of Environmentally Friendlier cars: A Socio-Economic Evaluation" Promotor: Prof. dr. Cathy Macharis Na de openbare the purchase of environmentally friendlier cars by private households. A particular focus is on the financial

Glineur, François

490

DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING Research at the Schulich School of Engineering  

E-Print Network (OSTI)

oil, natural gas, liq- uefied petroleum gases (LPG) and natural gas liquids(NGL), coal, coke. The benefits and costs associated with environmental policy may motivate people with com- mon interest that an environmental policy will increase production cost, they will form an interest group to lobby against

Garousi, Vahid

491

Institute for the Study of International Aspects of Competition An Analysis of Incentives  

E-Print Network (OSTI)

oil, natural gas, liq- uefied petroleum gases (LPG) and natural gas liquids(NGL), coal, coke. The benefits and costs associated with environmental policy may motivate people with com- mon interest that an environmental policy will increase production cost, they will form an interest group to lobby against

Rhode Island, University of

492

Introduction to Electric Systems Expansion Planning  

E-Print Network (OSTI)

fuel oil), jet fuel, kerosene, petroleum coke (converted to liquid petroleum, see Technical Notes (LPG) LG 12.805 per gallon 139.039 Motor Gasoline MG 19.564 per gallon 156.425 Petroleum Coke PC 32 field levels. 5. Cost of energy: The cost of electric energy, which is heavily determined by planning

McCalley, James D.

493

JOURNAL DE PHYSIQUE IV Colloque C9, supplCment au Journal de Physique 111,Volume 3, decembre 1993  

E-Print Network (OSTI)

duty gas turbines operating in power plants can burn various fuels ranging from natural gas to heavy is called to handle a wide variety of fuels including: light hydrocarbons (naturalgas, LPG's, etc.); process gases (coke-ovengas, refinery flare gas, coal- derived gas [4], biogas); true petroleum distillates

Paris-Sud XI, Université de

494

EVALUATION OF RISKS IN THE LIFE CYCLE OF PHOTOVOLTAICS IN A COMPARATIVE CONTEXT V.M. Fthenakis1,2 H.C. Kim1, A. Colli3, and C. Kirchsteiger3  

E-Print Network (OSTI)

unless a significant change occurs in PV production technologies. Coal Oil NG LPG Nuclear (Chernobyl) Nulcear (except Chernobyl) PV, PSI PV, BNL Fatalities 100 101 102 103 104 105 434 3000 100 600 125 2 9000-33000 100 Figure 6: Maximum fatalities from accidents across energy sectors. The number for Chernobyl

495

Ris's mission is to create new knowledge based on world-class research, and to ensure that our knowledge is used to promote the development of an  

E-Print Network (OSTI)

research topics: · Fuel cells · Wind · System analysis · Materials science · Bioenergy Fuel Cells and Solid Distributor Service provider ·Catalyst & material ·Reformer ·FPS ·cells ·CH4 ·LPG ·H2 ·NG ·diesel ·Integration

496

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation...  

Buildings Energy Data Book (EERE)

2005 Natural Gas 56% 57% 55% 46% 45% 45% 45% Electricity 8% 18% 26% 36% 42% 42% 43% Fuel Oil 14% 10% 7% 5% 2% 2% 2% LPG 5% 3% 2% 5% 6% 8% 8% Other (1) 17% 12% 10% 8% 4% 3% 2% Total...

497

Well fracturing method using liquefied gas as fracturing fluid  

SciTech Connect

A method is described for fracturing an oil well or gas well with a mixture of liquid carbon dioxide and liquid petroleum gas. The objective is to be able to inject the liquid into the well bore at a relatively high pumping rate without causing the liquid to boil. Prior to injection, both the liquid CO/sub 2/ and the LPG are held in separate supply tanks at a temperature and pressure at which the liquid phase will not boil. The temperature of the LPG is substantially higher than the liquid CO/sub 2/. During the pumping operation, part of the liquid CO/sub 2/ and all of the LPG are fed through a heat exchanger. In the exchanger, the amount of heat transferred from the LPG to the liquid CO/sub 2/ is enough to vaporize the liquid. The CO/sub 2/ vapor is then circulated back into the CO/sub 2/ tank. The recycled vapor thus maintains the liquid-vapor phase in the tank at equilibrium, so that the liquid will not boil at the desired pumping rate. (4 claims)

Zingg, W.M.; Grassman, D.D.

1974-10-22T23:59:59.000Z

498

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... 500 gal 12 in3 200 gal 8.0 in3 100 gal 4.8 in3 50 gal 2.8 in3 15 gal 0.65 in3 5 gal 0.37 in3 1 gal 0.39 in3 100 gal 5.9 in3 LPG Volume Transfer ...

2013-07-05T23:59:59.000Z

499

Ablative Laser Propulsion: An Update, Part II  

Science Conference Proceedings (OSTI)

This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the experimental technique developed for determination of specific impulses from plasma plume imaging with an intensified CCD camera.

Pakhomov, Andrew V.; Lin Jun; Thompson, M. Shane [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Information Systems Laboratories, Inc., Brownsboro, Alabama, 35741 (United States)

2004-03-30T23:59:59.000Z

500

A Legendre--Petrov--Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations  

Science Conference Proceedings (OSTI)

A Legendre--Petrov--Galerkin (LPG) method for the third-order differential equation is developed. By choosing appropriate base functions, the method can be implemented efficiently. Also, this new approach enables us to derive an optimal rate of convergence ... Keywords: Korteweg--de Vries equation, Legendre--Petrov--Galerkin and Chebyshev collocation, third-order differential equation

Heping Ma; Weiwei Sun

2000-10-01T23:59:59.000Z