National Library of Energy BETA

Sample records for lpg kerosene total

  1. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  2. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  3. "Table A10. Total Consumption of LPG, Distillate Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Total",11681,21576,70668,"W",21384,80123,"W",315,0,9.3 "Employment Size" " Under 50",1824,6108,928,"W",5936,928,"Q","Q",0,37.1 " 50-99","W",2450,6052,573,"W",6052,"W","W",0,20.7 ...

  4. LPG in Venezuela

    SciTech Connect (OSTI)

    Romero, O.

    1986-01-01

    The use of LPG for domestic consumption in Venezuela began in late 1929 when LPG was imported in lots of 500 cylinders. These cylinders were then returned to the U.S. for refilling. Total consumption at that time was some 40M/sup 3/ (250 barrels) per year and by 1937 had grown to some 540M/sup 3/ (3,400 barrels) per year. Local production of LPG from gas began in the mid thirties with a small cooling plant in the Mene Grande Field in the Lake Maracaibo area, the first field to produce oil in Venezuela (1914). This plant produced gasoline for a refinery and some of the first LPG used in Venezuela for domestic consumption. The capacity of this plant was insufficient to satisfy the growing demand for LPG which was supplied from refinery production until the development of the natural gas processing industry. At the present time, Venezuelan refineries are net consumers of LPG.

  5. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  6. Kerosene controversy

    SciTech Connect (OSTI)

    McClintock, M.

    1985-10-01

    Controversy over warnings about the safety of kerosene space heaters, which were felt by many to have unacceptable fire and air pollution risks, has led to improved models. New kerosene heaters have birdcage grilles to prevent burns and tipover shut-off switches to prevent fires. They are available in portable and console models. Indoor pollution tests which found significantly higher levels of carbon monoxide, nitrogen oxide, and particulates in monitored houses also found that the threshold for emission problems is 85/sup 0/F. The Consumer Product Safety Commission recommends that even the new models be operated with open doors. Unvented gas heaters introduce the same hazards, while asbestos, formaldehyde, and other substances also represent health hazards. The author provides guidelines for buying and operating a kerosene heater.

  7. Utilization of LPG for vehicles in Japan

    SciTech Connect (OSTI)

    Kusakabe, M.; Makino, M.; Tokunoh, M.

    1988-01-01

    LPG demand for vehicles amounts to 1.8 MM tons annually, equivalent to about 11% of the total LPG consumption in Japan. The feature which dominates the demand of LPG as a vehicle fuel in Japan is the high penetration of LPG powered vehicles into taxi fleets. This has been made possible following the rationalization in the taxi business in the early 1960s. Today, three quarters of LPG vehicles, numbering some 235,000 while representing only about 1% of the total number of vehicles, account for nearly 93% of all taxicabs.

  8. Portable kerosene heater controversy

    SciTech Connect (OSTI)

    Decker, M.O.

    1982-04-01

    The National Kerosene Heater Association reports sales of slightly fewer than two million heaters in the United States between 1975 and 1979. More than one million were sold in 1980 and they project sales of eight to ten million by 1985. Kerosene heater dealers are urged to post warnings to customers specifying the grade of kerosene to be used. 1-K kerosene has a maximum sulfur content of .04% and is generally suitable for use in nonflue-connected burners. 2-K kerosene, with a sulfur content of as much as .30% should be used only in flue-connected burner applications. (JMT)

  9. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  10. Catalytic conversion of LPG

    SciTech Connect (OSTI)

    Pujado, P.R.; Vora, B.V.; Mowry, J.R.; Anderson, R.F.

    1986-01-01

    The low reactivity of light paraffins has long hindered their utilization as petrochemical feedstocks. Except for their use in ethylene crackers, LPG fractions have traditionally been consumed as fuel. New catalytic processes now being commercialized open new avenues for the utilization of LPG as sources of valuable petrochemical intermediates. This paper discusses processes for the dehydrogenation and aromatization of LPG.

  11. The SONATRACH jumbo LPG plant

    SciTech Connect (OSTI)

    Ahmed Khodja, A.; Bennaceur, A.

    1988-01-01

    The authors aim is to give to the 17 TH world gas conference a general idea on SONATRACH LPG PLANT which is located in the ARZEW area. They develop this communication as follows: general presentation of LPG plant: During the communication, the author's will give the assistance all the information concerning the contractions the erection's date and the LPG PLANT process, start-up of the plant: In this chapter, the authors's will describe the start-up condition, the performance test result, the flexibility test result and the total mechanical achievement of the plant; operation by SONATRACH: After the success that obtained during the mechanical achievement and performance test, the contractor handed over the plant to SONATRACH.

  12. LPG in Mexico

    SciTech Connect (OSTI)

    Miles, E.L.

    1986-01-01

    The authors review LPG in Mexico. They attempt to project numbers to the year 2000 using a supply/demand comparison.

  13. Africa gaining importance in world LPG trade

    SciTech Connect (OSTI)

    Haun, R.R.; Otto, K.W.; Whitley, S.C.

    1997-05-12

    Major LPG projects planned or under way in Africa will increase the importance of that region`s presence in world LPG trade. Supplies will nearly double between 1995 and 2005, at which time they will remain steady for at least 10 years. At the same time that exports are leveling, however, increasing domestic demand for PG is likely to reduce export-market participation by Algeria, Nigeria, Egypt, and Libya. The growth of Africa`s participation in world LPG supply is reflected in comparisons for the next 15--20 years. Total world supply of LPG in 1995 was about 165 million metric tons (tonnes), of which Africans share was 7.8 million tonnes. By 2000, world supply will grow to slightly more than 200 million tonnes, with Africa`s share expected to increase to 13.2 million tonnes (6.6%). And by 2005, world LPG supply will reach nearly 230 million tonnes; Africa`s overall supply volumes by that year will be nearly 16.2 million tonnes (7%). World LPG supply for export in 1995 was on order of 44 million tonnes with Africa supply about 4 million tonnes (9%). By 2005, world export volumes of LPG will reach nearly 70 million tonnes; Africa`s share will have grown by nearly 10 million tonnes (14.3%).

  14. Make aromatics from LPG

    SciTech Connect (OSTI)

    Doolan, P.C. ); Pujado, P.R. )

    1989-09-01

    Liquefied petroleum gas (LPG) consists mainly of the propane and butane fraction recovered from gas fields, associated petroleum gas and refinery operations. Apart from its use in steam cracking and stream reforming, LPG has few petrochemical applications. The relative abundance of LPG and the strong demand for aromatics - benzene, toluene and xylenes (BTX) - make it economically attractive to produce aromatics via the aromatization of propane and butanes. This paper describes the Cyclar process, which is based on a catalyst formulation developed by BP and which uses UOP's CCR catalyst regeneration technology, converts propane, butanes or mixtures thereof to petrochemical-quality aromatics in a single step.

  15. Jet fuel from LPG

    SciTech Connect (OSTI)

    Maples, R.E.; Jones, J.R.

    1983-02-01

    Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

  16. LPG emergency response training

    SciTech Connect (OSTI)

    Dix, R.B.; Newton, B.

    1995-12-31

    ROVER (Roll Over Vehicle for Emergency Response) is a specially designed and constructed unit built to allow emergency response personnel and LPG industry employees to get ``up close and personal`` with the type of equipment used for the highway transportation of liquefied petroleum gas (LPG). This trailer was constructed to simulate an MC 331 LPG trailer. It has all the valves, piping and emergency fittings found on highway tankers. What makes this unit different is that it rolls over and opens up to allow program attendees to climb inside the trailer and see it in a way they have never seen one before. The half-day training session is composed of a classroom portion during which attendees will participate in a discussion of hazardous material safety, cargo tank identification and construction. The specific properties of LPG, and the correct procedures for dealing with an LPG emergency. Attendees will then move outside to ROVER, where they will participate in a walkaround inspection of the rolled over unit. All fittings and piping will be representative of both modern and older equipment. Participants will also be able to climb inside the unit through a specially constructed hatch to view cutaway valves and interior construction. While the possibility of an LPG emergency remains remote, ROVER represents Amoco`s continuing commitment to community, education, and safety.

  17. Custody transfer measurements for LNG/LPG

    SciTech Connect (OSTI)

    Williams, R.A.

    1984-04-01

    The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

  18. New method developed for LPG offshore loading

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    An innovative concept for refrigerated LPG offshore loading has been developed by TOTAL and Enterprise D'Equipments Mecaniques at Hydrauliques. Known as CHAGAL, the system integrates with the catenary anchor leg mooring offshore loading system commonly used for crude oil. CHAGAL provides a suitable answer to short-term development schemes of LPG trade. It can be adapted for possible extrapolation to cryogenic temperatures of LNG and it opens a new way to the development of offshore liquefaction projects for which the offloading of production is still an unsolved key problem.

  19. LPG fuel shutoff system

    SciTech Connect (OSTI)

    Watanabe, T.; Miyata, K.

    1988-01-26

    An LPG fuel shutoff system for use with a vehicle having an LPG fuel engine and having a solenoid valve to supply and shut off LPG fuel is described including: a relay having a relay contact which is closed when an electric current is fed to a coil of the relay; a pressure switch having a first position and a second position and adapted to be in the first position when engine oil pressure rises above a predetermined level; and an oil lamp adapted to light when the engine oil pressure is below the predetermined level, and wherein a solenoid coil of the solenoid valve is connected at one side to a battery through an ignition switch and a fuel switch. The solenoid coil also is connected, at another side of the solenoid coil, in series to the relay contact and the pressure switch in the second position respectively, the coil of the relay is connected to the solenoid valve side of the ignition switch through a starting switch, the oil lamp is connected between the ignition switch and the pressure switch.

  20. Kerosene space heaters--combustion technology and kerosene characteristics

    SciTech Connect (OSTI)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to be highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.

  1. Industrial cooperation in the field of LPG

    SciTech Connect (OSTI)

    Stefano, M.; Trollux, J.; Dune, J.J.

    1988-01-01

    The years to come should confirm the availability of LPG worldwide and enable future users in developing countries to satisfy energy requirements which today are only partly covered, if at all. This paper is designed to point the benefits that these new LPG markets could derive from active cooperation with experienced companies operating in mature LPG markets.

  2. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E. )

    1988-10-01

    In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

  3. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E.

    1988-01-01

    As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

  4. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur Distillate Fuel Oil, Greater than 500 ppm ...

  5. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  6. Dehydrocyclodimerization, converting LPG to aromatics

    SciTech Connect (OSTI)

    Johnson, J.A.; Hilder, G.K.

    1984-03-01

    British Petroleum (BP) recognized the potential need for ways of exploiting feedstocks with low opportunity cost and commenced a research program at its Sunbury Research Center to discover and develop a catalyst for the conversion of LPG to a liquid product. The successful outcome of this research program is the Cyclar /SUP SM/ process, a joint development of UOP Process Division and British Petroleum. The Cyclar process offers a single-step conversion of LPG to an aromatic product which has a highvalue, is easily transported and useful both to fuel and petrochemical applications. The LPG producer can invest in a single unit, avoiding the need to identify and develop markets for multiple C/sub 3/ and C/sub 4/ products. This catalytic process, which employs UOP Continuous Catalyst Regeneration (CCR) technology, can also be applied to refinery light ends to produce a high-quality gasoline. Aromatic and hydrogen yields from propane and butane feeds surpass those obtained from catalytic reforming of Light Arabian naphtha. This paper describes the principles of the Cyclar process and illustrates yields and economics for several interesting applications.

  7. New LPG loss-control standards

    SciTech Connect (OSTI)

    Blomquist, D.L. )

    1988-12-01

    API'S (American Petroleum Institute) Committee on Liquified Hydrocarbon Gas and the Committee and Safety and Fire Protection have modified Standard 2510 and added a supplemental Standard 2510A, in response to bad LPG incidents. Requirements have been tightened, with a major objective to prevent LPG releases. Fire protection Standards for the design and operation of LPG facilities are specifically revised. Following important changes are specifically discussed: Versel design, site selection, spacing and impounding; foundations and supports; and piping requirements.

  8. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  9. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  10. Fuel oil and kerosene sales 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  11. LPG Electrical, Inc | Open Energy Information

    Open Energy Info (EERE)

    LPG Electrical, Inc Jump to: navigation, search Name: ANGWIN Electrical Address: 13833 Wellington Trace Rd. 4 Place: Wellington, Florida Zip: 33414 Sector: Services Product:...

  12. Impact of foreign LPG operations on domestic LPG markets

    SciTech Connect (OSTI)

    Jones, C.

    1981-01-01

    During 1978 the federal government passed legislation allowing a major increase in natural gas prices and offering hope that some portion of the supply will be allowed to reach free market levels. The mechanism for decontrol of crude oil was also put into effect. This favorable government action and higher world oil prices have led to a major resurgence in domestic exploration. In addition to the supply effects, there appears to have been a substantial demand response to the latest round of world oil price increases. The purpose of this paper is to discuss how these events have affected domestic LPG markets and pricing.

  13. LPG dealers, manufacturers report diverse effects of recession and war

    SciTech Connect (OSTI)

    Prowler, S.

    1991-01-01

    The author presents a survey of LPG marketers. The effects of the Persian Gulf War and U.S. recession on the LPG industry are discussed.

  14. Algeria LPG pipeline is build by Bechtel

    SciTech Connect (OSTI)

    Horner, C.

    1984-08-01

    The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

  15. LPG in Argentina

    SciTech Connect (OSTI)

    Calcagno, O.

    1986-01-01

    The GNP for Argentina in 1985 was of about 70 billion dollars ( a little over 2200 dollars/capita), the same as 1970 in real terms; foreign debt being over 40 billion. After several years of negative GNP growth, it will probably show a moderate increase in 1986. Industry represents 21 percent of the GNP, agriculture 16 percent. Total exports 12-14 percent. Imports are 8-9 percent. Historical investment of the energy sector was about 3.4 percent. The State, the Public Sector, plays an important role in every aspect, concentrating about 50 percent of the economy. For example, the Central Government sets official prices for most of the forms of energy. Normally, these prices do not relate to international price levels. The country has to catch up with the developed world and it is striving to increase productivity. There is a need to get its products to the external market as well as to attract foreign investment. The government has apparently become fully aware of that, being now a matter of how those goals are accomplished. It may take some time and reeducation of people at all levels to do so.

  16. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  17. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  18. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  19. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  20. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  1. Overfilling of cavern blamed for LPG blasts

    SciTech Connect (OSTI)

    Not Available

    1992-07-06

    Three explosions and a fire Apr. 7 at an LPG salt dome storage cavern near Brenham, Tex., were triggered when the cavern was overfilled, the Texas Railroad Commission (TRC) has reported. This paper reports that a TRC investigation found that LPG escaped to the surface at the Brenham site through brine injection tubing after excessive fill from an LPG line forced the cavern's water level below the brine tubing's bottom. At the surface, LPG was released into a brine storage pit where it turned into a dense, explosive vapor. At 7:08 a.m., the vapor was ignited by an unknown source. The resulting blast killed three persons and injured 19 and brought operations at the site to a halt.

  2. Far East LPG sales will grow faster than in West

    SciTech Connect (OSTI)

    1996-12-30

    LPG sales through 2010 in regions east of the Suez Canal (East of Suez) will grow at more than twice those in regions west of the canal. East-of-Suez sales will grow at more than 4.0%/year, compared to slightly less than 2.0%/year growth in sales West of Suez. East-of-Suez sales will reach 92 million tons/year (tpy) by 2010, accounting for 39% of the worldwide total. This share was 31% in1995 and only 27% in 1990. LPG sales worldwide will reach 192 million tons in 2000 and 243 million tpy by 2010. In 1995, they were 163 million tons. These are some of the major conclusions of a recent study by Frank R. Spadine, Christine Kozar, and Rudy Clark of New York City-based consultant Poten and Partners Inc. Details of the study are in the fall report ``World Trade in LPG 1990--2010``. This paper discusses demand segments, seaborne balance, Western sources, largest trading region, North American supplies, and other supplies.

  3. Device for collecting emissions from kerosene heaters

    SciTech Connect (OSTI)

    Gilloti, N.J.

    1984-09-04

    An apparatus for both improving the heat distribution throughout a room from a portable kerosene heater and for collecting undesirable emissions resulting from the burning of the kerosene, includes a base adapted to be mounted on the top of the heater, the base supporting a vertically extending shaft on which is mounted a heat-driven fan formed of either paper or metal, and a disposable disk mounted a spaced distance above the fan on the same shaft, the disk serving as a collector for the undesirable emissions. When the device is placed on an operating kerosene heater, the rising hot air and gases from the heater cause the fan to rotate, which in turn causes emissions from the burning fuel to move upwardly in a more or less cylindrical path. As the products of combustion move upwardly, certain emissions therein such as soot, oily vapors, etc. deposit or condense onto the surface of the spinner and disposable disk.

  4. Fuel Oil and Kerosene Sales 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil and Kerosene Sales 2014 December 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  5. Conception and construction of an LPG tank using a composite membrane technology

    SciTech Connect (OSTI)

    Fuvel, P.; Claude, J.

    1985-03-01

    TECHNIGAZ and TOTAL C.F.P. have developed a new LPG storage technology derived from the membrane concept used for LNG storage and transportation. This technology called GMS uses a composite membrane as primary barrier. A 2 000 m/sup 3/ storage pilot unit, based on that concept, is under construction in TOTAL's refinery at DUNKIRK (France) since September 1983.

  6. Fuel oil and kerosene sales, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  7. LPG odorization with an audit trail

    SciTech Connect (OSTI)

    Astala, A.A.

    1995-12-01

    In this article I have tried to cover a very broad subject in a very limited time while only touching on a few of the ways you could odorize LPG and have an audit trail. I would recommend that if you are interested in this type of odorizing for LPG, you contact your odorant manufacturer and two or three odorant equipment manufacturers and talk to them about what you would like and get their recommendations. By talking to more then one manufacturer you may want to incorporate the ideals of two or three manufacturers into your odorant system to have a system that meets all your needs and requirements.

  8. Fire safety of LPG in marine transportation

    SciTech Connect (OSTI)

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-08-01

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  9. Product transfer service chosen over LPG flaring

    SciTech Connect (OSTI)

    Horn, J.; Powers, M.

    1994-07-01

    Seadrift Pipeline Corp. recently decommissioned its Ella Pipeline, an 108-mile, 8-in. line between the King Ranch and a Union Carbide plant at Seadrift, Texas. The pipeline company opted for the product transfer services of pipeline Dehydrators Inc. to evacuate the ethane-rich LPG mixture from the pipeline instead of flaring the LPG or displacing it with nitrogen at operating pressures into another pipeline. The product transfer system of Pipeline Dehydrators incorporates the use of highly specialized portable compressors, heat exchangers and interconnected piping. The product transfer process of evacuating a pipeline is an economically viable method that safely recovers a very high percentage of the product while maintaining product purity. Using positive-displacement compressors, PLD transferred the LPG from the idled 8-in. Ella line into an adjacent 12-in. ethane pipeline that remained in service at approximately 800 psig. Approximately 4.3 million lb of LPG (97% ethane, 2.7% methane and 0.3% propane) were transferred into the ethane pipeline, lowering the pressure on the Ella Pipeline from 800 psig to 65 psig.

  10. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  11. Total Crude Oil and Petroleum Products Imports by Processing...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum ...

  12. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  13. Risk analysis of an LPG facility

    SciTech Connect (OSTI)

    Daley, H.F.; Chapman, P.D.L.

    1986-01-01

    This paper describes methods used to conduct a safety review of an existing LPG loading, processing, and storage facility. An engineering team conducted a Hazard and Operability study of the plant to identify potential problems. A Probabilistic Risk Assessment was also made on the facility where the probability and consequences of worst case accidents were estimated. Stone and Webster recently completed an analysis of an LPG terminal to determine if there were any engineering, design, or operating deficiencies which could jeopardize the operability of the facility or make operation hazardous. The facility includes a dock for off-loading refrigerated propane and butane, transfer piping from the dock to storage, a heating system, pressurized storage, dehydration, product transfer and loading.

  14. Blast rips Texas LPG storage site

    SciTech Connect (OSTI)

    Not Available

    1992-04-13

    This paper reports that Seminole Pipeline Co. at presstime last week had planned to reopen its 775 mile liquefied petroleum gas pipeline in South Texas by Apr. 12 after a huge explosion devastated the area around a Seminole LPG storage salt dome near Brenham, Tex., forcing the pipeline shutdown. A large fire was still burning at the storage site at presstime last week. The blast - shortly after 7 a.m. Apr. 7 - occurred at a pipeline connecting the main Seminole line with the storage facility and caused shock waves felt 130 miles away. A 5 year old boy who lived in a trailer near Seminole's LPG storage dome was killed, and 20 persons were injured.

  15. Monitoring system tested during LPG tanker unloading

    SciTech Connect (OSTI)

    Not Available

    1990-05-14

    A specially developed computer-based hazardous-materials monitoring system has been successfully field tested. The test of the portable system occurred during the unloading of 45,000 metric tons of LPG from a 740-ft tanker at the petroleum dock of a plant along the Mississippi River. The function of this system is to detect, report, alarm, and record unacceptable concentrations of hazardous vapors during marine-transfer operations.

  16. The operation of LPG relief valves

    SciTech Connect (OSTI)

    Stannard, J.H. Jr

    1989-11-01

    As stipulated by NFPA 58, all LPG storage containers must be equipped with one or more pressure relief devices. These devices are sized to prevent rupture of a normally charged container when exposed to fire. This paper describes in detail the functioning of the spring-loaded relief valve. The author discusses how the venting of LPGs can produce unacceptable risks and how training is a necessary part of controlling such a situation.

  17. Risks of LNG and LPG. [Review

    SciTech Connect (OSTI)

    Fay, J.A.

    1980-01-01

    Since the use of liquefied natural gas (LNG) and liquefied petroleum gases (LPG) as fuels is likely to increase and will certainly persist for some time to come, assessment of the safety of LNG/LPG systems will continue to draw attention and is quite likely to force continuing review of operating and design standards for LNG/LPG facilities. Scientific investigations to date appear to have identified the major hazards. Except for the dispersive behavior of vapor clouds - a not-insignificant factor in risk evaluation - the consequences of spills are well circumscribed by current analyses. The physically significant effects accompanying nonexplosive combustion of spilled material are fairly well documented; yet, potentially substantial uncertainties remain. Catastrophic spills of 10/sup 4/-10/sup 5/ m/sup 3/ on land or water are possible, given the current size of storage vessels. Almost all experimental spills have used less than 10 m/sup 3/ of liquid. There is thus some uncertainty regarding the accuracy and validity of extrapolation of current empirical information and physical models to spills of catastrophic size. The less-likely but still-possible explosive or fireball combustion modes are not well understood in respect to their inception. The troubling experience with such violent combustion of similar combustible vapors suggests that this possibility will need further definition. Extant LNG and LPG risk analyses illustrate the difficulties of substantiating the numerous event probabilities and the determination of all event sequences that can lead to hazardous consequences. Their disparate results show that significant improvements are needed. Most importantly, a detailed critique of past efforts and a determination of an exhaustive set of criteria for evaluating the adequacy of a risk analysis should precede any further attempts to improve on existing studies. 44 references, 1 table.

  18. U.S. LPG pipeline begins deliveries to Pemex terminal

    SciTech Connect (OSTI)

    Bodenhamer, K.C.

    1997-08-11

    LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

  19. Mounded LPG storage - Experience and developments

    SciTech Connect (OSTI)

    Barber, D.

    1988-01-01

    Liquefied petroleum gas (LPG) is stored after production, and for distribution and use, in pressure vessels which vary in size from a few kilogrammes to many thousands of tons. The types of LPG under consideration are commercial butane, commercial propane, or mixtures of the two gases in varying proportions. Mounded storage systems are becoming popular as an alternative to the better-known traditional systems. The most widely used and therefore best-known of the traditional systems are the above-ground pressure-vessel designs. These more commonly comprise factory-made cylinders which are installed horizontally, being supported on saddles at each end of the vessel. When such vessels are installed in an LPG terminal, depot, or filling plant, they are required in multiple units to facilitate the storage of more than one grade of product and to enable regular maintenance and inspection to be carried out. Today's safety regulations require such installations to be divided into sub-groups of six tanks, with all the tanks located at a safe distance from one another, and from other facilities in the immediate area. These safety distances are being increased as a result of experience, which means terminals now require large areas of land.

  20. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect (OSTI)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  1. Prime Supplier Sales Volumes of Total Distillate and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    3,043.6 158,219.8 161,019.5 160,908.1 167,834.6 162,152.0 1983-2016 East Coast (PADD 1) 45,654.4 44,996.6 47,613.3 53,491.1 55,172.1 49,809.6 1983-2016 New England (PADD 1A) 6,997.6 7,136.8 8,890.8 11,299.4 11,104.4 8,516.9 1983-2016 Connecticut 1,714.1 1,826.9 2,149.2 2,782.9 2,785.8 2,014.0 1983-2016 Maine 1,354.5 1,325.5 1,809.4 2,119.3 2,055.1 1,682.9 1983-2016 Massachusetts 1,937.3 2,015.8 2,480.4 3,301.4 3,231.0 2,395.7 1983-2016 New Hampshire 847.8 832.6 1,060.9 1,366.4 1,315.2 975.0

  2. LPG fuel supply system. [Patent for automotive

    SciTech Connect (OSTI)

    Pierson, W.V.

    1982-09-07

    A fuel supply system for an internal combustion engine operated on gaseous fuels, for example, liquid petroleum gas (Lpg). The system includes a housing having a chamber for vaporizing liquid gas, including means for heating the vaporizing chamber. Also included in the housing is a mixing chamber for mixing the vaporized gas with incoming air for delivery to the intake manifold of an internal combustion engine through a standard carburetor. The fuel supply system includes means for mounting the system on the carburetor, including means for supporting an air filter circumjacent the mixing chamber.

  3. Legal nature of LPG (liquefied petroleum gas) regulation

    SciTech Connect (OSTI)

    Liddell, G.

    1986-08-01

    The commercial exploitation of Liquefied Petroleum Gas (LPG) in New Zealand has occurred without a particular and comprehensive concern for any legal implications. The paper in Part I examines definitional questions, assesses in Part II the ability of courts and quasi-courts to evaluate risks associated with the product, examines in Part III the utility of common law remedies for injuries or associated with or arising from LPG, analyzes in Part IV the statutory regulation of LPG, concentrating particularly on the Dangerous Goods (Class 2 - Gases) Regulations 1980, discusses in Part V recent planning case-law concerning LPG development, and concludes that some reform is necessary to produce a more-coherent and precise regulatory regime that takes into account both the needs of developers and those affected by the development of LPG.

  4. Current and future USA-world seaborne imports at LPG

    SciTech Connect (OSTI)

    Bassa, G.

    1980-01-01

    An outline of the current and historical situation of the international LPG trade and comparison between the US and other countries covers methods of marine transportation, including fully refrigerated vessels, semirefrigerated vessels, pressure vessels, and LNG ships fitted for LPG; the temporary abundance of LPG; a comparison of the markets in Japan, Europe, South America, and the US to indicate the potential market in the future, e.g., the need in Japan for LPG as a basic fuel, main use in Europe as a feedstock and as domestic fuel, use as a basic fuel but mainly in the winter months inSouth America, and the volatile spot market in the US; and the conclusion that the capacity to produce LPG will keep pace with demand only as long as adequate prices are paid to offset production costs.

  5. LPG buses in southern California leave the competition at the curb

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This paper reports that after the first year of a landmark experiment in which LPG has been competing against methanol and CNG in city buses, propane appears to be pulling out in front of the pack. According to Efren Medellin, superintendent of vehicle maintenance at the Orange County Transit Authority, two LPG buses had registered a total of 31,000 moles with relatively little, if any, downtime. The two methanol buses had run a total of 30,000 miles while the two CNG buses had traveled only 5000 miles. Furthermore the methanol and CNG buses have had their share of downtime for new parts and other problems. The propane-powered buses appear to be running consistently well without mechanical difficulties. The only problem that occurred was occasional backfiring. As a result, the electronic controls were replaced and no subsequent complaints were heard.

  6. Fuel Oil and Kerosene Sales - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ See All Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2014 | Release Date: December 22, 2015 | Next Release Date: November 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go EIA is considering changes to the survey Form EIA-821, "Annual Fuel Oil and Kerosene Sales Report," such as deleting kerosene and adding propane. If you would like to participate in a discussion on these proposed changes

  7. "Table A2. Total Consumption of LPG, Distillate Fuel Oil,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...6,12,286,394,12,3,2,0,25.4 3331," Primary Copper",8,"W","W",8,"W","W",0,0,0,1.2 3334," ...,37,0,49,37,0,0,"*",0,22.9 3331," Primary Copper",1,"W",0,1,"W",0,0,0,0,1 3334," Primary ...

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  9. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

  10. Charcoal versus LPG grilling: A carbon-footprint comparison

    SciTech Connect (OSTI)

    Johnson, Eric

    2009-11-15

    Undoubtedly, grilling is popular. Britons fire up their barbeques some 60 million times a year, consuming many thousands of tonnes of fuel. In milder climates consumption is even higher, and in the developing world, charcoal continues to be an essential cooking fuel. So it is worth comparing the carbon footprints of the two major grill types, charcoal and LPG, and that was the purpose of the study this paper documents. Charcoal and LPG grill systems were defined, and their carbon footprints were calculated for a base case and for some plausible variations to that base case. In the base case, the charcoal grilling footprint of 998 kg CO{sub 2}e is almost three times as large as that for LPG grilling, 349 kg CO{sub 2}e. The relationship is robust under all plausible sensitivities. The overwhelming factors are that as a fuel, LPG is dramatically more efficient than charcoal in its production and considerably more efficient in cooking. Secondary factors are: use of firelighters, which LPG does not need; LPG's use of a heavier, more complicated grill; and LPG's use of cylinders that charcoal does not need.

  11. Kerosene vs. electric portable heaters: the question of risk

    SciTech Connect (OSTI)

    Leff, H.S.

    1984-03-01

    As home heating costs have risen, more and more people have turned to portable electric and kerosene space heaters. Kerosene heaters are cheaper to run than electric, but there are numerous health and safety issues - many of them unanswered - associated with their use. Among the issues discussed are indoor air pollution by sulfur dioxide, the life-cycle costs, the deposition of pollution on furniture, and the fire hazards.

  12. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect (OSTI)

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  13. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect (OSTI)

    True, W.R.

    1998-11-16

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  14. LPG export growth will exceed demand by 2000

    SciTech Connect (OSTI)

    True, W.R.

    1994-08-08

    LPG supplies for international trade will increase sharply through 2000 and begin to outstrip demand by 1997 or 1998. This outlook depends on several production projects proceeding as planned. Leading the way to increased volumes are projects in Algeria, Nigeria, and Australia, among others. Purvin and Gertz, Dallas, projected this trend earlier this year at an international LPG seminar near Houston. Representatives from LPG-supplying countries also presented information to support this view and subsequently supplied more specifics to OGJ in response to questions. This paper discusses this information. Trends in Africa, Australia, North America, and South America are forecast.

  15. FCC LPG olefinicity and branching enhanced by octane catalysts

    SciTech Connect (OSTI)

    Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

    1989-05-29

    Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

  16. Cylinder surface, temperature may affect LPG odorization

    SciTech Connect (OSTI)

    McWilliams, H.

    1988-01-01

    A study of possible odorant fade in propane by the Arthur D. Little Co. (Boston) has indicated that oxidation of interior surfaces of LPG containers may cause the odorant, ethyl mercaptan, to fade. The oxidation, ferous oxide, is a black, easily oxidizable powder that is the monoxide of iron. The study, contracted for by the Consumer Product Safety Commission (CPSC), is part of that agency's study of residential LP-gas systems. Another study is currently underway by an NLPGA task force headed by Bob Reid of Petrolane (Long Beach, Calif.). It may not be finished until the end of next year. Recently, the Propane Gas Association of Canada completed a study of odorant fade with the conclusion that much more study is needed on the subject. In addition to the cylinder surface problem, the CPSC study indicated that ambient temperatures might also affect the presence of odorant in product. This article reviews some of the results.

  17. End to deficit of LPG. [Argentina

    SciTech Connect (OSTI)

    Andrich, V.

    1980-03-01

    In the Buenos Aires province of Argentina, Gas de Estado is constructing the future heart of the petrochemical complex, Bahia Blanca. The complex contains 2 absorption-refrigeration plants, a gas compressing plant, equipment maintenance shops and an important operations base for the Argentine truck gas pipelines. This will be the largest LPG plant in Latin America. The General Cerri plant, under construction, is located in an area of 40,000 sq m with new installations to extract ethane and higher hydrocarbons. The design optimizes the extraction of hydrocarbons from the natural gas and recovers 76% of the ethane. Selection of the process resulted from an investigation that compared the system with processes that use water cooling and absorption with refrigerated oil.

  18. Carbon adsorption system protects LPG storage sphere

    SciTech Connect (OSTI)

    Gothenquist, C.A.; Rooker, K.M.

    1996-07-01

    Chevron U.S.A. Products Co. installed a carbon adsorption system to protect an LPG storage sphere at its refinery in Richmond, Calif. Vessel damage can result when amine contamination leads to emulsion formation and consequent amine carry-over, thus promoting wet-H{sub 2}S cracking. In Chevron`s No. 5 H{sub 2}S recovery plant, a mixture of butane and propane containing H{sub 2}S is contacted with diethanolamine (DEA) in a liquid-liquid absorber. The absorber is a countercurrent contactor with three packed beds. Because the sweetening system did not include a carbon adsorption unit for amine purification, contaminants were building up in the DEA. The contaminants comprised: treatment chemicals, hydrocarbons, foam inhibitors, and amine degradation products. The paper describes the solution to this problem.

  19. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  1. Accurate LPG analysis begins with sampling procedures, equipment

    SciTech Connect (OSTI)

    Wilkins, C.M. )

    1990-11-05

    Proper equipment and procedures are essential for obtaining representative samples from an LPG stream. This paper discusses how sampling of light liquid hydrocarbons generally involves one of two methods: flow- proportional composite sampling by a mechanical device or physical transfer of hydrocarbon fluids from a flowing pipeline or other source into a suitable portable sample container. If sampling by proper techniques and equipment supports careful chromatographic analysis, full advantage of accurate mass measurement of LPG can be realized.

  2. River resort owners find LPG a power behind their success

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This paper reports on a restaurant and resort which runs entirely on LPG. It has two generators converted to LPG that supply the power for the complex. Energy supplied from the propane is used in the kitchens, to drive the water pump and provide electricity for lighting and other power needs, and to heat the swimming pool. Far more importantly for the owners has been the fuel cost savings of at least 60%.

  3. World`s LPG supply picture will change by 2000

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-06

    Middle East LPG producers will continue to dominate world export markets in 1996. Led by Saudi Arabia, the Middle East will produce nearly 26 million metric tons of LPG in million metric tons of LPG in 1996, more than 54% of the world`s almost 48 million metric tons of export LPG. In 2000, however, with world exports of LPG expanding to 58.9 million metric tons, Middle East suppliers; share will have remained flat, making up 31.7 million metric tons, or 53.9%. Saudi Arabia`s contribution will exceed 15 million metric tons, reflecting essentially no growth since 1995. These and other patterns, from data compiled by Purvin and Gertz, Dallas, and published earlier this year, show other suppliers of LPG, especially African (Algeria/Nigeria), North Sea, and Latin American (Venezuela/Argentina), picking up larger shares in the last 5 years of this decade. This scenario assumes completion of several major supply projects that are either panned, under construction, or nearing start up in most of these areas. The paper discusses the global picture, the supply situation in the Middle East, Africa, the North Sea, and South America.

  4. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  5. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  6. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  8. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  9. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  11. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  12. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  13. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  14. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  15. Indonesia's Arun LPG plant production is unique in Far East markets

    SciTech Connect (OSTI)

    Naklie, M.M.; Penick, D.P.; Denton, L.A.; Kartiyoso, I.

    1987-08-03

    Entry of the Arun (Indonesia) LNG plant into the LPG Far East markets is significant because its supplies for those markets are not tied to gas being extracted in association with crude oil. Arun LPG products are extracted from gas that is processed into and marketed as LNG. This article on the Arun LNG plant analyzes its LPG process and the significance of the LPG project on the plant's markets. Particular attention is paid to: 1.) LPG recovery; 2.) LPG fractionation; and 3.) Far East trade.

  16. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  17. Rio Grande pipeline introduces LPG to Mexico

    SciTech Connect (OSTI)

    1997-06-01

    Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

  18. The importance of FCC catalyst selection on LPG profitability

    SciTech Connect (OSTI)

    Keyworth, D.A.; Gilman, R.; Pearce, J.R. )

    1989-01-01

    Recently the value of LPG in chemical operations downstream of the FCC unit has increased. Such downstream operations utilize propylene not only in alkylate, but also in rapid growth petrochemical applications such as for a raw material in the manufacture of polypropylene and propylene oxide. Isobutane and the butenes (particularly butene-2 in sulfuric acid catalyzed alkylation units) are prized for alkylate feed. The profit potential and incentives to use other LPG components such as isobutene to make MTBE is now increased because of legislative actions and increased octane performance demand; and because of the greater isobutene content in the LPG from the new FCC octane catalysts. A low non-framework alumina (NFA) zeolite studied made a more olefinic LPG with higher iso-to normal C4 ratio than the other zeolites. Pilot plant data has also shown the new low NFA zeolite gave not only outstanding motor octane (MON) performance, but produced an LPG with better propylene to propane ratio, more isobutene, more n-butenes and more C4 branching than other RE promoted zeolite catalysts. Commercial results have verified the improved performance and profitability for the new low-NFA type zeolite catalysts. Three commercial examples are described.

  19. Determination of usage patterns and emissions for propane/LPG in California. Final report

    SciTech Connect (OSTI)

    Sullivan, M.

    1992-05-01

    The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

  20. Cascaded'' pilot regulators help reduce LPG loss in hot weather

    SciTech Connect (OSTI)

    Not Available

    1994-08-08

    Fina Oil and Chemical Co. and Fisher Controls International used engineering resourcefulness to overcome heat-induced product loss from LPG storage bullets at Fina's Port Arthur, Tex., refinery. Fina had installed Fisher's Easy Joe 399A-6365, a pilot-operated, back-pressure-type regulator, on its LPG storage facility in 1991 as part of a fuel products modernization project. The regulators helped control the accumulation of noncondensible vapors, which collect in the storage bullets above the LPG. But summer heat extremes and surges in the tanks and lines made it possible for the operating pressure to increase so that the safety relief valve was activated before the pilot regulator was able to stabilize the pressure. The installation of pilot-type regulators, in cascaded, or series, formation, reduced product venting through relief valves.

  1. Demand for petrochem feedstock to buoy world LPG industry

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990.

  2. Low temperature type new TMCP steel plate for LPG carriers

    SciTech Connect (OSTI)

    Suzuki, Shuichi; Bessyo, Kiyoshi; Arimochi, Kazushige; Yajima, Hiroshi; Tada, Masuo; Sakai, Daisuke

    1994-12-31

    New Thermo-Mechanical Control Process (TMCP) steel plate for LPG carriers of completely liquefied type was developed with non-nickel chemistry. The new steel plate has a capability to arrest a long running brittle crack at {minus}46 C (which is the design temperature of the liquefied LPG tanks). A high heat-input one-pass welding can be applied to this steel despite its nickel-less chemistry. These capabilities were enabled by microalloying technology with low aluminum-medium nitrogen-boron, as well as by the advanced Thermo-Mechanical Control Process. This paper describes the new concept of utilizing the trace elements and the evaluation test results as the steel plate for the LPG tank and hull, especially from the standpoints of the fracture safe reliability at high heat input welding and from that of the shop workability.

  3. Assessment of research and development (R and D) needs in LPG safety and environmental control

    SciTech Connect (OSTI)

    DeSteese, J.G.

    1982-05-01

    The report characterizes the LPG industry covering all operations from production to end use, reviews current knowledge of LPG release phenomenology, summarizes the status of current LPG release prevention and control methodology, and identifies any remaining safety and environmental problems and recommends R and D strategies that may mitigate these problems. (ACR)

  4. Experience with Bi-Fuel LPG Pickups in Texas

    SciTech Connect (OSTI)

    Whalen, P.

    1999-05-12

    The State of Texas requires state agencies to purchase alternative fuel vehicles (AFVs). In 1996, Texas Department of Transportation (TxDOT) representatives added about 400 bi-fuel liquefied petroleum gas (LPG) pickup trucks to their fleet. The fleet managers were willing to share information about their fleets and the operation of these vehicles, so a study was launched to collect operations, maintenance, and cost data for selected LPG and gasoline vehicles (as controls) throughout 18 months of vehicle operation. This case study presents the results of that data collection and its subsequent analysis.

  5. Control and extinguishment of LPG fires. Final report

    SciTech Connect (OSTI)

    Johnson, D.W.; Martinsen, W.E.; Cavin, W.D.; Chilton, P.D.; Lawson, H.P.; Welker, J.R.

    1980-08-01

    Approximately 100 fire control and fire extinguishment tests were run on free-burning liquefied petroleum gases (LPG) pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

  6. Fire safety of LPG in marine transportation. Final report

    SciTech Connect (OSTI)

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-06-01

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  7. Design considerations for sweetening LPG`s with amines

    SciTech Connect (OSTI)

    Bullin, J.A.; Polasek, J.; Rogers, J.

    1995-11-01

    In recent years, there has been increasing interest in sweetening LPG with amines. However, limited data and design information are available in the literature. In the present paper, the design considerations and alternatives including static mixers, jet educator mixers and columns with structured packing, random packing and sieve trays are compared based on plant operating data.

  8. Expansion fractionation capacity of the LPG-ULE plant

    SciTech Connect (OSTI)

    Morin, L.M.C.

    1999-07-01

    The Western Division of PDVSA has among other facilities a NGL Fractionation Complex located onshore in Ul'e. The complex consists of three plants, the first and second older plants, LPG-1 and LPG-2, which fractionate the NGL to produce propane, a butane mix and natural gasoline. The third plant, LPG-3, fractionates the butane mix from the LPG-1 and 2 plants to produce iso and normal butane. Several optimization projects already in progress will increase the NGL production to 12,200 b/d. For this reason it was decided to conduct a study of the existing fractionation facilities and utilities systems to determine their capacities. This evaluation revealed that some of the fractionation towers would have some limitations in the processing of the expected additional production. The study recommended an option to increase the capacity of the fractionation towers by lowering their operating pressure, in order to take advantage of relative volatility increase between the key components, which allows easier separation, as well as reducing the heat duty required. The completed study also determined that this option is more economically convenient than the replacement of the existing fractionation towers.

  9. Control and extinguishment of LPG fires. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Approximately 100 fire control and fire extinguishment tests were run on free-burning LPG pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

  10. Numerical Simulations of Leakage from Underground LPG Storage Caverns

    SciTech Connect (OSTI)

    Yamamoto, Hajime; Pruess, Karsten

    2004-09-01

    To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

  11. Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process

    SciTech Connect (OSTI)

    Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

    1989-04-28

    The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

  12. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  13. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  14. Deliveries of fuel oil and kerosene in 1980

    SciTech Connect (OSTI)

    Not Available

    1982-02-11

    This report contains numerical data on deliveries of distillate fuel oil, residual fuel oil, and kerosene which will be helpful to federal and state agencies, industry, and trade associations in trend analysis, policy/decision making, and forecasting. The data for 1979 and 1980 are tabulated under the following headings: all uses, residential, commercial, industrial, oil companies, electric utilities, transportation, military, and farm use. The appendix contains product and end-use descriptions. (DMC)

  15. Atomic Force Microscopy Studies of Lipophosphoglycan (LPG) Molecules in Lipid Bilayers

    SciTech Connect (OSTI)

    LAST, JULIE A.; HUBER, TINA; SASAKI, DARRYL Y.; SALVATORE, BRIAN; TURCO, SALVATORE J.

    2003-03-01

    Lipophosphoglycan (LPG) is a lypopolysaccharide found on the surface of the parasite Leishmania donovani that is thought to play an essential role in the infection of humans with leishamniasis. LPG acts as an adhesion point for the parasite to the gut of the sand fly, whose bite is responsible for transmitting the disease. In addition, LPG acts to inhibit protein kinase C (PKC) in the human macrophage, possibly by structural changes in the membrane. The Ca{sup 2+} ion is believed to play a role in the infection cycle, acting both as a crosslinker between LPG molecules and by playing a part in modulating PKC activity. To gain insight into the structure of LPG within a supported lipid membrane and into the structural changes that occur due to Ca{sup 2+} ions, we have employed the atomic force microscope (AFM). We have observed that the LPG molecules inhibit bilayer fusion, resulting in bilayer islands on the mica surface. One experiment suggests that the LPG molecules are parallel to the mica surface and that the structure of the LPG changes upon addition of Ca{sup 2+}, with an increase in the height of the LPG molecules from the bilayer surface and an almost complete coverage of LPG on the bilayer island.

  16. Microsoft Word - 0615DOE-LPG-wd6.doc

    Energy Savers [EERE]

    EXECUTIVE COURT REPORTERS, INC. [301] 565-0064 1 UNITED STATES DEPARTMENT OF ENERGY OFFICE OF THE CHIEF FINANCIAL OFFICER LPG PUBLIC MEETING FRIDAY, JUNE 15, 2007 U.S. Department of Energy Forrestal Building Main Auditorium 1000 Independence Avenue, SW Washington, D.C. 20585 EXECUTIVE COURT REPORTERS, INC. [301] 565-0064 2 PARTICIPANTS DOE: Kathy Binder, Facilitator Warren Belmar, Panel Member Lawrence Oliver, Panel Member Industry: Steven Winn, NRG Energy, Inc. Robert Temple, C P S Energy John

  17. New construction era reflected in East Texas LPG pipeline

    SciTech Connect (OSTI)

    Mittler, T.J. )

    1990-04-02

    Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

  18. Successful operation of a large LPG plant. [Kuwait

    SciTech Connect (OSTI)

    Shtayieh, S.; Durr, C.A.; McMillan, J.C.; Collins, C.

    1982-03-01

    The LPG plant located at Mina-Al Ahmadi, Kuwait, is the heart of Kuwait Oil Co.'s massive Gas Project to use the associated gas from Kuwait's oil production. Operation of this three-train plant has been very successful. A description is given of the three process trains consisting of four basic units: extraction, fractionation, product treating, and refrigeration. Initial problems relating to extraction, fractionation, product treating and, refrigeration are discussed. 1 ref.

  19. LPG land transportation and storage safety. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 to 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

  20. LPG land transportation and storage safety. Final report

    SciTech Connect (OSTI)

    Martinsen, W.E.; Cavin, W.D.

    1981-09-01

    This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 through 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

  1. Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)

    SciTech Connect (OSTI)

    IMPCO Technologies

    1998-10-28

    This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

  2. Asia, North America lead way in growth of NGL, LPG trade

    SciTech Connect (OSTI)

    Otto, K.; Gist, R.; Whitley, C.; Haun, R.

    1998-01-12

    Recent analyses of world NGL trade indicate that important changes in LPG supply and demand are under way in Asia and North America. LPG markets in the 1990s reflect a rapidly shifting balance between East-of-Suez and West-of-Suez markets. This shift has increased concern about availability of future LPG supplies for Asia. The paper discusses world developments, East versus West of Suez, end uses and supplies in Asia, Canadian ethane, propane, butane, and natural gasoline, Mexican ethane, LPG, and natural gasoline, US ethane, propane, butanes, and iso-C{sub 4} and C{sub 5}.

  3. Fuel switching from wood to LPG can benefit the environment

    SciTech Connect (OSTI)

    Nautiyal, Sunil Kaechele, Harald

    2008-11-15

    The Himalaya in India is one of the world's biodiversity hotspots. Various scientific studies have reported and proven that many factors are responsible for the tremendous decline of the Himalayan forests. Extraction of wood biomass from the forests for fuel is one of the factors, as rural households rely entirely on this for their domestic energy. Efforts continue for both conservation and development of the Himalayan forests and landscape. It has been reported that people are still looking for more viable solutions that could help them to improve their lifestyle as well as facilitate ecosystem conservation and preservation of existing biodiversity. In this direction, we have documented the potential of the introduction of liquefied petroleum gas (LPG), which is one of the solutions that have been offered to the local people as a substitute for woodfuel to help meet their domestic energy demand. The results of the current study found dramatic change in per capita woodfuel consumption in the last two decades in the villages where people are using LPG. The outcome showed that woodfuel consumption had been about 475 kg per capita per year in the region, but after introduction of LPG, this was reduced to 285 kg per capita per year in 1990-1995, and was further reduced to 46 kg per capita per year in 2000-2005. Besides improving the living conditions of the local people, this transformation has had great environmental consequences. Empirical evidence shows that this new paradigm shift is having positive external effects on the surrounding forests. Consequently, we have observed a high density of tree saplings and seedlings in adjacent forests, which serves as an assessment indicator of forest health. With the help of the current study, we propose that when thinking about a top-down approach to conservation, better solutions, which are often ignored, should be offered to local people.

  4. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  5. Cause not found for Texas LPG site blast

    SciTech Connect (OSTI)

    Not Available

    1992-04-20

    This paper reports that National Transportation Safety Board investigators completed the first phase of tests at Seminole Pipeline Co.'s liquid petroleum gas storage dome near Brenham, Tex., without finding the cause of an explosion there Apr. 7. But in a week of investigation, NTSB determined that a release of brine and product occurred at the 350,000 bbl LPG storage dome, about 45 miles northwest of Houston, just before the blast. The explosion sent shock waves felt as far as 130 miles away. Three persons have died from injuries suffered in the accident. Another 18 were injured.

  6. Dynamic load measurement on an LPG carrier during voyage

    SciTech Connect (OSTI)

    Kamoi, Noriyuki; Taniguchi, Tomokazu; Kiso, Takashi; Kada, Kazuo; Motoi, Tatsuya; Nakamura, Shinichi

    1994-12-31

    There are few actual ship measurement data showing the propriety of the design loads given by classification societies rules or other relevant rules. Therefore, the authors measured acceleration of ship motion and fluctuating loads on tank supports and chocks of a 75,000 m{sup 3} LPG carrier during her voyage. This paper introduces the subject ship and typical measurement results over about 1.3 years. From the analysis of these data, the authors have made clear the amount of frequency of fluctuating loads during actual navigation and ascertained the propriety of the ship`s design base.

  7. Pollutant emissions from portable kerosene-fired space heaters

    SciTech Connect (OSTI)

    Traynor, G.W.; Allen, J.R.; Apte, M.G.; Girman, J.R.; Hollowell, C.D.

    1983-06-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutants. We conducted laboratory tests on two radiant and two convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Results show that carbon dioxide, carbon monoxide, nitric oxide, nitrogen dioxide, and formaldehyde were emitted by both types of heaters and that the radiant heaters and one of the convective heaters also emitted trace amounts of fine particles. When such heaters are operated for 1 h in a 27-m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard.

  8. Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use

    SciTech Connect (OSTI)

    Armstrong, R.

    1980-01-01

    Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

  9. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect (OSTI)

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  10. Alvord (3000-ft Strawn) LPG flood: design and performance evaluation

    SciTech Connect (OSTI)

    Frazier, G.D.; Todd, M.R.

    1982-01-01

    Mitchell Energy Corporation has implemented a LPG-dry gas miscible process in the Alvord (3000 ft Strawn) Unit in Wise County, Texas utilizing the DOE tertiary incentive program. The field had been waterflooded for 14 years and was producing near its economic limit at the time this project was started. This paper presents the results of the reservoir simulation study that was conducted to evaluate pattern configuration and operating alternatives so as to maximize LPG containment and oil recovery performance. Several recommendations resulting from this study were implemented for the project. Based on the model prediction, tertiary oil recovery is expected to be between 100,000 and 130,000 bbls, or about 7 percent of th oil originally in place in the Unit. An evaluation of the project performance to date is presented. In July of 1981 the injection of a 16% HPV slug of propane was completed. Natural gas is being used to drive the propane slug. A peak oil response of 222 BOPD was achieved in August of 1981 and production has since been declining. The observed performance of the flood indicates that the actual tertiary oil recovered will reach the predicted value, although the project life will be longer than expected. The results presented in this paper indicate that, without the DOE incentive program, the economics for this project would still be uncertain at this time.

  11. New pemex agency, smog checks greet Mexican LPG vehicle users

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This paper reports that the relaxation of prohibitions on the use of propane as a motor fuel has spurred sizeable business activity in carburetion and higher demand for LPG throughout Mexico and particularly in Mexico City. However, a number of unforeseen problems have developed that required tough, immediate solutions. After the alternative fuels project began at city hall in Mexico City, publicity spread nationwide, reportedly spurring conversion activity in many other cities. That led to additional demand for fuel of a magnitude that few people had anticipated. In order to assume control of the situation, the national oil company, Pemex, established an official LPG Motor Fuel Department on June 1. Operating in conjunction with the Ministry of Industry, the new department has been busy registering every major propane-powered fleet in the country. Most important, the rate of conversion work must now be pegged to the availability of fuel. It is believed that conversion activity has become more evenly paced since the new Pemex agency took over.over.

  12. Next generation processes for NGL/LPG recovery

    SciTech Connect (OSTI)

    Pitman, R.N.; Hudson, H.M.; Wilkinson, J.D.; Cuellar, K.T.

    1998-12-31

    Up to now, Ortloff`s Gas Subcooled Process (GSP) and OverHead Recycle Process (OHR) have been the state-of-the-art for efficient NGL/LPG recovery from natural gas, particularly for those gases containing significant concentrations of carbon dioxide (CO{sub 2}). Ortloff has recently developed new NGL recovery processes that advance the start-of-the-art by offering higher recovery levels, improved efficiency, and even better CO{sub 2} tolerance. The simplicity of the new process designs and the significantly lower gas compression requirements of the new processes reduce the investment and operating costs for gas processing plants. For gas streams containing significant amounts of carbon dioxide, the CO{sub 2} removal equipment upstream of the NGL recovery plant can be smaller or eliminated entirely, reducing both the investment cost and the operating cost for gas processing companies. In addition, the new liquids extraction processes can be designed to efficiently recover or reject ethane, allowing the gas processor to respond quickly to changing market conditions. This next generation of NGL/LPG recovery processes is now being applied to natural gas processing here in the US and abroad. Two of the new plants currently under construction provide practical examples of the benefits of the new processes.

  13. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  15. Effects on carbon monoxide levels in mobile homes using unvented kerosene heaters for residential heating

    SciTech Connect (OSTI)

    Williams, R.; Walsh, D.; White, J.; Jackson, M.; Mumford, J.

    1992-01-01

    Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.

  16. Vaporization, dispersion, and radiant fluxes from LPG spills. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools 25, 100, 400, and 1600 ft/sup 2/ in area. A Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes; the maximum effective flux emitted at the flame surface was about 50,000 Btu/h-ft/sup 2/. A few tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  17. Novel coiled tubing application controls large LPG storage well fire

    SciTech Connect (OSTI)

    Gebhardt, F.; Eby, D.; Barnett, D.

    1996-06-01

    Conventional well control techniques for normal oil and gas wells are widely known and have been presented on numerous occasions. However, LPG storage (or cavern) wells rarely blow out and/or catch on fire. As a result, little information has been presented on the topic of well control for these types of wells. This article chronicles a case history of a high-volume liquid propane storage well fire. Because conventional wellhead removal methods could not be applied in this case, the capping/kill plan called for use of coiled tubing in a novel manner to cut the tubing downhole and install an inflatable packer to shut off propane flow. The plan was successfully executed, saving the operator millions of dollars in LPC product loss and cost of control.

  18. Australian liquids-handling system cuts surges to LPG plant

    SciTech Connect (OSTI)

    McKee, G.; Stenner, T.D. )

    1990-08-06

    This paper reports how a pipeline liquids-handling facility recently commissioned allows gas production to be quickly ramped up to meet customer demand. Its design eliminates trouble-some liquid surges which had hampered plant operations. The pipeline-loop system, located at the Wallumbilla LPG processing plant, Queensland, was built for 60 of the cost of an equivalently sized conventional slug catcher. Its control system enables automatic, unattended handling of liquid surges and pigging slugs from the 102-km Silver Springs to Wallumbilla two-phase pipeline. Because of this system's simple hydraulics, normal slug-catcher piping design problems are eliminated. Safety is improved because the potentially hazardous condensate liquid is contained in a buried pipeline.

  19. Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Bass, E.A.

    1993-06-01

    SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

  20. Influence of H{sub 2}O{sub 2} on LPG fuel performance evaluation

    SciTech Connect (OSTI)

    Khan, Muhammad Saad Ahmed, Iqbal Mutalib, Mohammad Ibrahim bin Abdul Nadeem, Saad Ali, Shahid

    2014-10-24

    The objective of this mode of combustion is to insertion of hydrogen peroxide (H{sub 2}O{sub 2}) to the Liquefied Petroleum Gas (LPG) combustion on spark plug ignition engines. The addition of hydrogen peroxide may probably decrease the formation of NO{sub x}, CO{sub x} and unburned hydrocarbons. Hypothetically, Studies have shown that addition of hydrogen peroxide to examine the performance of LPG/H{sub 2}O{sub 2} mixture in numerous volumetric compositions starting from lean LPG until obtaining a better composition can reduce the LPG fuel consumption. The theory behind this idea is that, the addition of H{sub 2}O{sub 2} can cover the lean operation limit, increase the lean burn ability, diminution the burn duration along with controlling the exhaust emission by significantly reducing the greenhouse gaseous.

  1. Century-Midas steps slowly into the RV (recreational vehicles) LPG conversion market

    SciTech Connect (OSTI)

    Kincaid, J.

    1980-02-01

    Midas International will obtain LPG carburetion equipment from Century for installation in up to 20,000 RV. The market for gasoline-powered RV has been depressed since the surge in gasoline prices, and the installation of Century's equipment represents an attempt to attract customers by reducing RV operating costs. According to J. Kincaid (Midas Inst.), propane, besides being cheaper than gasoline, is also cheaper than diesel fuel, despite the better mileage obtained with diesel fuel, because the use of diesel fuel requires the installation of a diesel engine, which is far more expensive than installation of LPG carburetion. Although most of the LPG carburetion manufacturers, with a backlog of orders, did not evince interest in Midas' search for conversion equipment for RV, Century responded, at least partly because Midas also manufactures fleet delivery trucks, which represent a potentially much larger market for LPG conversion and use.

  2. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    SciTech Connect (OSTI)

    Jacobson, Arne; Bond, Tami C.; Lam, Nicholoas L.; Hultman, Nathan

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  3. An analysis of weep holes as a product detection device for underground compensated LPG storage systems

    SciTech Connect (OSTI)

    Sarica, C.; Demir, H.M.; Brill, J.P.

    1996-09-01

    Weep holes have been used widely to detect the presence of Liquefied Petroleum Gases (LPG) in brine for underground compensated storage systems. When the brine level drops below the weep hole, LPG product enters the brine production system causing an increase in both tubing head pressure and flow rate. To prevent cavern overfill, a cavern shutdown is initiated upon detection of LPG in the surface brine system by pressure or flow instruments at the tubing head. In this study, we have investigated the multiphase flow characteristics of weep hole LPG detection systems to correctly estimate the operating limits. A simple and easy to use model has been developed to predict the tubing head pressure and flow rate increases. The model can be used to implement safer and more efficient operation procedures for underground compensated LPG storage systems. The model predictions for a typical field case are presented. An analysis of weep holes as product detection devices for LPG storage reservoirs has been carried out. It was found that the increases in pressure and flow rates at the tubing head change as a function of injection flow rate of the product. Therefore, a thorough consideration of cavern operating parameters is necessary to evaluate the use constant pressure and flow rate values to initiate emergency shut down of the cavern.

  4. Offshore refrigerated LPG loading/unloading terminal using a CALM buoy

    SciTech Connect (OSTI)

    Bonjour, E.L.; Simon, J.M.

    1985-03-01

    In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

  5. Retraying and revamp double big LPG fractionators's capacity

    SciTech Connect (OSTI)

    Sasson, R. , Friendswood, TX ); Pate, R. )

    1993-08-02

    Enterprise operates two LPG fractionation units at Mont Belvieu: the Seminole unit and the West Texas unit. In 1985, Nye Engineering Inc., Friendswood, Texas, designed improvements to expand the Seminole plant from 60,000 b/d of C[sub 2] + feed to 90,000 b/d. The primary modifications made to increase the West Texas plant's capacity and reduce fuel consumption were the following: retraying the deethanizer and depropanizer columns with new High Capacity Nye Trays. Lowering the pressure in the de-ethanizer and depropanizer to improve the separating efficiency of the columns. Replacing the debutanizer with a high-pressure column that rejects its condensing heat as reboil for the de-ethanizer. Adjusting the feed temperature to balance the load in the top and bottom of the depropanizer column to prevent premature flooding in one section of the tower. Installing convection heaters to recover existing stack gas heat into the process. In conjunction with the capacity expansion, there was a strong incentive to improve the fuel efficiency of the unit. The modifications are described.

  6. Synthesis gas conversion to LPG over molybdenum catalysts

    SciTech Connect (OSTI)

    Murchison, C.B.; Murdick, D.A.

    1980-01-01

    By using a new Dow Chemical Co. carbon-supported molybdenum oxide catalyst promoted with 4.4% K/sub 2/O or Na/sub 2/O, 90%+ conversions of synthesis gas at space velocities of 500-600/hr were achieved with 60-75% selectivities for C/sub 2/-C/sub 5/ paraffins, including 33 and 27% for ethane and propane, respectively, and no liquid products formed. This LPG product is an excellent ethylene cracking feedstock. The catalyst, which can be used in both oxide and sulfided forms, has demonstrated stable performance with feeds containing up to 20 ppm sulfur (H/sub 2/S + COS) and had no coking problems for up to 2000 hr on stream. Excessive sulfur exposure can be reversed by regeneration with hydrogen. Because of the catalyst's low coking rate, high temperatures, i.e., 350/sup 0/-500/sup 0/C, and near-stoichiometric H/sub 2//CO feed ratios can be used.

  7. A simple correlation to predict the hydrate quadruple point temperature for LPG mixtures

    SciTech Connect (OSTI)

    Yousif, M.H.

    1997-12-31

    A simple correlation to predict the hydrate upper quadruple point temperature, T{sub Q2B} for liquefied petroleum gas (LPG) mixtures was developed. It was developed for use as a part of a modeling and control system for a LPG pipeline in Russia. For performance reasons, a simple hydrate prediction correlation was required that could be incorporated into the real-time and predictive pipeline simulation models. The operating company required both real time and predictive simulation tools be developed to assist in preventing hydrate blockages while minimizing the use of methanol. In this particular pipeline, LPG fluid moves through the pipeline as a single phase liquid above its bubble point pressure. Because of the very low flow rates, the trace amount of water present in the LPG drops out and creates water pools at low points in the pipeline. The pipeline pressure and seasonal temperatures are conducive for hydrate formation in these pools. Methanol and monoethylene glycol (MEG) are injected in the pipeline to help prevent hydrate formation. The newly developed correlation predicts the hydrate quadruple point temperature using only the composition and the molecular weight of the LPG mixture while retaining an accuracy comparable to the statistical thermodynamic models throughout the range of normal operating conditions.

  8. Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products

    SciTech Connect (OSTI)

    Whitney, K.A.; Bailey, B.K.

    1994-10-01

    This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

  9. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Snow, N.J. Jr.

    1983-12-06

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

  10. New and existing gas wells promise bountiful LPG output in Michigan

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

  11. Ageing effect in spray pyrolysed B:SnO{sub 2} thin films for LPG sensing

    SciTech Connect (OSTI)

    Skariah, Benoy E-mail: dr.boben1@gmail.com; Thomas, Boben E-mail: dr.boben1@gmail.com

    2014-10-15

    For LPG sensing, boron doped (0.2 to 0.8 wt. %) polycrystalline tin oxide thin films are deposited by spray pyrolysis in the temperature range 325 - 430 C. Sensor response of 56 % is achieved for 1000 ppm of LPG, at an operating temperature of 350 C. The effects of ageing under ambient conditions on the sensor response are investigated for a storage period of six years. Ageing increases the film resistance but the gas response is lowered. XRD, SEM, FESEM, FTIR and XPS are utilized for structural, morphological and compositional charaterisations.

  12. Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.

    1983-10-01

    The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

  13. Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability

    SciTech Connect (OSTI)

    Sinor, J E

    1994-05-01

    This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

  14. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  15. Converting LPG caverns to natural-gas storage permits fast response to market

    SciTech Connect (OSTI)

    Crossley, N.G.

    1996-02-19

    Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

  16. Alvord (3,000-ft strawn) LPG flood - design and performance evaluation

    SciTech Connect (OSTI)

    Frazier, G.D.; Todd, M.R.

    1982-01-01

    Mitchell Energy Corporation has implemented a LPG-dry gas miscible process in the Alvord (3000' Strawn) Unit in Wise County, Texas utilizing the DOE tertiary incentive program. The field had been waterflooded for 14 years and was producing near its economic limit at the time this project was started. This paper presents the results of the reservoir simulation study that was conducted to evaluate pattern configuration and operating alternatives so as to maximize LPG containment and oil recovery performance. Several recommendations resulting from this study were implemented for the project. Based on the model predictions, tertiary oil recovery is expected to be between 100,000 and 130,000 bbls, or about 7 percent of the oil originally in place in the Unit. 12 refs.

  17. Radiological health implications of lead-210 and polonium-210 accumulations in LPG refineries

    SciTech Connect (OSTI)

    Summerlin, J. Jr.; Prichard, H.M.

    1985-04-01

    Radon-222, a naturally occurring radioactive noble gas, is often a contaminant in natural gas. During fractionation at processing plants, Radon tends to be concentrated in the Liquified Petroleum Gas (LPG) product stream. Radon-222 decays into a number of radioactive metallic daughters which can plate out on the interior surfaces of plant machinery. The hazards associated with gamma-emitting short-lived radon daughters have been investigated previously. The present work reports an analysis of the hazards associated with the long-lived daughters; Pb-210, Bi-210, and Po-210. These nuclides do not emit appreciable penetrating radiation, and hence do not represent a hazard as long as they remain on the inside surfaces of equipment. However, when equipment that has had prolonged exposure to an LPG stream is disassembled for repair or routine maintenance, opportunities for exposure to radioactive materials can occur. A series of measurements made on an impeller taken from a pump in an LPG facility is reported. Alpha spectroscopy revealed the presence of Po-210, and further measurements showed that the amount on the impeller surface was well above the exempt quantity. Breathing zone measurements made in the course of cleaning the impeller showed that an inhalation exposure equivalent to breathing Po-210 at the Maximum Permissible Concentration (MPC) for 60 hours could be delivered in less than half an hour. It was concluded that maintenance and repair work on LPG and derivitive product stream equipment must be carried out with the realization that a potential radiological health problem exists.

  18. N/sub 2/-driven LPG achieves miscibitity at high temperatures

    SciTech Connect (OSTI)

    Carlisle, L.; Crawford, P.B.; Montes, M. Jr.; Reeves, S.

    1982-11-01

    Shows that miscibility can be achieved at very low pressures above the critical temperature of propane. One can calculate the critical pressure and temperature for a variety of fluids of practical interest in achieving miscibility between the miscible slug and driving gas when applying enhanced oil recovery programs. A study of the critical properties of normally available reservoir fluids indicates that one method of achieving miscibility at lower pressures, even at high reservoir temperatures, might be to use LPG slugs pushed by nitrogen. Table gives the oil recovery for different LPG slug sizes when operating at a reservoir pressure of 2,000 psig and a reservoir temperature of 250F. Diagram shows the approximate critical temperature loci for ternary systems made up of 3 components from the group nitrogen, methane, ethane, and propane. By finding the desired reservoir temperature and then estimating the critical pressure required, one may select compositions and operating pressures required to achieve critical slug-driving gas mixtures for use in enhanced oil recovery programs. When using CO/sub 2/ for miscibility, the miscibility pressure increases with temperature. Use of LPG slugs results in a substantial reduction in the pressure required for miscibility.

  19. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  20. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  1. I.N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heating or water heating. Fuel 011, LPG, and Kerosene. Expenditures of 11 Fuel Oil. Consumption of 1.0 quadrillion Btu of fuel billion for fuel oil, LPG, and kerosene...

  2. U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    Propane, No.1 and No. 2 Distillates 516.9 557.6 346.3 348.6 302.7 423.8 1983-2016 Kerosene-Type Jet Fuel 30,025.4 27,015.9 29,610.8 30,290.2 29,313.5 29,837.6 1983-2016 Propane (Consumer Grade) 32,123.1 28,493.2 30,691.0 34,788.0 45,461.3 43,786.5 1983-2016 Kerosene 1,070.4 1,129.5 1,040.4 1,256.8 1,646.7 1,485.0 1983-2016 No. 1 Distillate 476.8 1,127.0 1,974.7 2,154.5 2,384.7 1,726.5 1983-2016 No. 2 Distillate 156,206.1 158,927.8 149,310.8 150,582.2 142,769.5 145,666.4 1983-2016 No. 2

  3. U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    Propane, No.1 and No. 2 Distillates W W W W W W 1983-2016 Kerosene-Type Jet Fuel 33,201.0 32,608.3 32,500.6 33,002.9 31,001.8 29,954.0 1983-2016 Propane (Consumer Grade) 5,181.2 4,202.0 5,929.0 5,678.3 8,644.8 7,412.3 1983-2016 Kerosene 2.2 W W W W W 1983-2016 No. 1 Distillate W 140.9 NA NA NA NA 1983-2016 No. 2 Distillate 13,352.4 12,748.2 12,503.0 11,795.7 12,204.5 12,694.8 1983-2016 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2016 Ultra Low-Sulfur 12,625.7 12,084.4 12,016.1 11,276.9 11,756.2

  4. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY U.S. ENERGY INFORMATION ADMINISTRATION Washington, DC 20585 OMB No. 1905-0174 Expiration Date: 09/30/2017 Version No.: 2015.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT INSTRUCTIONS 1. QUESTIONS? If you have any questions about Form EIA-821 after reading the instructions, please call our toll-free number 1-800-638- 8812. 2. PURPOSE The U.S. Energy Information Administration (EIA) Form EIA- 821,

  5. Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996

    SciTech Connect (OSTI)

    Atallah, S.; Janardhan, A.

    1996-02-01

    This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

  6. LPG--a direct source of C/sub 3/-C/sub 4/ olefins

    SciTech Connect (OSTI)

    Pujado, P.R.; Berg, R.C.; Vora, B.V.

    1983-03-28

    This article describes the selective production of olefins by the catalytic dehydrogenation of the corresponding paraffins by means of UOP's Oleflex process. In this process, propylene can be obtained at about 85 mol % selectivity by the catalytic dehydrogenation of propane. Isobutylene can be obtained at selectivities in excess of 90 mol % from isobutane, and n-butenes (1-butene plus 2-butene) at about 80 mol % from n-butane. The availability of this technology, coupled with an abundant supply of LPG (C/sub 3/ and C/sub 4/ paraffins), opens new avenues for the selective production of propylene and butylenes.

  7. Determination of combustion products from alternative fuels. Part I. LPG and CNG combustion products

    SciTech Connect (OSTI)

    Whitney, K.A.; Bailey, B.K.

    1994-10-01

    This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2 nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. 4 refs., 3 figs., 14 tabs.

  8. Planning and care mark repair of 14-year old leak in Kuwait Oil Co. LPG tank 95

    SciTech Connect (OSTI)

    Shtayieh, S.

    1983-01-10

    This paper points out that the leak, which had been present for such a long time, completely saturated the perlite insulation with hydrocarbons, thus rendering the entire operation of inspection, repair, and maintenance of the inner tank a hazardous operation. It emphasizes the safety aspects, which were complicated by the saturated perlite as well as by the fact that the tank is situated in the middle of the LPG storage area with LPG tanks on either side. Tank design, making preparations, inspection, and repair are discussed. The fact that the leaking flanges were originally installed damaged, indicated the future need of tighter company quality control of all contractors work.

  9. Studies on the stripping of cerium from the loaded tbp-kerosene solution

    SciTech Connect (OSTI)

    Rizk, S.E.; Abdel Rahman, N.; Daoud, J.A.; Aly, H.F.

    2008-07-01

    The reductive stripping of Ce(IV) from the loaded organic phase (30% TBP in kerosene) was investigated, using two stripping agents, EDTA and H{sub 2}O{sub 2}, in nitric acid. The results are compared to determine the optimum conditions for the reduction of Ce(IV) in the organic phase to Ce(III) in the aqueous phase. For each of the two stripping agents, the effect of different parameters affecting the reduction process was investigated: stripping-agent concentration, nitric acid concentration, phase ratio, shaking time, and temperature. The results are compared and discussed in terms of the conditions required for maximum reductive stripping of Ce(IV). (authors)

  10. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 1. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG). Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced LPG and differentials between propane and gasoline/diesel in infrastructure costs for a fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Sensitivity analyses are performed on the discount rate, price of propane, maintenance savings, vehicle utilization, diesel vehicles, extended vehicle life, original equipment manufacturer (OEM) vehicles, and operating and infrastructure costs. The best results are obtained when not converting diesel vehicles, converting only large fleets, and extending the period the vehicle is kept in service. Combining these factors yields results that are most cost-effective for TxDOT. This is volume one of two volumes.

  11. Six years' operating experience at Ardjuna field helps prove out LPG SBS system

    SciTech Connect (OSTI)

    Smulders, L.H.

    1983-02-21

    The permanent yoke mooring system and the two-product flexpipe riser of the Arjuna Sakti LPG storage barge have completely lived up to their expectations. The LPG offtake system, the terminaling function of the storage unit, has also performed extremely well. Experience gained at Ardjuna provides confidence for future openocean mooring of large methanol or LNG plants. Mooring systems of these future units will likely have a different configuration, such as the single anchor leg storage (SALS) mooring. However, the basic system components have been used, both at Ardjuna and in comparable situations elsewhere in the world. Engineers who are working on floating, large scale, gas processing plants for mooring in the open ocean could profitably join their efforts in a team comprised of process specialists, naval architects, and mooring experts. Specific areas of consideration should be: length-to-beam and lengthto-depth ratios and shape of bow. This could result in a storage/process barge design with better motion characteristics and lower mooring forces than proposed at present.

  12. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B. )

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  13. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B.

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  14. Investigation on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system

    SciTech Connect (OSTI)

    Singh, Satyendra; Yadav, B.C.; Gupta, V.D.; Dwivedi, Prabhat K.

    2012-11-15

    Graphical abstract: Figure shows the variations in resistance with time for copper ferrite system synthesized in various molar ratio. A maximum variation in resistance was observed for copper ferrite prepared in 1:1 molar ratio. Highlights: ? Evaluation of structural, optical and surface morphologies. ? Significant variation in LPG sensing properties. ? Surface modification of ferric oxide pellet by copper ferrite. ? CuFe{sub 2}O{sub 4} pellets for LPG sensing at room temperature. -- Abstract: Synthesis of a copper ferrite system (CuFe{sub 2}O{sub 4}) via chemical co-precipitation method is characterized by X-ray diffraction, surface morphology (scanning electron microscope) and optical absorption spectroscopy. These characteristics show their dependence on the relative compositions of the two subsystems. They are further confirmed by the variation in the band gap. A study of gas sensing properties shows the spinel CuFe{sub 2}O{sub 4} synthesized in 1:1 molar ratio exhibit best response to LPG adsorption/resistance measurement. Thus resistance based LPG sensor is found robust, cheap and may be applied for kitchens and industrial applications.

  15. Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  16. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  17. Oxidation catalyst systems for emission control of LPG-powered forklift trucks

    SciTech Connect (OSTI)

    Majewski, W.A.; Martin, E.P.; Pietrasz, E.

    1994-10-01

    An oxidation catalyst was installed on an industrial LPG-powered forklift truck. For high conversion efficiency in an oxidation system on a rich burning engine a secondary air supply to the catalyst is necessary. Two simple and cost-effective ways of secondary air supply were tested: an air valve and a venturi type injector. The amount of secondary air supplied by both devices was measured under a variety of conditions - different engine speed, load and exhaust system pressure. Carbon monoxide emissions and the catalyst performance were measured and evaluated in terms of the secondary air flow. Advantages and drawbacks of the air valve and venturi injector systems are discussed and compared. 1 refs., 11 figs., 3 tabs.

  18. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  19. Characterization of population and usage of unvented kerosene space heaters. Final report, May 1988-January 1989

    SciTech Connect (OSTI)

    Barnes, J.; Holland, P.; Mihlmester, P.

    1990-01-01

    The report gives results of a study of the market penetration of unvented kerosene space heaters (UKSHs) in the residential sector. The study was aimed at gathering baseline information to help assess the magnitude and potential severity of a problem involving emissions from unvented appliances, one of a number of synergistic factors affecting indoor air quality. UKSHs can be a significant source of such emissions. UKSH usage patterns were also investigated. Annual sales of UKSHs are estimated at 825,000 units. Leading brands include convective units marketed by Toyotomi USA (kero-Sun) and Corona USA. Some units contain built-in catalytic filters for odor control. Add-on catalytic filters are available from at least one manufacturer. It is believed that 15-17 million portable UKSHs have been sold in the U.S. since the early 1970s. However, it is estimated that, in the 1986-87 heating season, there were only about 7 million units in use. About half of these units are in the South. Depending on whether UKSHs are used as primary or secondary heating sources, they may be used anywhere from 1 to 17 hours a day. Eighty percent of UKSHs are used in multi-family dwellings and mobile homes.

  20. PV based systems, with wind, diesel or LPG genset backup, supplying small TV rebroadcast stations in Portugal

    SciTech Connect (OSTI)

    Ramos, H.F.

    1994-12-31

    This paper describes the implementation of a program intended to introduce PV based hybrid power systems to supply electrical power to small size TV rebroadcast stations in Portugal. Reliability is a major concern to this type of application, as well as economical and social constraints, so wind or diesel/LPG genset backup are used. This paper includes a description of the systems behavior, comparison among these topologies and economical viability data from a users viewpoint.

  1. A two-step chemical scheme for kerosene-air premixed flames

    SciTech Connect (OSTI)

    Franzelli, B.; Riber, E.; Sanjose, M. [CERFACS, CFD Team, 42 Avenue G. Coriolis, 31057 Toulouse Cedex 01 (France); Poinsot, T. [IMFT-UMR 5502, allee du Professeur Camille Soula, 31400 Toulouse (France)

    2010-07-15

    A reduced two-step scheme (called 2S-KERO-BFER) for kerosene-air premixed flames is presented in the context of Large Eddy Simulation of reacting turbulent flows in industrial applications. The chemical mechanism is composed of two reactions corresponding to the fuel oxidation into CO and H{sub 2}O, and the CO - CO{sub 2} equilibrium. To ensure the validity of the scheme for rich combustion, the pre-exponential constants of the two reactions are tabulated versus the local equivalence ratio. The fuel and oxidizer exponents are chosen to guarantee the correct dependence of laminar flame speed with pressure. Due to a lack of experimental results, the detailed mechanism of Dagaut composed of 209 species and 1673 reactions, and the skeletal mechanism of Luche composed of 91 species and 991 reactions have been used to validate the reduced scheme. Computations of one-dimensional laminar flames have been performed with the 2S{sub K}ERO{sub B}FER scheme using the CANTERA and COSILAB softwares for a wide range of pressure ([1; 12] atm), fresh gas temperature ([300; 700] K), and equivalence ratio ([0.6; 2.0]). Results show that the flame speed is correctly predicted for the whole range of parameters, showing a maximum for stoichiometric flames, a decrease for rich combustion and a satisfactory pressure dependence. The burnt gas temperature and the dilution by Exhaust Gas Recirculation are also well reproduced. Moreover, the results for ignition delay time are in good agreement with the experiments. (author)

  2. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 2. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-11-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG), commonly called propane. Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced propane and differentials between propane and gasoline/diesel in infrastructure costs, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Based on the cost-effectiveness analysis and assumptions, there are currently no TxDOT locations that can be converted to propane without additional financial outlays. This is volume two of two volumes.

  3. Total number of slots consumed in long_excl.q (exclusive nodes) will be

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  4. Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect (OSTI)

    Raj, P.K.; Hathaway, W.T.; Kangas, R.

    1996-09-01

    The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  5. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect (OSTI)

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  6. Zn-doped and undoped SnO{sub 2} nanoparticles: A comparative structural, optical and LPG sensing properties study

    SciTech Connect (OSTI)

    Mishra, R.K.; Sahay, P.P.

    2012-12-15

    Graphical abstract: The X-ray diffraction (XRD) analyses confirm that all the materials prepared are polycrystalline SnO{sub 2} possessing tetragonal rutile structure. On Zn-doping, the crystallite size has been found to decrease from 25 nm (undoped sample) to 13 nm (1 at% Zn-doped sample). Display Omitted Highlights: ? Zn-doped SnO{sub 2} nanoparticles show smaller crystallite size (1117 nm). ? Optical band gap in SnO{sub 2} nanoparticles increases on Zn-doping. ? 2 at% Zn-doped sample show minimum room temperature resistivity. ? LPG response of the Zn-doped SnO{sub 2} nanoparticles increases considerably. ? 1 at% Zn-doped sample shows maximum response (87%) at 300 C to 1 vol% concentration. -- Abstract: SnO{sub 2} nanoparticles were prepared by the co-precipitation method with SnCl{sub 4}5H{sub 2}O as the starting material and Zn(CH{sub 3}COO){sub 2}2H{sub 2}O as the source of dopant. All the materials prepared have been found to be polycrystalline SnO{sub 2} possessing tetragonal rutile structure with crystallite sizes in the range 1125 nm. Optical analyses reveal that for the SnO{sub 2} nanoparticles, both undoped and Zn-doped, direct transition occurs with the bandgap energies in the range 3.053.41 eV. Variation in the room temperature resistivity of the SnO{sub 2} nanoparticles as a function of dopant concentration has been explained on the basis of two competitive processes: (i) replacement of Sn{sup 4+} ion by an added Zn{sup 2+} ion, and (ii) ionic compensation of Zn{sup 2+} by the formation of oxygen vacancies. Among all the samples examined for LPG sensing, the 1 at% Zn-doped sample exhibits fast and maximum response (?87%) at 300 C for 1 vol% concentration of LPG in air.

  7. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  8. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  9. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  10. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  11. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  12. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  13. The best news for LPG in Denmark is diesel conversion breakthrough

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Throughout Scandanavia, taxes seem to drive the marketplace. Governments do not want to encourage consumption of alcoholic beverages, so they tax them heavily, thereby actually discouraging their use. Using the same means, they dictate the fate of the various fuels. Taxes have depressed propane's use to a large extent; today it is priced at three times natural gas, with the result that it accounts for only 0.5%-0.7% of total energy consumption. But, this paper reports on a potential new star that has appeared on the horizon, as participants in the People-to-People sojourn to Scandanavia last August learned. It's a program of converting diesel buses to propane, and officials of the company that is marketing it, Skibby Motor A/S, are so confident of its success that they have already begun a campaign of introducing it to the U.S.

  14. Landi-Hartog U. S. A. adjusts to the U. S. market. [Marketing of LPG carburetor systems for using propane as an automotive fuel

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Landi-Hartog U.S.A. has adjusted to the U.S. market in providing LPG carburetor systems for passenger cars. Landi-Hartog (LH) had to completely redesign the components on the system to be compatible with U.S. 300-525 cu in. engines. The company has California Air Resources Board approval for 300 cu in. engines and above in dual-fuel service. However, the U.S. market will remain severely restricted unless basic distribution (and the political) changes are made. The U.S. is st

  15. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  16. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, S.A.; Haliburton, J.

    1990-10-30

    This patent describes an improvement in a process for separating propane and heavier hydrocarbons from a gaseous feedstream containing hydrocarbon components of different boiling points wherein the feedstream is cooled and separated into a first vapor fraction and a first liquid fraction and the first liquid fraction is distilled in a deethanizer to form a second vapor fraction and a second liquid fraction. The improvement comprises expanding and transferring the first vapor fraction to the lower portion of a direct heat exchanger, cooling {ital at least a portion of} the second vapor fraction {ital by passing it through an indirect heat exchanger} to form a substantially liquefied stream, {ital partially flashing at least a portion of the liquefied stream and transferring it} to the upper portion of the direct heat exchanger whereby the liquefied stream contacts the first vapor fraction to form a third vapor fraction and a third liquid fraction, {ital transferring} the third liquid fraction to the deethanizer, and removing the third vapor fraction from the direct heat exchanger {ital and passing the third vapor fraction through the indirect heat exchanger}.

  17. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  18. Table A13. Total Consumption of Offsite-Produced Energy for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Generation by Census Region and Economic Characteristics of the" " Establishment, ...,"LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion ...

  19. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...

    U.S. Energy Information Administration (EIA) Indexed Site

    for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End ...

  20. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  1. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    6 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66

  3. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    0 Main Residential Heating Fuel, by Vintage, as of 2005 (Percent of Total Households) 1949 or 1950 to 1960 to 1970 to 1980 to 1990 to 2000 to Heating Fuel Before 1959 1969 1979 1989 1999 2005 Natural Gas 56% 57% 55% 46% 45% 45% 45% Electricity 8% 18% 26% 36% 42% 42% 43% Fuel Oil 14% 10% 7% 5% 2% 2% 2% LPG 5% 3% 2% 5% 6% 8% 8% Other (1) 17% 12% 10% 8% 4% 3% 2% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): 1) Other includes wood and kerosene. EIA, Residential Energy Consumption

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  12. Three-way catalyst technology for off-road equipment powered by gasoline and LPG engines. Final report

    SciTech Connect (OSTI)

    White, J.J.; Ingalls, M.N.; Carroll, J.N.; Chan, L.M.

    1999-04-01

    Research was done to demonstrate the feasibility of using closed-loop three-way catalyst (TWC) technology in off-road large spark-ignited (LSI) engine applications to meet California State Implementation Plan (SIP) emission reduction goals. Available technology was investigated for applicability to engines in this category. Appropriate test cycles were recommended, and five representative engines were selected and baseline emission tested. Total feasible emission reductions were calculated. The retail price equivalent (RPE) for the recommended emission control technology was determined, and cost-effectiveness was calculated. Emission standards necessary to meet SIP goals were recommended.

  13. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  14. Energy-Sipping House Receives Technology Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Appendix A. Comparison of fuel detail for the State Energy Data System and the annual series appearing in the Monthly Energy Review data system Energy Source State Energy Data System Monthly Energy Review Consumption Sector Category Fuel Detail Fuel Detail Residential Coal Coal Coal Residential Natural Gas Natural Gas Natural Gas Residential Petroleum Distillate Fuel Distillate Fuel Residential Petroleum Kerosene Kerosene Residential Petroleum LPG LPG Commercial Coal Coal Coal Commercial

  15. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appendix A. Comparison of fuel detail for the State Energy Data System and the annual series appearing in the Monthly Energy Review data system Energy Source State Energy Data System Monthly Energy Review Consumption Sector Category Fuel Detail Fuel Detail Residential Coal Coal Coal Residential Natural Gas Natural Gas Natural Gas Residential Petroleum Distillate Fuel Distillate Fuel Residential Petroleum Kerosene Kerosene Residential Petroleum LPG LPG Commercial Coal Coal Coal Commercial

  16. Kerosene Sales for Industrial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    5,536 45,145 22,557 12,920 9,374 17,941 1984-2014 East Coast (PADD 1) 15,113 36,274 15,732 9,177 5,556 11,440 1984-2014 New England (PADD 1A) 6,700 5,785 5,752 2,148 1,417 3,887...

  17. Kerosene Sales for Commercial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    31,291 35,716 23,648 8,909 7,542 15,116 1984-2014 East Coast (PADD 1) 22,239 26,146 17,166 5,928 4,854 10,440 1984-2014 New England (PADD 1A) 4,792 5,266 3,051 1,310 1,306 2,972...

  18. Kerosene Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    05,136 215,587 137,232 57,316 61,188 101,852 1984-2014 East Coast (PADD 1) 159,414 172,303 107,007 47,028 50,267 83,749 1984-2014 New England (PADD 1A) 44,681 41,961 29,375 12,315...

  19. Kerosene Sales for Farm Use

    U.S. Energy Information Administration (EIA) Indexed Site

    ,414 6,763 3,410 1,712 1,415 2,597 1984-2014 East Coast (PADD 1) 1,660 1,564 1,726 822 565 1,103 1984-2014 New England (PADD 1A) 457 341 164 161 130 247 1984-2014 Connecticut 1 2 2...

  20. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  1. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  3. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  4. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed.

  5. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  6. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  7. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31%

  8. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  9. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31%

  10. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  11. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  12. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  13. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End ...

  14. 21 briefing pages total

    Energy Savers [EERE]

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  15. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  16. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  17. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Stocks by Type Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils,

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units ...

  19. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  20. Total........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  1. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  2. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  3. Total.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  4. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  5. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  6. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  7. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  8. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  9. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  10. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  11. Total................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  12. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  13. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  14. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  15. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  16. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  17. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  18. Total....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  19. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  20. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  1. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  2. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  3. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  4. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  5. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  6. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  7. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  8. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  9. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  10. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  11. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  12. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  13. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  14. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  15. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  18. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  19. Total.................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  20. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  1. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  2. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  3. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  4. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  5. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  6. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  7. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ... Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' CellModule ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... 27.4 ... Q Q N Q N N Proportion of Windows Replaced All......

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q Q Q Q Proportion of Windows Replaced All......

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump......

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump......

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump...... 53.5 ...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump......

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment...... 17.8 2.1 1.8 0.3 Have Cooling Equipment...... 93.3 23.5 16.0 7.5 Use ...

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment...... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment...... 93.3 26.5 6.5 2.5 ...

  19. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  20. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  1. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  2. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  3. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  4. 2014 Total Electric Industry- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 ...

  5. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,8...

  6. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  7. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    3 Table E11. Commercial Sector Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste e Alabama - 312.8 100.1 0.4 49.0 6.3 - 155.8 4.4 472.9 2,376.6 2,849.5 Alaska 43.7 155.9 184.7 0.9 15.8 15.0 - 216.3 2.7 418.6 440.0 858.6 Arizona - 288.1 146.8 (s) 32.4 17.9 - 197.0 2.7 487.9 2,958.0 3,445.9 Arkansas -

  8. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    2 Table E10. Residential Sector Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Retail Electricity Total Energy e Coal a Natural Gas b Petroleum Biomass Total e Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama - 542.4 2.3 0.4 137.3 139.9 37.3 719.6 3,532.6 4,252.1 Alaska - 170.1 190.3 0.8 14.4 205.5 17.4 392.9 381.2 774.1 Arizona - 552.5 0.3 (s) 141.1 141.4 23.2 717.2 3,878.0 4,595.1 Arkansas - 366.0 0.6 0.2 151.7 152.5 53.6 572.1 1,746.5 2,318.6 California -

  9. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    6 Table E4. Commercial Sector Energy Price Estimates, 2013 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste e Alabama - 12.15 23.59 26.12 21.59 27.14 - 23.05 12.43 14.40 30.82 25.91 Alaska 4.89 8.33 27.33 31.20 20.38 34.80 - 27.07 4.78 11.56 45.66 18.73 Arizona - 8.54 24.99 33.08 21.61 27.99 - 24.60 16.72 11.64 28.86 23.86

  10. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    5 Table E3. Residential Sector Energy Price Estimates, 2013 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy e Coal a Natural Gas b Petroleum Biomass Total e Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama - 15.22 25.73 26.12 28.86 28.79 12.43 16.55 33.00 28.24 Alaska - 8.84 27.46 31.20 38.46 28.03 16.72 14.24 53.10 22.26 Arizona - 13.57 29.10 33.08 35.03 35.01 16.72 15.54 34.33 28.88 Arkansas - 10.26 26.23 26.62 29.36 29.35 12.43 12.66 28.09 21.60

  11. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  12. Kerosene Sales for All Other Uses

    U.S. Energy Information Administration (EIA) Indexed Site

    33 2,297 809 245 155 422 1984-2014 East Coast (PADD 1) 336 1,110 558 120 83 262 1984-2014 New England (PADD 1A) 31 10 105 49 9 79 1984-2014 Connecticut 18 0 0 0 0 0 1984-2014 Maine...

  13. Prices of Refiner Kerosene Sales for Resale

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 1.509 1.555 1.554 1.275 1.183 1.155 1983-2016 East Coast (PADD 1) 1.670 1.703 1.655 1.372 1.244 1.252 1983-2016 New England (PADD 1A) - W W W W W 1983-2016 Connecticut - W W W W W 1984-2016 Maine - - - - - - 1984-2016 Massachusetts - - - - - - 1984-2016 New Hampshire - - - - - - 1984-2016 Rhode Island - - - - - - 1984-2016 Vermont - - - - - - 1984-2016 Central Atlantic (PADD 1B) 1.635 1.654 1.617 1.336 1.191 1.192 1983-2016 Delaware - W

  14. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. Total 7,281 4,217 5,941 6,842 9,010 5,030 1936-2016 PAD District 1 4,571 2,206 2,952 3,174 3,127 2,664 1981-2016 Connecticut 1995-2015 Delaware 678 85 1995-2015 Florida 351 299 932 836 858 649 1995-2016 Georgia 120 295 210 262 1995-2016 Maine 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,575 400 1,131 1,712 1,283 843 1995-2016 New York 1,475 998 350 322 234 824 1995-2016 North Carolina

  15. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  16. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  17. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  18. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths ...

  19. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  4. LPG in Latin America: An overall view

    SciTech Connect (OSTI)

    Villaronga, G.J.

    1986-01-01

    Latin America is about 2.2 times the size of the United States and, in population, it exceeds the U.S. by 165 million people. A relatively high population growth rate, together with its vast underdeveloped natural resources, gives Latin America a tremendous potential for progress. The desire of governments to advance economically, together with the proper stimuli to education and to the managerial resources, should translate this potential in reality. This is evident in a number of regions.

  5. Process boasts 95% selectivity for LPG

    SciTech Connect (OSTI)

    Brinkmeyer, F.M.; Drehman, L.E.; Olbrich, M.E.; Rohr, D.F.

    1983-03-28

    This article describes a new Phillips catalytic process for the dehydrogenation and/or the dehydrocyclization of paraffinic feedstocks, steam active reforming (STAR), which produces no structural isomerization. Light paraffins such as propane, isobutane, and normal butane can be dehydrogenated to their respective mono-olefins with selectivities as high as 95%. The process offers such advantages as: it will accept a wide range of feedstocks; selectivity to desired products is high; there is a minimum of structural isomerization which permits the production of specific products from particular feedstocks with high purity; it works well with paraffinic and olefinic materials which make poor feeds in conventional reforming processes; and the catalyst has moderate tolerance for sulfur and nitrogen compounds.

  6. Cryogenic recovery of LPG from natural gas

    SciTech Connect (OSTI)

    Gray, M.L.; McClintock, W.A.

    1984-02-07

    In accordance with the present invention a natural gas stream predominating in methane and containing significant amounts of C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is cooled in a plurality of cooling stages to a temperature sufficient to produce at least one liquid phase portion predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons. Then at least one liquid phase portion predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is separated from the main gas stream during the course of the cooling. The thus separated liquid phase portion or portions predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is further separated into a vapor phase portion predominating in C/sub 2/, C/sub 3/, and C/sub 4/ hydrocarbons and at least one liquid phase portion predominating in C/sub 5/ and higher molecular weight hydrocarbons, at least one second separation step, at least one portion of the at least one vapor phase portion predominating in C/sub 2/, C/sub 3/ and C/sub 4/, hydrocarbons is recovered as at least one product of the process and at least one portion of the remaining portion of the at least one phase portion predominating in C/sub 2/, C/sub 3/ and C/sub 4/ hydrocarbons is recycled to and recombined with the main gas stream as a liquid phase.

  7. Periodic review enhances LPG metering performance

    SciTech Connect (OSTI)

    Van Orsdol, F.G.

    1988-01-25

    Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

  8. Dehydrogenation links LPG to more octanes

    SciTech Connect (OSTI)

    Gussow, S.; Spence, D.C.; White, E.A.

    1980-01-01

    Air Products and Chemicals Inc.'s Houdry Catofin process, a new application of well-known Houdry catalytic dehydrogenation technology, is an adiabatic, fixed-bed, multireactor catalytic process which produces propylene, isobutylene, and mixed n-butylenes by dehydrogenation of the corresponding saturates. The process is very flexible in that propylene, isobutylene, and mixed n-butylenes can be produced either separately or simultaneously from the corresponding saturates. The process will be used to prepare purity propylene at a Morelos, Mex., plant, which is now in the engineering stage. Five variations of the procedure for producing propylene; methyl tert.-butyl ether; propylene and alkylate; methyl tert.-butyl ether and alkylate; and methyl tert.-butyl ether, alkylate, and 1-butylene are compared with respect to typical product yields, costs and values for process economics, the dehydrogenation route to the three products, manufacturing costs, the sensitivity of return on investment to feedstock costs, and the return on investment, which varies from a low of 11.5% for the third case to a high of 14.4% for the fourth case. The Catofin process is discussed.

  9. Production of LPG olefins by catalytic dehydrogenation

    SciTech Connect (OSTI)

    Pujado, P.R.; Vora, B.V.

    1984-09-01

    Catalytic dehydrogenation allows for the production of specific olefins thus avoiding the large capital and operating expenses associated with the recovery and processing of the many by-products from pyrolysis units. The chemistry of the process is discussed along with the process economics.

  10. Injection of LPG into TCC unit

    SciTech Connect (OSTI)

    Chou, T.S.

    1987-02-03

    A process is described for catalytically cracking hydrocarbon feed in a bed of catalyst effective to crack the hydrocarbon feed, comprising contacting the feed under catalytic cracking conditions, with the catalyst in a first portion of the bed, to produce cracked product. Another portion of that bed of catalyst is sealed by introducing into another portion of that bed a seal selected from the group consisting of ethane, propane, butane, isobutane, ethylene, propylene, butylene, isobutylene and mixtures thereof whereby feed and cracked product are prevented from surging into another portion; whereby contact of the seal with catalyst in another portion of the bed results in conversion of the seal to the higher molecular weight adducts thereof, the condition in another portion of the bed being effective to provide the conversion.

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    "Date","U.S. Kerosene Adj SalesDeliveries Total to End Users (Thousand Gallons)","East Coast (PADD 1) Kerosene Adj SalesDeliveries Total to End Users (Thousand Gallons)","New...

  12. Fuel Tables.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1: Kerosene Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Residential Commercial Industrial Total Residential Commercial Industrial ...

  13. Maine, Summary of Reported Data From July 1, 2010 - September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  14. Michigan State, Summary of Reported Data From July 1, 2010 -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  15. Los Angeles County, California, Summary of Reported Data From...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  16. Alabama State Energy Program, Summary of Reported Data From July...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  17. Lowell, Massachusetts, Summary of Reported Data From July 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  18. Indianapolis, Indiana, Summary of Reported Data From July 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  19. Omaha, Nebraska, Summary of Reported Data From July 1, 2010 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  20. St. Lucie County, Florida, Summary of Reported Data From July...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  1. Kansas City, Missouri, Summary of Reported Data From July 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  2. NYSERDA Summary of Reported Data From July 1, 2010 - September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  3. Better Buildings State of Maryland Summary of Reported Data From...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel Oil (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  4. CSG, Bainbridge Island, Washington, Summary of Reported Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  5. Toledo, Ohio, Summary of Reported Data From July 1, 2010 - September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  6. Cincinnati, Ohio, Summary of Reported Data From July 1, 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  7. Rutland, Vermont, Summary of Reported Data From July 1, 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  8. Chicago Metropolitan Agency for Planning Summary of Reported...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel Oil (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  9. Eagle County, Colorado, Summary of Reported Data From July 1...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  10. Phoenix, Arizona , Summary of Reported Data From July 1, 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  11. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  17. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  18. untitled

    Gasoline and Diesel Fuel Update (EIA)

    Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and ... No. 2 Distillate Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 ...

  19. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Hawaii - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Net Movements: - Industrial: Dry Production: Vehicle ... due to independent rounding. Prices are in nominal dollars. ... Annual Consumption per Consumer (thousand cubic feet) ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    from Electric Power to Industrial for years 2002 through ... Totals may not add due to independent rounding. Prices are ... Annual Consumption per Consumer (thousand cubic feet) ...

  11. Total Natural Gas Underground Storage Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  12. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  13. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  14. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 mum, is being emitted ...

  15. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,351479...

  16. Total Supplemental Supply of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & ...

  17. Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C.D.; Penick, J.E.; Socha, R.F.

    1987-07-07

    This patent describes an apparatus for producing distillates of lubes from paraffins, which comprise: (a) a dehydrogenation reactor including means for passing a paraffinic feedstock stream into a dehydrogenation zone at conditions of pressure and temperature selected to convert the paraffins to an olefin rich effluent stream comprising at least one of the group consisting of propylene and butylene; (b) a low pressure oligomerization catalytic reactor including means for contacting the olefin rich effluent stream in a low pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of pressure and temperature selected to convert olefins to a first reactor effluent stream rich in liquid olefinic gasoline range hydrocarbons; (c) a first means for separating the first reactor effluent stream to form a substantially liquid C/sub 5/+ rich stream and a C/sub 4/- rich stream; (d) means for passing the C/sub 5/+ rich stream to a high pressure oligomerization catalytic reactor zone; (e) a high pressure oligomerization catalytic reactor including means for contacting the substantially liquid C/sub 5/+ rich stream in the high pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of temperature and pressure selected to produce a second reactor effluent stream which is rich in distillate; (f) second means for separating the second reactor effluent stream to recover an olefinic gasoline stream and a distillate stream; and (g) a hydrotreating reactor including means for contacting the distillate stream with hydrogen in a hydrotreating unit to produce a hydrotreated distillate stream comprising lube range hydrocarbons.

  18. Conversion of lpg hydrocarbons to distillate fuels or lubes using integration of lpg dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C. D.; Penick, J. E.; Socha, R. F.

    1985-09-17

    Disclosed is a method and apparatus for producing distillate and/or lubes which employ integrating catalytic (or thermal) dehydrogenation of paraffins with MOGDL. The process feeds the product from a low temperature propane and/or butane dehydrogenation zone into a first catalytic reactor zone, which operates at low pressure and contains zeolite oligomerization catalysts, where the low molecular weight olefins are reacted to primarily gasoline range materials. These gasoline range materials can then be pressurized to the pressure required for reacting to distillate in a second catalytic reactor zone operating at high pressure and containing a zeolite oligomerization catalyst. The distillate is subsequently sent to a hydrotreating unit and product separation zone to form lubes and other finished products.

  19. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect (OSTI)

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  20. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  1. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  2. TEXAS LPG FUEL CELL DEVELOPMENT AND DEMONSTRATION PROJECT Full-Text - Submission contains both citation data and full-text of the journal article. Full-text can be either a pre-print or post-print, but not the copyrighted article.

    SciTech Connect (OSTI)

    SOUTHWEST RESEARCH LABORATORY SUBMITTED BY SUBCONTRACTOR, RAILROAD COMMISSION OF TEXAS

    2004-07-26

    The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix?s LPG fuel processor system integrated into Plug Power?s residential-scale GenSys 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program?s primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation?s TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units. For further information please contact Mary-Jo Rowan at mary-jo.rowan@cpa.state.tx.us

  3. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet ... Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 ...

  4. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals may not add due to independent rounding. Prices are ... 250,994 253,127 Industrial 9,332 9,088 8,833 8,497 8,156 Average Annual Consumption per Consumer (thousand cubic ...

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: Totals may not add due to independent rounding. Prices ... 34,078 34,283 34,339 Industrial 102 94 97 95 92 Average Annual Consumption per Consumer (thousand cubic feet) ...

  7. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  8. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  9. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 mum, is being emitted upwards into a ...

  10. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004629.1...

  11. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Thousands Dollars) (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 ...

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. ... 2,314 764 719 180 4,046 Supplemental Gas Supplies 732 701 660 642 635 Balancing Item ...

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. ... 3,762 7,315 10,303 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 65,897 -19,970 ...

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. ... 473 526 484 626 1,359 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -6,645 3,976 ...

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. ... 35 108 71 124 185 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,393 -3,726 ...

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. ... 92 87 100 89 138 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -2,885 -12,890 ...

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. ... 76 96 66 131 128 Supplemental Gas Supplies 1 0 * * 6 Balancing Item 3,249 7,362 ...

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. ... 1,844 980 2,403 2,701 Supplemental Gas Supplies 2 1 0 0 1 Balancing Item -1,989 -7,914 ...

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. ... 4,404 3,278 5,208 6,218 Supplemental Gas Supplies 457 392 139 255 530 Balancing Item ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. ... 698 436 457 645 879 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,269 1,045 ...

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. ... 0 LNG Storage 0 0 0 0 0 Supplemental Gas Supplies 1 2 3 3 5 Balancing Item -453 -1,711 ...

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. ... 195 154 146 210 211 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 17,590 4,622 ...

  3. Total internal reflection laser tools and methods

    DOE Patents [OSTI]

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  4. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  5. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  6. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  7. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  8. "Table A28. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic ... "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity...

  9. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  10. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    a Heat Content of Petroleum Consumption by End-Use Sector, 1949-2015 (Quadrillion Btu) Residential and Commercial a Sectors, Selected Products Industrial a Sector, Selected Products Transportation Sector, Selected Products 68 U.S. Energy Information Administration / Monthly Energy Review May 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 1 2 3 Distillate Fuel Oil LPG b Kerosene Residual Fuel Oil LPG b 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

  11. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  12. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  13. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  14. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  15. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  16. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  17. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  18. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  19. " Level: National Data and Regional...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " ...

  20. Manufacturing Energy and Carbon Footprint - Sector: Forest Products...

    Broader source: Energy.gov (indexed) [DOE]

    Total Emissions Offsite Emissions + Onsite Emissions Energy Use (TBtu Trillion British ... Materials (byproduct fuel) 1% Petroleum Coke (byproduct fuel) 1% LPG and NGL < 0.5% ...

  1. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  2. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  3. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  4. California Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries California Share of Total U.S. ...

  5. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    99.6 92.9 52.3 52.2 67.4 56.6 February ... 99.8 93.2 52.2 52.0 62.8 55.2 March ... 99.0 93.1 50.5 50.1 59.4 52.8 April...

  6. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    U.S. Energy Information Administration (EIA) Indexed Site

    54.8 419.0 45,096.6 8,762.5 604.1 4,549.2 615.6 3,730.7 3,926.0 38,286.0 February ... 179.4 498.6 44,645.3 9,079.3 849.8 4,868.6 600.3 2,983.7 4,000.8...

  7. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    U.S. Energy Information Administration (EIA) Indexed Site

    165,833.6 February ... 7,190.5 4,192.4 55,685.0 76,234.8 22,030.8 98,265.6 153,950.6 2,265.8 167,599.4 March ... 3,741.4...

  8. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 151.1 456.7 46,811.8 13,168.9 661.0 5,865.0 639.0 3,498.4 4,030.8 40,811.0 March ... 155.1 534.1 47,764.0 11,796.0 685.4...

  9. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    54,523.8 56,214.8 56,795.2 59,305.1 1983-2015 East Coast (PADD 1) 15,821.2 15,588.0 15,512.9 16,022.8 15,637.3 15,301.1 1983-2015 New England (PADD 1A) 1,146.9 1,177.7 1,153.8 ...

  10. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    57,919.6 58,355.5 58,987.8 54,943.8 53,752.6 57,420.6 1983-2016 East Coast (PADD 1) 14,394.6 14,389.9 14,686.9 14,017.2 12,931.4 13,713.2 1983-2016 New England (PADD 1A) 1,064.9 1,016.4 1,054.0 1,213.8 1,158.8 1,373.7 1983-2016 Connecticut 155.4 133.6 160.6 149.6 156.9 165.9 1983-2016 Maine 120.1 83.5 66.5 65.8 73.9 85.6 1983-2016 Massachusetts 669.3 666.8 688.3 879.3 810.9 991.2 1983-2016 New Hampshire 33.7 31.2 29.8 30.7 32.7 36.6 1983-2016 Rhode Island 62.2 74.5 76.7 62.7 62.1 73.5 1983-2016

  11. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    56.9 57.3 73.4 65.7 March ... 105.0 100.6 59.0 59.6 69.0 68.0 April ... 111.4 107.5 66.0 65.3 80.5 75.1 May...

  12. U.S. Adjusted Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  13. U.S. Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  14. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    November ... 58.5 122.9 10,242.7 4,001.7 129.0 1,736.0 W 75.6 92.0 3,959.8 December ... 49.3 104.6 10,847.5 4,159.8 218.2 2,071.9 4.1...

  15. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    19.9 367.6 3.5 19.6 W 1,073.2 1997 Average ... 6.4 5.6 1,243.6 312.9 12.0 207.5 1.4 7.1 3.0 732.8 See footnotes at end of table. Energy Information...

  16. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Gasoline and Diesel Fuel Update (EIA)

    W 2.5 NA NA - W - W - 14.9 September ... W 2.5 156.3 22.2 W W - W W 22.0 October ... W 2.4 NA NA - W - W W W November...

  17. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    114.6 105.9 57.6 58.1 64.5 57.4 July ... NA 104.7 56.7 56.9 63.1 56.8 August ... 114.6 109.0 59.1 59.1 64.9 60.6...

  18. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    88.4 45.3 45.9 65.3 47.5 April ... 99.3 92.8 46.6 46.7 56.7 46.1 May ... 101.1 97.3 46.7 47.0 56.0 45.6 June...

  19. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  20. California Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption California Natural Gas Consumption by End Use ...

  1. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the ...

  2. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  3. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  6. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  7. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  8. Estimation of Anisotoropy from Total Cross Section and Optical...

    Office of Scientific and Technical Information (OSTI)

    Conference: Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and ...

  9. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect (OSTI)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  10. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS LPG Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel LPG Fuel Use Another Fuel the Products Fuel

  11. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  13. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  15. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  17. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  18. Virginia Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  19. Washington Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  1. Kansas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  2. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  3. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  4. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by ... PM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Net Receipts by ...

  5. NREL: Building America Total Quality Management - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation PDF icon NREL: Building America Total Quality Management - 2015 Peer Review More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review NREL: Building America Total Quality Management - 2015 Peer Review R25 Polyisocyanurate Composite Insulation Material

  6. World ethylene and LPG past the 1980's

    SciTech Connect (OSTI)

    Baldwin, R.L.

    1986-01-01

    This paper examines the future of the US ethylene/petrochemical industry by addressing several questions: What are the characteristics of this industry when viewed in a worldwide context. What does the future hold for this industry. How will it fare in the world. Will things get better or worse.

  7. Excess fuel gas. Recover H/sub 2//LPG

    SciTech Connect (OSTI)

    Banks, R.; Isalski, W.H.

    1987-10-01

    Refiners have traditionally been isolated from low temperature cryogenic processing. Energy conservation measures can be complemented by highly efficient cryogenic turbo-expander technology to remove almost all C/sub 3/ and C/sub 4/ components from the fuel header in a separated modular gas processing plant. When appropriate, ethane and ethylene can be accommodated by this technology without the necessity for revamp of existing equipment. The wide experience of cryogenic technology worldwide makes it an excellent means of improving refinery efficiency.

  8. Design and construction of liquefied petroleum gas installations (LPG)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard applies principally to both refrigerated and non-refrigerated installations that are larger in size than or closely associated with operating units, or both. The more complex problems presented by such installations require wider latitude for the designer than installations that are covered by the present National Fire Protection Association standards.

  9. Enthusiam greets establishment of vigorous LPG clean fuels coalition

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    In a concerted effort to promote the fair consideration of LP-gas as an alternative fuel nationwide, a number of prominent corporations and individuals have established a new group called the LP-Gas Clean Fuels Coalition (Irvine, Calif.). This paper discusses how the coalition will spearhead the industry's efforts to encourage favorable clean-air legislation and regulations through the gathering and dissemination of accurate information from all industry sources. Coalition members believe that LP-gas is not being equitably considered in the current Congressional push to legislate clean alternative fuels.

  10. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect (OSTI)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  11. Cryogenic flexible pipes for offshore LNG-LPG production

    SciTech Connect (OSTI)

    Dumay, J.M.

    1981-01-01

    Available in long, flexible pieces (up to several miles), the high-performance Coflexip pipe comprises four basic layers: (1) an interlocked, spiraled-steel carcass to resist crushing and prevent deformation, (2) an inner thermoplastic sheath to render the line internally leakproof, (3) two cross-laid steel-wire armors to oppose the stresses induced by internal pressure, and (4) an external thermoplastic sheath to ensure water-tightness and resist corrosion. Coflexip pipe is particularly suitable for transporting cryogenic liquids such as LNG from, for example, an offshore liquefaction plant.

  12. Process for conversion of light olefins to LPG and aromatics

    SciTech Connect (OSTI)

    Martindale, D.C.; Andermann, R.E.; Mowry, J.R.

    1989-01-03

    A hydrocarbon conversion process is described which comprises passing a hydrocarbon feed stream comprising at least 30 mole percent olefins having 3 to 4 carbon atoms per molecule and also comprising at least 50 mole percent paraffins having 3 to 4 carbon atoms per molecule and containing less than 10 mole percent C/sub 5/-plus hydrocarbons into a catalytic reaction zone operated at low severity conditions and contacting the feed stream with a solid catalyst gallium. A reaction zone effluent stream is produced comprising C/sub 6/-C/sub 8/ aromatic hydrocarbons and C/sub 3/-C/sub 4/ paraffins, with the reaction zone effluent stream containing less than 10 mole percent olefinic hydrocarbons. The low severity conditions include a combination of pressure, feed space velocity and temperature, including a temperature below 425/sup 0/C, which results in a partial conversion of the feed hydrocarbons into aromatic hydrocarbons whereby: (i) when the effluent is separated there are produced a first product stream, which first product stream is rich in C/sub 6/-C/sub 8/ aromatic hydrocarbons and is withdrawn from the process, with the second product stream, which second product stream is rich in C/sub 3/-C/sub 4/ paraffins and is withdrawn from the process, with the second product stream having a flow rate equal to at least 30 wt. percent of the flow rate of the feed stream; and (ii) the mass flow rate of paraffinic hydrocarbons out of the reaction zone exceeds the mass flow rate of paraffinic hydrocarbons into the reaction zone.

  13. Scaling properties of proton-nucleus total reaction cross sections

    SciTech Connect (OSTI)

    Abu-Ibrahim, Badawy; Kohama, Akihisa

    2010-05-15

    We study the scaling properties of proton-nucleus total reaction cross sections for stable nuclei and propose an approximate expression in proportion to Z{sup 2/3}sigma{sub pp}{sup total}+N{sup 2/3}sigma{sub pn}{sup total}. Based on this expression, we can derive a relation that enables us to predict a total reaction cross section for any stable nucleus within 10% uncertainty at most, using the empirical value of the total reaction cross section of a given nucleus.

  14. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7)

  16. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7)

  17. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7)

  18. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  19. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  20. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  1. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  2. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update (EIA)

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  3. Real-space formulation of the electrostatic potential and total...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the ...

  4. Table A19. Components of Total Electricity Demand by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Components of Total Electricity Demand by Census Region and" " Economic Characteristics of ...ansfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)",...

  5. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  6. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  7. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  8. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  9. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  10. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals ... Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Texas Offshore ...

  11. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. PDF icon National Fuel Cell and Hydrogen Energy Overview More ...

  12. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  13. ,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","22016","1151983" ,"Release Date:","522016" ,"Next Release Date:","612016" ,"Excel File Name:","petconsrefmg...

  14. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  15. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  16. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  17. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  18. ,"Conventional Gasoline Sales to End Users, Total Refiner Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","22016","1151994" ,"Release Date:","522016" ,"Next Release Date:","612016" ,"Excel File Name:","petconsrefmg...

  19. Global gas processing will strengthen to meet expanding markets

    SciTech Connect (OSTI)

    Haun, R.R.; Otto, K.W.; Whitley, S.C.; Gist, R.L.

    1996-07-01

    The worldwide LPG industry continues to expand faster than the petroleum industry -- 4%/year for LPG vs. 2%/year for petroleum in 1995 and less than 1%/year in the early 1990s. This rapid expansion of LPG markets is occurring in virtually every region of the world, including such developing countries as China. The Far East is the focus of much of the LPG industry`s attention, but many opportunities exist in other regions such as the Indian subcontinent, Southeast Asia, and Latin America. The investment climate is improving in all phases of downstream LPG marketing, including terminaling, storage, and wholesale and retail distribution. The world LPG supply/demand balance has been relatively tight since the Gulf War and should remain so. Base demand (the portion of demand that is not highly price-sensitive) is expanding more rapidly than supplies. As a result, the proportion of total LPG supplies available for price-sensitive petrochemical feedstock markets is declining, at least in the short term. The paper discusses importers, price patterns, world LPG demand, world LPG supply, US NGL supply, US gas processing, ethane and propane supply, butane, isobutane, and natural gasoline supply, and US NGL demand.

  20. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...