Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

2

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

3

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

4

Distillation  

Science Journals Connector (OSTI)

A critical review on new developments in desalination by distillation processes, with the multistage flash evaporation process as the reference, was presented by Veenman. These developments refer to vertical t...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

5

Propane, Liquefied Petroleum Gas (LPG)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

6

LPG | OpenEI  

Open Energy Info (EERE)

LPG LPG Dataset Summary Description The JodiOil World Database is freely available from the Joint Organisations Data Initiative (JODI) and is updated on or around the 20th of each month. Source JODI Date Released October 01st, 2004 (10 years ago) Date Updated March 21st, 2011 (3 years ago) Keywords crude oil diesel fuel oil gasoline kerosene LPG Data application/zip icon Text file, all JODI Database data: Jan 2002 - Jan 2011 (zip, 14.5 MiB) application/pdf icon Definitions of Abbreviations and Codes (pdf, 698.3 KiB) application/pdf icon Column Headings for Dataset (pdf, 13.4 KiB) Quality Metrics Level of Review Some Review Comment Some of the data has "some review" and some of the data has "no review"; the supplemental documentation provides definitions for the assessment codes for each piece of data in the datasets (essentially, 1 = some review, 2 = use with caution, 3 = not reviewed)

7

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

8

LPG dealers, manufacturers report diverse effects of recession and war  

SciTech Connect (OSTI)

The author presents a survey of LPG marketers. The effects of the Persian Gulf War and U.S. recession on the LPG industry are discussed.

Prowler, S.

1991-01-01T23:59:59.000Z

9

Fuel Displacement & Cost Potential of CNG, LNG, and LPG Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LPG Vehicles Fuel Displacement & Cost Potential of CNG, LNG, and LPG Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

10

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

11

Emissions from ethanol and LPG fueled vehicles  

SciTech Connect (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

12

LPG Electrical, Inc | Open Energy Information  

Open Energy Info (EERE)

LPG Electrical, Inc LPG Electrical, Inc Jump to: navigation, search Name LPG Electrical, Inc Address 13833 Wellington Trace Rd. #4 Place Wellington, Florida Zip 33414 Sector Services Product underwater power generators Year founded 2009 Number of employees 1-10 Phone number 5615786611 Website [www.lpgelectrical.com www.lpgelectrical.com ] Coordinates 26.663684°, -80.267246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.663684,"lon":-80.267246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Winter Distillate  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Throughout the summer, gasoline prices have drawn most of the public's attention, but EIA has been concerned over winter heating fuels as well. q Distillate inventories are likely to begin the winter heating season at low levels, which increases the chances of price volatility such as that seen last winter. q Natural gas does not look much better. q Winter Distillate http://www.eia.doe.gov/pub/oil_gas/petroleum/presentati...00/winter_distillate_and_natural_gas_outlook/sld001.htm [8/10/2000 4:35:57 PM] Slide 2 of 25 Notes: Residential heating oil prices on the East Coast (PADD 1) were 39 cents per gallon higher this June than last year (120 v 81 cents per gallon). As many of you already know, the increase is due mainly to increased crude oil prices.

14

Distillation 29 Chem 355 Jasperse DISTILLATION  

E-Print Network [OSTI]

Distillation 29 Chem 355 Jasperse DISTILLATION Background Distillation is a widely used technique for purifying liquids. The basic distillation process involves heating a liquid such that liquid molecules that is condensed and collected must be more pure than the original liquid mix. Distillation can be used to remove

Jasperse, Craig P.

15

2000-32 V'B SAFETY PROVISIONS AND LPG  

E-Print Network [OSTI]

on a single site). Four operators account for 54 of these sites ; chemical firms and refineries operate 15 Author manuscript, published in "15. Hazards Symposium "The Process its Safety and the Environment UTILISING LPG The French sites utilising LPG can be subdivided into 7 main categories : · Refineries

Boyer, Edmond

16

Catalytic Distillation  

E-Print Network [OSTI]

removing both will occur in the temperature range ne~ded high and low boilers to maintain the tower for reaction. One limitation may be .I the composition profile, exothermic reactions critical point of the system, above w~ich can be easily temperature... with significantly less energy. There are two primary reasons for energy reduction: 1. The heat of reaction for exothermic reactions is fully re covered as useful boilup for fractionation. 2. Fewer attendant distillations are normally required than for a...

Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

1984-01-01T23:59:59.000Z

17

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

18

River resort owners find LPG a power behind their success  

SciTech Connect (OSTI)

This paper reports on a restaurant and resort which runs entirely on LPG. It has two generators converted to LPG that supply the power for the complex. Energy supplied from the propane is used in the kitchens, to drive the water pump and provide electricity for lighting and other power needs, and to heat the swimming pool. Far more importantly for the owners has been the fuel cost savings of at least 60%.

Not Available

1991-01-01T23:59:59.000Z

19

Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Propane (LPG) The list below contains summaries of all Texas laws and incentives related

20

Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Propane (LPG) The list below contains summaries of all Iowa laws and incentives related

22

Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Propane (LPG) The list below contains summaries of all Utah laws and incentives related

23

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

24

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

25

Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Propane (LPG)

26

Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Propane (LPG)

27

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

28

Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Propane (LPG) The list below contains summaries of all Idaho laws and incentives related

29

Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Propane (LPG) The list below contains summaries of all Ohio laws and incentives related

30

Catalytic distillation structure  

SciTech Connect (OSTI)

Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

Smith, Jr., Lawrence A. (Bellaire, TX)

1984-01-01T23:59:59.000Z

31

Application of Energy Saving Concepts to LPG Recovery Plants  

E-Print Network [OSTI]

. A reduced energy consumption corresponding to some $4.36MM/year is achieved indicating a payout of 1.8 years. CONCLUSIONS For an LPG extraction plant designed prior to the 1973/74 oil price rise conservation of energy is attractive. The propane.... A reduced energy consumption corresponding to some $4.36MM/year is achieved indicating a payout of 1.8 years. CONCLUSIONS For an LPG extraction plant designed prior to the 1973/74 oil price rise conservation of energy is attractive. The propane...

Carpenter, M. J.; Barnwell, J.

1982-01-01T23:59:59.000Z

32

Assessment of research and development (R and D) needs in LPG safety and environmental control  

SciTech Connect (OSTI)

The report characterizes the LPG industry covering all operations from production to end use, reviews current knowledge of LPG release phenomenology, summarizes the status of current LPG release prevention and control methodology, and identifies any remaining safety and environmental problems and recommends R and D strategies that may mitigate these problems. (ACR)

DeSteese, J.G.

1982-05-01T23:59:59.000Z

33

Fire safety of LPG in marine transportation. Final report  

SciTech Connect (OSTI)

This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

1980-06-01T23:59:59.000Z

34

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect (OSTI)

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

35

Catalytic distillation structure  

DOE Patents [OSTI]

Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

Smith, L.A. Jr.

1984-04-17T23:59:59.000Z

36

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

37

Multipartite nonlocality distillation  

SciTech Connect (OSTI)

The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.

Hsu, Li-Yi; Wu, Keng-Shuo [Department of Physics, Chung Yuan Christian University, Chungli 32023, Taiwan (China)

2010-11-15T23:59:59.000Z

38

Cumene by catalytic distillation  

SciTech Connect (OSTI)

Catalytic distillation, a combination of catalytic reaction and distillation in a single column, has several advantages when used in a process to make cumene from benzene and propylene. An extremely high purity cumene is obtained in high yield. The catalytic distillation principle was used in an earlier process to make MTBE. A unit, started up up in Houston refinery in 1981, operated successfully for four years. Since then, three other MTBE units of this design have gone into service.

Shoemaker, J.D.; Jones, E.M. Jr.

1987-06-01T23:59:59.000Z

39

Generalized entanglement distillation  

E-Print Network [OSTI]

We present a way for the entanglement distillation of genuine mixed state. Different from the conventional mixed state in entanglement purification protocol, each components of the mixed state in our protocol is a less-entangled state, while it is always a maximally entangled state. With the help of the weak cross-Kerr nonlinearity, this entanglement distillation protocol does not require the sophisticated single-photon detectors. Moreover, the distilled high quality entangled state can be retained to perform the further distillation. These properties make it more convenient in practical applications.

Yu-Bo Sheng; Lan Zhou

2014-04-14T23:59:59.000Z

40

SEPARATION OF TERNARY HETEROAZEOTROPIC MIXTURES IN A CLOSED MULTIVESSEL BATCH DISTILLATION-DECANTER HYBRID  

E-Print Network [OSTI]

SEPARATION OF TERNARY HETEROAZEOTROPIC MIXTURES IN A CLOSED MULTIVESSEL BATCH DISTILLATION, Trondheim, Norway The feasibility of a novel multivessel batch distillation-decanter hybrid for simultaneous enables us to make direct use of the distillation line (or residue curve) map. Simple rules for predicting

Skogestad, Sigurd

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table A58. Capability to Switch from LPG to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

8. Capability to Switch from LPG to Alternative Energy Sources by" 8. Capability to Switch from LPG to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991" " (Estimates in Thousand Barrels)" ,," LPG",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity",,,,,,,"Row" ,,"Consumed(b)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","and Breeze","Other(e)","Factors"

42

Catalytic distillation process  

DOE Patents [OSTI]

A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, L.A. Jr.

1982-06-22T23:59:59.000Z

43

Catalytic distillation process  

DOE Patents [OSTI]

A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, Jr., Lawrence A. (Bellaire, TX)

1982-01-01T23:59:59.000Z

44

Dynamic load measurement on an LPG carrier during voyage  

SciTech Connect (OSTI)

There are few actual ship measurement data showing the propriety of the design loads given by classification societies rules or other relevant rules. Therefore, the authors measured acceleration of ship motion and fluctuating loads on tank supports and chocks of a 75,000 m{sup 3} LPG carrier during her voyage. This paper introduces the subject ship and typical measurement results over about 1.3 years. From the analysis of these data, the authors have made clear the amount of frequency of fluctuating loads during actual navigation and ascertained the propriety of the ship`s design base.

Kamoi, Noriyuki; Taniguchi, Tomokazu; Kiso, Takashi; Kada, Kazuo; Motoi, Tatsuya; Nakamura, Shinichi [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

1994-12-31T23:59:59.000Z

45

Advanced Distillation Final Report  

SciTech Connect (OSTI)

The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

2010-03-24T23:59:59.000Z

46

Alternative fuel information: Facts about CNG and LPG conversion  

SciTech Connect (OSTI)

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

47

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

48

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel...

49

"Table A29. Average Prices of Selected Purchased Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

"," "," "," "," "," ","RSE" " "," ","Residual","Distillate","Natural"," "," ","Row" "Economic Characteristics(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Fac...

50

"Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel...

51

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

52

The Research and Motor octane numbers of Liquefied Petroleum Gas (LPG)  

Science Journals Connector (OSTI)

This paper presents an experimental study of the Research (RON) and Motor (MON) octane numbers of Liquefied Petroleum Gas (LPG). A comprehensive set of RON and MON data for mixtures of propane, propylene (propene), n-butane and iso-butane are presented, using a method that is consistent with the currently active ASTM Research and Motor test methods for liquid fuels. Empirical models which relate LPG composition to its RON and MON are then developed, such that the simplest relationships between the constituent species mole fractions and the mixture octane rating are achieved. This is used to determine the degree of non-linearity between the composition and the RON and MON of different LPG mixtures. Finally, implications for LPG fuel quality standards are discussed briefly, as part of a suggested, more substantial undertaking by the community which also revisits the standard test procedures for measuring the RON and MON of LPG.

Kai J. Morganti; Tien Mun Foong; Michael J. Brear; Gabriel da Silva; Yi Yang; Frederick L. Dryer

2013-01-01T23:59:59.000Z

53

Distillate Stocks Expected  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So let's get to what you want to know. What do we expect this upcoming winter? When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain towards the lower end of the normal range. We are forecasting about an 11 million barrel build between the end of July 2001 and the end of November 2001, slightly more than the average over the past 5 years (10 million barrels), but less than the average of the last 10 years (15 ½ million barrels). If, however, economic incentives are high enough, distillate stocks could build more, resulting in a higher distillate stock level heading into the winter. Of course, the reverse is true as well, if for example, the distillate fuel refining spread declines substantially. Since 1994,

54

Distillation: The Efficient Workhorse  

E-Print Network [OSTI]

DISTILLATION: THE EFFICIENT WORKHORSE Dan Steinmeyer Monsanto Company St. Louis, Missouri Distillation is inherently highly efficient: phase separation is clean it is relatively easy to build a mUltistage countercurrent device equilibrium... of separation to the work pmbedded in the reboiler and condenser thermal flows. The right application is one where the streams ? separated both exceed la' of the feed, relative volatility exceeds 1.2, and separation is complete - i.e. pure products...

Steinmeyer, D.

55

Random multiparty entanglement distillation  

E-Print Network [OSTI]

We describe various results related to the random distillation of multiparty entangled states - that is, conversion of such states into entangled states shared between fewer parties, where those parties are not predetermined. In previous work [Phys. Rev. Lett. 98, 260501 (2007)] we showed that certain output states (namely Einstein-Podolsky-Rosen (EPR) pairs) could be reliably acquired from a prescribed initial multipartite state (namely the W state) via random distillation that could not be reliably created between predetermined parties. Here we provide a more rigorous definition of what constitutes ``advantageous'' random distillation. We show that random distillation is always advantageous for W-class three-qubit states (but only sometimes for Greenberger-Horne-Zeilinger (GHZ)-class states). We show that the general class of multiparty states known as symmetric Dicke states can be readily converted to many other states in the class via random distillation. Finally we show that random distillation is provably not advantageous in the limit of multiple copies of pure states.

Ben Fortescue; Hoi-Kwong Lo

2007-09-25T23:59:59.000Z

56

Qutrit Magic State Distillation  

E-Print Network [OSTI]

Magic state distillation (MSD) is a purification protocol that plays a central role in fault tolerant quantum computation. Repeated iteration of the steps of a MSD protocol, generates pure single non-stabilizer states, or magic states, from multiple copies of a mixed resource state using stabilizer operations only. Thus mixed resource states promote the stabilizer operations to full universality. Magic state distillation was introduced for qubit-based quantum computation, but little has been known concerning MSD in higher dimensional qudit-based computation. Here, we describe a general approach for studying MSD in higher dimensions. We use it to investigate the features of a qutrit MSD protocol based on the 5-qutrit stabilizer code. We show that this protocol distills non-stabilizer magic states, and identify two types of states, that are attractors of this iteration map. Finally, we show how these states may be converted, via stabilizer circuits alone, into a state suitable for state injected implementation ...

Anwar, Hussain; Browne, Dan E

2012-01-01T23:59:59.000Z

57

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

58

Cumene by Catalytic Distillation  

SciTech Connect (OSTI)

The novel concept of Catalytic Distillation has been commercialized in the CRandL MTBE process, in which combined reaction and distillation provide energy savings over conventional processes. This concept has now been extended to production of cumene from benzene and propylene. In this case the advantages of the technique are not only energy savings but significant reductions in by-product losses and capital requirements. In this paper the development of the process is discussed and the economics of commercial operation are presented.

Jones, E.M.; Mawer, J.

1986-01-01T23:59:59.000Z

59

Tritium Attenuation by Distillation  

SciTech Connect (OSTI)

The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing.

Wittman, N.E.

2001-07-31T23:59:59.000Z

60

Topological Quantum Distillation  

E-Print Network [OSTI]

We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding and computation with magic states.

H. Bombin; M. A. Martin-Delgado

2006-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Factors affecting the recovery of petroleum in projects involving the injection of liquefied petroleum gases (LPG)  

E-Print Network [OSTI]

FACTORS AFFECTING THE RECOVERY OF PETROLEUM IN PROJECTS INVOLVING THE INJECTION OF LIQUEFIED PETROLEUM GASES (LPG) A Thesis By GERRY A. GRAHAM Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1961 Major Subject: Petroleum Engineering GERRY A. GRAHAM FACTORS AFFECTING THE RECOVERY OF PETROLEUM IN PROJECTS INVOLVING THE INJECTION OF LIQUEFIED PETROLEUM GASES (LPG) A...

Graham, Gerry A

2012-06-07T23:59:59.000Z

62

Heteroazeotropic Batch Distillation Feasibility and Operation  

E-Print Network [OSTI]

Heteroazeotropic Batch Distillation Feasibility and Operation by Efstathios Skouras and distillation is the dominating unit operation for such separations. However, the presence of azeotropes and non distillation as the best suited process. Among, various techniques to enhance distillation, heterogeneous

Skogestad, Sigurd

63

MULTIVESSEL BATCH DISTILLATION EXPERIMENTAL VERIFICATION  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION ­ EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad 1 The experimental verification of the operation of a multivessel batch distillation column, operated under total vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

Skogestad, Sigurd

64

An analysis of weep holes as a product detection device for underground compensated LPG storage systems  

SciTech Connect (OSTI)

Weep holes have been used widely to detect the presence of Liquefied Petroleum Gases (LPG) in brine for underground compensated storage systems. When the brine level drops below the weep hole, LPG product enters the brine production system causing an increase in both tubing head pressure and flow rate. To prevent cavern overfill, a cavern shutdown is initiated upon detection of LPG in the surface brine system by pressure or flow instruments at the tubing head. In this study, we have investigated the multiphase flow characteristics of weep hole LPG detection systems to correctly estimate the operating limits. A simple and easy to use model has been developed to predict the tubing head pressure and flow rate increases. The model can be used to implement safer and more efficient operation procedures for underground compensated LPG storage systems. The model predictions for a typical field case are presented. An analysis of weep holes as product detection devices for LPG storage reservoirs has been carried out. It was found that the increases in pressure and flow rates at the tubing head change as a function of injection flow rate of the product. Therefore, a thorough consideration of cavern operating parameters is necessary to evaluate the use constant pressure and flow rate values to initiate emergency shut down of the cavern.

Sarica, C.; Demir, H.M.; Brill, J.P.

1996-09-01T23:59:59.000Z

65

Gulf Coast Distillate Production  

Gasoline and Diesel Fuel Update (EIA)

4 of 15 4 of 15 Notes: PADD 3 is a major source of supply for the East Coast. This graph shows how during the winter of 1997-1998 when distillate stocks were very high, production fell back. In contrast, we entered the winter of 1996-1997 with very low stocks, and refineries reached record production levels as they tried to build stocks late in the season. Notice that production is normally reduced in January as distillate stocks are used to meet demand and as refineries begin maintenance and turnovers, which continue into February. This January is no different. There is room for some production increases in January and February, if refineries postpone maintenance. But postponing maintenance and turnarounds can create problems when the gasoline production season begins in March and April.

66

Low Energy Distillation Schemes  

E-Print Network [OSTI]

an important means of reducing energy consumption in distillation processes. However, its conventional use requires the installation of piping (and pipes carrying vapour streams tend to be of large diameter and are consequently expensive). So, finally we.... However, its conventional use requires the installation of piping (and pipes carrying vapour streams tend to be of large diameter and are consequently expensive). In the late eighties engineers in Germany [e.g. Kaibel, 1987] looked at one way in which...

Polley, G. T.

67

Catalytic distillation : design and application of a catalytic distillation column.  

E-Print Network [OSTI]

??Catalytic Distillation (CD) is a hybrid technology that utilizes the dynamics of si- multaneous reaction and separation in a single process unit to achieve a (more)

Nieuwoudt, Josias Jakobus (Jako)

2005-01-01T23:59:59.000Z

68

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

69

Catalytic distillation extends its reach  

SciTech Connect (OSTI)

Since the early 1980s, catalytic distillation processes have been selected by more than a hundred operators for various applications. Since such a unit performs both reaction and distillation simultaneously, a combined column can replace a separate, fixed-bed reactor and distillation column, thereby eliminating equipment and reducing capital costs. And, compared to the conventional approach, catalytic distillation may also improve other factors, such as reactant conversion, selectivity, mass transfer, operating pressure, oligomer formation and catalyst fouling. The constant washing of the catalyst by liquid flowing down the column and the distillation of high-boiling foulants results in extended catalyst life. Four selective hydrogenation applications of catalytic distillation are discussed: Butadiene selective hydrogenation combined within an MTBE unit; Pentadiene selective hydrogenation; C{sub 4} acetylene conversion; and Benzene saturation.

Rock, K.; McGuirk, T. [Catalytic Distillation Technologies, Houston, TX (United States); Gildert, G.R. [Catalytic Distillation Technologies, Pasadena, TX (United States)

1997-07-01T23:59:59.000Z

70

Investigation on Firing Behavior of the Spark-Ignition Engine Fueled with Methanol, Liquefied Petroleum Gas (LPG), and Methanol/LPG During Cold Start  

Science Journals Connector (OSTI)

It can be produced from synthesis gas (a mixture of carbon monoxide (CO) and hydrogen) that is formed by steam reforming of natural gas, by gasification of coal, or from biomass, all of which are available in abundance or renewable. ... Liguang et al.,(16) based on cycle-by-cycle control strategy on an EFI (electronic fuel injection) LPG engine, studied how to control the ignition cycle and performed both single-cycle and multicycle tests. ...

Changming Gong; Baoqing Deng; Shu Wang; Yan Su; Qing Gao; Xunjun Liu

2008-10-04T23:59:59.000Z

71

Multivessel Batch Distillation -Potential Energy Savings  

E-Print Network [OSTI]

Multivessel Batch Distillation - Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

72

New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes  

SciTech Connect (OSTI)

This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

Agrawal, Rakesh

2013-11-21T23:59:59.000Z

73

Theoretical and experimental investigation of membrane distillation.  

E-Print Network [OSTI]

??Invented in the 1960s, membrane distillation is an emerging technology for water treatment attracting more attention since 1980s. There are four configurations of membrane distillations (more)

Zhang, Jianhua

2011-01-01T23:59:59.000Z

74

Oil recovery from condensed corn distillers solubles.  

E-Print Network [OSTI]

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

75

Optimal Control of Distillation Systems  

E-Print Network [OSTI]

The optimum performance of a distillation system can be evaluated by examining the product purities, the product recoveries, and the system's capability to respond to small or large, expected or unexpected, plant disturbances. An optimal control...

Chatterjee, N.; Suchdeo, S. R.

1984-01-01T23:59:59.000Z

76

Distillation process using microchannel technology  

DOE Patents [OSTI]

The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

2009-11-03T23:59:59.000Z

77

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

SciTech Connect (OSTI)

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

78

Quantum universality by state distillation  

E-Print Network [OSTI]

Quantum universality can be achieved using classically controlled stabilizer operations and repeated preparation of certain ancilla states. Which ancilla states suffice for universality? This "magic states distillation" question is closely related to quantum fault tolerance. Lower bounds on the noise tolerable on the ancilla help give lower bounds on the tolerable noise rate threshold for fault-tolerant computation. Upper bounds show the limits of threshold upper-bound arguments based on the Gottesman-Knill theorem. We extend the range of single-qubit mixed states that are known to give universality, by using a simple parity-checking operation. For applications to proving threshold lower bounds, certain practical stability characteristics are often required, and we also show a stable distillation procedure. No distillation upper bounds are known beyond those given by the Gottesman-Knill theorem. One might ask whether distillation upper bounds reduce to upper bounds for single-qubit ancilla states. For multi-qubit pure states and previously considered two-qubit ancilla states, the answer is yes. However, we exhibit two-qubit mixed states that are not mixtures of stabilizer states, but for which every postselected stabilizer reduction from two qubits to one outputs a mixture of stabilizer states. Distilling such states would require true multi-qubit state distillation methods.

Ben W. Reichardt

2006-08-09T23:59:59.000Z

79

Housing preferences and development study in the post LPG era in India: a case of Pune  

Science Journals Connector (OSTI)

Significant changes have been observed since 1991 in the nature and pattern of urban growth in India. Cities are in the midst of restructuring space, in terms of both use and form. The city of Pune is selected for primary field case study of urban housing and development scenario. Pune is one of the selected half a dozen urban agglomerations experiencing the developmental effects of liberalisation-privatisation-globalisation (LPG) process the country is undergoing since 1991. The analysis includes profile of the city, various facets of residential development, a detailed primary survey of households and real estate stakeholders. The paper concludes with key observations on residential real estate development and on the other hand suitable lessons are learnt from the housing preference study to establish the need for alternative sustainable urban development pattern for Pune in particular and other similar LPG affected Indian metropolitan cities in general.

J. Chadchan; R. Shankar

2014-01-01T23:59:59.000Z

80

The effect of asphalt deposition on permeability in miscible flooding with liquified petroleum gas (LPG  

E-Print Network [OSTI]

. llment of the requirements for the degree of NASTER OF SCIENCE August, 1962 Najor Subject: Petroleum Engineering THE EFFECT OF ASPHALT DEPOSITION ON PERMEABILITY IN MISCIBLE FLOODING WITH LIQUIFIED PETROLEUM GAS (LPG) A Thesis ARTHUR E. PINSON, JR.... ween one-third and two-thirds of that -'nitially present. Because of the relatively low recovery efficiencies of these natural oil expulsion mechanisms, , the petroleum production industry has continually sought methods which would provide improved...

Pinson, Arthur Edward, Jr

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PPMCSA Presentation on Winter Distillate Outlook  

Gasoline and Diesel Fuel Update (EIA)

PPMCSA Presentation on Winter Distillate Outlook PPMCSA Presentation on Winter Distillate Outlook 09/15/2000 Click here to start Table of Contents Winter Distillate Outlook Distillate Prices Increasing With Crude Oil Factors Driving Prices & Forecast First Factor Impacting Distillate Prices: Crude Oil Prices High Crude Prices Go With Low Inventories Second Price Component: Spread Impacted by Distillate Supply/Demand Balance Distillate Stocks are Low – Especially on the East Coast Distillate Stocks Are Important Part of East Coast Winter Supply Winter Demand Impacted by Weather Warm Winters Held Heating Oil Demand Down While Diesel Grew Distillate Demand Strong in December 1999 Dec 1999 & Jan 2000 Production Fell, But Rebounded with Price Higher Yields Can Be Achieved Unusual Net Imports May Only Be Available at a High Price

82

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

diesel and heating fuel prices diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Warmer weather and the arrival of new supply, mainly imports, relieved the supply/demand imbalance and brought prices back down. The spike is now behind us, but high crude prices are keeping prices above year-ago levels. The low stock situation that set the stage for the distillate price spike was not unique to the United States, Low stocks exist worldwide and are not limited to distillate. The low stock situation stems from what is happening in the crude oil markets. A crude oil supply shortage drove crude

83

Optimal protocols for nonlocality distillation  

SciTech Connect (OSTI)

Forster et al. recently showed that weak nonlocality can be amplified by giving the first protocol that distills a class of nonlocal boxes (NLBs) [Phys. Rev. Lett. 102, 120401 (2009)] We first show that their protocol is optimal among all nonadaptive protocols. We next consider adaptive protocols. We show that the depth-2 protocol of Allcock et al. [Phys. Rev. A 80, 062107 (2009)] performs better than previously known adaptive depth-2 protocols for all symmetric NLBs. We present a depth-3 protocol that extends the known region of distillable NLBs. We give examples of NLBs for which each of the Forster et al., the Allcock et al., and our protocols perform best. The understanding we develop is that there is no single optimal protocol for NLB distillation. The choice of which protocol to use depends on the noise parameters for the NLB.

Hoeyer, Peter; Rashid, Jibran [Department of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, 2N 1N4 (Canada)

2010-10-15T23:59:59.000Z

84

Entanglement distillation using particle statistics  

E-Print Network [OSTI]

We extend the idea of entanglement concentration for pure states(Phys. Rev. Lett. {\\bf 88}, 187903) to the case of mixed states. The scheme works only with particle statistics and local operations, without the need of any other interactions. We show that the maximally entangled state can be distilled out when the initial state is pure, otherwise the entanglement of the final state is less than one. The distillation efficiency is a product of the diagonal elements of the initial state, it takes the maximum 50%, the same as the case for pure states.

H. L. Huang; L. H. Cheng; X. X. Yi

2005-10-25T23:59:59.000Z

85

Bounds for nonlocality distillation protocols  

SciTech Connect (OSTI)

Nonlocality can be quantified by the violation of a Bell inequality. Since this violation may be amplified by local operations, an alternative measure has been proposed--distillable nonlocality. The alternative measure is difficult to calculate exactly due to the double exponential growth of the parameter space. In this paper, we give a way to bound the distillable nonlocality of a resource by the solutions to a related optimization problem. Our upper bounds are exponentially easier to compute than the exact value and are shown to be meaningful in general and tight in some cases.

Forster, Manuel [Computer Science Department, ETH Zuerich, CH-8092 Zuerich (Switzerland)

2011-06-15T23:59:59.000Z

86

SELFOPTIMIZING CONTROL: A DISTILLATION CASE Sigurd Skogestad  

E-Print Network [OSTI]

for the controlled variables. The idea is applied to propane­propylene distillation case study. Keywords: ChemicalSELF­OPTIMIZING CONTROL: A DISTILLATION CASE STUDY Sigurd Skogestad #3; #3; Department of Chemical

Skogestad, Sigurd

87

Energy Recovery in Industrial Distillation Processes  

E-Print Network [OSTI]

ENERGY RECOVERY IN INDUSTRIAL DISTILLATION PROCESSES Duane B. Paul General Electric Company Fitchburg, Massachusetts ABSTRACT Overhead separati on processes whi ch present attracti ve Distillation processes are energy intensive Condenser...

Paul, D. B.

1983-01-01T23:59:59.000Z

88

Corrosion inhibition for distillation apparatus  

DOE Patents [OSTI]

Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY); Schweighardt, Frank K. (Upper Macungie, PA)

1985-01-01T23:59:59.000Z

89

Entanglement distillation by extendible maps  

E-Print Network [OSTI]

It is known that from entangled states that have positive partial transpose it is not possible to distill maximally entangled states by local operations and classical communication (LOCC). A long-standing open question is whether maximally entangled states can be distilled from every state with a non-positive partial transpose. In this paper we study a possible approach to the question consisting of enlarging the class of operations allowed. Namely, instead of LOCC operations we consider k-extendible operations, defined as maps whose Choi-Jamiolkowski state is k-extendible. We find that this class is unexpectedly powerful - e.g. it is capable of distilling EPR pairs even from product states. We also perform numerical studies of distillation of Werner states by those maps, which show that if we raise the extension index k simultaneously with the number of copies of the state, then the class of k-extendible operations is not that powerful anymore and provide a better approximation to the set of LOCC operations.

Lukasz Pankowski; Fernando G. S. L. Brandao; Michal Horodecki; Graeme Smith

2011-09-08T23:59:59.000Z

90

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

91

Multivessel Batch Distillation Potential Energy Savings  

E-Print Network [OSTI]

Multivessel Batch Distillation ­ Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

92

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

93

Optimal distillation using thermodynamic geometry Bjarne Andresen  

E-Print Network [OSTI]

Optimal distillation using thermodynamic geometry Bjarne Andresen ?rsted Laboratory, University of a distillation column may be improved by permitting heat exchange on every tray rather than only in the reboiler (temperature, pressure, etc.) define successive states in a sequence of equilibria. Fractional distillation [2

Salamon, Peter

94

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

95

Process Svstems Enaineerina Instability of Distillation Columns  

E-Print Network [OSTI]

Process Svstems Enaineerina , Instability of Distillation Columns Elling W. Jacobsen and Sigurd recognized, distillation columns, operating with reflux and boilup as independent inputs, may have The dynamic behavior of distillation columns has been stud- ied quite extensively over the past decades

Skogestad, Sigurd

96

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S?RENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

Skogestad, Sigurd

97

Experimental entanglement distillation of mesoscopic quantum states  

E-Print Network [OSTI]

LETTERS Experimental entanglement distillation of mesoscopic quantum states RUIFANG DONG1 , MIKAEL, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less entangled states, can be used4­14 . Here we report on the distillation of deterministically

Loss, Daniel

98

Analysis and Control of Heteroazeotropic Batch Distillation  

E-Print Network [OSTI]

Analysis and Control of Heteroazeotropic Batch Distillation S. Skouras and S. Skogestad Dept.interscience.wiley.com). The separation of close-boiling and azeotropic mixtures by heterogeneous azeotropic distillation is addressed. The results show that heteroazeotropic batch distillation exhibits substantial flexibility. The column profile

Skogestad, Sigurd

99

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

U.S. diesel and heating fuel U.S. diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. From January 17, New England residential heating oil prices rose over 78 cents per gallon to average $1.97 February 7; diesel increased 68 cents per gallon, averaging $2.12 February 7. Prices for both fuels began to fall back by February 14 as new supplies were arriving, and have continued to decline since. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Demand: Cold weather increases core heating customer demand. In addition, it was reported that utilities were buying distillate both for peaking power and, along with industrial and commercial users, to

100

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

Slide 1 of 11 Notes: During the second half of January, diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. From January 17, New England residential heating oil prices rose over 78 cents per gallon to average $1.97 February 7; diesel increased 68 cents per gallon, averaging $2.12 February 7, but fell back to $1.93 by February 14 as new supplies are arriving. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Demand: Cold weather increases core heating customer demand. In addition, it was reported that utilities were buying distillate both for peaking power and, along with industrial and commercial users, to

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Simulated Distillation for Biofuel Analysis  

Science Journals Connector (OSTI)

Simulated Distillation for Biofuel Analysis ... SimDis therefore can easily be used to classifiy novel biofuels, for example, also bidodiesel made of algae or novel oilseed, regarding boiling characteristics and quality. ... and potential of biofuels in the transport sector including types of biofuel, feedstocks and technologies and some of the possible socio-economic, environmental and political implications of the widespread use of biofuels in our society. ...

Christine Bachler; Sigurd Schober; Martin Mittelbach

2009-12-30T23:59:59.000Z

102

Momentive Performance Materials Distillation Intercharger  

E-Print Network [OSTI]

Presenter: Nicki (Collins) Boucher Project Team: T. Baisley, C. Beers, R. Cameron, K. Holman, T. Kotkoskie, K. Norris Momentive Performance Materials Inc. Waterford, NY May 23, 2013 Industrial Energy Technology Conference ACC Responsible... Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance...

Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

2013-01-01T23:59:59.000Z

103

Released: February 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 5.1;" " Unit: Percents." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and...

104

Entanglement distillation from quasifree Fermions  

E-Print Network [OSTI]

We develop a scheme to distill entanglement from bipartite Fermionic systems in an arbitrary quasifree state. It can be applied if either one system containing infinite one-copy entanglement is available or if an arbitrary amount of equally prepared systems can be used. We show that the efficiency of the proposed scheme is in general very good and in some cases even optimal. Furthermore we apply it to Fermions hopping on an infinite lattice and demonstrate in this context that an efficient numerical analysis is possible for more then 10^6 lattice sites.

Zoltan Kadar; Michael Keyl; Dirk Schlingemann

2010-03-14T23:59:59.000Z

105

Distillation of Bell states in open systems  

E-Print Network [OSTI]

In this work we review the entire classification of 2x2 distillable states for protocols with a finite numbers of copies. We show a distillation protocol that allows to distill Bell states with non zero probability at any time for an initial singlet in vacuum. It is shown that the same protocol used in non zero thermal baths yields a considerable recovering of entanglement.

E. Isasi; D. Mundarain

2009-08-14T23:59:59.000Z

106

Distillation of liquid fuels by thermogravimetry  

SciTech Connect (OSTI)

In this paper, design and operation of a custom-built thermogravimetric apparatus for the distillation of liquid fuels are reported. Using a sensitive balance with scale of 0.001 g and ASTM distillation glassware, several petroleum and petroleum-derived samples have been analyzed by the thermogravimetric distillation method. When the ASTM distillation glassware is replaced by a micro-scale unit, sample size could be reduced from 100 g to 5-10 g. A computer program has been developed to transfer the data into a distillation plot, e.g. Weight Percent Distilled vs. Boiling Point. It also generates a report on the characteristic distillation parameters, such as, IBP (Initial Boiling Point), FBP (Final Boiling Point), and boiling point at 50 wt% distilled. Comparison of the boiling point distributions determined by TG (thermogravimetry) with those by SimDis GC (Simulated-Distillation Gas Chromatography) on two liquid fuel samples (i.e. a decanted oil and a filtered crude oil) are also discussed in this paper.

Huang, He; Wang, Keyu; Wang, Shaojie; Klein, M.T.; Calkins, W.H.

1996-12-31T23:59:59.000Z

107

Conceptual Design for Pressure Swing Distillation.  

E-Print Network [OSTI]

??The separation of homogenous azeotropic mixtures is a common task in the chemical industry. In the literature, pressure swing distillation is often mentioned as an (more)

Bozzacco, Carmen

2006-01-01T23:59:59.000Z

108

Total Organic Carbon Rejection in Osmotic Distillation.  

E-Print Network [OSTI]

?? The osmotic distillation (OD) system is a spacecraft wastewater recycling system designed to produce potable water from human urine and humidity condensate. The OD (more)

Shaw, Hali Laraelizabeth

2012-01-01T23:59:59.000Z

109

Intelligent fuzzy supervisory control for distillation columns.  

E-Print Network [OSTI]

??Distillation as a separation technique is widely used in the chemical and petroleum industries. With the growth of these industries and the availability of cheap (more)

Santhanam, Srinivasan

2012-01-01T23:59:59.000Z

110

Testimony on Impacts of Proposed LPG Tank Development in Searsport, Maine on Property Values and Tourism-based Economic Activity  

E-Print Network [OSTI]

Testimony on Impacts of Proposed LPG Tank Development in Searsport, Maine on Property Values and Tourism-based Economic Activity Prepared for Thanks But No Tank (TBNT) for Presentation to the Searsport At the request of Counsel for Thanks But No Tanks (TBNT) and the Islesboro Island Trust (IIT), I have reviewed

Thomas, Andrew

111

LPG recovery from refinery flare by waste heat powered absorption refrigeration  

SciTech Connect (OSTI)

A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

Erickson, D.C.; Kelly, F.

1998-07-01T23:59:59.000Z

112

Distillability of entanglement in accelerated frames  

Science Journals Connector (OSTI)

We study the entanglement distillability of bipartite mixed states of two modes of a free Dirac field as seen by two relatively accelerated parties. It is shown that there are states that will change from distillable into separable for a certain value of acceleration. We exemplify these criteria in the context of Werner states.

Shahpoor Moradi

2009-06-05T23:59:59.000Z

113

Rank three bipartite entangled states are distillable  

E-Print Network [OSTI]

We prove that the bipartite entangled state of rank three is distillable. So there is no rank three bipartite bound entangled state. By using this fact, We present some families of rank four states that are distillable. We also analyze the relation between the low rank state and the Werner state.

Lin Chen; Yi-Xin Chen

2008-03-07T23:59:59.000Z

114

Locally accessible information and distillation of entanglement  

SciTech Connect (OSTI)

A different type of complementarity relation is found between locally accessible information and final average entanglement for a given ensemble. It is also shown that in some well-known distillation protocols, this complementary relation is optimally satisfied. We discuss the interesting trade-off between locally accessible information and distillable entanglement for some states.

Ghosh, Sibasish [Department of Computer Science, University of York, Heslington, York, YO10 (United Kingdom); Joag, Pramod [Department of Physics, University of Pune, Ganeshkhind, Pune 411 007 (India); Kar, Guruprasad; Kunkri, Samir [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700 108 (India); Roy, Anirban [Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113 (India)

2005-01-01T23:59:59.000Z

115

Forpeerreview Synthesis of Complex Thermally Coupled Distillation  

E-Print Network [OSTI]

US energy consumption, which is equivalent to 2.87x10 18 J (2.87 million TJ) per year, or to a power; Divided Wall Column; Superstructure optimization; GDP. Introduction Distillation is one of the most limitations. Distillation columns use very large amounts of energy because the evaporation steps involved

Grossmann, Ignacio E.

116

Distillability of entanglement in accelerated frames  

E-Print Network [OSTI]

We study the entanglement distillability of bipartite mixed states of two modes of a free Dirac field as seen by two relatively accelerated parties. It is shown that there are states that will change from distillable into separable for a certain value of acceleration. We exemplify these criteria in the context of Werner states.

Shahpoor Moradi

2012-01-02T23:59:59.000Z

117

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

U.S. Energy Information Administration (EIA) Indexed Site

No. 2 Distillate No. 4 Fuel a Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Low-Sulfur High-Sulfur Total United States January...

118

Rigorous Synthesis and Simulation of Complex Distillation Networks  

E-Print Network [OSTI]

Rigorous Synthesis and Simulation of Complex Distillation Networks Gerardo J. Ruiz, Seon B. Kim energy-efficient distillation net- works. Complex column networks have substantial potential for energy column, networks, temperature collocation, inverse design, Aspen validation Introduction Distillation

Linninger, Andreas A.

119

Integrated C3 Feedstock and Aggregated Distillation Model for  

E-Print Network [OSTI]

Polypropylene Propane return Reactor effluent Distillation Polymerization FeedTank Propylene (91%) Goal: Select. Refinery Grade (RG) Propane return Distillation Vapor recompression Propylene (91%) ~79% propylene #12 Polypropylene Propane return Reactor effluent Distillation Polymerization Feed Tank Propylene ~79% propylene ~95

Grossmann, Ignacio E.

120

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Total distillate stocks rose only marginally in November, to about 117 million barrels from about 115 million barrels at the end of October. The "normal" or average inventory level at end November is 146 million barrels. Thus, by the end of November, instead of seeing an improvement, US distillate inventories were 30 million barrels less than normal rather than the 26 million barrels less as of the end of October, indicating greater tightness in markets for heating oil and diesel fuel. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. In fact, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

As of December 29, distillate fuel oil stocks were about 116 million As of December 29, distillate fuel oil stocks were about 116 million barrels, which is over 14 percent below their 5 year average for this time of year. Heating oil stocks were at 47.4 million barrels, or about 28 percent lower than their seasonal 5-year average. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall. Unless the second half of the winter in the Northeast is unusually

122

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: At the end of December, distillate fuel oil stocks were about 116 million barrels, which is more than 14 percent below their 5-year average for this time of year, and about 7 percent less than last year's low levels. As of January 19, the most recent weekly data, distillate stocks remained at about that level, which is slightly higher than a year ago. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall.

123

Advancing Biorefining of Distiller's Grain and Corn Stover Blends...  

Broader source: Energy.gov (indexed) [DOE]

Advancing Biorefining of Distiller's Grain and Corn Stover Blends Advancing Biorefining of Distiller's Grain and Corn Stover Blends This fact sheet summarizes a U.S. Department of...

124

New Design Methods and Algorithms for Multi-component Distillation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf More...

125

Synthesis of azeotropic batch distillation separation systems  

SciTech Connect (OSTI)

The sequencing of batch distillation systems, in particular batch distillation columns, can be complicated by the existence of azeotropes in the mixture. These azeotropes can form batch distillation regions where, depending on the initial feed to the batch column, the types of feasible products and separations are limited. It is very important that these distillation regions are known while attempting to synthesize sequences of batch columns so infeasible designs can be eliminated early on in the design phase. The distillation regions also give information regarding the feasible products that can be obtained when the mixture is separated by using a variety of batch column configurations. The authors will show how a tool for finding the batch distillation regions of a particular mixture can be used in the synthesis of batch distillation column sequences. These sequences are determined by the initial feed composition to the separation network. The network of all possible sequences will be generated by using state-task networks when batch rectifying, stripping, middle vessel, and extractive middle vessel columns are allowed. The authors do not determine which sequence is the best, as the best sequence will depend on the particular application to which one is applying the algorithms. They show an example problem for illustration of this technique.

Safrit, B.T. [Eastman Chemical Co., Kingsport, TN (United States)] [Eastman Chemical Co., Kingsport, TN (United States); Westerberg, A.W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)] [Carnegie Mellon Univ., Pittsburgh, PA (United States)

1997-05-01T23:59:59.000Z

126

Distillation: Still towering over other options  

SciTech Connect (OSTI)

Distillation dominates separations in the chemical process industries (CPI), at least for mixtures that normally are processed as liquids. The authors fully expect that distillation will continue to be the method of choice for many separations, and the method against which other options must be compared. So, in this article, they will put into some perspective just why distillation continues to reign as the king of separations, and what steps are being taken to improve its applicability and performance, as well as basic understanding of the technique.

Kunesh, J.G. [Fractionation Research, Inc., Stillwater, OK (United States); Kister, H.Z. [Brown and Root, Inc., Alhambra (Canada); Lockett, M.J. [Praxair, Inc., Tonawanda, NY (United States); Fair, J.R. [Univ. of Texas, Austin, TX (United States)

1995-10-01T23:59:59.000Z

127

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARp?) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution Benjamin Brant Sabine Brueske Donald Erickson Riyaz Papar Planetec Planetec Energy Concepts Company Energy... in Denver, Colorado. The Waste Heat Ammo nia Absorption Refrigeration Plant (WHAARP?) is based on a patented process and cycle design developed by Energy Concepts Co. (ECC) to cost effectively re cover 73,000 barrels a year of salable LPGs and gasoline...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

128

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

129

Nonlocality Distillation for High-Dimensional System  

E-Print Network [OSTI]

The intriguing and powerful capability of nonlocality in communication field ignites the research of the nonlocality distillation. The first protocol presented in Ref[Phys. Rev. Lett. 102, 120401] shows that the nonlocality of bipartite binary-input and binary-output nonsignaling correlated boxes could be amplified by 'wiring' two copies of weaker-nonlocality boxes. Several optimized distillation protocols were presented later for bipartite binary-input and binary-output nonsignaling correlated boxes. In this paper, we focus on the bipartite binary-input and multi-nary-output nonsignaling correlated boxes---high-dimensional boxes, and design comparators-based protocols to achieve the distillation of high-dimensional nonlocality. The results show that the high-dimensional nonlocality can be distilled in different ways, and we find that the efficiencies of the protocols are influenced not only by the wirings but also by the classes the initial nonlocality boxes belongs to. Here, the initial nonlcalities may hav...

Pan, Guo-Zhu; Chen, Zheng-Gen; Yang, Ming; Cao, Zhuo-Liang

2012-01-01T23:59:59.000Z

130

Minimizing corrosion in coal liquid distillation  

DOE Patents [OSTI]

In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY)

1985-01-01T23:59:59.000Z

131

Multipartite secret key distillation and bound entanglement  

SciTech Connect (OSTI)

Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.

Augusiak, Remigiusz; Horodecki, Pawel [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland) and ICFO-Institute Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland)

2009-10-15T23:59:59.000Z

132

Multipartite secret key distillation and bound entanglement  

E-Print Network [OSTI]

Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted GHZ structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with help of the privacy squeezing technique.

Remigiusz Augusiak; Pawel Horodecki

2008-11-21T23:59:59.000Z

133

Use of computers for multicomponent distillation calculations  

E-Print Network [OSTI]

LIBRARY 4 A I4 COLLEGE QF TEXAS USE OF COMPUTERS FOB MULTICOMPONENT DISTILLATION CALCULATIONS A Thesis By Samuel Lane Sullivan Jr, Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January 1959 Major Subject: Chemical Engineering USE OF COMPUTERS FOR NULTICOMPONENT DISTILLATION CALCULATIONS A Thesis By Samuel Lane Sullivan Jr. Approved as to style and content by: Chairman...

Sullivan, Samuel Lane

2012-06-07T23:59:59.000Z

134

Sulfur-isotope separation by distillation  

SciTech Connect (OSTI)

Sulfur-isotope separation by low-temperature distillation of hydrogen sulfide was studied in an 8-m, 25-mm diameter distillation column. Column temperature was controlled by a propane-propylene heat pipe. Column packing HETP was measured using nitric oxide in the column. The column was operated at pressures from 45 to 125 kPa. The relative volatility of S-32 vs. S-34 varied from 1.0008 to 1.0014.

Mills, T.R.

1982-01-01T23:59:59.000Z

135

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total re ux operation of a multivessel column distillation generally is less energy e cient than continuous distillation, it has received increased attention

Skogestad, Sigurd

136

Complex Fluid Analysis with the Advanced Distillation Curve Approach  

E-Print Network [OSTI]

Complex Fluid Analysis with the Advanced Distillation Curve Approach Thomas J. Bruno, Lisa S. Ott for measuring distillation curves reveals the physicochemical properties of complex fluids such as fuels distillation curves of complex fluids. The distillation curve provides the only practical avenue to assess

137

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S?RENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total reflux operation of a multivessel column distillation generally is less energy efficient than continuous distillation, it has received increased

Skogestad, Sigurd

138

On the Communication Complexity of Correlation and Entanglement Distillation  

E-Print Network [OSTI]

On the Communication Complexity of Correlation and Entanglement Distillation Ke Yang May 4th, 2004 distillation, entanglement distillation, communication complexity, EPR pairs, quantum key distribution #12) information, and then engage in a protocol to \\distill" the correlation/entanglement via communication. We

139

Blog Distillation via Sentiment-Sensitive Link Analysis  

E-Print Network [OSTI]

Blog Distillation via Sentiment-Sensitive Link Analysis Giacomo Berardi, Andrea Esuli, Fabrizio blog distillation by adding a link analysis phase to the standard retrieval-by-topicality phase, where in blog distillation. 1 Introduction Blog distillation is a subtask of blog search. It is defined

Sebastiani, Fabrizio

140

Distillation of liquid fuels by thermogravimetry  

SciTech Connect (OSTI)

The most widely used separation technique in the petroleum industry and other liquid fuel production processes as well as in much of the chemical industry is distillation. To design and operate an appropriate commercial and laboratory distillation unit requires a knowledge of the boiling point distribution of the materials to be separated. In recognition of these needs, the ASTM developed the distillation procedures of D86, D216, D447, D850, and D1078. They are widely used in laboratories for the purposes of sample characterization, product and quality control, and distillation column design. However, the significant drawbacks of these ASTM methods include (1) close monitoring of the distillation is required. This is particularly difficult for those samples which are very toxic and/or cause any other safety problems; (2) the sample under test must be transparent and free of separated water; and (3) results obtained by these methods are not particularly precise. This motivated the development of a novel automatic distillation system based on the use of a custom-built thermogravimetric apparatus.

Huang, He; Wang, Keyu; Wang, Shaojie [Univ. of Delaware, Newark, DE (United States)] [and others

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Local purity distillation with bounded classical communication  

SciTech Connect (OSTI)

Local pure states are an important resource for quantum computing. The problem of distilling local pure states from mixed ones can be cast in an information theoretic paradigm. The bipartite version of this problem where local purity must be distilled from an arbitrary quantum state shared between two parties, Alice and Bob, is closely related to the problem of separating quantum and classical correlations in the state and in particular, to a measure of classical correlations called the one-way distillable common randomness. In Phys. Rev. A 71, 062303 (2005), the optimal rate of local purity distillation is derived when many copies of a bipartite quantum state are shared between Alice and Bob, and the parties are allowed unlimited use of a unidirectional dephasing channel. In the present paper, we extend this result to the setting in which the use of the channel is bounded. We demonstrate that in the case of a classical-quantum system, the expression for the local purity distilled is efficiently computable and provide examples with their tradeoff curves.

Krovi, Hari; Devetak, Igor [Communication Sciences Institute, University of Southern California, Los Angeles, California 90089 (United States)

2007-07-15T23:59:59.000Z

142

Local purity distillation with bounded classical communication  

E-Print Network [OSTI]

Local pure states are an important resource for quantum computing. The problem of distilling local pure states from mixed ones can be cast in an information theoretic paradigm. The bipartite version of this problem where local purity must be distilled from an arbitrary quantum state shared between two parties, Alice and Bob, is closely related to the problem of separating quantum and classical correlations in the state and in particular, to a measure of classical correlations called the one-way distillable common randomness. In Phys. Rev. A 71, 062303 (2005), the optimal rate of local purity distillation is derived when many copies of a bipartite quantum state are shared between Alice and Bob, and the parties are allowed unlimited use of a unidirectional dephasing channel. In the present paper, we extend this result to the setting in which the use of the channel is bounded. We demonstrate that in the case of a classical-quantum system, the expression for the local purity distilled is efficiently computable and provide examples with their tradeoff curves.

Hari Krovi; Igor Devetak

2007-05-28T23:59:59.000Z

143

Design of processes with reactive distillation line diagrams  

SciTech Connect (OSTI)

On the basis of the transformation of concentration coordinates, the concept of reactive distillation lines is developed. It is applied to study the feasibility of a reactive distillation with an equilibrium reaction on all trays of a distillation column. The singular points in the distillation line diagrams are characterized in terms of nodes and saddles. Depending on the characterization of the reactive distillation line diagrams, it can be decided whether a column with two feed stages is required. On the basis of the reaction space concept, a procedure for identification of reactive distillation processes is developed, in which the reactive distillation column has to be divided into reactive and nonreactive sections. This can be necessary to overcome the limitations in separation which result from the chemical equilibrium. The concentration profile of this combined reactive/nonreactive distillation column is estimated using combined reactive/nonreactive distillation lines.

Bessling, B. [BASF Ludwigshafen (Germany). Engineering Research and Development] [BASF Ludwigshafen (Germany). Engineering Research and Development; Schembecker, G.; Simmrock, K.H. [Univ. of Dortmund (Germany). Dept. of Chemical Engineering] [Univ. of Dortmund (Germany). Dept. of Chemical Engineering

1997-08-01T23:59:59.000Z

144

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Retail distillate prices follow the spot distillate markets, and crude oil prices have been the main driver behind distillate spot price increases until recently. Crude oil rose about 36 cents per gallon from its low point in mid February 1999 to the middle of January 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, heating oil spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled slightly higher as the New York Harbor market began to

145

Entanglement Distillation Protocols and Number Theory  

E-Print Network [OSTI]

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension $D$ benefits from applying basic concepts from number theory, since the set $\\zdn$ associated to Bell diagonal states is a module rather than a vector space. We find that a partition of $\\zdn$ into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analitically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension $D$. When $D$ is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

H. Bombin; M. A. Martin-Delgado

2005-03-01T23:59:59.000Z

146

Entanglement distillation protocols and number theory  

SciTech Connect (OSTI)

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set Z{sub D}{sup n} associated with Bell diagonal states is a module rather than a vector space. We find that a partition of Z{sub D}{sup n} into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D. When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

Bombin, H.; Martin-Delgado, M.A. [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain)

2005-09-15T23:59:59.000Z

147

Heat integrated distillation in a plate-packing HIDiC:.  

E-Print Network [OSTI]

??Distillation is an energy intensive separation method. To improve the exergetic efficiency of a distillation column, it can be designed as a heat integrated distillation (more)

Krikken, T.

2011-01-01T23:59:59.000Z

148

SELF-OPTIMIZING CONTROL: A DISTILLATION CASE Sigurd Skogestad  

E-Print Network [OSTI]

for the controlled variables. The idea is applied to propane-propylene distillation case study. Keywords: ChemicalSELF-OPTIMIZING CONTROL: A DISTILLATION CASE STUDY Sigurd Skogestad Department of Chemical

Skogestad, Sigurd

149

Utility-based Information Distillation Over Temporally Sequenced Documents  

E-Print Network [OSTI]

Utility-based Information Distillation Over Temporally Sequenced Documents Yiming Yang Language to information distil- lation over temporally ordered documents, and proposes a novel evaluation scheme, flexible user feedback, evaluation methodology. 1. INTRODUCTION Tracking new and relevant information from

Murphy, Robert F.

150

Extraction of tocopherols from deodorizer distillates: laboratory-scale evaluations  

E-Print Network [OSTI]

The tocopherols are valuable components of deodorizer distillate. Due to the limitations in the existing extraction methods, it is imperative that new processing parameters for extraction and concentration of tocopherols from deodorizer distillate...

Zhang, Xiaoyan

2012-06-07T23:59:59.000Z

151

Minimum Energy Diagrams for Multieffect Distillation Arrangements  

E-Print Network [OSTI]

and the energy use from this process accounts for an estimated 3% of the world energy consumption.1 With rising on the overall plant energy consumption. The use of heat integration combined with complex config- urations distillation ar- rangements. An easy form of comparison for energy consumption is the minimum vapor flow rate

Skogestad, Sigurd

152

Naphthenic acid corrosion in crude distillation units  

SciTech Connect (OSTI)

This paper summarizes corrosion experience in crude distillation units processing highly naphthenic California crude oils. Correlations have been developed relating corrosion rates to temperature and total acid number. There is a threshold acid number in the range of 1.5 to 2 mg KOH/g below which corrosion is minimal. High concentrations of hydrogen sulfide may raise this threshold value.

Piehl, R.L.

1988-01-01T23:59:59.000Z

153

Heat Exchanger Technologies for Distillation Columns  

E-Print Network [OSTI]

Conference, Houston, TX, April 16-19, 2002 Downcomer Ii IMass Transfer Ales I Hem Transrer Surf':lce I I I i i i i IDo-.>m" I Vapour Flow Figure 5. Alternative Inlegral Condenser Design Engineers unfamiliar with the thermodynamics of distillation...

Polley, G. T.

154

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

155

Interpolation of recurrence and hashing entanglement distillation protocols  

SciTech Connect (OSTI)

We construct interesting entanglement distillation protocols by interpolating between the recurrence and hashing protocols. This leads to asymptotic two-way distillation protocols, resulting in an improvement of the distillation rate for all mixed Bell diagonal entangled states, even for the ones with very high fidelity. We also present a method for how entanglement-assisted distillation protocol can be converted into nonentanglement-assisted protocols with the same yield.

Vollbrecht, Karl Gerd H.; Verstraete, Frank [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

2005-06-15T23:59:59.000Z

156

Model Predictive Control of a Kaibel Distillation Column  

E-Print Network [OSTI]

Model Predictive Control of a Kaibel Distillation Column Martin Kvernland Ivar Halvorsen Sigurd (e-mail: skoge@ntnu.no) Abstract: This is a simulation study on controlling a Kaibel distillation column with model predictive control (MPC). A Kaibel distillation column has several advantages compared

Skogestad, Sigurd

157

Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements  

E-Print Network [OSTI]

Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements S. Skouras and S, Norway SCOPE OF THE PROJECT ·How can we separate ternary mixtures in closed batch distillation-up period is required, followed by a heteroazeotropic distillation step (Figure 3) Modified: The separation

Skogestad, Sigurd

158

Human versus Machine in the Topic Distillation Task Mingfang Wu  

E-Print Network [OSTI]

Human versus Machine in the Topic Distillation Task Mingfang Wu 1 , Gheorghe Muresan2 , Alistair Mc. The focus is on comparing humans and machine algorithms in terms of performance in a topic distillation task demonstrated that machines can perform nearly as well as people on the topic distillation task. Given a system

Wu, Mingfang

159

RIS0-M-2319 RISK ANALYSIS OF A DISTILLATION UNIT  

E-Print Network [OSTI]

RIS0-M-2319 RISK ANALYSIS OF A DISTILLATION UNIT J. R. Taylor**, 0. Hansen*, C. Jensen*, 0. F. A risk analysis of a batch distillation unit is de- scribed. The analysis has been carried out at several.2. Objectives and organisation 5 1.2.2. Philosophy and approach 6 1.3.1. The distillation unit 8 1

160

Blog Distillation via Sentiment-Sensitive Link Analysis  

E-Print Network [OSTI]

Blog Distillation via Sentiment-Sensitive Link Analysis Giacomo Berardi, Andrea Esuli, Fabrizio report a new approach to blog distillation, defined as the task in which, given a user query, the system of the TREC Blog Track. 1 Introduction Blog distillation is a subtask of the blog search task. It is defined

Sebastiani, Fabrizio

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Many copies may be required for entanglement distillation John Watrous  

E-Print Network [OSTI]

Many copies may be required for entanglement distillation John Watrous Department of Computer state shared between two parties is said to be distillable if, by means of a protocol involving only |+ = (|00 + |11 )/ 2. In this paper it is proved that there exist states that are distillable

Watrous, John

162

Multiple Steady States in Ideal Two-Product Distillation  

E-Print Network [OSTI]

Multiple Steady States in Ideal Two-Product Distillation Elling W. Jacobsen and Sigurd Skogestad Chemical Engineering Dept., University of Trondheim-NTH, N-7034 Trondheim, Norway Simple distillation and compositions in the column. Introduction Multiple steady states (multiplicity) in distillation columns have

Skogestad, Sigurd

163

Bloggers as Experts Feed Distillation using Expert Retrieval Models  

E-Print Network [OSTI]

Bloggers as Experts Feed Distillation using Expert Retrieval Models Krisztian Balog kbalog Kruislaan 403, 1098 SJ Amsterdam ABSTRACT We address the task of (blog) feed distillation: to find blogs- ness as feed distillation strategies. The two models capture the idea that a human will often search

de Rijke, Maarten

164

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S?RENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total reflux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

Skogestad, Sigurd

165

Effect of Number of Fractionating Trays on Reactive Distillation Performance  

E-Print Network [OSTI]

Effect of Number of Fractionating Trays on Reactive Distillation Performance Muhammad A. Al and rectifying sec- tions of a reacti®e distillation column can degrade performance. This effect, if true®e distillation columns cannot use conser®ati®e estimates of tray numbers, that is, we cannot simply add excess

Al-Arfaj, Muhammad A.

166

Multiple copy distillation and purification of phase diffused squeezed states  

E-Print Network [OSTI]

We provide a detailed theoretical analysis of multiple copy purification and distillation protocols for phase diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semi-analytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

Petr Marek; Jaromir Fiurasek; Boris Hage; Alexander Franzen; James DiGugliemo; Roman Schnabel

2007-08-10T23:59:59.000Z

167

Column Initialization 1 Initializing Distillation Column Models 1  

E-Print Network [OSTI]

Column Initialization 1 Initializing Distillation Column Models 1 Roger Fletcher \\Lambda with the optimisation of distillation column models by non­ linear programming are considered. The paper presents of the distillation column model. A certain limiting case of the column model is examined, that of infinite reflux

Dundee, University of

168

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total re ux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

Skogestad, Sigurd

169

Energy efficient distillation Ivar J. Halvorsen a,*, Sigurd Skogestad b  

E-Print Network [OSTI]

Energy efficient distillation Ivar J. Halvorsen a,*, Sigurd Skogestad b a SINTEF ICT, Applied Keywords: Distillation Minimum energy Energy saving Dividing wall column Petlyuk arrangement Vmin-diagram a b s t r a c t Distillation is responsible for a significant amount of the energy consumption

Skogestad, Sigurd

170

Active constraint regions for optimal operation of distillation columns  

E-Print Network [OSTI]

Active constraint regions for optimal operation of distillation columns Magnus G. Jacobsen the control structure of distillation columns, with optimal operation in mind, it is important to know how for distillation columns change with variations in energy cost and feed flow rate. The production of the most

Skogestad, Sigurd

171

Secret key distillation from shielded two-qubit states  

E-Print Network [OSTI]

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Joonwoo Bae

2008-03-03T23:59:59.000Z

172

Secret key distillation from shielded two-qubit states  

SciTech Connect (OSTI)

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

2010-05-15T23:59:59.000Z

173

Distillate Stocks Expected to Remain Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year. - Stocks are beginning at very low levels. The September 1 distillate fuel stock level (112 million barrels) is nearly 20% less than last year, and about 15% below the 10 year average for end of August levels. - But stocks on the East Coast, at 39.8 million barrels, are 39% behind year-ago levels, and about a similar percentage below end-of-August 10-year average levels. Over the last 10 years, the average stock build from the end of August through the end of November has been about 10 million barrels. We are forecasting about a 12 million barrel build, which does not reach the normal band. Forecast stocks peak at the end of November at 127 million

174

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1984-03-27T23:59:59.000Z

175

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1985-08-20T23:59:59.000Z

176

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1984-01-01T23:59:59.000Z

177

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1985-01-01T23:59:59.000Z

178

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

179

The attractor mechanism as a distillation procedure  

E-Print Network [OSTI]

In a recent paper it has been shown that for double extremal static spherically symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of GHZ-type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible to see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a GHZ state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.

Pter Lvay; Szilrd Szalay

2010-04-14T23:59:59.000Z

180

Attractor mechanism as a distillation procedure  

SciTech Connect (OSTI)

In a recent paper it was shown that for double extremal static spherical symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of a Greenberger-Horne-Zeilinger type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges, the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible to see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a Greenberger-Horne-Zeilinger state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.

Levay, Peter; Szalay, Szilard [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

182

The Products of the Destructive Distillation of Keratin in the Form of Leather  

E-Print Network [OSTI]

this research was conducted in order to obtain a commercial method for the utilization of leather scrap, the charcoal residue, the nitrogen content of the distillate and the utilization of the gas as fuel, are the factors considered at greater length.... These vapors would not condense by simply cooling, but were, for the most part, readily soluble in water and acids. Next came a white opaque liquid, rather viscous in appearance, and as is the case with many organic compounds, it turned brown on expos- 28...

Rose, Reed Phillips

1913-01-01T23:59:59.000Z

183

Low Distillate Stocks Set Stage for Price Volatility  

Gasoline and Diesel Fuel Update (EIA)

Along with the recent rise in crude oil prices, low stocks of Along with the recent rise in crude oil prices, low stocks of distillate fuels left markets in a vulnerable position. As we went into our two biggest distillate demand months, January and February, U.S. distillate stocks were very low -- particularly on the East and Gulf Coasts. The East Coast is the primary heating oil region, and it depends heavily on production from the Gulf Coast as well. Distillate stocks in the U.S. and Europe were in surplus supply as recently as October, but distillate stocks did not build as they usually do during the late fall, and declined more sharply than usual in December. December stocks closed well below the normal range. The unusual drawdown, in contrast to the more normal building pattern, resulted in distillate inventory levels about 3 million barrels lower than the very low

184

Iterative Entanglement Distillation: Approaching full Elimination of Decoherence  

E-Print Network [OSTI]

The distribution and processing of quantum entanglement form the basis of quantum communication and quantum computing. The realization of the two is difficult because quantum information inherently has a high susceptibility to decoherence, i.e. to uncontrollable information loss to the environment. For entanglement distribution, a proposed solution to this problem is capable of fully eliminating decoherence; namely iterative entanglement distillation. This approach builds on a large number of distillation steps each of which extracts a number of weakly decohered entangled states from a larger number of strongly decohered states. Here, for the first time, we experimentally demonstrate iterative distillation of entanglement. Already distilled entangled states were further improved in a second distillation step and also made available for subsequent steps.Our experiment displays the realization of the building blocks required for an entanglement distillation scheme that can fully eliminate decoherence.

Boris Hage; Aiko Samblowski; James DiGuglielmo; Jaromr Fiurek; Roman Schnabel

2010-07-09T23:59:59.000Z

185

Design and Operability of an Energy Integrated Distillation Column  

Science Journals Connector (OSTI)

Abstract Operability issues are investigated on an energy integrated distillation column. The distillation column separates a nearly binary mixture. The energy integration is achieved using an indirect heat pump between the column condenser and the reboiler. The design aim of the integrated is system to enable operation of the distillation column over its entire operating window, through manipulation of the heatpump variables. An additional aim is to provide the operator with a set of standard distillation column actuators, for controlling the distillation column as a conventional distillation column. This secondary aim is attempted achieved, through selection of the control structure of the heat pump. Both simulation and experimental results illustrate areas within the possible operating window where potential operability problems remain dependent upon the selected control configuration. A very large part of the totally possible operating window may be covered by using just one heat pump control structure. However multivariable control avoids singularity of the multiloop structure.

Torben Mnsted Schmidt; Arne Koggersbl; Sten Bay Jrgensen

1992-01-01T23:59:59.000Z

186

Energy conservation in distillation: a technology applications manual  

SciTech Connect (OSTI)

Distillation is the most widely practiced technique for separating mixtures of chemical species, but it is an energy intensive process. A 10% reduction in distillation energy consumption would effect a significant savings. On a national basis this would be an annual savings of 200 trillion Btu, or the equivalent of 36.5 million barrels of oil per year. Technology to achieve these savings in distillation energy is available and measures are presented to assist process engineers in technical and economic analysis of the energy conservation measures most suitable for particular distillation applications. The manual catalogs all of the energy conservation options applicable to distillation and the options by the investment required; describes in detail the options having a significant potential to reduce distillation energy requirements economically; provides guidelines that will allow the plant engineer to quickly screen each option for his application; and provides short-cut calculation procedures for use in a preliminary economic analysis of promising options.

Not Available

1980-05-01T23:59:59.000Z

187

Distillation by repeated measurements: Continuous spectrum case  

SciTech Connect (OSTI)

Repeated measurements on one part of a bipartite system strongly affect the other part that is not measured, the dynamics of which is regulated by an effective contracted evolution operator. When the spectrum of this operator is discrete, the nonmeasured system is driven into a pure state, irrespective of the initial state, provided that the spectrum satisfies certain conditions. We show here that, even in the case of continuous spectrum, an effective distillation can occur under rather general conditions. We confirm it by applying our formalism to a simple model.

Bellomo, Bruno; Compagno, Giuseppe [CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, IT-90123 Palermo (Italy); Nakazato, Hiromichi [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Yuasa, Kazuya [Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050 (Japan)

2010-12-15T23:59:59.000Z

188

W-like bound entangled states and secure key distillation  

E-Print Network [OSTI]

We construct multipartite entangled states with underlying W-type structure satisfying positive partial transpose (PPT) condition under any (N-1)|1 partition. Then we show how to distill N-partite secure key form the states using two different methods: direct application of local filtering and novel random key distillation scheme in which we adopt the idea form recent results on entanglement distillation. Open problems and possible implications are also discussed.

Remigiusz Augusiak; Pawel Horodecki

2008-11-21T23:59:59.000Z

189

Application of Solar Distillation Systems with Phase Change Material Storage  

Science Journals Connector (OSTI)

This chapter presents the analysis of a solar distillation system with phase change material storage system. There is always a scarcity of...

S. K. Shukla

2014-01-01T23:59:59.000Z

190

Optimisation of complex distillation column systems using rigorous models.  

E-Print Network [OSTI]

??Includes abstract. Since distillation is still the most widely used separation technique in the petrochemical industry, optimisation of these unit operations are important to minimise (more)

Hughes, Michael John.

2010-01-01T23:59:59.000Z

191

Catalytic distillation for the synthesis of tertiary butyl alcohol.  

E-Print Network [OSTI]

??Catalytic Distillation for the synthesis of tertiary butyl alcohol (TBA) is investigated in this thesis. The solvent, ethylene glycol, is proposed as a means of (more)

Safinski, Tomasz

2005-01-01T23:59:59.000Z

192

Local Gaussian operations can enhance continuous-variable entanglement distillation  

E-Print Network [OSTI]

Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations, both the performance and the efficiency of existing distillation protocols can be enhanced. We derive the optimal enhancement through local Gaussian unitaries, which can be obtained even in the most natural scenario when Gaussian mixed entangled states are shared after their distribution through a lossy-fiber communication channel.

ShengLi Zhang; Peter van Loock

2011-03-23T23:59:59.000Z

193

Development of an energy efficient direct contact membrane distillation system.  

E-Print Network [OSTI]

??Direct contact membrane distillation (DCMD) was investigated for its performance abilities and capability to concentrate aqueous solutions with high solid contents at low temperatures. The (more)

Bui, Anh

2008-01-01T23:59:59.000Z

194

Local Gaussian operations can enhance continuous-variable entanglement distillation  

SciTech Connect (OSTI)

Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations both the performance and the efficiency of existing distillation protocols can be enhanced. We find that such an enhancement through local Gaussian unitaries can be obtained even when the initially shared Gaussian entangled states are mixed, as, for instance, after their distribution through a lossy-fiber communication channel.

Zhang Shengli; Loock, Peter van [Optical Quantum Information Theory Group, Max Planck Institute for the Science of Light, Guenther-Scharowsky-Strasse 1/Bau 26, DE-91058 Erlangen (Germany); Institute of Theoretical Physics I, Universitaet Erlangen-Nuernberg, Staudtstrasse 7/B2, DE-91058 Erlangen (Germany)

2011-12-15T23:59:59.000Z

195

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

196

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

197

Simulation and Optimization of Distillation Processes for Separating the MethanolChlorobenzene Mixture with Separate Heat-Pump Distillation  

Science Journals Connector (OSTI)

For a special distillation column with a large temperature difference between the bottom and top, the direct heating of the bottom by compressing the top stream would cause excessive energy consumption by the compressor, which would result in an increase in the overall energy consumption and operating costs; therefore, this method would not meet the energy-saving principle of heat-pump distillation. ... Rivera-Ortega, P.; Picn-Nez, M.; Torres-Reyes, E.; Gallegos-Muoz, A.Thermal Integration of Heat Pumping Systems in Distillation Columns Appl. ... Fonyo, Z.; Mizsey, P.Economic Application of Heat Pumps in Integrated Distillation Systems Heat Recovery Syst CHP 1994, 14, 249 263 ...

Xiaoxin Gao; Zhengfei Ma; Limin Yang; Jiangquan Ma

2013-07-30T23:59:59.000Z

198

" Energy Sources by Industry Group, Selected Industries, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Capability to Switch from Distillate Fuel Oil to Alternative" 5. Capability to Switch from Distillate Fuel Oil to Alternative" " Energy Sources by Industry Group, Selected Industries, and Selected" " Characteristics, 1991" " (Estimates in Thousand Barrels)" ,," Distillate Fuel Oil ",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

199

Surface Depletion in the Vacuum Distillation of Metals from Bismuth  

SciTech Connect (OSTI)

Surface depletion was investigated in laboratory- and plant-scale distillation units with mixing by natural convection or by mechanical surface agitation. A model was developed for predicting the degree of surface depletion during the distillation of metals from bismuth as a function of temperature, still pot dimensions, and degree of agitation. This paper discusses those findings.

Bradley, R.F.

2001-08-29T23:59:59.000Z

200

Distillation purification and radon assay of liquid xenon  

SciTech Connect (OSTI)

We succeeded to reduce the Kr contamination in liquid xenon by a factor of 1/1000 with a distillation system in Kamioka mine. Then, the remaining radioactivities (Radon and Kr) in purified liquid xenon were measured with the XMASS prototype detector. In this talk, the distillation system and the remaining internal radioactivity levels are reported.

Takeuchi, Yasuo [Kamioka Observatory, ICRR, Univ. of Tokyo, Kamioka-cho, Hida-shi, Gifu 506-1205 (Japan)

2005-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of Closed Multivessel Batch Distillation of Ternary Azeotropic Mixtures  

E-Print Network [OSTI]

Analysis of Closed Multivessel Batch Distillation of Ternary Azeotropic Mixtures using Elementary ­ Introducing the concept of elementary topological cells, we illustrate how vapor­liquid equilibrium (VLE with total reflux packed distillation column profiles when all resistance to mass transfer is in the vapor

Skogestad, Sigurd

202

A Decision Mechanism for the Selective Combination of Evidence in Topic Distillation  

E-Print Network [OSTI]

A Decision Mechanism for the Selective Combination of Evidence in Topic Distillation Vassilis combination of evidence for Web Information Retrieval and particularly for topic distillation. We introduce. Keywords Web information retrieval, Topic distillation, decision mechanism, selective combination

Jose, Joemon M.

203

Kinetic azeotropy and design of reactive distillation columns  

SciTech Connect (OSTI)

The reactive fixed points in the distillation maps of a reactive distillation column (RDC) with kinetically controlled reactions are identified and their role in deciding the design feasibility has been elucidated. The fixed points at which both reaction and distillation vectors have zero magnitudes correspond to the equilibrium fixed point. It is known that the relative positions of these points for the rectifying and stripping sections determine the value of the minimum reflux ratio. However, apart from these fixed points, there are certain fixed points in the distillation map at which, though the reaction and distillation vectors have nonzero magnitudes, they nullify the effects of each other. These points correspond to the kinetic fixed points and have a special significance. Their positions have direct influence on the feasible product composition. A simple example of an ideal ternary system undergoing a reaction 2B {longleftrightarrow} A + c has been illustrated to show the importance of kinetic azeotropy in the design aspects of RDC.

Mahajani, S.M. [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering] [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering

1999-01-01T23:59:59.000Z

204

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of US Navy jet fuel (JP-5) has been related to the amounts of large n-alkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how the n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30, and 32 ppM in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-01-01T23:59:59.000Z

205

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of U.S. Navy jet fuel (JP-5) has been related to the amounts of large nalkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how th n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30 and 32 ppm in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-02-01T23:59:59.000Z

206

E-Print Network 3.0 - azeotropic distillation columns Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

closed (total reflux) operation of the conventional batch distillation column with a condenser... in closed middle vessel batch distillation column (solid ... Source: Skogestad,...

207

Multilevel distillation of magic states for quantum computing  

E-Print Network [OSTI]

We develop a procedure for distilling magic states used in universal quantum computing that requires substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify other high-fidelity magic states to even higher fidelity, which we call "multilevel distillation." When distilling in the asymptotic regime of infidelity $\\epsilon \\rightarrow 0$ for each input magic state, the number of input magic states consumed on average to yield an output state with infidelity $O(\\epsilon^{2^r})$ approaches $2^r+1$, which comes close to saturating the conjectured bound in [Phys. Rev. A 86, 052329]. We show numerically that there exist multilevel protocols such that the average number of magic states consumed to distill from error rate $\\epsilon_{\\mathrm{in}} = 0.01$ to $\\epsilon_{\\mathrm{out}}$ in the range $10^{-5}$ to $10^{-40}$ is about $14\\log_{10}(1/\\epsilon_{\\mathrm{out}}) - 40$; the efficiency of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from initial infidelity 0.01 to any final infidelity below $10^{-7}$. These methods are an important advance for magic-state distillation circuits in high-performance quantum computing, and they provide insight into the limitations of nearly resource-optimal quantum error correction.

Cody Jones

2012-10-11T23:59:59.000Z

208

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)"

209

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

210

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

211

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; " 2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)"

212

Improved direct and indirect systems of columns for ternary distillation  

SciTech Connect (OSTI)

Separation of a ternary mixture into almost pure components is discussed. Systems of distillation columns, with higher thermodynamic efficiency, are developed from a direct sequence (or indirect sequence) of distillation columns by allowing for two interconnecting streams of the same composition and different enthalpy. This increases the reversibility of distillation in the second column, which results in replacing a portion of the high-temperature boiling duty with a lower-temperature heat in the direct split case. For the indirect split case, the improvement allows a portion of the low-temperature condensing duty to be replaced with a higher-temperature condensation.

Agrawal, R.; Fidkowski, Z.T. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [Air Products and Chemicals, Inc., Allentown, PA (United States)

1998-04-01T23:59:59.000Z

213

Novel adsorption distillation hybrid scheme for propane/propylene separation  

SciTech Connect (OSTI)

A novel adsorption-distillation hybrid scheme is proposed for propane/propylene separation. The suggested scheme has potential for saving up to [approximately]50% energy and [approximately]15-30% in capital costs as compared with current technology. The key concept of the proposed scheme is to separate olefins from alkanes by adsorption and then separate individual olefins and alkanes by simple distillation, thereby eliminating energy intensive and expensive olefin-alkane distillation. A conceptual flow schematic for the proposed hybrid scheme and potential savings are outlined.s

Kumar, R.; Golden, T.C.; White, T.R.; Rokicki, A. (Air Products an Chemicals, Inc., Allentown, PA (United States))

1992-12-01T23:59:59.000Z

214

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

mid-January, 2000. WTI crude oil price rose about $17 per mid-January, 2000. WTI crude oil price rose about $17 per barrel or 40 cents per gallon from its low point in mid February 1999 to January 17, 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and the beginning of a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, distillate spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled higher as the New York Harbor market began to draw on product from other areas. They closed at 83 cents per gallon, an increase of 11 cents from the prior Friday. Crude oil had risen about 4 cents from

215

Distillate Supply/Demand Balance Reflected in Spreads  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: The price spike that initiated the flood of distillate imports last winter can be easily seen in this chart. The distillate supply/demand balance influences the spread between spot distillate and spot crude oil prices. For example, when stocks are higher than normal, the spread will be lower than usual. This spread is the price incentive that encourages or discourages changes in supply. The January/February 2000 price spike was shorter than the one last winter, largely due to the timing. Since last winter's price spike occurred early in the season, it took some time before prices receded substantially. Currently, the distillate fuel refining spread (the difference between the spot heating oil price and the WTI price) is more "typical". But as was

216

Magic-state distillation with the four-qubit code  

E-Print Network [OSTI]

The distillation of magic states is an often-cited technique for enabling universal quantum computing once the error probability for a special subset of gates has been made negligible by other means. We present a routine for magic-state distillation that reduces the required overhead for a range of parameters of practical interest. Each iteration of the routine uses a four-qubit error-detecting code to distill the +1 eigenstate of the Hadamard gate at a cost of ten input states per two improved output states. Use of this routine in combination with the 15-to-1 distillation routine described by Bravyi and Kitaev allows for further improvements in overhead.

Meier, Adam M; Knill, Emanuel

2012-01-01T23:59:59.000Z

217

Entanglement distillation by means of k-extendible maps  

E-Print Network [OSTI]

It is known that from entangled states which have positve partial transpose it is not possible to distill maximally entangled state by local operations and classical communication (LOCC). A long-standing problem is whether all states with non-positive partial transpose can be distilled. In this paper we attack this question using a larger class of operations than LOCC operations. Namely, we consider k-extendible operations - those, whose Choi-Jamiolkowski state is k-extendible. We obtain, in particular, that this class is unexpectedly powerful - e.g. capable of distilling even completely product states. We also perform numerical studies of distillation of Werner states by those maps, which imply, that if we raise the extension index k in parallel with raising the numebr of copies, they are not that powerful anymore.

Pankowski, L; Horodecki, M; Smith, G

2011-01-01T23:59:59.000Z

218

Kinetic Method for Hydrogen-Deuterium-Tritium Mixture Distillation Simulation  

SciTech Connect (OSTI)

Simulation of hydrogen distillation plants requires mathematical procedures suitable for multicomponent systems. In most of the present-day simulation methods a distillation column is assumed to be composed of theoretical stages, or plates. However, in the case of a multicomponent mixture theoretical plate does not exist.An alternative kinetic method of simulation is depicted in the work. According to this method a system of mass-transfer differential equations is solved numerically. Mass-transfer coefficients are estimated with using experimental results and empirical equations.Developed method allows calculating the steady state of a distillation column as well as its any non-steady state when initial conditions are given. The results for steady states are compared with ones obtained via Thiele-Geddes theoretical stage technique and the necessity of using kinetic method is demonstrated. Examples of a column startup period and periodic distillation simulations are shown as well.

Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, E.P. [Mendeleyev University of Chemical Technology of Russia (Russian Federation)

2005-07-15T23:59:59.000Z

219

Irreversibility of entanglement distillation for a class of symmetric states  

SciTech Connect (OSTI)

We investigate the irreversibility of entanglement distillation for a symmetric (d+1)-parameter family of mixed bipartite quantum states acting on Hilbert spaces of arbitrary dimension dxd. We prove that in this family the entanglement cost is generically strictly larger than the distillable entanglement, so that the set of states for which the distillation process is asymptotically reversible is of measure zero. This remains true even if the distillation process is catalytically assisted by pure-state entanglement and every operation is allowed, which preserves the positivity of the partial transpose. It is shown that reversibility occurs only in cases where the state is a tagged mixture. The reversible cases are shown to be completely characterized by minimal uncertainty vectors for entropic uncertainty relations.

Vollbrecht, Karl Gerd H.; Wolf, Michael M. [Institut fuer Mathematische Physik, Mendelssohnstrasse 3, D-38106 Braunschweig (Germany); Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Werner, Reinhard F. [Institut fuer Mathematische Physik, Mendelssohnstrasse 3, D-38106 Braunschweig (Germany)

2004-06-01T23:59:59.000Z

220

Magic-state distillation with the four-qubit code  

E-Print Network [OSTI]

The distillation of magic states is an often-cited technique for enabling universal quantum computing once the error probability for a special subset of gates has been made negligible by other means. We present a routine for magic-state distillation that reduces the required overhead for a range of parameters of practical interest. Each iteration of the routine uses a four-qubit error-detecting code to distill the +1 eigenstate of the Hadamard gate at a cost of ten input states per two improved output states. Use of this routine in combination with the 15-to-1 distillation routine described by Bravyi and Kitaev allows for further improvements in overhead.

Adam M. Meier; Bryan Eastin; Emanuel Knill

2012-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heat Integrated Distillation through Use of Microchannel Technology  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

222

DYNAMICS AND CONTROL OF DISTILLATION COLUMNS -A CRITICAL SURVEY  

E-Print Network [OSTI]

.g., Rosenbrock, 1962a-d, and by Rademaker and Rijnsdorp from Shell in the Nether- lands. These people did on distillation dynamics with 173 refer- ences. The book by Rademaker et al. 1975 con- tains about 300 references

Skogestad, Sigurd

223

Determination of plate efficiencies for conventional distillation columns  

E-Print Network [OSTI]

DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COIUMNS A Thesis By Thomas Raymond Harris Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1962 Ma)or Sub)ect t Chemical Engineering DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COLUMNS A Thesis Thomas Raymond Harris Approred as to style and content bye Chairman of ommittee Head...

Harris, Thomas Raymond

2012-06-07T23:59:59.000Z

224

Interferometric distillation and determination of unknown two-qubit entanglement  

E-Print Network [OSTI]

We propose a scheme for both distilling and quantifying entanglement, applicable to individual copies of an arbitrary unknown two-qubit state. It is realized in a usual two-qubit interferometry with local filtering. Proper filtering operation for the maximal distillation of the state is achieved, by erasing single-qubit interference, and then the concurrence of the state is determined directly from the visibilities of two-qubit interference. We compare the scheme with full state tomography.

S. -S. B. Lee; H. -S. Sim

2010-06-08T23:59:59.000Z

225

Interferometric distillation and determination of unknown two-qubit entanglement  

SciTech Connect (OSTI)

We propose a scheme for both distilling and quantifying entanglement, applicable to individual copies of an arbitrary unknown two-qubit state. It is realized in a usual two-qubit interferometry with local filtering. Proper filtering operation for the maximal distillation of the state is achieved by erasing single-qubit interference, and then the concurrence of the state is determined directly from the visibilities of two-qubit interference. We compare the scheme with full state tomography.

Lee, S.-S. B.; Sim, H.-S. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2009-05-15T23:59:59.000Z

226

Distillation and Dehydro Reactors Advanced Process Conrol Freeport Texas PLant  

E-Print Network [OSTI]

Distillation and Dehydro Reactors Advanced Process Control Freeport Texas Plant ESL-IE-14-05-16 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 G-KTI, Polyamide and Intermediates Distillation... APC 6/2/2014 INTERNAL; CONFIDENTIAL 2 APC is a collection of two different control and automation technologies Multivariable Predictive Control (MPC). In this approach, an empirical, dynamic, plant model is used in combination with both a steady...

Eisele, D.

2014-01-01T23:59:59.000Z

227

Composition-Explicit Distillation Curves of Alternative Turbine Fuels  

Science Journals Connector (OSTI)

National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, Colorado 80305, United States ... In recent years, environmental considerations, the potential for supply disruptions, and rising fuel prices have led to the development of turbine fuels produced from non-petroleum feedstocks. ... We found that the distillation curves of the chicken-fat-derived fuel and the gasliquid turbine fuel were similar to those of JP-8, deviating the most at high distillate volume fractions. ...

R. V. Gough; T. J. Bruno

2012-12-03T23:59:59.000Z

228

New Design Methods and Algorithms for Multi-component Distillation Processes  

Broader source: Energy.gov [DOE]

Fact Sheet Overviewing the Improved Energy Efficiency through the Determination of Optimal Distillation Configuration

229

Reducing WWW Latency and Bandwidth Requirements by RealTime Distillation  

E-Print Network [OSTI]

Reducing WWW Latency and Bandwidth Requirements by Real­Time Distillation Armando Fox and Eric A Distillation and Refinement Can Help 1. The Concept of Datatype­Specific Distillation 2. Refinement 3. Trading. Optimizing for Rendering on Impoverished Devices 3. An Implemented HTTP Proxy Based on Real­Time Distillation

California at Berkeley, University of

230

Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le1  

E-Print Network [OSTI]

Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le1 , Ivar J. Halvorsen2 of this work is to implement heterogeneous azeotropic distillation schemes in a dividing wall column (DWC distillation, Petlyuk arrangement, energy saving. 1. Introduction Distillation is one of the most energy

Skogestad, Sigurd

231

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining  

Science Journals Connector (OSTI)

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining ...

Dennis W. Brinkman; John R. Dickson

1995-01-01T23:59:59.000Z

232

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method  

Science Journals Connector (OSTI)

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method ... Energy Fuels, 2013, 27 (2), ...

Peter Y. Hsieh; Kathryn R. Abel; Thomas J. Bruno

2013-01-17T23:59:59.000Z

233

Process for removing naphthenic acids from petroleum distillates  

SciTech Connect (OSTI)

A liquid extraction process is described for removing naphthenic acids from naphthenic acid containing petroleum distillates boiling within the range of about 180/sup 0/-600/sup 0/C. and having an acid number of at least about 0.2 which process comprises the steps of: (a) intimately contacting the petroleum distillates with a solvent consisting essentially of methanol, water, and about from 2-20 wt. % ammonia and having a methanol: water ratio in the range of about from 0.2 to 3 parts by weight of methanol per part by weight of water and using an ammonia to petroleum distillate ratio of about 0.1-1 part by weight of ammonia per 100 parts by weight of the petroleum distillate. This selectively extracts the naphthenic acids into the solvent and yielding an immiscible two-phase liquid mixture, one of which is naphthenic acid-rich solvent phase and the other of which is a substantially napthenic acid-free petroleum distillate phase; and (b) separating and respectively recovering the naphtenic acid-rich solvent phase and petroleum distillate phase.

Danzik, M.

1987-01-06T23:59:59.000Z

234

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Gasoline and Diesel Fuel Update (EIA)

75.1 71.9 64.4 60.6 W W 43.5 41.6 1998 ... 55.7 55.2 51.2 44.2 W W 32.9 30.5 1999 ... 54.9 54.6 60.8 49.5 W...

235

Treating process wastewater employing vacuum distillation using mechanical vapor recompression  

SciTech Connect (OSTI)

Process wastewater has been successfully treated using an enhanced variable vacuum distillation system (VVDS). The removal of contaminants is achieved initially by degassing the liquid under an intense vacuum which removes the volatile organic compounds. The resulting liquid is then distilled under a vacuum using mechanical vapor recompression. The system was invented by Derald McCabe. This innovative treatment system removes virtually all of the contaminants, such as TSS, TDS, BOD{sub 5}, COD, heavy metals and mineral compounds. The resultant aqueous portion normally returns to a neutral pH. Due to the unique system operation, scaling problems (often encountered in conventional distillation) have not been detected in this system. The VVDS is extremely energy efficiency because the heat for distillation is generated and recycled mechanically. Using electricity as the energy source, the approximate operating cost, based on $0.05 KWH, may vary from $0.005 to $0.01 per gallon depending on the size and capacity of the equipment. Based on applications in waste streams performed to-date, the VVDS process has yielded a distilled water stream and the concentrated solids have been used as a byproduct or as a concentrated non-dischargeable waste for disposal.

McCabe, D.L. [Brandt, Houston, TX (United States)] [Brandt, Houston, TX (United States); Vivona, M.A. [ICF Kaiser Engineers, Inc., Houston, TX (United States). Water and Wastewater Dept.] [ICF Kaiser Engineers, Inc., Houston, TX (United States). Water and Wastewater Dept.

1999-05-01T23:59:59.000Z

236

Non-Locality Distillation is Impossible for Isotropic Quantum Systems  

E-Print Network [OSTI]

Non-locality is a powerful resource for various communication and information theoretic tasks, e.g., to establish a secret key between two parties, or to reduce the communication complexity of distributed computing. Typically, the more non-local a system is, the more useful it is as a resource for such tasks. We address the issue of non-locality distillation, i.e., whether it is possible to create a strongly non-local system by local operations on several weakly non-local ones. More specifically, we consider a setting where non-local systems can be realized via measurements on underlying shared quantum states. The hardest instances for non-locality distillation are the isotropic quantum systems: if a certain isotropic system can be distilled, then all systems of the same non-locality can be distilled as well. The main result of this paper is that non-locality cannot be distilled from such isotropic quantum systems. Our results are based on the theory of cross norms defined over the tensor product of certain Banach spaces. In particular, we introduce a single-parameter family of cross norms, which is used to construct a hierarchy of convex sets that are closed under local operations. This hierarchy interpolates between the set of local systems and an approximation to the set of quantum systems.

Dejan D. Dukaric

2011-05-12T23:59:59.000Z

237

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

238

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

239

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

240

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

242

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural ","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

243

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

244

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2010;" 3 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

245

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

246

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

247

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

248

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

249

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

250

Table E1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

251

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

252

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel Purposes by" Nonfuel Purposes by" " Census Region, Industry Group, and Selected Industries, 1994: Part 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Residual","Distillate","Natural Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000 ","Other(d)","Row"

253

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," ",," ",," "," "," ",," ",," "," "," " " "," "," ",,,," "," ",,," ",," ",," ",,"Shipments" "NAICS"," ",,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke and"," ",,"of Energy Sources"

254

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

255

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

256

Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

257

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010;" 3 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

258

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

259

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.3 Relative Standard Errors for Table 4.3;" 4.3 Relative Standard Errors for Table 4.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)" ,"Total United States" "Value of Shipments and Receipts"

260

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

262

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

3.3 Fuel Consumption, 2006;" 3.3 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

263

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

264

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

265

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources"

266

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

267

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

268

Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

269

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

270

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

271

Table N1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

272

Distillate Imports Surged to Meet Supply/Demand Imbalance  

Gasoline and Diesel Fuel Update (EIA)

receded when weather moderated and new supply began to receded when weather moderated and new supply began to arrive. Imports were the largest source of new supply that arrived to relieve the imbalance that was behind the price spike. This graph shows the dramatic increase on a calendar monthly average basis. During the three weeks ending February 25, distillate fuel oil imports averaged 566 thousand barrels per day. During the prior four weeks, imports only averaged 162 thousand barrels per day. Refinery production on the East Coast also increased. For the three weeks ending February 25, East Coast distillate production averaged 478 thousand barrels per day, which was an increase of about 91 thousand barrels per day or 24% over the prior four weeks. (During the same time period, national distillate production only rose 7 percent.)

273

Entanglement distillation by dissipation and continuous quantum repeaters  

E-Print Network [OSTI]

Even though entanglement is very vulnerable to interactions with the environment, it can be created by purely dissipative processes. Yet, the attainable degree of entanglement is profoundly limited in the presence of noise sources. We show that distillation can also be realized dissipatively, such that a highly entanglement steady state is obtained. The schemes put forward here display counterintuitive phenomena, such as improved performance if noise is added to the system. We also show how dissipative distillation can be employed in a continuous quantum repeater architecture, in which the resources scale polynomially with the distance.

Karl Gerd H. Vollbrecht; Christine A. Muschik; J. Ignacio Cirac

2010-11-18T23:59:59.000Z

274

"Distillation, Absorption and Extraction" April 5-6, 2001 in Bamberg,, Halvorsen NTNU Department of Chemical Engineering  

E-Print Network [OSTI]

"Distillation, Absorption and Extraction" April 5-6, 2001 in Bamberg,, Halvorsen NTNU Department Distillation Arrangements by Ivar J. Halvorsen and Sigurd Skogestad Norwegian University of Science and Technology (NTNU) Department of Chemical Engineering Working Party on "Distillation, Absorption

Skogestad, Sigurd

275

Second Price Component: Spread Impacted by Distillate Supply/Demand Balance  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: While crude oil prices will be a major factor impacting distillate prices this winter, another important factor is the U.S. distillate supply/demand balance, as measured by distillate stocks. The distillate supply/demand balance influences the spread between spot distillate and spot crude oil prices. For example, when stocks are higher than normal, the spread will be lower than usual. This spread is the price incentive that encourages or discourages changes in supply. While high stocks in the distillate market are good news for consumers, an excess is bad news for refiners. Distillate spreads during the winter of 1998-99 and throughout most of 1999 were well below average. Distillate stocks were very high during this period, partially as a result of warm weather keeping demand down.

276

T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...  

Broader source: Energy.gov (indexed) [DOE]

PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the...

277

Stagewise Dilute-Acid Pretreatment and Enzyme Hydrolysis of Distillers Grains and Corn Fiber  

Science Journals Connector (OSTI)

Distillers grains and corn fiber are the coproducts of the corn dry grind and wet milling industries, respectively. Availability of distillers grains and corn fiber at the ethanol plant and their ... three-stag...

Hossein Noureddini; Jongwon Byun; Ta-Jen Yu

2009-11-01T23:59:59.000Z

278

Application of a Plantwide Control Design Procedure to a Distillation Column with Heat Pump  

E-Print Network [OSTI]

(Larsson & Skogestad 2001) to a distillation column heat-integrated by using a heatpump. Top-down analysis) and apply it to a distillation column with heatpump. Plantwide control design should start by formulating

Skogestad, Sigurd

279

Cost comparative study for new water distillation techniques by solar energy using  

Science Journals Connector (OSTI)

The aim of this work is to compare the extra added cost of different new water distillation techniques to the cost of extra collected distilled water. The comparison is between; a traditional single slope sola...

Iyad M. Muslih; Salan M. Abdallah; Wafa Abu Husain

2010-03-01T23:59:59.000Z

280

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Capability to Switch from Residual Fuel Oil to Alternative Energy" 6. Capability to Switch from Residual Fuel Oil to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Thousand Barrels)" ,," Residual Fuel Oil",,," Alternative Types of Energy(b)" ," ","-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total",,"Not","Electricity","Natural","Distillate",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Azeotropic Distillation as a Technique for Emulsion Size Reduction  

E-Print Network [OSTI]

Prism/PCCM #12;Overview -Intro- What is Microfluidics? What is Heterogeneous Azeotropic Distillation to produce with a narrow size distribution by way of microfluidics. Want to make emulsions with droplets 30. Depiction of particles lodging in the lung capillary bed. #12;Background Microfluidic Droplet Generation

Petta, Jason

282

Optimal distillation of three-qubit W states  

E-Print Network [OSTI]

Some of the asymmetric three qubit $W$ states are used for perfect teleportation, superdense coding and quantum information splitting. We present the protocols for the optimal distillation of the asymmetric as well as the symmetric $W$ states from a single copy of any three qubit $W$ class pure state.

Ali Yildiz

2010-07-19T23:59:59.000Z

283

Optimal distillation of three-qubit W states  

SciTech Connect (OSTI)

Some of the asymmetric three-qubit W states are used for perfect teleportation, superdense coding, and quantum-information splitting. We present the protocols for the optimal distillation of the asymmetric as well as the symmetric W states from a single copy of any three-qubit W class pure state.

Yildiz, Ali [Department of Physics, Istanbul Technical University, Maslak 34469, Istanbul (Turkey)

2010-07-15T23:59:59.000Z

284

Optimal Control of a Continuous Distillation Process under Probabilistic Constraints  

E-Print Network [OSTI]

. The aim is to find a control (feed rate, heat supply, reflux rate) which is optimal with respect to energyOptimal Control of a Continuous Distillation Process under Probabilistic Constraints René Henrion1 to be separated or to its temperature. Typically, the un- certainties are not completely irregular but follow

Henrion, René

285

Modelling and optimisation of batch distillation involving esterification and hydrolysis reaction systems. Modelling and optimisation of conventional and unconventional batch distillation process: Application to esterification of methanol and ethanol using acetic acid and hydrolysis of methyl lactate system.  

E-Print Network [OSTI]

??Batch distillation with chemical reaction when takes place in the same unit is referred to as batch reactive distillation process. The combination reduces the capital (more)

Edreder, Elmahboub A.

2010-01-01T23:59:59.000Z

286

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S RENSEN 2  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S RENSEN 2 and RAJAB LITTO column presented in this paper provides a generalization of previously proposed batch distillation schemes. The economic potential of the multivessel batch distillation under total re ux is demon- strated

Skogestad, Sigurd

287

Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch Distillation Column  

E-Print Network [OSTI]

Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch DistillationVersity of Science and Technology, Trondheim, Norway Multivessel batch distillation is a promising alternative to conventional batch distillation. Earlier studies proved the feasibility of temperature control in a closed

Skogestad, Sigurd

288

Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality  

E-Print Network [OSTI]

Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami In this paper we study non-interactive correlation distillation (NICD), a generalization of noise sen- sitivity distillation (NICD), previously considered in [5, 31, 39]. In its most general form the problem involves k

O'Donnell, Ryan

289

Topic Distillation with Query-Dependent Link Connections and Page Characteristics  

E-Print Network [OSTI]

6 Topic Distillation with Query-Dependent Link Connections and Page Characteristics MINGFANG WU about a topic. Finding such results is called topic distillation. Previous research has shown statistics. This article presents a new approach to improve topic distillation by exploring the use

Wu, Mingfang

290

Integrated Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation  

E-Print Network [OSTI]

Distillation Ivar J. Halvorsen1 and Sigurd Skogestad Norwegian University of Science and Technology, Department at the Topical conference on Separations Technology, Session 23 - Distillation Modeling and Processes II. 2001 Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation Ivar J

Skogestad, Sigurd

291

Manifold-based starting point generation and its application to distillation  

E-Print Network [OSTI]

Manifold-based starting point generation and its application to distillation Ali Baharev*, Ferenc-states in homogeneous azeotropic distillation . . . . . . . . . . 11 5.2 Multiple steady-states in ideal two-product distillation . . . . . . . . . . . . . . 11 6 Conclusion 13 A Ordering sparse matrices 14 A.1 Ordering to block

Neumaier, Arnold

292

MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad1  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad1 The experimental veri cation of the operation of a multivessel batch distillation column, operated under total re vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

Skogestad, Sigurd

293

Multiple-copy distillation and purification of phase-diffused squeezed states  

SciTech Connect (OSTI)

We provide a detailed theoretical analysis of multiple-copy purification and distillation protocols for phase-diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semianalytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

Marek, Petr [School of Mathematics and Physics, The Queen's University, Belfast BT7 1NN (United Kingdom); Fiurasek, Jaromir [Department of Optics, Palacky University, 17. listopadu 50, 77200 Olomouc (Czech Republic); Hage, Boris; Franzen, Alexander; DiGugliemo, James; Schnabel, Roman [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstr. 38, 30167 Hannover (Germany)

2007-11-15T23:59:59.000Z

294

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA SRENSEN 2  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S?RENSEN 2 and RAJAB LITTO column presented in this paper provides a generalization of previously proposed batch distillation schemes. The economic potential of the multivessel batch distillation under total reflux is demon­ strated

Skogestad, Sigurd

295

Use of Two Distillation Columns in Systems with Maximum Temperature Limitations  

E-Print Network [OSTI]

Use of Two Distillation Columns in Systems with Maximum Temperature Limitations Rebecca H. Masel, Pennsylvania 18015, United States ABSTRACT: Maximum temperature limitations are encountered in distillation of the bottoms product fixes the column base pressure and, hence, the condenser pressure. The distillate

Gilchrist, James F.

296

Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse  

E-Print Network [OSTI]

Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami In this paper we study non-interactive correlation distillation (NICD), a generalization of noise sensitivity in this paper is the problem of non-interactive correlation distil- lation (NICD), previously considered in [5

Regev, Oded

297

Synthesizing Representative I/O Workloads Using Iterative Distillation Zachary Kurmas  

E-Print Network [OSTI]

Synthesizing Representative I/O Workloads Using Iterative Distillation Zachary Kurmas College proper- ties are "key" for a given workload and storage system. We have developed a tool, the Distiller, that automati- cally identifies the key properties ("attribute-values") of the workload. The Distiller then uses

Kurmas, Zachary

298

Enhanced Topic Distillation using Text, Markup Tags, and Hyperlinks Soumen Chakrabarti  

E-Print Network [OSTI]

Enhanced Topic Distillation using Text, Markup Tags, and Hyperlinks Soumen Chakrabarti Mukul Joshi Vivek Tawde IIT Bombay ABSTRACT Topic distillation is the analysis of hyperlink graph structure to authorities). Topic distillation is becoming common in Web search engines, but the best-known algorithms model

Chakrabarti, Soumen

299

Noisy Processing and the Distillation of Private States Joseph M. Renes1  

E-Print Network [OSTI]

Noisy Processing and the Distillation of Private States Joseph M. Renes1 and Graeme Smith2 1 general private state is distilled. Besides a more general target state, the usual entanglement distillation tools are employed (in par- ticular, Calderbank-Shor-Steane (CSS)-like codes), with the crucial

300

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal  

E-Print Network [OSTI]

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal Binary Columns sensitivity in batch distillation processes. By considering the effect of small changes in the operating #12; 1 Introduction Batch distillation has become of increasing importance in industry during the last

Skogestad, Sigurd

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column  

E-Print Network [OSTI]

Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column distillation columns have been explored in many papers, very few papers have dealt with closed-loop control. Most of these control papers consider reactive distillation columns in which there is only one product

Al-Arfaj, Muhammad A.

302

Complex Distillation Arrangements 23.May 2001 by I.Halvorsen NTNU Department of Chemical Engineering  

E-Print Network [OSTI]

Complex Distillation Arrangements 23.May 2001 by I.Halvorsen NTNU Department of Chemical Engineering 1 Minimum Energy Requirements in Complex Distillation Arrangements A thesis submitted for the degree of dr. ing. 23. May 2001 by Ivar J. Halvorsen #12;Complex Distillation Arrangements 23.May 2001

Skogestad, Sigurd

303

Distillation Codes and Applications to DoS Resistant Multicast Authentication  

E-Print Network [OSTI]

Distillation Codes and Applications to DoS Resistant Multicast Authentication Chris Karlof UC We introduce distillation codes, a method for streaming and storing data. Like erasure codes, distillation codes allow information to be decoded from a sufficiently large quorum of symbols. In contrast

Perrig, Adrian

304

Assured Information Distillation in Social Sensing University of Illinois at Urbana-Champaign  

E-Print Network [OSTI]

Colloquium Assured Information Distillation in Social Sensing Dong Wang University of Illinois. This opens up unprecedented challenges and opportunities in social sensing, where the goal is to distill, social and physical networks. The talk will also introduce a new information distillation system we built

Garibaldi, Skip

305

Rejection and fate of trace organic compounds (TrOCs) during membrane distillation  

E-Print Network [OSTI]

Rejection and fate of trace organic compounds (TrOCs) during membrane distillation Kaushalya COCs) Direct contact membrane distillation (DCMD) Volatility Fate and transport Hydrophobicity/hydrophilicity a b s t r a c t In this study, we examined the feasibility of membrane distillation (MD) for removing

306

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal  

E-Print Network [OSTI]

On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal Binary Columns distillation processes. By considering the e ect of small changes in the operating parameters, e.g., initial-mail: jacobsen@elixir.e.kth.se 1 #12;1 Introduction Batch distillation has become of increasing importance

Skogestad, Sigurd

307

A globally convergent method for finding all steady-state solutions of distillation columns  

E-Print Network [OSTI]

A globally convergent method for finding all steady-state solutions of distillation columns Ali distillation column with 7 steady-states show the robustness of the method. No published software known to the steady-state model of distillation columns as it returns the original system as a single large block

Neumaier, Arnold

308

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process  

E-Print Network [OSTI]

, methanol recovery 1. Introduction A process of producing TAME via reactive distillation has been presented the bulk of the reaction between C5 and methanol to produce TAME and a reactive distillation. MethanolDesign of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

Al-Arfaj, Muhammad A.

309

Etude du comportement de mousse cramique comme contacteur Gaz/Liquide contre courant : application la distillation et la distillation ractive.  

E-Print Network [OSTI]

??Ces travaux de thse abordent la problmatique du dveloppement d'internes destins la distillation ractive. La mthodologie suivre est applique dans le cas des (more)

Lvque, Julien

2010-01-01T23:59:59.000Z

310

U.S. Distillate Market Testimony for New York Assembly Hearing  

Gasoline and Diesel Fuel Update (EIA)

Market Testimony for New York Assembly Hearing Market Testimony for New York Assembly Hearing 2/4/2000 Click here to start Table of Contents U.S. Distillate Market Testimony for New York Assembly Hearing U.S. Residential Heating Oil Prices Regional Residential Heating Oil Prices Selected State Residential Heating Oil Prices Spot Distillate & Crude Oil Prices (Prices thru Jan 31, 2000) Low Distillate Stocks Set Stage for Price Volatility PADD 1 (East Coast) Heating Oil Stocks Low New England & Mid-Atlantic Weekly Total Distillate Stocks Low World Crude Production Not Keeping Pace with Demand OECD Stocks Reflect S/D Imbalance Distillate Stocks Are Important Part of Northeast Winter Supply Distillate Problem Likely to be Resolved Soon, But Recurrence Possible East Coast Distillate Production

311

Both Distillate Supply and Demand Reached Extraordinary Levels This Winter  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: This chart shows some critical differences in distillate supply and demand during this winter heating season, in comparison to the past two winters. Typically, distillate demand peaks during the winter months, but "new supply" (refinery production and net imports) cannot increase as much, so the remaining supply needed is drawn from inventories. This pattern is evident in each of the past two winter heating seasons. This winter, however, the pattern was very different, for several reasons: With inventories entering the season at extremely low levels, a "typical" winter stockdraw would have been nearly impossible, particularly in the Northeast, the region most dependent on heating oil. Demand reached near-record levels in December, as colder-than-normal

312

Distillate Stocks are Low - Especially on the East Coast  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Distillate stocks are normally built during the summer for use during the winter as shown by the normal band. Currently, stocks are very low for this time of year. This graph shows East Coast inventories, which at the end of August, were well below the normal band (over 9 million barrels or 19% below the low end of the band). The East Coast is about 31% lower than its 10-year average level for this time of year. We focus on the East Coast (PADD 1 ) because this a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). December 1999 was the turning point. Stocks were well within the normal range through November 1999, but in December, they dropped below the

313

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

314

Distillation and purification of symmetric entangled Gaussian states  

E-Print Network [OSTI]

We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by [Browne et al., Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy de-Gaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.

Jaromir Fiurasek

2010-11-03T23:59:59.000Z

315

Distillation of entanglement by projection on permutationally invariant subspaces  

E-Print Network [OSTI]

We consider distillation of entanglement from two qubit states which are mixtures of three mutually orthogonal states: two pure entangled states and one pure product state. We distill entanglement from such states by projecting n copies of the state on permutationally invariant subspace and then applying one-way hashing protocol. We find analytical expressions for the rate of the protocol. We also generalize this method to higher dimensional systems. To get analytical expression for two qubit case, we faced a mathematical problem of diagonalizing a family of matrices enjoying some symmetries w.r.t. to symmetric group. We have solved this problem in two ways: (i) directly, by use of Schur-Weyl decomposition and Young symmetrizers (ii) showing that the problem is equivalent to a problem of diagonalizing adjacency matrices in a particular instance of a so called algebraic association scheme.

Czechlewski, Miko?aj; Horodecki, Micha?; Mozrzymas, Marek; Studzi?ski, Micha?

2011-01-01T23:59:59.000Z

316

Distillation and purification of symmetric entangled Gaussian states  

SciTech Connect (OSTI)

We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.

Fiurasek, Jaromir [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic)

2010-10-15T23:59:59.000Z

317

Enhanced Separation Efficiency in Olefin/Paraffin Distillation  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

318

Distillation of hydrogen isotopes for polarized HD target  

E-Print Network [OSTI]

We have developed a cryogenic distillation system to purify Hydrogen-Deuteride (HD) gas for a polarized HD target in LEPS experiments at SPring-8. A small amount of ortho-H$_2$ ($\\sim$0.01%) in the HD gas plays an important role in efficiently polarizing the HD target. Since there are 1$\\sim$5% impurities of H$_2$ and D$_2$ in commercially available HD gases, it is inevitable that the HD gas is purified up to $\\sim$99.99%. The distillation system has a cryogenic pot (17$\\sim$21 K) containing many small stainless steel cells called Heli-pack. Commercial HD gas with an amount of 5.2 mol is fed into the pot. We carried out three distillation runs by changing temperatures (17.5 K and 20.5 K) and gas extraction speeds (1.3 ml/min and 5.2 ml/min). The extracted gas was analyzed by using a gas analyzer system combining a quadrupole mass spectrometer with a gas chromatograph. The HD gas of 1 mol with a purity better than 99.99% has been successfully obtained. The effective NTS (Number of Theoretical Stages), which is an indicator of the distillator performances, is obtained as 37.2$\\pm$0.6. This value is in reasonable agreement with a designed value of 37.9. The HD target is expected to be efficiently polarized under a well-controlled condition by doping an optimal amount of ortho-H$_2$ to the purified HD gas.

T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouill'; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

2011-06-14T23:59:59.000Z

319

Hybrid adsorption-distillation process for separating propane and propylene  

SciTech Connect (OSTI)

The separation of propylene from a propane-propylene mixture by distillation is a energy-intensive process. A hybrid adsorption-distillation system has a great potential in reducing the energy consumption. A significant amount of energy can be saved relative to a process using only distillation, if a typical separation is carried out by distillation up to a propylene concentration of approximately 80% and then continuing the separation of propane from propylene by adsorption. A volumetric adsorption apparatus was designed to obtain the data at high pressures. The pure component data of propane and propylene were obtained on silica gel, molecular sieve 13X, and activated carbon. Although activated carbon has a greater capacity for both propane and propylene than either of the two adsorbents, it was only slightly selective for propylene. Silica gel has the greatest selectivity for propylene, which ranged from 2 to 4. None of the adsorbents was found to be selective for propane. The propane-propylene mixture behaved nonideally on the solid surface as indicated by the negative deviations of activity coefficients. The nonideality of the mixture can be attributed primarily to surface effects rather than to interactions between adsorbate molecules. A binary model has been proposed to predict mole fractions in the adsorbed phase and the total amount adsorbed from the pure component data. The pure component isotherm model of Hines et al. was extended to binary mixtures when the binary model was developed. Excellent agreement was obtained between experimental data and predicted values for mole fractions in the adsorbed phased, the total amount adsorbed, and adsorbed-phase activity coefficients.

Ghosh, T.K.; Lin, Hon-Da; Hines, A.L. (Univ. of Missouri, Columbia, MO (United States))

1993-10-01T23:59:59.000Z

320

Spinodal instabilities and the distillation effect in relativistic hadronic models  

SciTech Connect (OSTI)

Liquid-gas phase transitions in asymmetric nuclear matter give rise to a distillation effect that corresponds to the formation of droplets of high-density symmetric matter in a background of a neutron gas possibly with a very small fraction of protons. In the present work we test the model dependence of this effect. We study the spinodal instabilities of asymmetric nuclear matter within six different mean-field relativistic models with both constant and density-dependent coupling parameters. We also consider the effects of introducing the {delta} meson and the nonlinear {omega}-{rho} coupling. It is shown that the distillation effect within density-dependent models is not so efficient and is comparable to results obtained for nonrelativistic models. Thermodynamical instabilities of nuclear matter neutralized by electrons as found in stellar matter are also investigated. The high Fermi energy of electrons completely erases the instability of density-dependent models. The other models still show a small region of instability but the distillation effect completely disappears because the electron presence freezes the proton fluctuations.

Avancini, S. S.; Menezes, D. P. [Departamento de Fisica, CFM, Universidade Federal de Santa Catarina Florianopolis, CP 476, CEP 88.040-900 Florianopolis, SC (Brazil); Brito, L.; Provide circumflex ncia, C. [Centro de Fisica Teorica, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Chomaz, Ph. [GANIL (DSM-CEA/IN2P3-CNRS), Boite Postale 5027, F-14076 Caen Cedex 5 (France)

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chapter 9 - Vacuum and High-Pressure Distillation  

Science Journals Connector (OSTI)

Abstract In industrial practice, multistage distillation operations are carried out over a wide range of operating pressures, from about 0.1 to 40 bar (10,000 to 40105Pa). Major factors in choosing the operating pressure are the temperatures of the available cooling and heating media, with water and low-pressure steam being the most convenient ones. Volatile materials require high pressure to raise their condensation temperature to the desired level. Relative volatility tends to decrease with increasing pressure, and, thermodynamically, the upper limit is the critical temperature of the components in the feed. In such cases, a lower operating pressure is chosen and refrigeration must be employed for condensation of overhead vapor instead of cooling water or air. When dealing with high-boiling material, the upper limit for setting the operating pressure depends on the heat sensitivity of the bottom product components. This often requires distilling under an appropriate vacuum in conjunction with a low enough pressure drop to reduce the column bottom temperature accordingly. From the column design point of view, the operating pressure dictates to a great extent the choice and design of internals, and it influences significantly their functionality and overall performance. The main objective of the present chapter is to address and discuss operating pressure selection criteria as well as pressure effects on stage and reflux requirement, vapor and liquid properties, distillation process in general, and trayed and packed-column hydraulics and efficiency in particular.

arko Oluji?

2014-01-01T23:59:59.000Z

322

Startup of distillation columns using profile position control based on nonlinear wave model  

SciTech Connect (OSTI)

Startup of distillation columns is a very challenging control problem because of its strong nonlinearity and a wide operating range during the transient period. A nonlinear wave model captures the essential dynamic behavior of the distillation process so that it is possible to deal with the difficulties encountered during startup operation. This paper is concerned with the startup of distillation systems using nonlinear wave model based control developed by Han and Park. This control scheme uses profile positions as controlled variables and is based on the nonlinear wave model by Hwang and generic model control scheme by Lee and Sullivan. It can be applied to a binary or a multicomponent distillation system that can be represented as a pseudobinary. The proposed control scheme is shown by simulation studies to provide a safe and economic startup operation not only for dual composition control of a simple distillation column but also for a complex distillation configuration.

Han, M.; Park, S. [Chungnam National Univ., Taejon (Korea, Republic of). Chemical Engineering Dept.] [Chungnam National Univ., Taejon (Korea, Republic of). Chemical Engineering Dept.; [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Chemical Engineering Dept.

1999-04-01T23:59:59.000Z

323

Premium distillate products from direct liquefaction of coal  

SciTech Connect (OSTI)

The net liquid products from modern coal liquefaction processes are lower boiling and have much lower end points (mostly under 400{degree}C) than crude petroleum. Coal liquids have very low concentrations of heteroatoms, particularly S, and metals, and are free of resids and asphaltenes. High yields of low-S (0.01--0.03 wt %) naphtha, kerosene, and diesel fuel fractions can be obtained simply by atmospheric distillation, with a total yield of light fuel fractions ranging from 68 to 82 LV% (W260D exclusive). The coal naphtha has a low aromatics content (5--13 LV%), readily meeting projected year-2000 requirements. Its low Reid vapor pressure allows light components from other sources to be blended. The coal light distillate of in appropriate boiling range will be a good low-S blending stock for the light diesel fuel pool. The heavy distillate can be refined into a low-S No. 4 diesel fuel/fuel oil. This fraction, along with the >343{degree}C atmospheric bottoms, can be catalytically cracked or hydrocracked to make light liquid fuels. Thus, modern coal liquids should no longer be envisioned as thick liquids (or even solids) with high concentrations of aromatics and asphaltenes. Products obtained from advanced coal liquefaction technologies are more like light naphthene-base petroleum, but with lower heteroatoms and metals contents, and they are free of resids. Coal liquids are likely to be co-refined in existing petroleum refineries; and hydroprocessing of various severities would be needed for different fractions to produce quality blending stocks for refinery fuel pools.

Zhou, P.Z. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winschel, R.A. [CONSOL, Inc., Library, PA (United States); Klunder, E.B. [USDOE Pittsburgh Energy Technology Center, PA (United States)]|[USDOE, Washington, DC (United States)

1994-08-01T23:59:59.000Z

324

PEMEX selects the H-Oil{reg_sign} process for their hydrodesulfurization residue complex at the Miguel Hidalgo Refinery  

SciTech Connect (OSTI)

Petroleos Mexicanos (PEMEX) has selected the H-Oil Process for the conversion and upgrading of a blend of Maya and Isthmus vacuum residua at the Miguel Hidalgo Refinery. The 8,450 metric ton/day (50,000 bpsd) H-Oil Plant will produce a low sulfur (0.8 wt%) fuel oil, diesel, naphtha, and LPG. The H-Oil Plant will be a key component of the Hydrodesulfurization Residue (HDR) Complex which will be located at the Miguel Hidalgo Refinery in Tula, State of Hidalgo, Mexico. The project is part of PEMEX`s Ecology Projects currently underway in Mexico. This paper describes the HDR Complex and the design basis of the H-Oil Plant and provides the current status of this project.

Wisdom, L.I.; Colyar, J.J. [Hydrocarbon Research, Inc., Princeton, NJ (United States)

1995-12-31T23:59:59.000Z

325

Distilling quantum entanglement via mode-matched filtering  

SciTech Connect (OSTI)

We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.

Huang Yuping; Kumar, Prem [Center for Photonic Communication and Computing, EECS Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3118 (United States)

2011-09-15T23:59:59.000Z

326

Improving the fidelity of optical Zeno gates via distillation  

SciTech Connect (OSTI)

We have modeled the Zeno effect controlled-sign gate of Franson et al. [Phys. Rev. A 70, 062302 (2004)] and shown that high two-photon to one-photon absorption ratios, {kappa}, are needed for high fidelity free-standing operation. Hence we instead employ this gate for cluster state fusion, where the requirement for {kappa} is less restrictive. With the help of partially offline one-photon and two-photon distillations, we can achieve a fusion gate with unity fidelity but nonunit probability of success. We conclude that for {kappa}>2200, the Zeno fusion gate will out perform the equivalent linear optics gate.

Leung, Patrick M.; Ralph, Timothy C. [Centre for Quantum Computer Technology, Department of Physics, University of Queensland, Brisbane 4072 (Australia)

2006-12-15T23:59:59.000Z

327

DISTILLATION DES LIQUIDES SOUS L'INFLUENCE DE L'LECTRICIT STATIQUE; PAR M. D. GERNEZ.  

E-Print Network [OSTI]

36I DISTILLATION DES LIQUIDES SOUS L'INFLUENCE DE L'?LECTRICIT? STATIQUE; PAR M. D. GERNEZ. La décharge, la distillation se produit aussitôt en sens in- verse (2). Ce phénomène est extrêmemen t n e sens suivant lequel se produit cette distillation est contraire à celui que sem- bleraient indiquer les

Paris-Sud XI, Université de

328

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

329

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

330

E-Print Network 3.0 - atmospheric crude distillation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Problems Summary: and atmospheric distillations of crude-oil mixtures from charging tanks. The crude is then processed in order... of resources: crude marine vessels, storage...

331

Development of a Fuzzy Logic Controller for a Distillation Column using Rockwell Software .  

E-Print Network [OSTI]

??In this thesis, an alternative control method based on Fuzzy Inference System (FIS) is proposed to keep the product composition of a distillation column constant. (more)

Nizami, Muhammad

2011-01-01T23:59:59.000Z

332

E-Print Network 3.0 - advanced distillation curve Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

58 (2003) 26712680 www.elsevier.comlocateces Summary: distillation: Advanced simulation and experimental validation. Computers and Chemical Engineering, 22, S371-S......

333

Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction  

SciTech Connect (OSTI)

In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Huang, Xiwen; King, David L.

2006-09-16T23:59:59.000Z

334

Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures  

SciTech Connect (OSTI)

A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

Tedder, D.W.

1984-08-07T23:59:59.000Z

335

Energy conservation: a route to improved distillation profitability. Executive briefing report, technology transfer  

SciTech Connect (OSTI)

The savings potential of energy-conservation measures applied to distillation is examined. The document catalogs all of the various energy-conservation options applicable to distillation; categorizes the options by investment required; and describes in detail the options having a significant potential to reduce distillation energy requirements economically. A technology applications manual designed to assist distillation process engineers who will perform technical and economic analyses to determine the conservation measures most suitable for their particular plant is also available (DOE/CS/4431-T2).

Not Available

1980-01-01T23:59:59.000Z

336

SPOILAGE OF WET DISTILLERS GRAINS PLUS SOLUBLES WHEN STORED IN A BUNKER.  

E-Print Network [OSTI]

??Five studies evaluated the impact of spoilage of wet distillers grains plus solubles (WDGS) on nutrient composition, nutrient losses, and cattle performance. Exp. 1 and (more)

Harding, Jana L

2012-01-01T23:59:59.000Z

337

E-Print Network 3.0 - advanced distillation control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neighboring Source: Louisiana Forest Products Development Center Collection: Renewable Energy 26 Energy efficient distillation Ivar J. Halvorsen a,*, Sigurd Skogestad b Summary: as...

338

Materials - Recycling - Shredder Residue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

339

Investigation related to hydrogen isotopes separation by cryogenic distillation  

SciTech Connect (OSTI)

Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)

Bornea, A.; Zamfirache, M.; Stefanescu, I.; Preda, A.; Balteanu, O.; Stefan, I. [INC-DTCI-ICSI Rm. Valcea, str.Uzinei, Nr.4, 240050 (Romania)

2008-07-15T23:59:59.000Z

340

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

342

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

343

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

344

Hanford tank residual waste contaminant source terms and release models  

SciTech Connect (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-PH phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

345

Evaluation of geothermal energy in desalination by vacuum membrane distillation  

Science Journals Connector (OSTI)

This paper presents the energy evaluation of the cross-flow vacuum membrane distillation (VMD) for three types of lab-fabricated polyvinylidene fluoride (PVDF) membranes and the commercial Westran S PVDF membrane. Membranes with the effective area 23.5cm2 are tested with distilled water and geothermal water as the feed solutions. Results show that the membrane porosity controlled the flux through the fabricated membranes and the commercial membrane. The commercial membrane with porosity of approximately 76.5%, which was the most porous among the tested membranes, gave the highest flux at 9.28kg/m2 h under the optimum conditions of 33.2L/h feed flow rate and 30kPa downstream pressure. The corresponding specific energy consumption was 66.03kW/kgh?1 when distilled water was examined. Heating energy of 8789kW/kgh?1, which is approximately 95% of the total energy consumption, could be saved when the warm geothermal water is fed directly into the VMD system. The water produced meets the drinking water quality with the TDS varying between 102 and 119ppm, thus the geothermal water desalination using the VMD system to produce the drinking water is satisfactory. An economic analysis for a 20,000m3/d VMD desalination plant finds that the water production costs are $0.50/m3 and $1.22/m3 respectively for the plant operated with and without geothermal energy (GE). Compare to the plant without GE utilisation, the water production costs of the plant operated with GE are less than $0.50/m3 that is at least $0.72/m3 or approximately 59% in cost saving when the water fluxes are larger than 6.6kg/m2h. The specific membrane cost reduced from $0.058/m3 to $0.035/m3 when the membrane life extended from 3 to 5years.

Rosalam Sarbatly; Chel-Ken Chiam

2013-01-01T23:59:59.000Z

346

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements  

E-Print Network [OSTI]

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products-component feed into M products has been derived. Interestingly, the minimum-energy solution in a complex solution of minimum energy for distillation of a multicomponent feed into multiple products has not been

Skogestad, Sigurd

347

Graphical Visualisation of Minimum Energy Requirements for Multi-Effect Distillation Arrangements  

E-Print Network [OSTI]

of Chemical Engineering, 7491 Trondheim, Norway Abstract The minimum energy requirements of six different heat1 Graphical Visualisation of Minimum Energy Requirements for Multi-Effect Distillation Arrangements energy-consuming process, where distillation is the process most widely used for fluid separations

Skogestad, Sigurd

348

Coherent eavesdropping attacks in tomographic quantum cryptography: Nonequivalence of quantum and classical key distillation  

SciTech Connect (OSTI)

The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. We show that - for protocols that use quantum channels of any dimension and completely characterize them by state tomography - the noise threshold for classical advantage distillation of a specific kind is substantially lower than the threshold for quantum entanglement distillation if the eavesdropper can perform powerful coherent attacks. In marked contrast, earlier investigations had shown that the thresholds are identical for incoherent attacks on the same classical distillation scheme. It remains an open question whether other schemes for classical advantage distillation have higher thresholds for coherent eavesdropping attacks.

Kaszlikowski, Dagomir; Lim, J.Y.; Englert, Berthold-Georg [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Kwek, L.C. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); National Institute of Education, Nanyang Technological University, Singapore 639798 (Singapore)

2005-10-15T23:59:59.000Z

349

Distillate Problem Likely to be Resolved Soon, But Recurrence Possible  

Gasoline and Diesel Fuel Update (EIA)

2 of 15 2 of 15 Notes: The current high prices in the Northeast should prompt increased production. Regional stocks will shift to areas of highest need, production from East Coast and Gulf Coast refineries will increase (capacity is available as the utilization indicates), and if the problem persists, imports from Europe might be drawn to U.S. But there are several caveats as to the quickness of the price response: Colder weather would quickly use up additional supply moving into the area, postponing relief for the price spike Further refinery problems and/or long delays in current East Coast refinery recoveries would slow new supply from arriving. As of January 31, distillate spot prices had dropped back to 82 cents, which still provides attractive refinery margins, but illustrates

350

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

Stocks are normally an important part of East Coast winter Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 thousand barrels per day in January and 280 in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak

351

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 MB/D in January and 280 MB/D in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak months,

352

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

353

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 thousand barrels per day in January and 280 in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak

354

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

355

Distillate Stocks Are Important Part of Northeast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

1 of 15 1 of 15 Notes: Why do stocks matter in the Northeast? Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 5 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666 MB/D of stocks, covering almost 36% of demand for that month. PADD 1 refineries meet about 25% of demand during January and February, and other PADDs -- mostly PADD 3 -- supply 45-50% of the region’s needs. Imports generally supply about as much as stocks during the peak months, with most of the product coming from Canada, the Virgin Islands and Venezuela. Percentages do not tell the whole story. Stocks supply close to 300

356

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Stocks are important in the Northeast because they are the nearest source of supply when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Stocks are normally an important part of East Coast winter distillate supply. Over the last 10 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666,000 barrels per day of stocks, covering almost 36% of demand for that month. On average, stocks supply the East Coast with about 260,000 barrels per day on average in January and 280,000 barrels per day in February. Those supplies represent draws of about 8 million barrels in one month.

357

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Why do stocks matter in the Northeast? They are the nearest source of supply when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 10 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666 MB/D of stocks, covering almost 36% of demand for that month. Stocks supply the East Coast with about 260 MB/D on average in January and 280 MB/D in February. Those supplies represent draws of about 8 million barrels in one month. PADD 1 refineries meet about 25% of demand during January and

358

Distillate Stocks Are Important Part of Northeast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

The weather alone was not enough to cause the price spike. The low The weather alone was not enough to cause the price spike. The low stocks left the area vulnerable to sudden changes in the market, such as the weather change. Why do stocks matter in the Northeast? Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 5 years, PADD 1 stocks provided about 15% of supply during the peak winter months of January and February. They are the closest source of supply to the consumer. PADD 1 depends on about 60% of its supply from distant sources such as the Gulf Coast or imports, which can take several weeks to travel to the Northeast. Even product from East Coast refineries, if capacity is available, may take a week before it is produced and delivered to the regions needing new supply. Thus, stocks must be able

359

Comparison of advanced distillation control methods. Third annual report  

SciTech Connect (OSTI)

Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

Riggs, J.B.

1997-07-01T23:59:59.000Z

360

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 thousand barrels per day in January and 280 in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice  

E-Print Network [OSTI]

Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case

Tennessee, University of

362

Improving Energy Efficiency and Cost-Effectiveness of Batch Distillation for Separating Wide Boiling Constituents. 1. Vapor Recompression Column  

Science Journals Connector (OSTI)

Although the direct vapor recompression column (VRC) has been known for its application in continuous distillation since the 1960s, the research on vapor recompressed batch distillation (VRBD) started a couple of years ago. In this contribution, a batch ...

Md. Malik Nawaz Khan; G. Uday Bhaskar Babu; Amiya K. Jana

2012-11-05T23:59:59.000Z

363

Ind. Eng. Chem. Res. 1996,34, 4395-4405 4396 Multiple Steady States and Instability in Distillation. Implications  

E-Print Network [OSTI]

is of little importance for distillation dynamics (e.g., Rademaker et al., 1975) are incorrect in many cases

Skogestad, Sigurd

364

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

365

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

366

Abstract 2246: Steam distilled ginger extract inhibits endometrial cancer cell proliferation by activating P53 and causing apoptosis.  

Science Journals Connector (OSTI)

...2013; Washington, DC Abstract 2246: Steam distilled ginger extract inhibits endometrial...compounds, the terpenes, can be isolated by steam distillation of the ginger rhizomes. In...examine the anti-cancer properties of Steam Distilled Ginger Extracts (SDGE) on endometrial...

Yang Liu; Rebecca J. Whelan; Bikash R. Pattnaik; Kai David Ludwig; Rosalina V. Landeros; Enkateswar Subudhi; Helen Rowland; Nicholas Claussen; Noah Zucker; Shitanshu Uppal; David M. Kushner; Mildred Felder; Manish S. Patankar; Arvinder K. Kapur

2013-04-15T23:59:59.000Z

367

Can the Operating Leaves of a Distillation Column Really Be Tshepo S. Modise, Michaela Tapp, Diane Hildebrandt,* and David Glasser  

E-Print Network [OSTI]

Can the Operating Leaves of a Distillation Column Really Be Expanded? Tshepo S. Modise, Michaela to determine the operation leaves and hence the feasible region for distillation columns operating at a specific distillate and bottoms composition for all possible constant reflux and reboil ratios

Skogestad, Sigurd

368

Design of Hybrid Distillation-Vapor Membrane Separation Systems. Jose A. Caballero*; Ignacio E. Grossmann **; Majid Keyvani+  

E-Print Network [OSTI]

Design of Hybrid Distillation-Vapor Membrane Separation Systems. Jose A. Caballero*; Ignacio E (ethane, propane) on a commercial scale is performed almost exclusively by cryogenic distillation to optimize and retrofit a hybrid separation system consisting of a distillation column and a parallel

Grossmann, Ignacio E.

369

MODELING, IDENTIFICATION AND CONTROL, 2000, VOL. 21, NO. 2, 83103 Evaluation of Dynamic Models of Distillation Columns with Emphasis  

E-Print Network [OSTI]

of Distillation Columns with Emphasis on the Initial Response BERND WITTGENS and SIGURD SKOGESTAD* Keywords: Distillation dynamics, tray hydraulics, experimental response The flow dynamics (tray hydraulics) are of key importance for the initial dynamic response of distillation columns. The most important parameters

Skogestad, Sigurd

370

Document and Query Expansion Models for Blog Distillation Jaime Arguello, Jonathan L. Elsas, Changkuk Yoo, Jamie Callan, Jaime G. Carbonell  

E-Print Network [OSTI]

Introduction The CMU submission to the 2008 blog distillation track explored document representation, retrievalDocument and Query Expansion Models for Blog Distillation Jaime Arguello, Jonathan L. Elsas This paper presents the CMU submission to the 2008 TREC blog distillation track. Similar to last year

Murphy, Robert F.

371

Management of ethanol waste from the solar distillation process: Experimental and theoretical studies  

Science Journals Connector (OSTI)

Abstract In this article, models for the management of the ethanol waste of a solar ethanol distillation system prototype have been proposed. The solar distillation system operates as a batch operation and consists of three stages of distillation, which increase the ethanol concentration from 8% to 80% (v/v). In each distillation stage, various volumes of ethanol solutions with different concentrations were obtained; three reuse scenarios (1, 2, and 3) have been proposed for extracting the ethanol solution from the distillation tank in order to increase the overall efficiency of the ethanol distillation system and reduce the amount of materials (cassava broth) fed into the distillation system. The most efficient distillation process, in terms of the final product volume and ethanol concentration in the product, was realized by using scenario 3, which involved recycling a mixture of the waste from the first stage and the second stage, for redistillation in the first stage and returning the waste obtained from the third stage for redistillation in the second stage than in scenarios 2 and 1 under the same condition, both quantitatively and qualitatively. In addition, by using scenario 3 for managing the ethanol waste, the amount of feedstock (cassava broth) annually fed to the system in the first stage could be reduced by 8892% (96,522100,073L/year), compared to using the other two scenarios. Compared to a distillation process without recycling, the amount of cassava broth fed to the system can be reduced by over 180,000L/year by using scenario 3.

J. Jareanjit; P. Siangsukone; K. Wongwailikhit; J. Tiansuwan

2015-01-01T23:59:59.000Z

372

Chemical and biological effects of heavy distillate recycle in the SRC-II process  

SciTech Connect (OSTI)

Recent work from the Merriam Laboratory continuous coal liquefaction units shows that heavy distillate from the SRC-II process can be recycled to extinction, and hence a distillate product boiling entirely below 310/sup 0/C (590/sup 0/F) (or other selected boiling points) is feasible. In these runs distillate yield was not reduced; gas make was unaffected; and hydrogen consumption was increased only slightly, in keeping with the generally higher hydrogen content of lighter end products. Total distillate yield (C/sub 5/-590/sup 0/F) was 56 wt %, MAF coal in runs with subbituminous coal from the Amax Belle Ayr mine. Product endpoint is well below 371/sup 0/C (700/sup 0/F), the temperature above which coal distillates appear to become genotoxic; and the product was shown to be free of mutagenic activity in the Ames test. Chemical analyses showed both the < 270/sup 0/C (< 518/sup 0/F) and the < 310/sup 0/C (< 590/sup 0/F) distillates to be essentially devoid of several reference polycyclic compounds known to be carcinogenic in laboratory animals. Tests for tumorigenic or carcinogenic activity were not carried out on these materials. However, a comparison of chemical data from the Merriam heavy distillate samples with data on the other SRC-II distillates where carcinogenesis or tumorigenesis data is available leads to the expectation that < 371/sup 0/C (< 700/sup 0/F) materials from the Merriam Laboratory will have greatly reduced tumorigenic and carcinogenic activity in skin painting tests. Other studies suggest the product should be more readily upgraded than full-range (C/sub 5/-900/sup 0/F) distillate.

Wilson, B.W.; Pelroy, R.A.; Anderson, R.P.; Freel, J.

1983-12-01T23:59:59.000Z

373

An Adaptive Entanglement Distillation Scheme Using Quantum Low Density Parity Check Codes  

E-Print Network [OSTI]

Quantum low density parity check (QLDPC) codes are useful primitives for quantum information processing because they can be encoded and decoded efficiently. Besides, the error correcting capability of a few QLDPC codes exceeds the quantum Gilbert-Varshamov bound. Here, we report a numerical performance analysis of an adaptive entanglement distillation scheme using QLDPC codes. In particular, we find that the expected yield of our adaptive distillation scheme to combat depolarization errors exceed that of Leung and Shor whenever the error probability is less than about 0.07 or greater than about 0.28. This finding illustrates the effectiveness of using QLDPC codes in entanglement distillation.

K. H. Ho; H. F. Chau

2008-07-14T23:59:59.000Z

374

On the distillation and purification of phase-diffused squeezed states  

E-Print Network [OSTI]

Recently it was discovered that non-Gaussian decoherence processes, such as phase-diffusion, can be counteracted by purification and distillation protocols that are solely built on Gaussian operations. Here, we make use of this experimentally highly accessible regime, and provide a detailed experimental and theoretical analysis of several strategies for purification/distillation protocols on phase-diffused squeezed states. Our results provide valuable information for the optimization of such protocols with respect to the choice of the trigger quadrature, the trigger threshold value and the probability of generating a distilled state.

B. Hage; A. Franzen; J. DiGuglielmo; P. Marek; J. Fiurek; R. Schnabel

2007-07-13T23:59:59.000Z

375

Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states  

SciTech Connect (OSTI)

We present a lower bound of concurrence for arbitrary-dimensional bipartite quantum states. This lower bound may be used to improve all the known lower bounds of concurrence. Moreover, the lower bound gives rise to an operational sufficient criterion of distillability of quantum entanglement. The significance of our result is illustrated by quantitative evaluation of entanglement for entangled states that fail to be identified by the usual concurrence estimation method and by showing the distillability of mixed states that cannot be recognized by other distillability criteria.

Zhao, Ming-Jing; Li-Jost, Xianqing [Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig (Germany); Zhu, Xue-Na [Department of Mathematics, School of Science, South China University of Technology, Guangzhou 510640 (China); Fei, Shao-Ming [Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig (Germany); School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China)

2011-12-15T23:59:59.000Z

376

Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report  

SciTech Connect (OSTI)

This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

Pelroy, R.A.; Wilson, B.W.

1981-09-01T23:59:59.000Z

377

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

378

Use of extractive distillation to produce concentrated nitric acid  

SciTech Connect (OSTI)

Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

1981-04-01T23:59:59.000Z

379

Comparison of advanced distillation control methods. Second annual report  

SciTech Connect (OSTI)

Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

Riggs, J.B.

1996-11-01T23:59:59.000Z

380

Comparison of advanced distillation control methods. Second annual report  

SciTech Connect (OSTI)

Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

NONE

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Simple rules help select best hydrocarbon distillation scheme  

SciTech Connect (OSTI)

Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1993-12-06T23:59:59.000Z

382

Distillation sequence for the purification and recovery of hydrocarbons  

DOE Patents [OSTI]

This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

Reyneke, Rian (Katy, TX); Foral, Michael (Aurora, IL); Papadopoulos, Christos G. (Naperville, IL); Logsdon, Jeffrey S. (Naperville, IL); Eng, Wayne W. Y. (League City, TX); Lee, Guang-Chung (Houston, TX); Sinclair, Ian (Warrington, GB)

2007-12-25T23:59:59.000Z

383

Increasing Distillate Production at U.S. Refineries … Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

384

Analysis of Dynamic Behavior of a Thermally Coupled Distillation Column Implemented on a Process with Recycles  

Science Journals Connector (OSTI)

Abstract Nowadays, the installation and operation of systems with minimum energy and material consumption is a main objective in the industrial ambit; this goal can be achieved through the implementation of recycle streams to recover raw materials and the use of energy integration techniques to minimize utilities requirements. However, when a process is highly integrated, e.g. processes with recycle streams and energy integration or thermal couplings, systems can present control problems. Several studies for Reactor-Separation-Recycle (RSR) systems using separation systems with conventional distillation columns have been reported, but few works have focused on energy-integrated columns or thermally coupled distillation sequences. This work presents a comparison between the dynamic behavior of a thermally coupled distillation column with side rectifier implemented within a RSR system and that obtained with a conventional distillation sequence.

D. Mascote-Prez; A. Snchez-Hijar; N. Ramrez-Corona; A. Jimnez-Gutierrez

2012-01-01T23:59:59.000Z

385

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

386

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

387

SYNTHESIS OF HYDROCARBON STANDARDS Tetrahydrofuran (THF) was distilled from sodium/benzophenone under argon  

E-Print Network [OSTI]

SYNTHESIS OF HYDROCARBON STANDARDS Tetrahydrofuran (THF) was distilled from sodium Synthesis (Pelham, NH, USA). Other phosphonium salts were synthesized as follows. A solution, USA). Synthesis of Straight-chain Z-alkenes. Aldehydes needed for Wittig reactions that were

Hanks, Lawrence M.

388

Degradation of Phytates in Distillers Grains and Corn Gluten Feed by Aspergillus niger Phytase  

Science Journals Connector (OSTI)

Distillers dried grains with solubles (DDGS) and corn gluten feed (CGF) are major coproducts of ethanol production from corn dry grind and wet milling facilities, respectively. These coproducts contain important...

H. Noureddini; J. Dang

2009-10-01T23:59:59.000Z

389

Etude de la distillation ractive dans une colonne avec un bac intermdiaire avec des ractions conscutives.  

E-Print Network [OSTI]

??La distillation ractive est lun des procds chimiques intensifis les plus reconnus, qui intgre la sparation et la raction au sein dun mme appareil. Les (more)

Steger Lukacs, Timea

2009-01-01T23:59:59.000Z

390

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network [OSTI]

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

391

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumers (Thousand Gallons)","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. No 2 Diesel Adj SalesDeliveries to On-Highway...

392

Are All Thermal Coupling Links between Multicomponent Distillation Columns Useful from an Energy Perspective?  

Science Journals Connector (OSTI)

Agrawal and Fidkowski(20) and Agrawal(21, 22) demonstrated rearrangement of distillation sections to alleviate this problem and to make thermally coupled configurations more operable. ... In an actual refinery, this configuration is operated with a number of modifications. ...

Vishesh H. Shah; Rakesh Agrawal

2010-12-29T23:59:59.000Z

393

Overview of used antifreeze and industrial glycol recycling by vacuum distillation  

SciTech Connect (OSTI)

A leading method of reclaiming ethylene glycol from both used automotive coolants and waste industrial glycol streams is vacuum distillation. Over 15 million gallons per year of total glycols are recovered by this technology, which are marketed for use in antifreeze and industrial chemicals. It is a robust technology, tolerant of many common feed contaminants, and producing minimum waste. This paper presents an overview of vacuum distillation as one part of a multistep process for recovering glycols from a wide variety of feedstreams. Described are industry practices for laboratory prescreening of feedstreams, process adjustments and pretreatments, distillation technologies and post-distillation polishing methods. In each section, information and data are presented from two independent facilities and for several streams processed at each facility. It is concluded that the facilities participating in this study can reliably produce ethylene glycol suitable for the production of ASTM specification engine coolants.

Frye, D.K. [Filter Recovery Services, Alexandria, VA (United States); Chan, K.; Pourhassanian, C. [DeMenno/Kerdoon, Inc., Compton, CA (United States)

1999-08-01T23:59:59.000Z

394

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

395

"RSE Table C2.1. Relative Standard Errors for Table C2.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C2.1. Relative Standard Errors for Table C2.1;" C2.1. Relative Standard Errors for Table C2.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 311,"Food",4,0,3,0,1,0,2,6

396

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

397

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.3 Offsite-Produced Fuel Consumption, 2006;" 4.3 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

398

RSE Table 3.2 Relative Standard Errors for Table 3.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 3.2;" 2 Relative Standard Errors for Table 3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,10

399

RSE Table 5.2 Relative Standard Errors for Table 5.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 5.2;" 2 Relative Standard Errors for Table 5.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," " "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

400

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG and",,,"Coke"," " "Code(a)","Subsector and Industry","Total",,"Fuel Oil","Fuel Oil(b)","Natural Gas(c)",,"NGL(d)",,"Coal","and Breeze","Other(e)"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

402

Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002;" 5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

403

Released: March 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million" "Code(a)","End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons

404

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " ",," ","Distillate"," "," ","Coal"," " " ",,,"Fuel Oil",,,"(excluding Coal" " ","Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)","RSE" " ","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Row"

405

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

406

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

407

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

408

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

409

Table A57. Capability to Switch from Coal to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Coal to Alternative Energy Sources by" 7. Capability to Switch from Coal to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991 " " (Estimates in Thousand Short Tons)" " "," "," ", " "," "," Coal",,," Alternative Types of Energy(b)" " "," ","-","-","-------------","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other","Factors"

410

"Table A25. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Prices of Selected Purchased Energy Sources by Census" . Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 1" " (Estimates in Dollars per Physical Unit)" ,,,,," " " "," "," ","Residual","Distillate","Natural Gas(c)"," "," ","RSE" "SIC"," ","Electricity","Fuel Oil","Fuel Oil(b)","(1000","LPG","Coal","Row" "Code(a)","Industry Groups and Industry","(kWh)","(gallon)","(gallon)","cu ft)","(gallon)","(short ton)","Factors"

411

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

412

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2010;" 3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

413

 

Gasoline and Diesel Fuel Update (EIA)

8) 8) June 2010 State Energy Price and Expenditure Estimates 1970 Through 2008 2008 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2008 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and

414

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

415

"RSE Table C3.1. Relative Standard Errors for Table C3.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C3.1. Relative Standard Errors for Table C3.1;" C3.1. Relative Standard Errors for Table C3.1;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

416

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

417

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

418

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010;" 4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

419

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002;" 8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Factors"

420

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

422

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food ................................................................................. 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products ..................................... 20 0 41 1 1 3 30 11 -0 107

423

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

424

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

425

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

426

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

427

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Capability to Switch from Electricity to Alternative Energy" 3. Capability to Switch from Electricity to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Million Kilowatthours)" ,," Electricity Receipts",,," Alternative Types of Energy(b)" ,,"-","-","-----------","-","-","-","-","-","-","-" ,,,,,,,,,,"Coal",,"RSE" ,,"Total"," ","Not","Natural","Distillate","Residual",,,"Coke and",,"Row" ,,"Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)","Factors"," "

428

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

429

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

430

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

431

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

432

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

433

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 2.2, 2006;" 2 Relative Standard Errors for Table 2.2, 2006;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",18.4,"X",16.5,22.4,95.1,"X",0,0.1

434

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" 11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)"

435

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)",,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors" "20-39","ALL INDUSTRY GROUPS"

436

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

437

RSE Table 5.4 Relative Standard Errors for Table 5.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 5.4;" 4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,3,9

438

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

439

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

440

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Released: June 20109  

U.S. Energy Information Administration (EIA) Indexed Site

9" 9" "Next MECS will be conducted in 2010" "Table 7.4 Average Prices of Selected Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)"

442

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006;" 4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

443

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

444

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

445

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

446

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(d)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"," "

447

Table 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Breeze","Other(e)","Factors"

448

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

449

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2006;" 5 Average Prices of Selected Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)"

450

RSE Table 7.9 Relative Standard Errors for Table 7.9  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 7.9;" 9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",4,4,24,21,5,23,7,0,20

451

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

452

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

453

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2006;" 9 Expenditures for Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

454

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

455

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010;" 9 Expenditures for Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

456

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2010;" 5 Average Prices of Selected Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)"

457

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 4.2, 2006;" 2 Relative Standard Errors for Table 4.2, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",4.7,4.1,21.5,13.1,7.1,15.7,1.1,0,18

458

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

459

Table 7.4 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Prices of Selected Purchased Energy Sources, 2002;" 4 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate","Natural ","LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

460

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 1.1, 2006;" 1 Relative Standard Errors for Table 1.1, 2006;" " Unit: Percents." " "," " " "," "," ",," "," ",," ",,," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG and"," ","Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States"

462

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type and End Use," Type and End Use," " 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors"

463

Table A67. Capability to Switch from Electricity to Alternative Energy Source  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Electricity to Alternative Energy Sources" 7. Capability to Switch from Electricity to Alternative Energy Sources" " by Industry Group, Selected Industries, and Selected Characteristics," " 1994: Part 1" " (Estimates in Million Kilowatthours)" ,,,"Electricity Receipts",,,," Alternative Types of Energy(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "SIC"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and",,"Row" "Code(a)","Industry Group and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)","Factors"," "

464

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

465

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Capability to Switch from Natural Gas to Alternative Energy" 4. Capability to Switch from Natural Gas to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Billion Cubic Feet)" ,," Natural Gas",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Distillate","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

466

"RSE Table E1.1. Relative Standard Errors for Table E1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table E1.1;" .1. Relative Standard Errors for Table E1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

467

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

468

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

469

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

470

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2006;" 3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

471

"RSE Table C4.1. Relative Standard Errors for Table C4.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C4.1. Relative Standard Errors for Table C4.1;" C4.1. Relative Standard Errors for Table C4.1;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" ,

472

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 1.2, 2006;" 2 Relative Standard Errors for Table 1.2, 2006;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

473

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

474

"RSE Table C1.1. Relative Standard Errors for Table C1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table C1.1;" .1. Relative Standard Errors for Table C1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," ","Any",," "," ",," "," ",," ","Shipments" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

475

RSE Table 1.2 Relative Standard Errors for Table 1.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 1.2;" 2 Relative Standard Errors for Table 1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate","Natural","LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

476

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

477

"Table E8.1. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Prices of Selected Purchased Energy Sources, 1998;" 1. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

478

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

479

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

480

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

Note: This page contains sample records for the topic "lpg distillate residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

482

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

483

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

484

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

485

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

486

"Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Selected Purchased Energy Sources, 1998;" 2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

487

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

488

The application of continuation methods in solving steady-state distillation problems  

E-Print Network [OSTI]

THE APPLICATION OF CONTINUATION METHODS IN SOLVING STEADY-STATE DISTILLATION PROBLEMS A Thesis by NARK FRANCIS ELLIS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degr ee... of MASTER OF SCIENCE May 1985 Major Subject: Chemical Engineer ing THE APPLICATION OF CONTINUATION METHODS IN SOLVING STEADY-STATE DISTILLATION PROBLEMS A Thesis by MARK FRANCIS ELLIS Approved as to style and content by: C. D. lland (Chairman...

Ellis, Mark Francis

2012-06-07T23:59:59.000Z

489

Optimal design and operation of multivessel batch distillation with fixed product demand. Modelling, simulation and optimisation of design and operation parameters in multivessel batch distillation under fixed product demand scenario and strict product specifications using simple dynamic model in gPROMS.  

E-Print Network [OSTI]

??Increased interest in unconventional batch distillation column configurations offers new opportunities for increasing the flexibility and energy efficiency of batch distillation. One configuration of particular (more)

Mahmud, Mohamed Taher Mustafa

2010-01-01T23:59:59.000Z

490

Comparison of Advanced Distillation Control Methods, Final Technical Report  

SciTech Connect (OSTI)

Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

Dr. James B. Riggs

2000-11-30T23:59:59.000Z

491

Distribution of higher n-alkanes in partially frozen middle-distillate fuels. Final report, October 1982-September 1984  

SciTech Connect (OSTI)

In conjunction with continuing studies on the effect of composition on the freezing points of middle distillate fuels, attention was directed to partially frozen fuels. The crystals and residual liquid from partially frozen JP-5 and DFM fuel samples derived from both petroleum and shale were separated from each other and collected by means of the NRL liquid-solid separator apparatus (LSS) at several temperatures below the freezing points of the original samples. The original fuel samples, the solid material (precipitate), and liquid (filtrate) were characterized by gas chromatography (GC). The filtrate data were straightforward. As expected, Van't Hoff plot of the n-alkanes concentrations (log concentrations vs reciprocal absolute temperature) formed straight lines, and their slopes demonstrated the importance of the higher n-alkanes in fuel crystallization at cold temperatures. The precipitate data presented some problems of interpretation since it was observed that the waxy crystal precipitate matrix entrapped significant amounts of liquid (filtrate). The data on solid which were obtained by these methods demonstrated that the higher n-alkanes play the key role in fuel crystallization at low temperatures, concentrating as much as tenfold in the crystallized solids compared to the liquid. Also, it was clearly shown that the n-alkanes form the major part, up to least 95% by weight in some fuels, of the solid crystals formed.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Hazlett, R.N.; DeGuzman, J.

1985-04-10T23:59:59.000Z

492

Hanford Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

493

LA DISTILLATION a t introduite en Occident avec l'alchimie au cours du XIIe sicle. Par convention, on  

E-Print Network [OSTI]

LA DISTILLATION a été introduite en Occident avec l'alchimie au cours du XIIe siècle. Par Pseudo-Geber, distingue plusieurs façons de distiller et propose même une classi- fication de ces distillat (per descensum). La distillation par élévation des vapeurs, ou per ascensum, nécessite l

Paris-Sud XI, Université de

494

On the evolution of morphology of zirconium sponge during reduction and distillation  

SciTech Connect (OSTI)

High purity zirconium metal is produced by magnesio-thermic reduction of zirconium tetrachloride followed by vacuum distillation. The reduction process is carried out in a batch giving metal sponge and magnesium chloride in the reduced mass. The sponge is purified to using by vacuum distillation. The morphology of the sponge formed during the reduction and its influence on further processing has significant importance. In the present study, a detailed investigation involving evolution of the morphology of sponge particles and its implication during the vacuum distillation was carried out. The study of the microstructure was done using scanning electron microscopy and X-ray diffraction. It is observed that the nascent sponge formed is highly unstable which transforms to a needle-like morphology almost immediately, which further transforms to rounded and finally to a bulk shape. Faceting of the surface and needle-shape formation were observed in these particles, this is probably due to anisotropy in the surface energy. The morphology of the sponge formed during the reduction influences the distillation process. The fine needle-like shape sponge morphology leads to particle ejection, which is explained to be due to curvature effect. This is responsible for the formation of unwanted mass during distillation. XRD line broadening analysis indicates that the individual sponge particles are free from structural defects (dislocation) and are nearly single crystalline in nature.

Kapoor, K. [Nuclear Fuel Complex, Hyderabad, 500 062 (India)], E-mail: kapoork@nfc.ernet.in; Padmaprabu, C.; Nandi, D. [Nuclear Fuel Complex, Hyderabad, 500 062 (India)

2008-03-15T23:59:59.000Z

495

Characteristics of naphthenic and paraffinic hydrocarbons of residual oil from West Siberian crudes  

SciTech Connect (OSTI)

This article examines the naphthenic/paraffinic hydrocarbons segregated by liquid chromatography from a residual oil after removal of the resins and solid hydrocarbons. The studied hydrocarbons were fractionated on the basis of molecular weight (by molecular distillation) and on the basis of the content of rings (by thermal diffusion separation in a laboratory column). The results of mass-spectrometric analysis indicate that the first fraction consists mainly of isoparaffins and naphthenes with few rings. The polycyclic condensed naphthenes are concentrated in the last fraction. The content of isoparaffins drops off and the content of condensed polycyclic naphthenic structures increases from the second fraction to the next to the last. It is concluded that the naphthenic/paraffinic hydrocarbons of the residual oil from mixed West Siberian crudes have a relatively narrow composition and therefore have similar physicochemical properties.

Detusheva, E.P.; Khramtsova, L.P.; Muchinskii, T.D.; Shkol'nikov, V.M.

1984-05-01T23:59:59.000Z

496

Distillate Stocks on the East Coast Were Very Low Entering Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So, what happened last winter? At last year's SHOPP conference, my renowned colleague, Joanne Shore, warned of the potential for high prices. At this time last year, distillate stocks were very low. This graph shows East Coast inventories, which at the end of July 2000, were well below the normal band. We focus on the East Coast (PADD 1) because this is a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). East Coast stocks were well below normal last year from July through December, but then actually increased in January, when they typically decline. In fact, the increase was only the 2nd time East Coast distillate stocks have increased in January since EIA has kept PADD level data (1981)!

497

First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon  

E-Print Network [OSTI]

We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

H. O. Back; T. Alexander; A. Alton; C. Condon; E. de Haas; C. Galbiati; A. Goretti; T. Hohmann; An. Ianni; C. Kendziora; B. Loer; D. Montanari; P. Mosteiro; S. Pordes

2012-04-26T23:59:59.000Z

498

Distillation of mixed-state continuous-variable entanglement by photon subtraction  

SciTech Connect (OSTI)

We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible even for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.

Zhang Shengli; Loock, Peter van [Optical Quantum Information Theory Group, Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bau 26, D-91058 Erlangen (Germany) and Institute of Theoretical Physics I, Universitaet Erlangen-Nuernberg, Staudstr. 7/B2, D-91058 Erlangen (Germany)

2010-12-15T23:59:59.000Z

499

Magic state distillation in all prime dimensions using quantum Reed-Muller codes  

E-Print Network [OSTI]

We propose families of protocols for magic state distillation -- important components of fault tolerance schemes --- for systems of odd prime dimension. Our protocols utilize quantum Reed-Muller codes with transversal non-Clifford gates. We find that in higher dimensions smaller codes can be used than one might expect based on qubit codes. All our protocols produce magic states at a resource cost that increases only polynomially with the inverse of the final ouput error probability. We give specific details for 3-dimensional systems, where we find that certain magic states can be distilled provided an initial error probability of less than 20.02% or a depolarizing noise rate of less than 31.7%. This is the largest error probability threshold of all known protocols with polynomial resource cost. For a depolarizing noise model we also give distillation thresholds for odd prime dimensions up-to 19.

Campbell, Earl T; Browne, Dan E

2012-01-01T23:59:59.000Z

500

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"