Sample records for lp tx power

  1. Fulcrum Power Services LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty,Energy InformationFukushimaLP Jump

  2. Benefits of Multiple TX Powers Robustness to Beacon Node Failure

    E-Print Network [OSTI]

    Chen, Yiling

    the partial failure of the infrastructure. Our system, called MoteTrack, is based on low-power radios coupledAccuracy Benefits of Multiple TX Powers Robustness to Beacon Node Failure Introduction to a wide range of applications. For some, the location tracking system must continue to operate despite

  3. MMA LA Power LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL JumpMJMJCLA Power

  4. N. Logic, E. Kyriakides, G. T. Heydt, "Lp State Estimators for Power Systems," N. Logic, E. Kyriakides, G. T. Heydt, "Lp state estimators for power systems," Journal of Electric Power

    E-Print Network [OSTI]

    1 N. Logic, E. Kyriakides, G. T. Heydt, "Lp State Estimators for Power Systems," N. Logic, E. Kyriakides, G. T. Heydt, "Lp state estimators for power systems," Journal of Electric Power Components and Systems, accepted for publication, 2002. #12;2 Lp State Estimators for Power Systems N. Logic E

  5. Bridgewater Power LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation, search Name Bridgewater

  6. Abstract -The paper explores applications of the finitely adapt-able robust linear programming (LP) to deregulated power sys-

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    (LP) to deregulated power sys- tems using the example of Locational Marginal Prices (LMPs, Power system economics, Power system security, Uncertainty, Locational Marginal Prices. I. INTRODUCTION

  7. Genesee Power Station LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergyOrder No.GeneseeLP

  8. HYPER-LP: A Systemfor PowerMinimization UsingArchitectural lkansformations AnanthaP.Chandrakasan+ Miodrag Potkonjaktt JanRabaey? RobertW. Brodersen+

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    . The sources of power consumption are reviewed and the effects of architectural transformations on the variousHYPER-LP: A Systemfor PowerMinimization UsingArchitectural lkansformations Anantha high-level synthesis system,HYPER-LP, is presentedfor minimiring power con- sumption in application

  9. An Sl1LP-Active Set Approach for Feasibility Restoration in Power ...

    E-Print Network [OSTI]

    2014-05-01T23:59:59.000Z

    May 1, 2014 ... standard test sets with up to 1211 buses. The algorithm ...... Cplex Class API for Matlab is used to exploit the warm start feature of LP solver.

  10. ILP and Iterative LP Solutions for Peak and Average Power Optimization in HLS

    E-Print Network [OSTI]

    Ramanujam, J. "Ram"

    . Ramanujam2 1 Electrical Engineering Dept., Assiut University, Egypt 2 Electrical and Computer Engineering as average power and energy consumptions. As the design problem becomes large, exact solution takes-flow graph (DFG) executes. We define Scheduling for Low Power and Energy (SLoPE) in high-level synthesis

  11. An Sl1LP-Active Set Approach for Feasibility Restoration in Power ...

    E-Print Network [OSTI]

    Taedong Kim

    2014-05-01T23:59:59.000Z

    May 1, 2014 ... Abstract: We consider power networks in which it is not possible to satisfy all loads at the demand nodes, due to some attack or disturbance to...

  12. EA-167 PG&E Energy Trading-Power, L.P | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source, IncNPDuke

  13. EA-168 PG&E Energy Trading-Power, L.P | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source, IncNPDuke-A

  14. EA-167-A PG&E Energy Trading-Power, L.P | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source, IncNPDuke-A

  15. EA-168-B PG&E Energy Trading-Power, L.P | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source, IncNPDuke-A-B

  16. Optimization Online - PuLP: A Linear Programming Toolkit for Python

    E-Print Network [OSTI]

    Stuart Mitchell

    2011-09-22T23:59:59.000Z

    Sep 22, 2011 ... PuLP is a high-level modelling library that leverages the power of the ... Keywords: mathematical programming; Python; modelling language.

  17. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Broader source: Energy.gov (indexed) [DOE]

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

  18. Empirical Analysis of Transmission Power Control Algorithms

    E-Print Network [OSTI]

    Culler, David E.

    Empirical Analysis of Transmission Power Control Algorithms for Wireless Sensor Networks Jaein Power saving techniques in WSN Duty-cycling, TX-power control, clustering We study effect of TX-power transmission. End-to-end delivery rate TX Power Control Best of Fixed TX Power El Batt [1] 36.5% 35.5% PCBL [6

  19. SH Coatings LP

    Broader source: Energy.gov [DOE]

    SH Coatings, based in Dallas, Texas, employs Super Hydrophobic Coating (SHC) technology that protects power systems by preventing ice accumulation on power lines in ice storm threatened areas and contamination of power lines from salt on the coasts. In order to successfully utilize and commercialize the SHC technology for this application, tools to apply the coating onto new and existing lines must be developed. SH Coatings is developing these tools with the help of technology from Oak Ridge National Laboratory.

  20. LP3853/LP3856 3A Fast Response Ultra Low Dropout Linear Regulators

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    LP3853/LP3856 3A Fast Response Ultra Low Dropout Linear Regulators General Description The LP3853/LP3856 series of fast ultra low-dropout linear regulators operate from a +2.5V to +7.0V input supply. Wide range of preset output voltage options are available. These ultra low dropout linear regulators

  1. Giver-LP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics AcrobatGiselle Jiles and

  2. Simple Power, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH JumpSiliciumSimbachInformationSimple

  3. MMA Fresno Power LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL JumpMJMJC ProbeMMA

  4. MMA GDC Power LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL JumpMJMJC

  5. MMA WBF Power LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL JumpMJMJCLA

  6. Texas Power, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformation TengchongTex-La Electric Coop-TexasTexas

  7. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023USWNC MO SiteWSC TX

  8. LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX

    E-Print Network [OSTI]

    #12;#12;#12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX 2012 CAUDILL AWARD WINNER The 1st NET ZERO public school in Texas The 1st NET ZERO middle school in the United States The LARGEST NET ZERO school displays building performance and NET ZERO efficiency. #12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX

  9. TX-100 manufacturing final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

    2007-11-01T23:59:59.000Z

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

  10. Parallel distributed-memory simplex for large-scale stochastic LP problems

    E-Print Network [OSTI]

    Hall, Julian

    T p = eT p B-1 BTRAN aT p = T p N PRICE aq = B-1aq FTRAN Invert B INVERT Hyper-sparsity Vectors ep-scale stochastic LP problems 7 / 23 #12;Stochastic MIP problems: For Argonne Power systems optimization project at Argonne Integer second-stage decisions Stochasticity comes from availability of wind-generated electricity

  11. Interpolation and approximation in Lp Anni Toivola

    E-Print Network [OSTI]

    Jyvskyl, University of

    are to estimate the discretization error of a stochastic integral, i.e. 1 0 (s, Ws)dWs - n i=1 (ti-1, Wti-1 )(Wti - Wti-1 ) The author was partly supported by the Magnus Ehrnrooth Foundation. 1 #12;in the Lp norm

  12. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  13. WIND ENERGY HOW MUCH AND WHAT PRICE? NSTA SAN ANTONIO, TX

    E-Print Network [OSTI]

    Collar, Juan I.

    WIND ENERGY HOW MUCH AND WHAT PRICE? NSTA SAN ANTONIO, TX Last Updated 04/14/13 DESCRIPTION this then extractable and transferable to the electrical grid. To understand how much power (energy per unit time household fan, the windmill's turbines will rotate. #12;Suggested questions or activities: 1. Does

  14. A Strongly Polynomial Simplex Method for Totally Unimodular LP

    E-Print Network [OSTI]

    2014-07-29T23:59:59.000Z

    Jul 19, 2014 ... solutions generated by the simplex method for linear programming. (LP). In this paper, we combine results of Kitahara and Mizuno and.

  15. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey:Transit JumpNewGeothermalLP

  16. Sabine Cogen LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource History View NewSabine Cogen LP

  17. Hirschfeld Industries LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy ResourcesNewHirschfeld Industries LP

  18. Heartland Grain Fuels LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegalHeard County,Grain Fuels LP Jump

  19. Spark Energy, LP (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwesternSpark Energy, LP

  20. American Photovoltaics LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatechFuelsdiesel LLCCleanAGH Jump to:LP

  1. Lithium in LP 944-20

    E-Print Network [OSTI]

    Ya. V. Pavlenko; H. R. A. Jones; E. L. Martin; E. Guenther; M. A. Kenworthy; M. R. Zapatero Osorio

    2007-07-14T23:59:59.000Z

    We present a new estimate of the lithium abundance in the atmosphere of the brown dwarf LP 944-20. Our analysis is based on a self-consistent analysis of low, intermediate and high resolution optical and near-infrared spectra. We obtain log N(Li) = 3.25 +/-0.25 using fits of our synthetic spectra to the Li I resonance line doublet profiles observed with VLT/UVES and AAT/SPIRAL. This lithium abundance is over two orders of magnitude larger than previous estimates in the literature. In order to obtain good fits of the resonance lines of K I and Rb I and better fits to the TiO molecular absorption around the Li I resonance line, we invoke a semi-empirical model atmosphere with the dusty clouds located above the photosphere. The lithium abundance, however, is not changed by the effects of the dusty clouds. We discuss the implications of our estimate of the lithium abundance in LP 944-20 for the understanding of the properties of this benchmark brown dwarf.

  2. CleanTX Foundation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean Economy Network JumpCleanCleanFUELCleanTX

  3. Applied methods to verify LP turbine performance after retrofit

    SciTech Connect (OSTI)

    Overby, R. [Florida Power and Light Co., Juno Beach, FL (United States); Lindberg, G. [ABB Power Generation, Baden (Switzerland)

    1996-12-31T23:59:59.000Z

    With increasing operational hours of power plants, many utilities may find it necessary to replace turbine components, i.e., low pressure turbines. In order to decide between different technical and economic solutions, the utility often takes the opportunity to choose between an OEM or non-OEM supplier. This paper will deal with the retrofitting of LP turbines. Depending on the scope of supply the contract must define the amount of improvement and specifically how to verify this improvement. Unfortunately, today`s Test Codes, such as ASME PTC 6 and 6.1, do not satisfactorily cover these cases. The methods used by Florida Power and Light (FP and L) and its supplier to verify the improvement of the low pressure turbine retrofit at the Martin No. 1 and Sanford No. 4 units will be discussed and the experience gained will be presented. In particular the influence of the thermal cycle on the applicability of the available methods will be analyzed and recommendations given.

  4. Agricultural Grassland, Soil and Water Research Laboratory, Temple, TX

    E-Print Network [OSTI]

    Agricultural Research Service Grassland, Soil and Water Research Laboratory, Temple, TX Monitoring, Modeling and Decision-Making Daren Harmel USDA-ARS, Temple, TX #12;Agricultural Research Service Grassland monitoring, modeling, and decision- making #12;Agricultural Research Service Grassland, Soil and Water

  5. Agricultural Grassland, Soil and Water Research Laboratory, Temple, TX

    E-Print Network [OSTI]

    Agricultural Research Service Grassland, Soil and Water Research Laboratory, Temple, TX Monitoring, Modeling and Decision-Making Daren Harmel USDA-ARS, Temple, TX Agricultural Research Service Grassland monitoring, modeling, and decision- making (if time and interest!!) Agricultural Research Service Grassland

  6. NCSEC'07 Plano, TX Risk-Based Quantifiable

    E-Print Network [OSTI]

    Tian, Jeff

    NCSEC'07 Plano, TX Risk-Based Quantifiable Quality Improvement Jeff Tian (tian@engr.smu Risk Quality for Customers/Users Quality for Software Organizations March 30, 2007 Jeff Tian, SMU 2800 1536 1 883 737 5396 2583 45 37 9 March 30, 2007 Jeff Tian, SMU #12;NCSEC'07, Plano, TX Slide. 3

  7. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22T23:59:59.000Z

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  8. KMS Joliet Power Partners LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACO Geraetetechnik GmbHKLD EnergyKMCKMS

  9. EA-409 Saracen Power LP | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export electric energy to

  10. austin tx usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    78712, USA b Bureau of Economic Geology, Jackson School of Geology, The University of Texas at Austin, Austin, TX 78713, USA c Department of Mathematics Minkoff, Susan E. 50...

  11. txH2O: Volume 4, Number 2 (Complete)

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2008-01-01T23:59:59.000Z

    Farmer Art Director AgriLife Communications & Marketing Danielle Supercinski Assistant Editor Texas Water Resources Institute Visit our web site at http://twri.tamu.edu for more information and to subscribe to tx H 2 O On the cover: The Rio Grande one... Texas Water Resources Institute Tammisha Farmer Art Director AgriLife Communications & Marketing Danielle Supercinski Assistant Editor Texas Water Resources Institute Visit our web site at http://twri.tamu.edu for more information and to subscribe to tx...

  12. 1. RN p R 1 p g1,...,gN Lp()

    E-Print Network [OSTI]

    Ishii, Hitoshi

    22080119 : 1. RN p R 1 p W1,p() W1,p() = u Lp() ; g1,...,gN Lp() u xi dx = - gidx for C c () i = 1,...,N u W1,p() u xi = gi u = grad u = ( u x1 ,..., u xN ) W1,p() u W1,p()= u Lp() + N i=1 u xi Lp() ( ( u p Lp() +N i=1 u xi p Lp() ) 1 p ) 1 = B1 = {x R2 ; |x| p = 1 u

  13. EDF Industrial Power Services (TX), LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe

  14. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...

    Broader source: Energy.gov (indexed) [DOE]

    FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE...

  15. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Broader source: Energy.gov (indexed) [DOE]

    EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER...

  16. SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11...

    Broader source: Energy.gov (indexed) [DOE]

    DOMINION COVE POINT, LP - DKt. NO. 11-115-LNG - ORDER 3019 SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11-115-LNG - ORDER 3019 No reports received. More Documents &...

  17. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG On November 15,...

  18. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Office of Environmental Management (EM)

    FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO....

  19. Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG FINAL ORDER AND OPINION GRANTING LONG-TERM...

  20. SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DK. NO. 11...

    Office of Environmental Management (EM)

    DOMINION COVE POINT, LP - DK. NO. 11-128-LNG - ORDER 3331 (Conditional Order) and Order 3331-A Final Order SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DK. NO. 11-128-LNG -...

  1. Parallel revised simplex for primal block angular LP problems

    E-Print Network [OSTI]

    Hall, Julian

    Parallel revised simplex for primal block angular LP problems Julian Hall and Edmund Smith School) problems and their identification Computational components of the revised simplex method Exploiting parallelism via BALP structure Results Observations J. A. J. Hall and E. Smith Parallel revised simplex

  2. LP engine performance on rice straw producer gas

    SciTech Connect (OSTI)

    Brownfield, J.J.; Jenkins, B.M.; Goss, J.R.

    1986-01-01T23:59:59.000Z

    An LP gas engine was converted using commercially available parts to operate on gas from fluidized bed gasifier fueled by rice straw. The engine was derated up to 57.5% from the lower energy value of induction charge, variations in gas quality, lower mechanical and thermal efficiencies.

  3. Spark Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado PowerSouthwesternCompanies | Open EnergySpark

  4. Access Fund Partners LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASN Power ProjectsAbrahamAccess Fund

  5. txH2O: Volume 5, Number 2 (Complete)

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2009-01-01T23:59:59.000Z

    Supercinski Leslie Jordan Assistant Editors Texas Water Resources Institute Visit our Web site at http://twri.tamu.edu for more information and to subscribe to tx H2O On the cover: The Nueces River and Nueces Bay (pictured) is one of six priority... site at http://twri.tamu.edu for more information and to subscribe to tx H2O On the cover: The Nueces River and Nueces Bay (pictured) is one of six priority river basins for which a environmental flows regime will be established. Photo...

  6. txH20: Volume 7, Number 1 (Complete)

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01T23:59:59.000Z

    Plains Underground Conservation District No. 1, is created. Dallas City Council passes a resolution limiting lawn watering. President Eisenhower declares 244 of the state?s 254 counties as drought disaster counties. Heavy, general rains begin... is funded in part by the U.S. Geological Survey and authorized by the Water Resources Research Act. To subscribe to txH2O or New Waves, TWRI?s monthly e-mail newsletter, visit twri.tamu.edu. Follow us on Twitter at Twitter.com/TxWRI. InsideNeal Wilkins...

  7. txH20: Volume 7, Number 3 (Complete)

    E-Print Network [OSTI]

    Wythe, Kathy

    2012-01-01T23:59:59.000Z

    - based soil moisture data for calibration/ validation of remote sensing platforms in Oklahoma. Editor?s note: The stories in this issue of txH2O are examples of each stage of the research process, beginning with applied research, which... scale. ?We cannot do this using only one technique, so we assimilate data from various platforms, such as ground-level measurements at the #25;nest scale and remote sensing measurements up to the watershed, Fall 2012 tx H2O 11 Left photo...

  8. RAPID/Roadmap/11-TX-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta < RAPID‎TX-aTX-c

  9. QER- Comment of Plains All American Pipeline, L.P.

    Broader source: Energy.gov [DOE]

    To: Members of the Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U.S. Department of Energy Enclosed please find comments submitted on behalf of Plains All American Pipeline, L.P. for the record of the QERs August 21, 2014 Infrastructure Siting and Permitting Meeting in Cheyenne, WY. Feel free to contact me if you need anything further regarding this communication.

  10. at Texas Tech University 1717 Norfolk Ave. Lubbock, TX 79416

    E-Print Network [OSTI]

    Zhang, Yuanlin

    in the South Plains allowing us to provide the most comprehensive retirement choice in West Texas. Why waitat Texas Tech University #12;1717 Norfolk Ave. Lubbock, TX 79416 806.281.6200 carillonlubbock, Betty Jennings, Mary Vines and Fred Wagner THE OFFICIAL RETIREMENT COMMUNITY OF TEXAS TECH ATHLETICS

  11. HASE'07 Panel 4a Dallas, TX Achieving High Assurance

    E-Print Network [OSTI]

    Tian, Jeff

    Jeff Tian (tian@engr.smu.edu) Southern Methodist University Dallas, Texas, USA Contents HA Jeff Tian, SMU #12;HASE'07, Dallas, TX Slide. 2 Qualitative vs Quantification HA Many aspects/subsystems. Performance: measurement/modeling. Analysis: statistical/other modeling Nov. 15, 2007 Jeff Tian, SMU #12;HASE

  12. April 11, 2001 Presentation at BRC, Temple, TX. Hydrological Applications of

    E-Print Network [OSTI]

    April 11, 2001 Presentation at BRC, Temple, TX. Hydrological Applications of LST Derived from AVHRR;April 11, 2001 Presentation at BRC, Temple, TX. Outline Introduction All about LST Model Modeling Drought Indices (KBDI, PDSI) Conclusion #12;April 11, 2001 Presentation at BRC, Temple, TX

  13. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31T23:59:59.000Z

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  14. z=0 z=0 z=0 Steam-turbin Condenser LP-pump

    E-Print Network [OSTI]

    Skogestad, Sigurd

    ! " # $ #12; 4 3 @ 2 6 3 F 4 9 7 LC LC PC z=0 z=0 z=0 z=1 z=1 TC TC z=0 HP-pump Steam-turbin Condenser LP-pump Air compressor Deaerator HP-pump Steam-turbin Condenser LP-pump Air compressor Deaerator HP Combustor Fuel compressor Steam-turbine HP-valve valve LP- drum Evaporator #12; F 4 9 7 D 2 B@ 9 7 6

  15. Klee-Minty's LP and Upper Bounds for Dantzig's Simplex Method

    E-Print Network [OSTI]

    Tomonari Kitahara

    2011-01-04T23:59:59.000Z

    Jan 4, 2011 ... Klee-Minty's LP and Upper Bounds for Dantzig's Simplex Method. Tomonari ... Citation: This article will appear in Operations Research Letters.

  16. Update on Mammoth Pacific, LP Operations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy) Redirect page JumpCorpUniversityLP Operations

  17. Workplace Charging Challenge Partner: Bloomberg LP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnershipsAngieTerri QuinnCapitalEnergyBloomberg LP

  18. txH2O: Volume 6, Number 1 (Complete)

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2010-01-01T23:59:59.000Z

    , watershed coordinator and Extension program specialist, coordinate specific projects in the Lower Rio Grande Valley and the Pecos River Basin, respectively. The institute has established many partnerships that, in addition to the colleges, units... Parks and Wildlife Department (TPWD), U.S. Fish and Wildlife Service, Synergistic eradication Center?s First Project Tackles Invasive Plant at Treasured Lake txH2O | pg. 5 U.S. Army Corps of Engineers, NRCS, Cypress Valley Navigation District...

  19. txH20; Volume 6, Number 1 (Complete)

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    , watershed coordinator and Extension program specialist, coordinate specific projects in the Lower Rio Grande Valley and the Pecos River Basin, respectively. The institute has established many partnerships that, in addition to the colleges, units... Parks and Wildlife Department (TPWD), U.S. Fish and Wildlife Service, Synergistic eradication Center?s First Project Tackles Invasive Plant at Treasured Lake txH2O | pg. 5 U.S. Army Corps of Engineers, NRCS, Cypress Valley Navigation District...

  20. txH2O: Volume 3, Number 2 (Complete)

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2007-01-01T23:59:59.000Z

    H 2 Otx Fall 2007 A Publication of the Texas Water Resources Institute Texas Water Resources Institute | Texas Agricultural Experiment Station | Texas Cooperative Extension ?? ?? ?? ?? ?? ?? ?? In This Issue: MANAGING BACTERIA POLLUTION IN TEXAS... Kari Miller Assistant Editors Texas Water Resources Institute Visit our Web site at http://twri.tamu.edu for more information and to subscribe to tx H 2 O On the cover: Low-temperature electron micrograph of a cluster of E. coli bacteria. Each...

  1. Parallelisation of the revised simplex method for general large scale LP problems

    E-Print Network [OSTI]

    Hall, Julian

    Parallelisation of the revised simplex method for general large scale LP problems Julian Hall School of Mathematics University of Edinburgh August 910 2005 Parallelisation of the revised simplex method for general large scale LP problems #12;Overview The (standard and revised) simplex method

  2. Minimax Risk over lp-Balls for lq-error David L. Donoho

    E-Print Network [OSTI]

    Donoho, David

    data Nn; 2I with lq norm loss, q 1, when is known to lie in an n-dimensional lp ball, p 2 0; 1 Informa- tion. Non-linear estimation. White noise model. Loss convexity. Estimating a bounded normal mean. Running Title: Minimax risk over lp-balls. AMS 1980 Subject Classi#12;cation (1985 Rev): Primary: 62C20

  3. The Runaway Binary LP 400-22 is Leaving the Galaxy

    E-Print Network [OSTI]

    Kilic, Mukremin; Brown, Warren R; Harris, Hugh C; Dahn, Conard C; Agueros, M A; Heinke, Craig O; Kenyon, S J; Panei, J A; Camilo, Fernando

    2013-01-01T23:59:59.000Z

    We present optical spectroscopy, astrometry, radio, and X-ray observations of the runaway binary LP 400-22. We refine the orbital parameters of the system based on our new radial velocity observations. Our parallax data indicate that LP 400-22 is significantly more distant (3 sigma lower limit of 840 pc) than initially predicted. LP 400-22 has a tangential velocity in excess of 830 km/s; it is unbound to the Galaxy. Our radio and X-ray observations fail to detect a recycled millisecond pulsar companion, indicating that LP 400-22 is a double white dwarf system. This essentially rules out a supernova runaway ejection mechanism. Based on its orbit, a Galactic center origin is also unlikely. However, its orbit intersects the locations of several globular clusters; dynamical interactions between LP 400-22 and other binary stars or a central black hole in a dense cluster could explain the origin of this unusual binary.

  4. txH2O: Volume 4, Number 1 (Complete)

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2008-01-01T23:59:59.000Z

    developed about on-site conditions before a well was drilled and installed can be downloaded. ? U. S. Geological Survey?s Groundwater Data for the Nation program http://waterdata.usgs.gov/nwis/gw A variety of groundwater data, including information... at NASA?s Goddard Space Flight Center, Greenbelt, MD, using data from three different Earth-observing satellite instruments. The presence of the Moon in this image is an artistic addition. Inside volume 4 number 1, Winter 2008 tx H 2 O...

  5. txH20: Volume 7, Number 2 (Complete)

    E-Print Network [OSTI]

    Wythe, Kathy

    2012-01-01T23:59:59.000Z

    rapid and more complete than in other places where we may have a history of not fertilizing appropriately,? Redmon said. ?#31;e moisture part of it looks pre#30;y good. How much of a crop was destroyed is site-to- site speci#28;c.? Hay production...Life Research, the Texas AgriLife Extension Service and the Texas A&M University College of Agriculture and Life Sciences. TWRI is funded in part by the U.S. Geological Survey and authorized by the Water Resources Research Act. To subscribe to txH2O or New...

  6. Staubli TX-90XL robot qualification at the LLIHE.

    SciTech Connect (OSTI)

    Covert, Timothy Todd

    2010-10-01T23:59:59.000Z

    The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

  7. txH2O: Volume 6, Number 2 (Complete)

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2011-01-01T23:59:59.000Z

    drop in the bucket? Texas scientists on the real effects of the Deepwater Horizon oil spill 7 I Developing solutions for sustainable living?the Urban Living Laboratory The world?s largest ?living laboratory? for research on green living 10 I... 26 I Controlling invasive weed Center begins studying giant salvinia-eating weevils 28 I TWRI Briefs 2 tx H2O Winter 2011 Story by Leslie Lee Texas scientists on the real e#31;ects of the Deepwater Horizon oil spill Environmental disaster...

  8. txH20: Volume 6, Number 2 (Complete)

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01T23:59:59.000Z

    drop in the bucket? Texas scientists on the real effects of the Deepwater Horizon oil spill 7 I Developing solutions for sustainable living?the Urban Living Laboratory The world?s largest ?living laboratory? for research on green living 10 I... 26 I Controlling invasive weed Center begins studying giant salvinia-eating weevils 28 I TWRI Briefs 2 tx H2O Winter 2011 Story by Leslie Lee Texas scientists on the real e#31;ects of the Deepwater Horizon oil spill Environmental disaster...

  9. txH2O: Volume 9, Number 1 (Complete)

    E-Print Network [OSTI]

    Wythe, Kathy

    2014-01-01T23:59:59.000Z

    , was integral in establishing the start of the EARIP project and served as the former program coordinator for EARIP. 10 txH2O Summer 2014 Story by Danielle Kalisek El Paso Water Utilities uses an infiltration or spreading basin to recharge the Hueco... needs. In the 2012 state water plan, accessing new sources of ground- water is projected to provide more than 800,000 acre-feet of water annually by 2060. With the growing water needs in the state and the continuing drought, many are predicting...

  10. txH2O: Volume 4, Number 3 (Complete)

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2008-01-01T23:59:59.000Z

    On the cover: The City of Kerrville stores excess water from the Guadalupe River in its Aquifer Storage and Recovery facility. Photo by Earl Nottingham, Texas Parks and Wildlife Department. C. Allan Jones Message from the Director Working to Make Every...Life. TWRI is funded in part by the U.S. Geological Survey and authorized by the Water Resources Research Act. To subscribe to tx H2O or New Waves, TWRI?s monthly e-mail newsletter, visit http://twri.tamu.edu. 2 I Saving for dry days Aquifer storage...

  11. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment of EnergyEnergyDepartment of Energy IntentTX

  12. RAPID/Roadmap/13-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublicQuanlightR3(2)3-AK-aNV-a <TX-a

  13. RAPID/Roadmap/5-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <caMT-aNV-bTX-a

  14. RAPID/Roadmap/1-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect pageNV-a <TX-a <

  15. RAPID/Roadmap/11-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta < RAPID‎TX-a <

  16. RAPID/Roadmap/11-TX-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta < RAPID‎TX-a

  17. RAPID/Roadmap/12-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ |TX-a <

  18. RAPID/Roadmap/15-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | Roadmap JumpTX-a <

  19. RAPID/Roadmap/7-TX-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-c <

  20. SCOPES'05 Dallas, TX, Sept., 2005 Risk-Based Quality Improvement

    E-Print Network [OSTI]

    Tian, Jeff

    (tian@engr.smu.edu) Southern Methodist University Dallas, Texas, USA Contents Quality, Reliability for ES Jeff Tian, SMU #12;SCOPES'05, Dallas, TX, Sept., 2005 Slide. 2 Quality, Reliability, and Risk 0. SE Panel: New SE Paradigms for ES Jeff Tian, SMU #12;SCOPES'05, Dallas, TX, Sept., 2005 Slide. 3 Risk

  1. CX-100 and TX-100 blade field tests.

    SciTech Connect (OSTI)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01T23:59:59.000Z

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  2. 1.0 Second iteration for HW problem Recall our LP example problem we have been

    E-Print Network [OSTI]

    McCalley, James D.

    defined by (1) above). Then I used CPLEX to solve LP (2). 0,0 1823 122 5s.t. 53max 21 21 2 1 21 xx xx

  3. SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11...

    Broader source: Energy.gov (indexed) [DOE]

    No reports received. More Documents & Publications SEMI-ANNUAL REPORTS FOR JORDAN COVE LNG L.P. - FE DKT. NO. 13-141-LNG - ORDER 3412 SEMI-ANNUAL REPORTS FOR JORDAN COVE ENERGY FE...

  4. Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...

    Office of Environmental Management (EM)

    LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC - 14-005-CIC Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction...

  5. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Environmental Management (EM)

    and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy...

  6. Abstract KeLP \\Lambda S.B. Baden y , P. Colella z , D. Shalit y , B. Van

    E-Print Network [OSTI]

    Baden, Scott B.

    ``paper'' 2000/12/12 page 1 i i i i i i i i Abstract KeLP \\Lambda S.B. Baden y , P. Colella z , D. The resultant infrastructure, called KeLP \\Lambda , has been applied to a variety of applications including­ tured adaptive refinement for ab­initio molecular dynamics [13]. A distinguishing feature of KeLP

  7. Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and 76 Field, Clinton Co., KY.

    E-Print Network [OSTI]

    SPE 36651 Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and enhanced recovery, production operations in fracture- dominated oil and gas reservoirs. Borehole geophones to study reservoir fracture systems. Methods currently applied to study fracture systems include tilt

  8. Destruction of LP XM46 using the molten salt destruction process. Revision 1

    SciTech Connect (OSTI)

    Upadhye, R.S.; Watkins, B.E.

    1994-04-01T23:59:59.000Z

    The preliminary experimental work done on the destruction of the liquid gun propellant LP XM46 (the new designation for LGP-1846) using the Molten Salt Destruction (MSD) Process at the Lawrence Livermore National Laboratory (LLNL) for the US Army is described in this report. A series of 18 continuous experimental runs were made wherein a solution of LP XM46 and water was injected into a bed of molten salt comprising the carbonates of sodium, potassium and lithium, along with air. The purpose of these initial Phase 1 runs was to collect information on the applicability of the Molten Salt Destruction Process for the destruction of LP XM46, identify the key technical uncertainties, and to plan future runs. The tentative results from these experiments, described in detail in the main body of this report, indicate that: (1) LP XM46 can be safely and completely destroyed in a bed of molten salt at temperatures well below those needed for incineration; and (2) under optimum operating conditions, less than 1% of the chemically bound nitrogen in the LP XM46 is converted to NOx, and less than 1% carbon is converted to CO.

  9. Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System

    E-Print Network [OSTI]

    Saif, A.

    A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

  10. A parallel revised simplex solver for large scale block angular LP problems

    E-Print Network [OSTI]

    Hall, Julian

    A parallel revised simplex solver for large scale block angular LP problems Julian Hall and Edmund Smith School of Mathematics University of Edinburgh 29th July 2010 A parallel revised simplex solver Revised simplex method for BALP problems Basis matrix and its inversion Solution of linear systems

  11. Jordan Cove Energy Project Fort Chicago Energy Partners L.P.

    E-Print Network [OSTI]

    Jordan Cove Energy Project Fort Chicago Energy Partners L.P. 1.0 Bcfd Coos Bay, Oregon Oregon LNG Funding Partners 1.0-1.5 Bcfd Astoria, Oregon Portwestward LNG Facility Portwestward LNG, LLC 0.7-1.25 Bcfd Clatskanie, Oregon Kitimat LNG Facility Apache Corp 0.64 -1.0 Bcfd Kitimat, British Columbia

  12. Multiple data parallelism with HPF and KeLP ? John H. Merlin 1 , Scott B. Baden 2 , Stephen J. Fink 2 , and Barbara M.

    E-Print Network [OSTI]

    Baden, Scott B.

    Multiple data parallelism with HPF and KeLP ? John H. Merlin 1 , Scott B. Baden 2 , Stephen J. Fink an interface between the C++ class library KeLP, which supports irregular, dynamic block­structured applications on distributed systems, and an HPF com­ piler, SHPF. This allows KeLP to handle the data layout

  13. 812 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 16, NO. 4, OCTOBER 2001 A Robust Control Strategy for Shunt and Series

    E-Print Network [OSTI]

    Hiskens, Ian A.

    . M. Noroozian is with ABB Power Systems, S-721 64 Vsters, Sweden. M. Ghandhari and G. Andersson are with the Royal Institute of Technology, S-100 Stockholm, Sweden. J. Gronquist is with Bios Group, LP, 317 Paseo

  14. File:Modeling-power-efficiency-and-tip-speed-ratio-lp-HS.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdf Jump to: navigation, search FileInformation

  15. File:Power-in-practice-and-theory-lp-HS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdf Jump to:

  16. File:Modeling-power-efficiency-and-tip-speed-ratio-lp.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametstak.pdfMFSA flowchartreport.pdf

  17. File:Power-in-practice-and-theory-lp.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Original Rule from OAR 20.03.15.pdflp.pdf Jump to:

  18. EA-167 PG&E Energy Trading-Power, L.P | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56:1:4: Finding of165 NP8:167 PG&E

  19. EA-168 PG&E Energy Trading-Power, L.P | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56:1:4: Finding of165Finding8 PG&E

  20. EA-368 Brookfield Energy Marketing LP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-CEA-296-B22441 Aquilon Power4-A366

  1. Stanford University Exploiting Channel Knowledge at the Tx in MISO and MIMO Wireless Exploiting Partial Channel Knowledge at

    E-Print Network [OSTI]

    Paulraj, Arogyaswami

    Stanford University Exploiting Channel Knowledge at the Tx in MISO and MIMO Wireless Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless SPAWC 2003 Rome, Italy June 18 Exploiting Channel Knowledge at the Tx in MISO and MIMO Wireless Outline Introduction Perfect CSI

  2. Diagnosing Unilateral Market Power in Electricity Reserves Market

    E-Print Network [OSTI]

    Knittel, Christopher R; Metaxoglou, Konstantinos

    2008-01-01T23:59:59.000Z

    Coral Power, LLC DETM Duke Energy Trading and Marketing, LLCPower Services Company GLEN City of Glendale KET3 Entergy-Koch Energy Trading,Power Exchange (CALPX) SCE1 Southern California Edison SCEM Southern Company Energy Marketing, LP SETC Sempra Energy Trading

  3. Power Grid Correction Using Sensitivity Analysis Meric Aydonat

    E-Print Network [OSTI]

    Najm, Farid N.

    of overall power dissipation of the circuit blocks. Using these constraints, a linear program (LP on the circuit currents. The method presented here builds on linear programming theory to find the maximumPower Grid Correction Using Sensitivity Analysis Meric Aydonat Department of ECE University

  4. ACM SIGGRAPH 2002, San Antonio, TX Modeling the Accumulation of Wind-Driven Snow

    E-Print Network [OSTI]

    O'Brien, James F.

    ACM SIGGRAPH 2002, San Antonio, TX Modeling the Accumulation of Wind-Driven Snow Technical Sketch of snow drifts formed by the accumulation of wind-blown snow near buildings and other obstacles. Our method combines previous work on snow accumulation [Fearing] with techniques for incompressible fluid

  5. A Voltage Controlled Nano Addressing Circuit University of Texas, San Antonio TX 78249, USA,

    E-Print Network [OSTI]

    Liu, Bao

    A Voltage Controlled Nano Addressing Circuit Bao Liu University of Texas, San Antonio TX 78249, USA, Abstract. A voltage controlled nano addressing circuit is proposed, which (1) improves yield and enables aggressive scaling with no require- ment of precise layout design, (2) achieves precision of addressing

  6. S/w Quality Assurance CAST-TX 1 Software Quality Assurance

    E-Print Network [OSTI]

    Tian, Jeff

    (tian@engr.smu.edu) Southern Methodist University Dallas, Texas, USA Contents Software Quality: Why Management Nov. 30, 2002 Prof. Jeff Tian, SMU #12;S/w Quality Assurance CAST-TX 2 Software Quality: Why/usage-based testing and relia- bility engineering measurement and risk management Nov. 30, 2002 Prof. Jeff Tian, SMU

  7. OFF-THE-RECORD COMMUNICATION FOR JORDAN COVE ENERGY PROJECT, L.P., FE DKT. NO. 12-32-LNG

    Broader source: Energy.gov [DOE]

    Posting of Off-the-Record CommunicationThe documents linked below were sent to the Department of Energy (DOE) in reference to theJordan Cove Energy Project, L.P., FE Dkt. No. 12-32-LNG proceeding....

  8. Summary of important results and SCDAP/RELAP5 analysis for OECD LOFT experiment LP-FP-2

    SciTech Connect (OSTI)

    Coryell, E.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-04-01T23:59:59.000Z

    This report summarizes significant technical findings from the LP-FP-2 Experiment sponsored by the Organization of Economic Cooperation and Development (OECD). It was the second, and final, fission product experiment conducted in the Loss-of-Fluid Test (LOFT) facility at the Idaho National Engineering Laboratory. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release, transport, and deposition during a V-sequence accident scenario that resulted in severe core damage. An 11 by 11 test bundle, comprised of 100 prepressurized fuel rods, 11 control rods, and 10 instrumented guide tubes, was surrounded by an insulating shroud and contained in a specially designed central fuel module, that was inserted into the LOFT reactor. The simulated transient was a V-sequence loss-of-coolant accident scenario featuring a pipe break in the low pressure injection system line attached to the hot leg of the LOFT broken loop piping. The transient was terminated by reflood of the reactor vessel when the outer wall shroud temperature reached 1517 K. With sustained fission power and heat from oxidation and metal-water reactions, elevated temperatures resulted in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. A description and evaluation of the major phenomena, based upon the response of on line instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented.

  9. TX TX TX TX TX TX TX TX TX OK OK OK OK OK OK OK OK OK LA LA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    areas. Movment within shaded areas may also be regulated. Updated January 9, 2002 Puerto Rico United States Department of Agriculture - Animal and Plant Health Inspection...

  10. Studies in Power Quality Success

    E-Print Network [OSTI]

    Laan, B. A.

    /" cycle. Low voltage sag susceptible relays offer another mitigation measure to solve problems at a number offacilities. The Electric Power Research Institute (EPRI) has coordinated the development of voltage sag susceptibility standards for equipment... Conference, Houston, TX, April 5-6, 2000 electricity providers can use this type of information to agree on a level ofpower quality that best meets the needs ofend users. The California Energy Commission is funding research with EPRI to define...

  11. Lessons Learned from Continuous Commissioning of the Robert E. Johnson State Office Building, Austin, TX

    E-Print Network [OSTI]

    Bynum, J.; Claridge, D. E.

    2008-09-22T23:59:59.000Z

    ESL-TR-08-08-03 Lessons Learned from Continuous Commissioning of the Robert E. Johnson State Office Building, Austin, TX Submitted to Lawrence Berkeley National Laboratory By David Claridge, Ph.D., P.E. John Bynum Energy....5% annual lighting energy savings or 5.6% annual whole building energy savings based on a DOE-2 simulation analysis. Three main lessons were learned from the experience with the Robert E. Johnson building: The traditional design...

  12. The environment of deposition of the Dalton Coal (Upper Pennsylvanian), Palo Pinto Co., TX.

    E-Print Network [OSTI]

    Lowenstein, Glenn Robert

    1986-01-01T23:59:59.000Z

    Alkane analysis for coal, overburden and underburden shales, and oil. 56 CHAPTER I INTRODUCTION Previous workers have classified coals by deter- mining whether they are al 1ochthnous (transported) or autochthonous (in situ) accumul ations (Oe...THE ENVIRONMENT OF DEPOSITION OF THE DALTON COAL (UPPER PENNSYI. VANIAN), PALO PINTO CO. , TX. A Thesis by GLENN ROBERT LOWENSTEIN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for tne...

  13. Measurement based Voltage Stability Monitoring of Power system Garng M. Huang

    E-Print Network [OSTI]

    Measurement based Voltage Stability Monitoring of Power system Garng M. Huang huang Station, TX 77843-3128 Abstract: Many papers discuss the voltage stability assessment of power system. The problem of voltage stability may be simply explained as inability of the power system to provide

  14. Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains

    SciTech Connect (OSTI)

    Rathnayake, Sewwandi S. [Kent State University; Mirheydari, Mona [Kent State University; Schulte, Adam [Kent State University; Gillahan, James E. [Kent State University; Gentit, Taylor [Kent State University; Phillips, Ashley N. [Kent State University; Okonkwo, Rose K. [Kent State University; Burger, Koert N.J. [Utrecht University; Mann, Elizabeth K. [Kent State University; Vaknin, David [Ames Laboratory; Bu, Wei [Ames Laboratory; Agra-Kooijman, Dena Mae [Kent State University; Kooijman, Edgar E. [Kent State University

    2013-10-04T23:59:59.000Z

    Neutral lipid transport in mammals is complicated involving many types of apolipoprotein. The exchangeable apolipoproteins mediate the transfer of hydrophobic lipids between tissues and particles, and bind to cell surface receptors. Amphipathic a-helices form a common structural motif that facilitates their lipid binding and exchangeability. ApoLp-III, the only exchangeable apolipoprotein found in insects, is a model amphipathic a:helix bundle protein and its three dimensional structure and function mimics that of the mammalian proteins apoE and apoAI. Even the intracellular exchangeable lipid droplet protein TIP47/perilipin 3 contains an a-helix bundle domain with high structural similarity to that of apoE and apoLp-III. Here, we investigated the interaction of apoLp-III from Locusta migratoria with lipid monolayers. Consistent with earlier work we find that insertion of apoLp-III into fluid lipid monolayers is highest for diacylglycerol. We observe a preference for saturated and more highly ordered lipids, suggesting a new mode of interaction for amphipathic a-helix bundles. X-ray reflectivity shows that apoLp-III unfolds at a hydrophobic interface and flexible loops connecting the amphipathic cc-helices stay in solution. X-ray diffraction indicates that apoLp-III insertion into diacylglycerol monolayers induces additional ordering of saturated acyl-chains. These results thus shed important new insight into the protein-lipid interactions of a model exchangeable apolipoprotein with significant implications for its mammalian counterparts. (C) 2013 Elsevier B.V. All rights reserved.

  15. Geologic and geophysical investigation of a small water retention structure, Salado, Tx

    E-Print Network [OSTI]

    Carter, James Lewis

    2002-01-01T23:59:59.000Z

    of a Small Earth Dam Caused by Piping Erosion Initiated by a Leak in Overflow Pipe, Bryan, TX. 4. Map Showing the Location of Roger's Pond . . 5 Structural Setting of the Balcones Fault Zone Along With the Divisions of the Edward's Aquifer 6 NNW... ? SSE Cross-Section of the Strata That Comprises the Water Table Portion of the Edwards Aquifer in Bell County. 12 7 Soils Map of Roger's Pond and Surrounding Area. 14 8 Observation Well Installed Below the Dam on the Downstremn Side. . . . . 9 Turf...

  16. File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to: navigation, search File FileInformation -TX-d -

  17. File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to: navigation, search File FileInformation -TX-d -Open

  18. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to: navigation, search File FileInformation -TX-d

  19. LP-VIcode: a program to compute a suite of variational chaos indicators

    E-Print Network [OSTI]

    D. D. Carpintero; N. P. Maffione; L. A. Darriba

    2014-04-08T23:59:59.000Z

    An important point in analysing the dynamics of a given stellar or planetary system is the reliable identification of the chaotic or regular behaviour of its orbits. We introduce here the program LP-VIcode, a fully operational code which efficiently computes a suite of ten variational chaos indicators for dynamical systems in any number of dimensions. The user may choose to simultaneously compute any number of chaos indicators among the following: the Lyapunov Exponents, the Mean Exponential Growth factor of Nearby Orbits, the Slope Estimation of the largest Lyapunov Characteristic Exponent, the Smaller ALignment Index, the Generalized ALignment Index, the Fast Lyapunov Indicator, the Othogonal Fast Lyapunov Indicator, the dynamical Spectra of Stretching Numbers, the Spectral Distance, and the Relative Lyapunov Indicator. They are combined in an efficient way, allowing the sharing of differential equations whenever this is possible, and the individual stopping of their computation when any of them saturates.

  20. Abstract--During power deregulation, companies and ISOs are releasing their transmission grids to form RTOs/Mega-RTOs.

    E-Print Network [OSTI]

    1 Abstract--During power deregulation, companies and ISOs are releasing their transmission grids, College Station, TX 77843, USA E-mail: huang@ee.tamu.edu, lei.jiansheng@ieee.org during power deregulation under such a power deregulation environment: First of all, the state estimation over the whole grid

  1. achilles tendinopathy power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Motor 5.1 A 1.3 A Current 117.7 V0.13 kWInduction motor with no load 118.0 V0.15 k 32 Nuclear Power Texas A&M University - TxSpace Summary: . Dundulis, R. Kulak, R. Alzbutas...

  2. Search for variations in circular-polarization spectra of the magnetic white dwarf LP790-29

    E-Print Network [OSTI]

    Stefan Jordan; Susanne Friedrich

    2002-01-09T23:59:59.000Z

    We present highly time resolved circular-polarization and flux spectra of the magnetic white dwarf LP790-29 taken with the VLT UT1 in order to test the hypothesis that LP790-29 is a fast rotator with a period of the order of seconds to minutes. Due to low time resolution of former observations this might have been overlooked -- leading to the conclusion that LP790-29 has a rotational period of over 100 years. The optical spectrum exhibits one prominent absorption feature with minima at about 4500, 4950, and 5350 A, which are most likely C2 Swan-bands shifted by about 180 A in a magnetic field between 50MG and 200MG. At the position of the absorption structures the degree of circular polarization varies between -1% and +1%, whereas it amounts to +8 to +10% in the blue and red continuum. With this very high degree of polarization lp790-29 is very well suited to a search for short time variations, since a variation of several percent in the polarization can be expected for a magnetic field oblique to the rotational axis. From our analysis we conclude that variations on time scales from 50 to 2500 seconds must have amplitudes <0.7% in the continuum and <2% in the strongest absorption feature at 4950A. While no short-term variations could be found a careful comparison of our polarization data of LP790-29 with those in the literatures indicates significant variations on time scales of decades with a possible period of about 24-28 years.

  3. Tank 241-TX-118, core 236 analytical results for the final report

    SciTech Connect (OSTI)

    ESCH, R.A.

    1998-11-19T23:59:59.000Z

    This document is the analytical laboratory report for tank 241-TX-118 push mode core segments collected between April 1, 1998 and April 13, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-118 Push Mode Core sampling and Analysis Plan (TSAP) (Benar, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al, 1995) and the Historical Model Evaluation Data Requirements (Historical DQO) (Sipson, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Benar, 1997). One sample exceeded the Total Alpha Activity (AT) analysis notification limit of 38.4{micro}Ci/g (based on a bulk density of 1.6), core 236 segment 1 lower half solids (S98T001524). Appropriate notifications were made. Plutonium 239/240 analysis was requested as a secondary analysis. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report.

  4. Tank characterization report for single-shell tank 241-TX-104

    SciTech Connect (OSTI)

    FIELD, J.G.

    1999-05-12T23:59:59.000Z

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-TX-104. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-TX-104 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998).

  5. Justin Yates -Assistant Professor -Industrial and Systems Engineering -Texas A&M University 4079 ETB -College Station, TX, 77843-3131 -(O) 979-458-2337 -(E) jtyates@tamu.edu

    E-Print Network [OSTI]

    Boas, Harold P.

    ETB - College Station, TX, 77843-3131 - (O) 979-458-2337 - (E) jtyates@tamu.edu 1 Education: Ph - Texas A&M University 4079 ETB - College Station, TX, 77843-3131 - (O) 979-458-2337 - (E) jtyates

  6. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Broader source: Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  7. Freeport LNG Development, L.P. (Freeport LNG)- Blanket Authorization to Export Previously Imported LNG- FE Dkt. No. 15-103-NG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed June 25, 2015 by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied...

  8. Power Grid Correction Using Sensitivity Analysis Under an Pamela Al Haddad

    E-Print Network [OSTI]

    Najm, Farid N.

    by the underlying circuit. A linear program (LP) is then formulated using these constraints, to check if the voltagePower Grid Correction Using Sensitivity Analysis Under an RC Model Pamela Al Haddad Department it as a function of the metal widths on the grid. A non-linear optimization problem is then formulated

  9. Ea-168-A PG&E Energy Trading-Power, L.P | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- BatteryVehicles |

  10. EA-167-A PG&E Energy Trading-Power, L.P | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56:1:4: Finding of165 NP8:167

  11. EA-168-B PG&E Energy Trading-Power, L.P | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56:1:4: Finding of165Finding8

  12. Ea-168-A PG&E Energy Trading-Power, L.P | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEMEnergy TaskEVERETT L.DepartmentM

  13. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    SciTech Connect (OSTI)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)] [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)] [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Uto, Yoshihiro [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)] [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nagasawa, Hideko [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan)] [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hori, Hitoshi [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)] [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Shimada, Mitsuo [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)] [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)

    2012-08-01T23:59:59.000Z

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098 inhibited mRNA expression of VEGF, GLUT1 and Aldolase A, not HIF-1{alpha}. Black-Right-Pointing-Pointer TX-2098 improved the survival in orthotopic SUIT-2 xenograft model.

  14. University of Texas Arlington Health Services Box 19329 605 S. West St. Arlington, TX 76019 T. 817.272.2771 F. 817.272.3829

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Form 130D University of Texas Arlington Health Services Box 19329 605 S. West St. Arlington, TX, appropriate staff, and The University of Texas at Arlington and its officers, regents, and employees shall

  15. Water value in power generation: Experts distinguish water use and consumption

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01T23:59:59.000Z

    Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

  16. Water value in power generation: Experts distinguish water use and consumption

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01T23:59:59.000Z

    Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

  17. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies

    E-Print Network [OSTI]

    Jackson, J.

    2006-01-01T23:59:59.000Z

    Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies Jerry Jackson, Associate Professor, Texas A&M University, College Station, TX Abstract Electric power failures... available with new building-sited combined heat and power (CHP) electric generation technologies. This paper evaluates the physical requirements and costs of preemptively installing these new building- sited electric generation technologies to insure...

  18. Guar Varieties and P Fertility at AGCARES, Lamesa, TX, 2001-2003 Calvin Trostle, Texas Cooperative Extension--Lubbock, c-trostle@tamu.edu, (806) 746-6101;

    E-Print Network [OSTI]

    Mukhtar, Saqib

    . Justin Tuggle, CropDocs Consulting, Brownfield, TX, and it was seeded at a rate of ~5 lbs./A due and net return on variable costs: At $12.50-14.25/cwt. (contracted with West Texas Guar, Brownfield, TX, Brownfield) $14.25 $14.00 $12.50 Gross return $78.25 $122.50 $87.50 Variable costs of production $54.25 $56

  19. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-Light Time, Distance to NGC 4666, and Progenitor Constraints

    E-Print Network [OSTI]

    Shappee, B J; Holoien, T W -S; Prieto, J L; Contreras, C; Itagaki, K; Burns, C R; Kochanek, C S; Stanek, K Z; Alper, E; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Conseil, E; Danilet, A B; Dong, Subo; Falco, E; Grupe, D; Hsiao, E Y; Kiyota, S; Morrell, N; Nicolas, J; Phillips, M M; Pojmanski, G; Simonian, G; Stritzinger, M; Szczygie?, D M; Thompson, T A; Thorstensen, J; Wagner, M; Wo?niak, P R

    2015-01-01T23:59:59.000Z

    On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just $\\sim2$ days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ($V = 11.94$ mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ($\\Delta m_{15}(B) = 0.796 \\pm 0.001_{\\textrm{stat}}$), a $B$-band maximum at $2457015.823 \\pm 0.030_{\\textrm{stat}}$, a rise time of $16.94^{+ 0.11 }_{- 0.11 }$ days, and moderate host--galaxy extinction ($E(B-V)_{\\textrm{host}} = 0.329 \\pm 0.001_{\\textrm{stat}}$). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of $\\mu = 30.834 \\pm 0.003_{\\textrm{stat}} \\pm 0.16_{\\textrm{syst}}$ corresponding to a distance of $14.68 \\pm 0.02_{\\...

  20. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  1. Bright Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation, search Name2 Jump

  2. CREATIVE ELECTRO POWER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump to:List

  3. California Energy Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28TransportationDivision

  4. The influence of substrate surface preparation on LP MOVPE GaN epitaxy on differently oriented 4H-SiC substrates

    E-Print Network [OSTI]

    Ozbay, Ekmel

    The influence of substrate surface preparation on LP MOVPE GaN epitaxy on differently oriented 4H preparation and off-cut of 4H-SiC substrates on morphological and structural properties of GaN grown by low-SiC is most suitable for GaN epitaxy and that substrate etching improves the surface morphology of epilayer

  5. Global existence and $L^{p}$ convergence rates of planar waves for three-dimensional bipolar Euler-Poisson systems

    E-Print Network [OSTI]

    Jie Liao; Yeping Li

    2015-01-24T23:59:59.000Z

    In the paper, we consider a multi-dimensional bipolar hydrodynamic model from semiconductor devices and plasmas. This system takes the form of Euler-Poisson with electric field and frictional damping added to the momentum equations. We show the global existence and $L^{p}$ convergence rates of planar diffusion waves for multi-dimensional bipolar Euler-Poisson systems when the initial data are near the planar diffusive waves. A frequency decomposition and approximate Green function based on delicate energy method are used to get the optimal decay rates of the planar diffusion waves. To our knowledge, the $L^p(p\\in[2,+\\infty])$-convergence rate of planar waves improves the previous results about the $L^2$-convergence rates.

  6. A comparison of gasoline and LP-gas as a fuel for medium or small size farm tractors

    E-Print Network [OSTI]

    Maher, Thomas Francis

    1952-01-01T23:59:59.000Z

    X' Ter~a 3. n partial fuH'lllment oX the regulrementa Xor the SeSree of Me]ox SuhJecti3 JLSrlculcuzel En~lneerlnS Age X@58'SIAN 'NQCL ~ e a s e y al. e e a e o o + X R4VJ. 8W 8 f K4 5 Shalt Cgg@ e e ~ e 0 ~ e e e e I'8855OX' 854 IglLLXMQQC e ~ e e... ~ e ~ e e Xao PSN8@W e 0 e e 4 e e ~ ~ o ~ a ~ o ~ 3?e 888'LLt48 Qf EQQXX18 T98'b8 o e ~ a o o o ~ 5X Ve COSC 8lnd SuyyXy Of LP-BRS . . . . . . . SB VX e QOMllMLOXLS ~ o ~ ~ e ~ ~ ~ o ~ ~ ~ ~ a VXXo BB)115gPR+7e ~ ~ ~ 4 ~ ~ ~ ~ o 4 ~ 0 A...

  7. 156 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 14, NO. 4, APRIL 2004 An Ultra-Low Power InAs/AlSb HEMT Ka-Band

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    156 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 14, NO. 4, APRIL 2004 An Ultra-Low Power dc power dissipation of the ABCS LNA was an ultra-low 1.5 mW per stage, or 4.5 mW total. This is less amplifier, mil- limeter-waves. I. INTRODUCTION ULTRA-LOW power millimeter-wave low-noise am- plifiers (LP

  8. EA-359 Louis Dreyfus Energy Services L.P. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPowerEE USPowerPower,

  9. EA-359-A Castleton Commodities Merchant Trading L.P. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPowerEE USPowerPower,Commodities Merchant

  10. EA-359-B Castleton Commodities Merchant Trading L.P. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPowerEE USPowerPower,Commodities

  11. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  12. Streamlining the Certification Process for New Power Plants in Texas

    E-Print Network [OSTI]

    Treadway, N.

    are those of the authors and do not necessarily reflect the positions of the Public Utility Commission of Texas 77 ESL-IE-92-04-13 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 POWER PLANT... issues which came to light. The evolution of the issues provides insight into why the NOI rule was adopted in May 1991 and why the Commission's deliberations continue on this topic. Docket No. s.i2Q Texas-New Mexico Power Company (TNP) filed an NOI...

  13. Texas AgriLife Research & Extension Center, 1102 East FM 1294, Lubbock, TX 79403 (806) 746-6101, FAX (806) 746-4057, ctrostle@ag.tamu.edu

    E-Print Network [OSTI]

    Mukhtar, Saqib

    79403 (806) 746-6101, FAX (806) 746-4057, ctrostle@ag.tamu.edu Guar Update, West Texas currently consists of two primary entities: West Texas Guar, Brownfield, TX, (806) 637-4662, http://www.westtexasguar.com (Klint Forbes, owner/manager, klint@westtexasguar.com). West Texas Guar currently serves as the only

  14. To be published in In Proceedings of ACM Eye Tracking Research & Applications Symposium, Austin, TX, 2010 Qualitative and Quantitative Scoring and Evaluation of the Eye Movement

    E-Print Network [OSTI]

    Oleg, Komogortsev - Department of Computer Science, Texas State University

    To be published in In Proceedings of ACM Eye Tracking Research & Applications Symposium, Austin, TX, 2010 Qualitative and Quantitative Scoring and Evaluation of the Eye Movement Classification Algorithms presents a set of qualitative and quantitative scores designed to assess performance of any eye movement

  15. Protein degradation in a TX-TL cell-free expression system using ClpXP protease Zachary Z. Sun1

    E-Print Network [OSTI]

    Murray, Richard M.

    ! 1! Protein degradation in a TX-TL cell-free expression system using ClpXP protease AUTHORS that play an important role for in vivo circuit dynamics namely protein degradation and protein dilution-TL with ClpXP, an AAA+ protease pair that selectively degrades tagged proteins [11], to provide finely

  16. Published in Proceedings of Digital Libraries 95, Austin, TX, June, 1995, pp. 39-48. Collection Maintenance in the Digital Library

    E-Print Network [OSTI]

    Ackerman, Mark S.

    Published in Proceedings of Digital Libraries 95, Austin, TX, June, 1995, pp. 39-48. Collection Maintenance in the Digital Library Mark S. Ackerman Roy T. Fielding Information and Computer Science Maintenance will be critical to digital libraries, especially those that promote broad access to diverse

  17. PRECEDING F!_GE E_LA."jK _OT F:LP#,ED THE ROLES OF HUMANS AND ROBOTS AS

    E-Print Network [OSTI]

    Spudis, Paul D.

    307 PRECEDING F!_GE E_LA."jK _OT F:LP#,ED THE ROLES OF HUMANS AND ROBOTS AS FIELD GEOLOGISTS field study on the Moon is through the use of teleoperated robots, under the da'rect control of a human geologist who remains at the lunar base, or poss_ly on Earth. These robots umuld hate a global traverse

  18. Microsoft Word - TX-100 Final Report - SAND2007-6066.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625 FINALOptimization of HeatBoilerplate

  19. New Whole-House Solutions Case Study: Imagine Homes, San Antonio, TX

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-ZeroNew Wave Power Project InSince

  20. Buffalo Ridge II Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy3 Wind Farm JumpIII

  1. [12.7.20044:01pm] [101114] [Page No. 101] {Eserial}4393-van-Pelt/3d/vanPelt-tx08.3d Van Pelt

    E-Print Network [OSTI]

    Stryker, Michael

    . Prog Brain Res.147:103-114. Corrections indicated in red. #12;[12.7.20044:01pm] [101114] [Page No[12.7.20044:01pm] [101114] [Page No. 101] {Eserial}4393-van-Pelt/3d/vanPelt-tx08.3d Van Pelt U N Research, Vol. 147 ISSN 0079-6123 Copyright 2005 Elsevier BV. All rights reserved CHAPTER 8 Molecular

  2. DISCOVERY OF A VERY LOW MASS TRIPLE WITH LATE-M AND T DWARF COMPONENTS: LP 704-48/SDSS J0006-0852AB

    SciTech Connect (OSTI)

    Burgasser, Adam J.; Luk, Christopher; Bardalez Gagliuffi, Daniella; Nicholls, Christine P. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Dhital, Saurav [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Prato, L. [Lowell Observatory, Flagstaff, AZ 86001 (United States); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue Boston, MA 02215 (United States); Lepine, Sebastien, E-mail: aburgasser@ucsd.edu [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States)

    2012-10-01T23:59:59.000Z

    We report the identification of the M9 dwarf SDSS J000649.16-085246.3 as a spectral binary and radial velocity (RV) variable with components straddling the hydrogen-burning mass limit. Low-resolution near-infrared spectroscopy reveals spectral features indicative of a T dwarf companion, and spectral template fitting yields component types of M8.5 {+-} 0.5 and T5 {+-} 1. High-resolution near-infrared spectroscopy with Keck/NIRSPEC reveals pronounced RV variations with a semi-amplitude of 8.2 {+-} 0.4 km s{sup -1}. From these we determine an orbital period of 147.6 {+-} 1.5 days and eccentricity of 0.10 {+-} 0.07, making SDSS J0006-0852AB the third tightest very low mass binary known. This system is also found to have a common proper motion companion, the inactive M7 dwarf LP 704-48, at a projected separation of 820 {+-} 120 AU. The lack of H{alpha} emission in both M dwarf components indicates that this system is relatively old, as confirmed by evolutionary model analysis of the tight binary. LP 704-48/SDSS J0006-0852AB is the lowest-mass confirmed triple identified to date, and one of only seven candidate and confirmed triples with total masses below 0.3 M{sub Sun} currently known. We show that current star and brown dwarf formation models cannot produce triple systems like LP 704-48/SDSS J0006-0852AB, and we rule out Kozai-Lidov perturbations and tidal circularization as a viable mechanism to shrink the inner orbit. The similarities between this system and the recently uncovered low-mass eclipsing triples NLTT 41135AB/41136 and LHS 6343ABC suggest that substellar tertiaries may be common in wide M dwarf pairs.

  3. Carbon-Enhanced Metal-Poor Stars. Osmium and Iridium Abundances in the Neutron-Capture-Enhanced Subgiants CS31062-050 and LP625-44

    E-Print Network [OSTI]

    Wako Aoki; Sara Bisterzo; Roberto Gallino; Timothy C. Beers; John E. Norris; Sean G. Ryan; Stelios Tsangarides

    2006-09-06T23:59:59.000Z

    We have investigated the abundances of heavy neutron-capture elements, including osmium (Os) and iridium (Ir), in the two Carbon-Enhanced Metal-Poor (CEMP) subgiants CS31062-050 and LP625-44. CS31062-050 is known to be a so-called CEMP-r/s star, which exhibits large excesses of s-process elements such as barium (Ba) and lead (Pb), as well as a significant enhancement of europium (Eu) that cannot be explained by conventional s-process production in Asymptotic Giant Branch star models. Our analysis of the high-resolution spectrum for this object has determined, for the first time, the abundances of Ir and Os, elements in the third peak of the r-process nucleosynthesis. They also exhibit significant excesses relative to the predictions of standard s-process calculations. These two elements are not detected in a similar-quality spectrum of LP625-44; the derived upper limits on their abundances are lower than the abundances in CS31062-050. We compare the observed abundance patterns of neutron-capture elements, including Os and Ir, in these two stars with recent model calculations of the s-process, and discuss possible interpretations.

  4. Training Session: Euless, TX

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  5. ~tx410.ptx

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by Climate6,1996 http://www.eia.doe.govEffects

  6. ~tx421.ptx

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by Climate6,1996 http://www.eia.doe.govEffects

  7. D&TX

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d!Qwner*. ( ARGONNE

  8. Avoided Costs and Competitive Negotiations for Power from Qualifying Facilities in Texas

    E-Print Network [OSTI]

    Panjavan, S.; Al-Jabir, A.

    Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 Table 2: Utilities' Avoidable Generating Units Capacity On-line Utility (MW) Unit Type Fuel Date COA* Cps* BEPC LCRA CPL HLP TNP TU WTU none 70 208 88 89 219 152 645... on avoided cost because the avoidable units based on natural gas power plants will cost less than avoidable units based on solid-fueled power plants. 50 ESL-IE-92-04-08 Proceedings from the 14th National Industrial Energy Technology Conference, Houston...

  9. Winter Break 2011 (January) Knowledge is Power Program

    E-Print Network [OSTI]

    , TX) Kentucky Equine Humane Center (Nicholsville, Kentucky) Grand Canyon: Kane Ranch (Marble participants) Community Collaborations, Flood Relief (Atlanta, GA) (10 participants) Weekend Breaks Fall 2009, San Juan, TX (10 participants) Weekend Break Fall 2008 (October)-12 participants Cedar Rapids

  10. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11T23:59:59.000Z

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  11. Next Generation Power Electronics National Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    Corporation (TX) - Transphorm, Inc. (CA) - United Si Carbide, Inc. (NJ) - Vacon Plc. (NC) Universities and Labs: - North Carolina State University (Lead) - Arizona State...

  12. Application to Export Electric Energy OE Docket No. EA-409 Sararcen Power

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagement Inc. |LP | Department of

  13. Level 1 probabilistic risk assessment of low power and shutdown operations at a PWR: Phase 2 results

    SciTech Connect (OSTI)

    Chu, T.L.; Bozoki, G.; Kohut, P.; Musicki, Z.; Wong, S.M.; Yang, J.; Hsu, C.J.; Diamond, D.J.; Su, R.F. (Brookhaven National Lab., Upton, NY (United States)); Holmes, B. (AEA Technology, London (United Kingdom)); Siu, N. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Bley, D.; Lin, J. (Pickard, Lowe and Garrick, Inc., Newport Beach, CA (United States))

    1992-01-01T23:59:59.000Z

    As a result of the Chernobyl accident and other precursor events (e.g., Diablo Canyon), the US Nuclear Regulatory Commission's (NRC's) Office of Nuclear Regulatory Research (RES) initiated an extensive project during 1989 to carefully examine the potential risks during Low Power and Shutdown (LP S) operations. Shortly after the program began, an event occurred at the Vogtle plant during shutdown, which further intensified the effort of the LP S program. In the LP S program, one pressurized water reactor (PWR), Surry, and one boiling water reactor (BWR), Grand Gulf, were selected, mainly because they were previously analyzed in the NUREG-1150 Study. The Level-1 Program is being performed in two phases. Phase 1 was dedicated to performing a coarse screening level-1 analysis including internal fire and flood. A draft report was completed in November, 1991. In the phase 2 study, mid-loop operations at the Surry plant were analyzed in detail. The objective of this paper is to present the approach of the phase 2 study and the preliminary results and insights.

  14. Level 1 probabilistic risk assessment of low power and shutdown operations at a PWR: Phase 2 results

    SciTech Connect (OSTI)

    Chu, T.L.; Bozoki, G.; Kohut, P.; Musicki, Z.; Wong, S.M.; Yang, J.; Hsu, C.J.; Diamond, D.J.; Su, R.F. [Brookhaven National Lab., Upton, NY (United States); Holmes, B. [AEA Technology, London (United Kingdom); Siu, N. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Bley, D.; Lin, J. [Pickard, Lowe and Garrick, Inc., Newport Beach, CA (United States)

    1992-12-31T23:59:59.000Z

    As a result of the Chernobyl accident and other precursor events (e.g., Diablo Canyon), the US Nuclear Regulatory Commission`s (NRC`s) Office of Nuclear Regulatory Research (RES) initiated an extensive project during 1989 to carefully examine the potential risks during Low Power and Shutdown (LP&S) operations. Shortly after the program began, an event occurred at the Vogtle plant during shutdown, which further intensified the effort of the LP&S program. In the LP&S program, one pressurized water reactor (PWR), Surry, and one boiling water reactor (BWR), Grand Gulf, were selected, mainly because they were previously analyzed in the NUREG-1150 Study. The Level-1 Program is being performed in two phases. Phase 1 was dedicated to performing a coarse screening level-1 analysis including internal fire and flood. A draft report was completed in November, 1991. In the phase 2 study, mid-loop operations at the Surry plant were analyzed in detail. The objective of this paper is to present the approach of the phase 2 study and the preliminary results and insights.

  15. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01T23:59:59.000Z

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not identify the maximum vertical penetration of the tank related plumes. However, the more elevated portions of the electrical conductivity (EC) profile at probe hole C3830 currently resides at the bottom of a fine-grained thin lens in the Hanford H2 unit at 87 ft bgs. At C3831, we lack good sample coverage to ascertain whether the salt plume has significantly descended into the Cold Creek Unit. There is strong indication at probe hole C3832 that the saline plume has descended into the Cold Creek Unit. The profiles do collectively suggest that the deepest penetration of tank related fluids is found in probe hole C3832. The water potential data from 299-W10-27?s H2 unit, the unit where most of the contaminants reside in the TX probe holes, are consistent with a draining profile. Despite the evidence that elevated EC values may be present in all three probe holes to their depth of refusal, the concentrations of long-term risk drivers are not large. The inventories of potential contaminants of concern, nitrate, technetium-99, uranium, and chromium, are provided. In addition, in situ desorption Kd values for these contaminants are provided. For conservative modeling purposes, we recommend using Kd values of 0 mL/g for nitrate and technetium-99, a value of 1 mL/g for uranium, and 10 mL/g for chromium to represent the entire vadose zone profile from the bottoms of the tanks to the water table. These conservative Kd values along with the provided inventories in the vadose zone sediments obtained from the three probe holes can be used in long-term risk projections that rely on estimates of water recharge and vadose zone and aquifer transport calculations.

  16. Photometry of symbiotic stars XI. EG And, Z And, BF Cyg, CH Cyg, CI Cyg, V1329 Cyg, TX CVn, AG Dra, RW Hya, QW Sge, IV Vir and the LMXB V934 Her

    E-Print Network [OSTI]

    A. Skopal; T. Pribulla; M. Vanko; Z. Velic; E. Semkov; M. Wolf; A. Jones

    2004-02-06T23:59:59.000Z

    We present new photometric observations of EG And, Z And, BF Cyg, CH Cyg, CI Cyg, V1329 Cyg, TX CVn, AG Dra, RW Hya, AR Pav, AG Peg, AX Per, QW Sge, IV Vir and the peculiar M giant V934 Her. The current issue gathers observations of these objects to December 2003.

  17. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  18. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  19. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  20. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18T23:59:59.000Z

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  1. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRGs proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  2. Matching Gift Companies LEHIGH UNIVERSITY 1 Abbott Laboratories

    E-Print Network [OSTI]

    Napier, Terrence

    Alliance Capital Management, LP Alstom Power Inc. American Electric Power American Express Foundation

  3. Strathclyde powerS ahead

    E-Print Network [OSTI]

    Mottram, Nigel

    Strathclyde powerS ahead the future of renewable energy SHARING AND ENHANCING RESEARCH Discover the vision of Principal Professor Jim McDonald THE FUTURE OF ENERGY Strathclyde pioneers renewableEdicinE Snapshot the reSearcher Following a decade of environmental research in her native egypt, nabila saleem

  4. Sequential Methods in Solving Economic Power Flow Problems

    E-Print Network [OSTI]

    Caizares, Claudio A.

    to the primal LP problem: min. ctx 5 s.t. Ax = b; x 0 by nding the solution to the dual problem: max. bty 6 s

  5. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05T23:59:59.000Z

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  6. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  7. Power Factor Compensation (PFC) Power Factor Compensation

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

  8. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18T23:59:59.000Z

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  9. Star Power

    SciTech Connect (OSTI)

    None

    2014-10-17T23:59:59.000Z

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  10. Optimizing Power Factor Correction

    E-Print Network [OSTI]

    Phillips, R. K.; Burmeister, L. C.

    = energy charge from 5 above, $/mo c) $0.024 per kWh for the next 250 kWh per kVA 7. The bill is then adjusted for times the billing capacity; plus a) fuel and purchased energy under the energy d) $0.022 per kWh for all remaining kWh. cost adjustment... are neglected. A linear capacitor cost model is assumed that has an initial cost plus a cost per kVAR of .? ESL-IE-86-06-132 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 capacitance. Although...

  11. A Digit Serial Algorithm for the Integer Power Operation Southern Methodist University

    E-Print Network [OSTI]

    Thornton, Mitchell

    . of CSE Dallas, TX 75275 1-214-768-1697 lli@engr.smu.edu Mitch Thornton Southern Methodist University Dept. of CSE Dallas, TX 75275 1-214-768-1371 mitch@engr.smu.edu David W. Matula Southern Methodist University Dept. of CSE Dallas, TX 75275 1-214-768-3089 matula@engr.smu.edu ABSTRACT We introduce a right

  12. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2

    SciTech Connect (OSTI)

    Kmetyk, L.N.; Brown, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-03-01T23:59:59.000Z

    To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

  13. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01T23:59:59.000Z

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  14. Power Right. Power Smart. Efficient Computer Power Supplies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and...

  15. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  16. Tidal power

    SciTech Connect (OSTI)

    Hammons, T.J. (Glasgow Univ., Scotland (United Kingdom))

    1993-03-01T23:59:59.000Z

    The paper reviews the physics of tidal power considering gravitational effects of moon and sun; semidiurnal, diurnal, and mixed tides; and major periodic components that affect the tidal range. Shelving, funneling, reflection, and resonance phenomena that have a significant effect on tidal range are also discussed. The paper then examines tidal energy resource for principal developments estimated from parametric modeling in Europe and worldwide. Basic parameters that govern the design of tidal power schemes in terms of mean tidal range and surface area of the enclosed basin are identified. While energy extracted is proportional to the tidal amplitude squared, requisite sluicing are is proportional to the square root of the tidal amplitude. Sites with large tidal amplitudes are therefore best suited for tidal power developments, whereas sites with low tidal amplitudes have sluicing that may be prohibitive. It is shown that 48% of the European tidal resource is in the United Kingdom, 42% in France and 8% in Ireland, other countries having negligible potential. Worldwide tidal resource is identified. Tidal barrage design and construction using caissons is examined, as are alternative operating modes (single-action generation, outflow generation, flood generation, two-way generation, twin basin generation, pumping, etc), development trends and possibilities, generation cost at the barrage boundary, sensitivity to discount rates, general economics, and markets. Environmental effects, and institutional constraints to the development of tidal barrage schemes are also discussed.

  17. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jrgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  18. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but...

  19. College TX 71843-25000

    E-Print Network [OSTI]

    D. A., Polymer 19(1978) 1008. L8 JOURNAL DE PHYSIQUE * LET'I'RFS No l. 1976. [14] HUANG, Y. Y., FRIEDMAN, E. A., ANDREWS, R. D. and HART_ i,.

  20. ~txF74.ptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclearand Characterization ofC u r r e n t IENERGY'S CONTRACTS WITH +

  1. ~tx22C0.ptx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification Project At-234-4433 Neal R.

  2. Power Recovery

    E-Print Network [OSTI]

    Murray, F.

    , will be the use of the ASTM Theoretical Steam Rate Tables. In addition, the author's experience regarding the minimum size for power recovery units that are economic in a Culf Coast plant will be presented. INTROD\\Jr.'rION When surveying an operation... will be discussed in detail. Each term in the equation will be considered in English units. Secondly, the use of Mollier diagrams to estimate the enthalphy change between the initial and final conditions will be considered. The last method, specific to steam...

  3. Yakama Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized for ...BER/NERSCYakama Power May

  4. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion Links Fusion

  5. EIS No. 20100312 EIS Comanche Peak Nuclear Power Plant Units 3 and 4

    SciTech Connect (OSTI)

    Bjornstad, David J [ORNL

    2010-08-01T23:59:59.000Z

    In accordance with Section 309(a) of the Clean Air Act, EPA is required to make its comments on EISs issued by other Federal agencies public. Historically, EPA has met this mandate by publishing weekly notices of availability of EPA comments, which includes a brief summary of EPA's comment letters, in the Federal Register. Since February 2008, EPA has been including its comment letters on EISs on its Web site at: http://www.epa.gov/compliance/nepa/eisdata.html. Including the entire EIS comment letters on the Web site satisfies the Section 309(a) requirement to make EPA's comments on EISs available to the public. Accordingly, on March 31, 2010, EPA discontinued the publication of the notice of availability of EPA comments in the Federal Register. EIS No. 20100312, Draft EIS, NRC, TX, Comanche Peak Nuclear Power Plant Units 3 and 4, Application for Combined Licenses (COLs) for Construction Permits and Operating Licenses, (NUREG-1943), Hood and Somervell Counties, TX, Comment Period Ends: 10/26/2010.

  6. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02T23:59:59.000Z

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  7. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  8. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    electric power generating plant, and the distributionrequired on the power-generating plant and not on the vehi-in either power-generating plants or combustion engines,

  9. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courses Instructors NERC Continuing Education Power Operations Training Center You'll find the "Power" of learning at Southwestern's Power Operations Training Center (POTC). POTC's...

  10. POWER PURCHASE AGREEMENT DELMARVA POWER & LIGHT COMPANY

    E-Print Network [OSTI]

    Firestone, Jeremy

    POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer") and BLUEWATER WIND 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 39 3

  11. Power oscillator

    DOE Patents [OSTI]

    Gitsevich, Aleksandr (Montgomery Village, MD)

    2001-01-01T23:59:59.000Z

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  12. Studies in Power Quality Success

    E-Print Network [OSTI]

    Laan, B. A.

    2000-01-01T23:59:59.000Z

    shutdown often resulted in hours of downtime even though the voltage sag lasted less than 1 second. A majority ofvoltage sag problems can often be mitigated by various techniques. Another area of concern is repetitive leading edge voltage peaking... is critical. Figure 1. Pultruded 45 foot composite powerpole 158 ESL-IE-00-04-26 Proceedings from the Twenty-second National Industrial Energy Technology Conference, Houston, TX, April 5-6, 2000 Another cause ofvoltage sags and outages is the downing...

  13. PHYSICS CONSIDERATIONS FOR THE DESIGN OF NCSX1 D.A. Monticello, G.Y. Fu, R. Goldston, L.P. Ku, H. Mynick, R. Nazikian, G. Neilson,

    E-Print Network [OSTI]

    state operation without the need for current drive (with its large recirculating power requirement fixed and the optimizer is requested to find an solution whose surface transform is different from this procedure. The optimizer strategy that produced this configuration asked for 40% of the transform to c

  14. LIFE Power Plant Fusion Power Associates

    E-Print Network [OSTI]

    LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled dpa) Removes ion threat and mitigates x-ray threat allows simple steel piping No need

  15. MULTI-OBJECTIVE MODELING IN RIVERWARE FOR USACE-SWD Allen Avance, Hydraulic Engineer, U.S. Army Corp of Engineers, Fort Worth, TX,

    E-Print Network [OSTI]

    control points; the system-wide flood control algorithm that computes flood control releases at all algorithms bring together RiverWare's object-oriented modeling features and the power and flexibilityMULTI-OBJECTIVE MODELING IN RIVERWARE FOR USACE-SWD Allen Avance, Hydraulic Engineer, U.S. Army

  16. Flow Shop Scheduling with Peak Power Consumption Constraints

    E-Print Network [OSTI]

    2012-09-23T23:59:59.000Z

    1.00. 1.00. 1.00. NA: for these instances, the ro ot. LP relaxations of the form ulations did not solve in less than. 5s. T able. 8: Average optimality gap for instances.

  17. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2013, Santa Clara, CA 2 Outline * Introduction Power Electronics in Electric Drive Vehicles Automotive Power Electronics Module Operation Automotive...

  19. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  20. TVA- Green Power Providers

    Broader source: Energy.gov [DOE]

    Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and businesses for the installation of renewable...

  1. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03T23:59:59.000Z

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  2. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  3. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect...

  4. New Horizons Mission Powered by Space Radioisotope Power Systems...

    Energy Savers [EERE]

    New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept...

  5. Power Series Introduction

    E-Print Network [OSTI]

    Vickers, James

    Power Series 16.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius of convergence R, of the power series and state the important result

  6. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  7. adsorption refrigerator powered: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle T I. Jinshah B S; Ajith Krishnan R; Eep V S 71 Energy Savings from Floating Head Pressure in Ammonia Refrigeration Systems Texas A&M University - TxSpace Summary:...

  8. Examples of integral domains inside power series rings

    E-Print Network [OSTI]

    Tx is flat, the associated nested union domain B is Noetherian. ..... Intermediate rings between a local domain and its completion, Illinois J. Math. 43 (1999) ... Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395.

  9. Dispersed power and renewables

    SciTech Connect (OSTI)

    O`Sullivan, J.B.

    1995-12-31T23:59:59.000Z

    Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

  10. Performance Boosting under Reliability and Power Constraints

    E-Print Network [OSTI]

    John, Lizy Kurian

    , Inc. Austin, TX, USA {indrani.paul, srilatha.manne, michael.schulte}@amd.com Abstract--Voltage droops to increased voltage droops or increased sensitivity to voltage variations. Designers use voltage guardbands because the voltage and frequency points are set to deal with voltage droops from a worst-case benchmark

  11. Energy $ Savings From Power Capacitors

    E-Print Network [OSTI]

    Harder, J. E.

    1982-01-01T23:59:59.000Z

    characteristics of transformers, conductors, breakers, etc.; lack of data on the loading of various components; and the sheer task of adding up all of the losses for the whole system all have contributed to making the job a formidable task, which is rarely..., and an approach to the system problem. This is followed by some 845 ESL-IE-82-04-153 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 I discussion of the loss characteristics of the equipment and conductors...

  12. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  13. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04T23:59:59.000Z

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  14. UGP Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wildlife and power generation on the Missouri River. Seven dams and powerplants have the installed capacity of 2,610 MW. That hydroelectric power is delivered across about 7,919...

  15. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  16. Power production and ADS

    SciTech Connect (OSTI)

    Raja, Rajendran; /Fermilab

    2010-03-01T23:59:59.000Z

    We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

  17. Power Factor Improvement

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

  18. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: marcelo@apei.net Website: www.apei.net High Temperature and High Power Density SiC Power Electronic...

  19. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  20. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: mschupb@apei.net Website: www.apei.net High Power Density Silicon Carbide Power Electronic Converters...

  1. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01T23:59:59.000Z

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  2. Green Power Purchase Plan

    Broader source: Energy.gov [DOE]

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  3. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01T23:59:59.000Z

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  4. Soldier power. Battery charging.

    E-Print Network [OSTI]

    Hong, Deog Ki

    hours runtime at full load 50 W #12; (%) (kW) 300 1-5 Siemens-Power 30 (hr) 10,000 Siemens 300 Acumentrics 80 (mW/cm2) 600 400 Siemens-Power 85 (hr) 70,000 3,000 Siemens-Power 15 () 500 25 Siemens-Power 60 >2013 - , Bloom, MHI, Rolls Royce 6 #12; SOFCSOFC * (LSCF ) ( Ag

  5. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  6. Power Prepayment Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPower

  7. Power/Privilege Definitions

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Major; People's Institute for Survival and Beyond, New Orleans 2. Power is the ability to define reality and to convince other people that it is their definition. ~ Dr. Wade Nobles 3. Power is the capacity to act. 4 different cultures. [JL] RACISM Racism is race prejudice plus power [See Racist]. People's Institute calls

  8. EXTERIOR POWERS KEITH CONRAD

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    form on a manifold is related to exterior powers of the dual space of the tangent space of a manifoldEXTERIOR POWERS KEITH CONRAD 1. Introduction Let R be a commutative ring. Unless indicated the alternating multilinear functions on Mk: the exterior power k(M). It is a certain quotient module of Mk

  9. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  10. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 8-10, 2014 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  11. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 9-11, 2013 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  12. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 10 & 12, 2012 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  13. Green Power Inverter Prvningsrapport

    E-Print Network [OSTI]

    Green Power Inverter Prvningsrapport SolenergiCentret Sren Poulsen Ivan Katic Oktober 2004 #12;Green Power Inverter mlerapport.doc SolenergiCentret - 04-03-2005 2 Forord Nrvrende rapport indeholder Teknologisk Instituts bidrag til mlinger i forbindelse med PSO projektet "Green Power Inverter

  14. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place: India...

  15. How Power is Lost: Illusions of Alliance Among the Powerful

    E-Print Network [OSTI]

    Brion, Sebastien

    2010-01-01T23:59:59.000Z

    while most accounts of power loss focus on ethical breachesPower Loss .1. Proposed Model of Power Loss Figure 2. Social Monitoring

  16. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Environmental Management (EM)

    power source among renewables, is poised to emerge also as a flexible power source, balancing intermittent wind and solar power production and reducing variability in energy...

  17. Using government purchasing power to reduce equipment standby power

    E-Print Network [OSTI]

    Harris, Jeffrey; Meier, Alan; Bartholomew, Emily; Thomas, Alison; Glickman, Joan; Ware, Michelle

    2003-01-01T23:59:59.000Z

    or external power supply, other specifications, and purchasethe consumer to purchase extra power strips and extensionan internal standby power function, shall purchase Although

  18. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

  19. ADEPT: Efficient Power Conversion

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    ADEPT Project: In todays increasingly electrified world, power conversionthe process of converting electricity between different currents, voltage levels, and frequenciesforms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-Es ADEPT Project, short for Agile Delivery of Electrical Power Technology, are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

  20. Multimegawatt space power reactors

    SciTech Connect (OSTI)

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01T23:59:59.000Z

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  1. Application to Export Electric Energy OE Docket No. EA-409 Sararcen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sararcen Power LP Application to Export Electric Energy OE Docket No. EA-409 Sararcen Power LP Application from Saracen Power to export electric energy to Canada. EA-409 Saracen...

  2. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

    1999-01-01T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  3. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  4. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01T23:59:59.000Z

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  5. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  6. Dynamic Reactive Power Control of Isolated Power Systems

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

  7. PASSIVE CONTROL OF FLUID POWERED HUMAN POWER AMPLIFIERS

    E-Print Network [OSTI]

    Li, Perry Y.

    PASSIVE CONTROL OF FLUID POWERED HUMAN POWER AMPLIFIERS Perry Y. Li and Venkat Durbha Center is proposed for the control of fluid powered human power amplifiers. Human power amplifiers are mechanical as a torque/force source. The control objective is to amplify the power that the human exerts on the machine

  8. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

  9. Entangling Power of Permutations

    E-Print Network [OSTI]

    Lieven Clarisse; Sibasish Ghosh; Simone Severini; Anthony Sudbery

    2005-04-11T23:59:59.000Z

    The notion of entangling power of unitary matrices was introduced by Zanardi, Zalka and Faoro [PRA, 62, 030301]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with possible exception for 36. Our result enables us to construct generic examples of 4-qudits maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimension 4 and 9, and we give some estimates for higher dimensions.

  10. Interleaved power converter

    DOE Patents [OSTI]

    Zhu, Lizhi (Canton, MI)

    2007-11-13T23:59:59.000Z

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  11. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  12. Power System load management

    SciTech Connect (OSTI)

    Rudenko, Yu.N.; Semenov, V.A.; Sovalov, S.A.; Syutkin, B.D.

    1984-01-01T23:59:59.000Z

    The variation in demand nonuniformity is analyzed for the Unified Electric Power System of the USSR and certain interconnected power systems; the conditions for handling such nonuniformity with utilization of generating equipment having differing flexibility capabilities are also considered. On this basis approaches and techniques for acting on user loads, load management, in order to assure a balance between generated and consumed power are considered.

  13. Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development...

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Characterization (SciChar) Workshop Characterization Capabilities Battery Questions Neutron Advantages * Scattering Power unrelated to Z - Many low Z elements have high cross...

  15. 2025 Power Marketing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the LAP FES contracts and has developed a plan for marketing and allocating LAP hydroelectric power after the current FES contracts expire. We call this plan our 2025...

  16. Power Supply Negotiations

    Office of Environmental Management (EM)

    Southeastern Federal Power Alliance Incremental Decay in Energy March 11, 2014 2 Incremental Decay in Energy Hydropower customers observations from our review of the Buford...

  17. Power Purchase Agreements Update

    Broader source: Energy.gov [DOE]

    Presentation covers an update on power purchase agreements and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  18. Green Power Offer (Maine)

    Broader source: Energy.gov [DOE]

    This chapter establishes requirements, standards and procedures and a competitive bidding process to implement the green power offer program. The program is designed to make renewable energy...

  19. Municipal Electric Power (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

  20. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  1. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

  2. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  3. Critical pulse power components

    SciTech Connect (OSTI)

    Sarjeant, W.J.; Rohwein, G.J.

    1981-01-01T23:59:59.000Z

    Critical components for pulsed power conditioning systems will be reviewed. Particular emphasis will be placed on those components requiring significant development efforts. Capacitors, for example, are one of the weakest elements in high-power pulsed systems, especially when operation at high-repetition frequencies for extended periods of time are necessary. Switches are by far the weakest active components of pulse power systems. In particular, opening switches are essentially nonexistent for most applications. Insulaton in all systems and components requires development and improvement. Efforts under way in technology base development of pulse power components will be discussed.

  4. PowerPoint Presentation

    Office of Environmental Management (EM)

    Systems Program 1 DOE Energy Storage & Power Electronics Research Programs October 8, 2009 Marcelo Schupbach, Ph.D. Chief Technology Officer APEI, Inc. 535 Research Center Blvd....

  5. Energy 101: Hydroelectric Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  6. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POTC Home Courses Instructors NERC Continuing Education Power Operations Training Center Instructors All instructors at Southwestern's POTC are NERC-approved continuing education...

  7. Combined Heat & Power

    Broader source: Energy.gov (indexed) [DOE]

    & Power (CHP) Michael Ellis Director AGL Energy Services Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia Beach, VA "CHP is the most efficient way of generating...

  8. European Space Power Conference

    SciTech Connect (OSTI)

    Bents, D.J.; Kohout, L.L.; Mckissock, B.I.; Rodriguez, C.D.; Withrow, C.A.; Colozza, A.; Hanlon, J.C.; Schmitz, P.C.

    1991-01-01T23:59:59.000Z

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  9. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Eligible resources include tidal and wave power, fuel cells using renewable fuels, hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,...

  10. Application Power Signature Analysis

    SciTech Connect (OSTI)

    Hsu, Chung-Hsing [ORNL] [ORNL; Combs, Jacob [Sonoma State University] [Sonoma State University; Nazor, Jolie [Sonoma State University] [Sonoma State University; Santiago, Fabian [Sonoma State University] [Sonoma State University; Thysell, Rachelle [Sonoma State University] [Sonoma State University; Rivoire, Suzanne [Sonoma State University] [Sonoma State University; Poole, Stephen W [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The high-performance computing (HPC) community has been greatly concerned about energy efficiency. To address this concern, it is essential to understand and characterize the electrical loads of HPC applications. In this work, we study whether HPC applications can be distinguished by their power-consumption patterns using quantitative measures in an automatic manner. Using a collection of 88 power traces from 4 different systems, we find that basic statistical measures do a surprisingly good job of summarizing applications' distinctive power behavior. Moreover, this study opens up a new area of research in power-aware HPC that has a multitude of potential applications.

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTRIBUTORS Developed by Rob Carmichael, Cadeo Group, Mark Bielecki and Amy Meyer, Navigant Consulting and Kristin Salvador, Artisan. Developed for the Bonneville Power...

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in SAM Photovoltaics Concentrating PV Solar Water Heating Geothermal Dish-Stirling Linear Fresnel Power Tower Parabolic Trough Small Wind Utility-scale Wind Biomass...

  13. Concentrated Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    electricity. Representing about 15% of the total system cost, power blocks include the steam turbine, generator, and associated equipment such as condensers and water treatment...

  14. Power, Media & Montesquieu. New forms of public power and the balance of power

    E-Print Network [OSTI]

    van den Brink, Jeroen

    SUMMARY Power, Media & Montesquieu. New forms of public power and the balance of power are organized it is crucial to restrain the power that the state exerts on its citizens. The state has three functions, commonly known as powers: the legislative, executive and judicial powers. This three

  15. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  16. Purchasing Renewable Power

    Broader source: Energy.gov [DOE]

    Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

  17. Fusion Power Deployment

    SciTech Connect (OSTI)

    J.A. Schmidt; J.M. Ogden

    2002-02-06T23:59:59.000Z

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  18. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16T23:59:59.000Z

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  19. The Icelandic Power Situation

    E-Print Network [OSTI]

    Karlsson, Brynjar

    energy attracts power intensive industry to Iceland Households use only 5% 90% of district heating ensured · Feasible to sell excess energy · Takes advantage of the flexiblity of hydropower · Energy with low cost geothermal energy 80% 5% 15% Households Other users Power intensive industries #12;Future

  20. ECLiPSe - from LP to CLP

    E-Print Network [OSTI]

    Schimpf, Joachim

    2010-01-01T23:59:59.000Z

    ECLiPSe is a Prolog-based programming system, aimed at the development and deployment of constraint programming applications. It is also used for teaching most aspects of combinatorial problem solving, e.g. problem modelling, constraint programming, mathematical programming, and search techniques. It uses an extended Prolog as its high-level modelling and control language, complemented by several constraint solver libraries, interfaces to third-party solvers, an integrated development environment and interfaces for embedding into host environments. This paper discusses language extensions, implementation aspects, components and tools that we consider relevant on the way from Logic Programming to Constraint Logic Programming.

  1. SH Coatings LP | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

  2. Hybrid LP/SDP Bounding Procedure

    E-Print Network [OSTI]

    2012-10-24T23:59:59.000Z

    on sophisticated Branch and Cut (BC) algorithms based on a smart implicit enumeration of the branching tree. The bounding procedure typically makes use.

  3. Decomposition Methods for Large Scale LP Decoding

    E-Print Network [OSTI]

    2012-04-02T23:59:59.000Z

    that have extreme reliability requirements. While suitably ...... parity-check codes. Electronic Notes in Theoretical Computer Science, 74(0):97104, 2003.

  4. Adage Capital Management, LP ADP Foundation

    E-Print Network [OSTI]

    Napier, Terrence

    Alcoa Foundation Alexander & Baldwin, Inc. AllianceBernstein Foundation Fund Allstate Foundation Alstom

  5. THEORIE LP AVEC POIDS POUR LES

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    eneral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 References bibliographiques 169 III tel-00006775,version1-30Aug2004 #12;NOTATIONS Notations g2004 #12;ei, 1 i n i `eme vecteur de la base canonique de Rn I matrice identite d'odre n ut le

  6. AES Eastern Energy LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADA ES IncADTAES

  7. SRW Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energy InformationSSITASKSOTU +SRMSRW

  8. Sharyland Utilities LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong Lusa NewInformationSharav SluicesSharyland

  9. LP Hoying, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE Jump to:LNJ BhilwaraLOPPLP

  10. Onsite Recovered Energy LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the Grid 1BOG Jump

  11. Pattern Energy Group LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN TechnologyFrance) Jump to: Name:Pattern Energy

  12. Hunterdon Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy Resources Jump to:Hunter, North

  13. Hydrogenica Partners LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydraA) Jump

  14. Clear Lake Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean Economy NetworkCleantech EnergiesClear

  15. Corpus Christi Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosa Valley ElectricCornwallCorpus Christi

  16. Direct Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect

  17. Pasadena Cogneration LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits Pvt Ltd Jump to:PartneringParu Co Ltd

  18. Plymouth Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S

  19. Spark Energy, LP (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp JumpsourceSouthlake,AeH Jump to:AEE Jump

  20. Sustainable Technology Capital, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods IncEurope ResearchTechnologies Museum

  1. Crimson Renewable Energy LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete,

  2. Mega Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayoOregon:Medical

  3. Spark Energy, LP (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwestern ElectricSpain:Fork,Spark

  4. Spark Energy, LP (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwestern

  5. Spark Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwesternSpark Energy, LPSpark

  6. Biomass One LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJetMadison,BioflameBioilDataELP

  7. WTU Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph Home Wzeng'sVortex EnergyWDPWPAWS EnergiaWTU

  8. Wood Fuel LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba,WisconsinWonder

  9. Calpine Energy Services LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway Electric Cooperative Jump to:Calpine Energy

  10. Power module assembly

    DOE Patents [OSTI]

    Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

    2011-11-15T23:59:59.000Z

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  11. SMITH AND BARGHNONCONSCIOUS EFFECTS OF POWER NONCONSCIOUS EFFECTS OF POWER

    E-Print Network [OSTI]

    Bargh, John A.

    SMITH AND BARGHNONCONSCIOUS EFFECTS OF POWER NONCONSCIOUS EFFECTS OF POWER ON BASIC APPROACH to the approach/inhibition theory of power (Keltner, Gruenfeld, & Anderson, 2003), having power should be associated with the approach system, and lacking power with the avoidance system. However

  12. Northwest Power and Conservation Council Fifth Northwest Power Plan

    E-Print Network [OSTI]

    Northwest Power and Conservation Council Fifth Northwest Power Plan Statement of Basis and Purpose for the Fifth Power Plan and Response to Comments on the Draft Fifth Power Plan February 2005 #12;I. Background.........................................................................................................................................3 B. Developing the Fifth Power Plan

  13. The Power of Non-Uniform Wireless Power

    E-Print Network [OSTI]

    The Power of Non-Uniform Wireless Power ETH Zurich ­ Distributed Computing Group Magnus M-To-Interference-Plus-Noise Ratio (SINR) Formula Minimum signal- to-interference ratio Power level of sender u Path-loss exponent Noise Distance between two nodes Received signal power from sender Received signal power from all other

  14. Trees and Power Lines: Minimizing Conflicts between Electric Power

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Trees and Power Lines: Minimizing Conflicts between Electric Power Infrastructure and the Urban: Minimizing Conflicts between Electric Power Infrastructure and the Urban Forest ISSUE BRIEF | March 2012 1: Minimizing Conflicts between Electric Power Infrastructure and the Urban Forest 1 Trees and overhead power

  15. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selcuk Kose Department throughout a power distribution system. Due to the parasitic impedances of the power distribution networks current to the load circuits [3]. The complexity of the high performance power delivery systems has

  16. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    None

    2013-11-19T23:59:59.000Z

    The Arizona Governors Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  17. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  18. Computational power of correlations

    E-Print Network [OSTI]

    Janet Anders; Dan E. Browne

    2009-02-05T23:59:59.000Z

    We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based \\textit{classical} computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.

  19. Foucault's Ethics of Power

    E-Print Network [OSTI]

    Wolf, Kirk

    cally remarks , there is no 'headquarters that presides over the rationality" of power (HSl 125). Rather, strategies of power are nonsubjective insofar as they arc anonymous and operate indepen dent ly of the part icular people who wil l ingly or unwi...Foucault's Ethics of Power Kirk Wolf Delia College 1. I n t r o d u c t i o n Since Foucaull 's death in 19K4, his interpreters have generally located his importance in his genealogical critiques and in his phi losophy ofpower. On the one hand...

  20. Nuclear power attitude trends

    SciTech Connect (OSTI)

    Nealey, S.M.

    1981-11-01T23:59:59.000Z

    The increasing vulnerability of nuclear power to political pressures fueled by public concerns, particularly about nuclear plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, utility and government plans have centered on expansion of nuclear power generating capability. While supporters have outnumbered opponents of nuclear power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.

  1. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements PowerPowerCentsDC

  2. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  3. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

    2008-02-19T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  4. Do not exceed the operating input power, voltage, and current level and signal type appropriate for the instrument being used, refer to

    E-Print Network [OSTI]

    Anlage, Steven

    's Declaration ACOUSTIC NOISE EMISSION LpA is POLLUTION DEGREE 2, INDOOR USE product. This equipment is tested with stand-alone condition

  5. POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC

    E-Print Network [OSTI]

    POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC Abstract. A semigroup is said to be power centralized if for every pair of elements x and y there exists a power of x commuting with y. The structure of power centralized groups and semigroups is investigated. In particular, we characterize 0-simple power centralized

  6. Efficient Power System State Estimation

    E-Print Network [OSTI]

    Lavaei, Javad

    monitoring of power systems. 2. Background Power systems have four main components: transmission, sub-transmissionEfficient Power System State Estimation Zafirah Baksh Expected BS, Department of Electrical Engineering May 2013 ELEN E4511 Power Systems Analysis Professor Javad Lavaeiyanesi #12;1. Introduction Power

  7. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01T23:59:59.000Z

    Tracking OFDM Power Amplier, IEEE Journal of Solid-StateGSM/GPRS CMOS Power Ampli?er, IEEE Journal of Solid-StateEnded Switching Power Ampli?es, IEEE Journal of Solid-State

  8. Transportation and Stationary Power

    E-Print Network [OSTI]

    ) is small. Previous feedback from industry has indicated that existing transportation fuel providers (oil for multiple fuel cell applications, including material handling equipment, backup power, and light- or heavy

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Tennessee October 22, 2010 Outline * The -ray instruments at ATLAS * The people * The physics * The future 2 Huge progress in 25 years in resolving power of -ray...

  10. DSW Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada...

  11. Power System Operator

    Broader source: Energy.gov [DOE]

    At Southeastern, you can make a direct impact by helping us deliver low-cost hydroelectric power to over one hundred electric cooperatives and municipal utilities, and over eight million end-use...

  12. CRSP Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expenses of the project each year, and receive all of the energy it produces. Salt Lake City AreaIntegrated Projects: Power from the Colorado River Storage Project plants was...

  13. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cable & conductor into 2,000 ft coiled tubing World first high power laser hardware (optics package & fiber connector) tested to >5,000 psi Achieving target requires "world...

  14. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    Symposium on Power Systems for Electric Vehicles, Columbiaelectric vehicle must be considered as a total system which includes the primary energy source, electric powerpower for urban driving (32 W/kg), (130, Flow schematic for an electric vehicle battery system.

  15. in Idaho's Power County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Located in Power County on the Fort Hall Reservation, the land is bisected by Bannock Creek, a perennial stream which flows from the east side of the Deep Creek Mountains and...

  16. Renewable Power Procurement Policy

    Broader source: Energy.gov [DOE]

    New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order...

  17. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  18. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  19. Pig Poop Power

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2007-04-11T23:59:59.000Z

    Broadcast Transcript: What could be more fitting in the Year of the Pig than to turn to the pig for power? And that's what is happening here in South Korea. In an effort to develop environmentally friendly, renewable energy ...

  20. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management BC Hydro and Power Authority 691 1 Southpoint Drive, El5 Burnaby, B.C., Canada V3N 4 x 8 Dear Ms. Kurschner: This letter Agreement (09NTSSA) between our...

  1. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vintage Rate (as made available by BPA) o All Non-Federal Resources (elect to not purchase power at Tier 2 rates) o Combination of BPA Tier 2 and Non-Federal Resources *...

  2. Mesofluidic magnetohydrodynamic power generation

    E-Print Network [OSTI]

    Fucetola, Jay J

    2012-01-01T23:59:59.000Z

    Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

  3. GMP Solar Power

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  4. Glucose-powered neuroelectronics

    E-Print Network [OSTI]

    Rapoport, Benjamin Isaac

    2011-01-01T23:59:59.000Z

    A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As ...

  5. Power Quality Implications

    E-Print Network [OSTI]

    Hilson, D.

    Electric utilities in the United States spend in excess of one billion dollars annually to maintain or improve the quality of electric power supplied to their customers. Yet, an increasing and alarming number of complaints are being voiced...

  6. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01T23:59:59.000Z

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  7. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    http:www.bpa.gov PR 02 14 BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE Thursday, Jan. 23, 2014 CONTACT: Kevin Wingert, 503-230-4140971-207-8390 or 503-230-5131 BPA...

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * No cold or centrifugation steps * Power draw is minimal RNA Prep Module: Digital Microfluidics (DMF) with Macro-to-Micro Fluidic Interface Jebrail MJ et al., Anal Chem 86:3856...

  9. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  10. Crowd-powered systems

    E-Print Network [OSTI]

    Bernstein, Michael Scott

    2012-01-01T23:59:59.000Z

    Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

  11. Power Plant Dams (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across...

  12. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    In 2003, Maine's governor established a goal for the state government to buy at least 50% of its electricity from "reasonably priced" renewable-power sources, paid for by energy conservation...

  13. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Resource Management, BC Hydro and Power Authority 6911 Southpoint Drive, Tower 15 Burnaby, BC V3N 4X8 Dear Ms. Kurshner: This letter agreement (Agreement) between...

  14. The power tool

    SciTech Connect (OSTI)

    HAYFIELD, J.P.

    1999-02-01T23:59:59.000Z

    POWER Tool--Planning, Optimization, Waste Estimating and Resourcing tool, a hand-held field estimating unit and relational database software tool for optimizing disassembly and final waste form of contaminated systems and equipment.

  15. Power conversion technologies

    SciTech Connect (OSTI)

    Newton, M. A.

    1997-02-01T23:59:59.000Z

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  16. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28T23:59:59.000Z

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  17. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01T23:59:59.000Z

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd Hofmann GSI

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd Hofmann

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurdTechnologies October

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurdTechnologies

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurdTechnologiesBrainstorm:

  5. Microsoft PowerPoint - Vicksburg District Federal Power Projects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1 ll Rotor...

  6. Lease of Power Privilege Flowchart: Lease of Power Privilege...

    Open Energy Info (EERE)

    of Power Privilege Flowchart: Lease of Power Privilege Contract through End of Construction Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  7. PowerProjections2003(avgusing5-03water,BrokerPrices)(amended...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jections2003(avgusing5-03water,BrokerPrices)(amended).xls SLIP Energy WY Gross Gen from Hydro LP Dolores Gen. Total SLIP Gross Gen Avg. Plant Use SLIP Net Gen @ Plant Losses SLIP...

  8. Superconducting electric power applications

    SciTech Connect (OSTI)

    Blaugher, R.D. [National Renewable Energy Lab., Golden, CO (United States)

    1997-06-01T23:59:59.000Z

    The application of superconductors to electric power systems has been actively pursued over the past 30 years. Following the realization of high-field, high-current superconductors in 1961, researchers applied these type II materials, such as Nb-Ti and Nb{sub 3}Sn, to laboratory magnets, followed by generators, motors, and transmission cables. Successful prototypes for the latter were constructed and tested by the mid-1980s. It is fair to assume that widespread utility acceptance of these low-temperature superconducting (LTS) power applications was compromised by the necessity for liquid helium cooling. The discovery of the high-temperature superconductors (HTS) in 1986, which offered the prospect for liquid nitrogen cooling, provided renewed interest and impetus and spurred the development of HTS power components. The expectations for HTS power components are, in fact, near realization, as a result of the rapid worldwide progress in HTS wire and tape development. This paper will review the history and present status of superconducting power-system-related applications. The major problems facing this technology and the prospects for commercialization and eventual integration into the utility sector will be discussed. General acceptance for superconducting power equipment by the electric utilities and other end-users will ultimately be based on the respective system performance, efficiency, reliability and maintenance, operational lifetime, and installed cost compared to conventional technologies.

  9. Execution Version POWER PURCHASE AGREEMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    ") and BLUEWATER WIND DELAWARE LLC ("Seller") June 23, 2008 #12;Execution Version POWER PURCHASE AGREEMENT TableExecution Version POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 40 3

  10. GaN power electronics

    E-Print Network [OSTI]

    Lu, Bin

    Between 5 and 10% of the world's electricity is wasted as dissipated heat in the power electronic circuits needed, for example, in computer power supplies, motor drives or the power inverters of photovoltaic systems. This ...

  11. Roma, TX Natural Gas Exports to Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet)Thousand Cubic Feet)Year20,042

  12. TX, RRC District 1 Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent96 263,04734 26

  13. TX, RRC District 10 Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent9698

  14. TX, RRC District 5 Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 1 80 3 120,4600 1 0 1

  15. TX, RRC District 6 Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 1 80 312,61910 12 11

  16. TX, RRC District 8 Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 15097,586 7,440537

  17. TX, RRC District 9 Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25 21 20

  18. TX, State Offshore Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 250 0 0

  19. Clint, TX Natural Gas Exports to Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1. Introduction4..

  20. Hidalgo, TX Natural Gas Exports to Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week 30 0

  1. Alamo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb Mar Aprper Annual Download

  2. Alamo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb Mar Aprper Annual

  3. ~txF7D.ptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclearand Characterization ofC u r r e n t IENERGY'S CONTRACTS WITH

  4. Penitas, TX Natural Gas Exports to Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) 0PADPrevious Annual Download

  5. Penitas, TX Natural Gas Exports to Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) 0PADPrevious Annual Download8

  6. Microsoft Word - abstract-lacognata-tx_2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised: April 3,  T T r rXMLTHE

  7. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  8. Power System Dispatcher (Technical Writer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Switching, (J4100) 5555...

  9. Power network analysis and optimization

    E-Print Network [OSTI]

    Zhang, Wanping

    2009-01-01T23:59:59.000Z

    chip power supply network optimization using multigrid-basedchip decoupling capacitor optimization for high- performanceSapatnekar, Analysis and optimization of structured power/

  10. Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Products & Technologies Renewable Energy Purchasing Renewable Power Purchasing Renewable Power Federal agencies can purchase renewable power or renewable energy certificates...

  11. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24T23:59:59.000Z

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  12. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22T23:59:59.000Z

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  13. Laser satellite power systems

    SciTech Connect (OSTI)

    Walbridge, E.W.

    1980-01-01T23:59:59.000Z

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  14. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

    2000-01-01T23:59:59.000Z

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  15. Sixth Power Plan northwest Power and Conservation Council

    E-Print Network [OSTI]

    -Fired Generating Resources #12;Sixth Power Plan AssessMenT reporT Resource Adequacy 40Sixth Power Plan northwest Power and Conservation Council March 13, 2013 Mid-term assessment report #12;PaGe 2 > Mid-TerM AssessMenT reporT > Sixth Power Plan Contents 04 Executive Summary 06 Situation

  16. Running Head: TESTOSTERONE AND POWER Testosterone and power

    E-Print Network [OSTI]

    Schultheiss, Oliver C.

    Running Head: TESTOSTERONE AND POWER Testosterone and power Steven J. Stanton and Oliver C. Schultheiss University of Michigan, Ann Arbor, MI, USA To appear in: K. Dowding (Ed.), Encyclopedia of power-647-9440, email: stantons@umich.edu #12;Testosterone and power 2 Across many studies in humans, two functional

  17. Virtualizing Power Cords by Wireless Power Transmission and Energy Harvesting

    E-Print Network [OSTI]

    Tentzeris, Manos

    technology can be called the virtualization of the communication line, wireless power transmissionVirtualizing Power Cords by Wireless Power Transmission and Energy Harvesting Yoshihiro Kawahara1 for the virtualization of power cords for electrical devices. The first approach is a new concept for routing electric

  18. Preventing power outages Power system contingency analysis on the GPU

    E-Print Network [OSTI]

    Vuik, Kees

    problem. Moreover, the power system has to keep functioning properly even when a transmission line failsPreventing power outages Power system contingency analysis on the GPU To provide electricity generators, nuclear power plants, wind turbines, etc.) and a network of lines and cables to transmit

  19. VirtualPower: Coordinated Power Management in Virtualized Enterprise Systems

    E-Print Network [OSTI]

    Yang, Junfeng

    VirtualPower: Coordinated Power Management in Virtualized Enterprise Systems Ripal Nathuji CERCS Institute of Technology Atlanta, GA 30032 schwan@cc.gatech.edu ABSTRACT Power management has become. This paper explores how to inte- grate power management mechanisms and policies with the virtualization

  20. Reducing Power Load Fluctuations on Ships Using Power Redistribution Control

    E-Print Network [OSTI]

    Johansen, Tor Arne

    controller is demonstrated through simulation studies on a supply vessel power plant, using the SIMULINK plant with electric propulsion, the power generation will con- sist of multiple engines, whereReducing Power Load Fluctuations on Ships Using Power Redistribution Control Damir Radan,1 Asgeir J

  1. Introduction The electric power grid and electric power

    E-Print Network [OSTI]

    of systems" that integrates an end-to-end, advanced com- munications infrastructure into the electric powerIntroduction The electric power grid and electric power industry are undergoing a dramatic transforma- tion. By linking information technologies with the electric power grid--to provide "electricity

  2. Qualification for PowerInsight accuracy of power measurements.

    SciTech Connect (OSTI)

    DeBonis, David; Laros, James H.,; Pedretti, Kevin Thomas Tauke

    2013-11-01T23:59:59.000Z

    Accuracy of component based power measuring devices forms a necessary basis for research in the area of power-e cient and power-aware computing. The accuracy of these devices must be quanti ed within a reasonable tolerance. This study focuses on PowerInsight, an out- of-band embedded measuring device which takes readings of power rails on compute nodes within a HPC system in realtime. We quantify how well the device performs in comparison to a digital oscilloscope as well as PowerMon2. We show that the accuracy is within a 6% deviation on measurements under reasonable load.

  3. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  4. Powered protrusion cutter

    DOE Patents [OSTI]

    Bzorgi, Fariborz M. (Knoxville, TN)

    2010-03-09T23:59:59.000Z

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  5. Power Systems Control Architecture

    SciTech Connect (OSTI)

    James Davidson

    2005-01-01T23:59:59.000Z

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  6. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  7. Power electronics reliability.

    SciTech Connect (OSTI)

    Kaplar, Robert James; Brock, Reinhard C.; Marinella, Matthew; King, Michael Patrick; Stanley, James K.; Smith, Mark A.; Atcitty, Stanley

    2010-10-01T23:59:59.000Z

    The project's goals are: (1) use experiments and modeling to investigate and characterize stress-related failure modes of post-silicon power electronic (PE) devices such as silicon carbide (SiC) and gallium nitride (GaN) switches; and (2) seek opportunities for condition monitoring (CM) and prognostics and health management (PHM) to further enhance the reliability of power electronics devices and equipment. CM - detect anomalies and diagnose problems that require maintenance. PHM - track damage growth, predict time to failure, and manage subsequent maintenance and operations in such a way to optimize overall system utility against cost. The benefits of CM/PHM are: (1) operate power conversion systems in ways that will preclude predicted failures; (2) reduce unscheduled downtime and thereby reduce costs; and (3) pioneering reliability in SiC and GaN.

  8. Power converter connection configuration

    DOE Patents [OSTI]

    Beihoff, Bruce C. (Wauwatosa, WI); Kehl, Dennis L. (Milwaukee, WI); Gettelfinger, Lee A. (Brown Deer, WI); Kaishian, Steven C. (Milwaukee, WI); Phillips, Mark G. (Brookfield, WI); Radosevich, Lawrence D. (Muskego, WI)

    2008-11-11T23:59:59.000Z

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  9. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  10. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  11. Power Generation and Power Use Decisions in an Industrial Process

    E-Print Network [OSTI]

    Gilbert, J. S.; Niess, R. C.

    of power generation and power use economics, most people want to under stand power generation. The primary questions usually relate to increasing the amount of power available, starting with a high pressure steam turbine or a gas turbine. They are "How... pressure Tsink OF temperature corresponding to outlet pressure Qsource = steam flow in Btu per hour Wideal Ideal power produced in Btu per hour 460 Conversion to absolute tempera ture "R From here, knowing the efficiency of the turbine...

  12. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  13. Power electronics cooling apparatus

    SciTech Connect (OSTI)

    Sanger, P.A.; Lindberg, F.A.; Garcen, W.

    2000-01-18T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  14. RF power generation

    E-Print Network [OSTI]

    Carter, R G

    2011-01-01T23:59:59.000Z

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  15. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  16. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  17. Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration Electric Power Produced

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd Hofmann GSI Darmstadt

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd Hofmann GSI Darmstadte

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd Hofmann GSI Darmstadte

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd Hofmann GSIDual-Purpose

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd HofmannNational Nuclear

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd HofmannNational

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurd HofmannNationalAllinea

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics PowerSigurdTechnologies October 16,

  6. Energy Smart Reserved Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS)LaboratorySmart-Reserved-Power Sign In

  7. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartmentPower-Rates Sign In About |

  8. Power Supply Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements Power Purchase Agreements

  9. Power Maps in Algebra and

    E-Print Network [OSTI]

    Thévenaz, Jacques

    Power Maps in Algebra and Topology Kathryn Hess Preface The case of commutative algebras The Hochschild complex of a twisting cochain Power maps on the Hochschild complex Topological relevance Power Compostela, 17 September 2008 #12;Power Maps in Algebra and Topology Kathryn Hess Preface The case

  10. Power marketing and renewable energy

    SciTech Connect (OSTI)

    Fang, J.M.

    1997-09-01T23:59:59.000Z

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  11. Supercomputing Power to the People

    E-Print Network [OSTI]

    Chauhan, Arun

    Supercomputing Power to the People Arun Chauhan Indiana University #12;Supercomputing power. Sadayappan #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming Languages: A Buddhist View #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming

  12. The Centre for Power Transmission

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    The Centre for Power Transmission and Motion Control Centre for PTMC Department of Mechanical) 1225 38-6371 Email: ptmc@bath.ac.uk Web: http://www.bath.ac.uk/ptmc/ Consultancy Project WAVE POWER SYSTEM SIMULATIONS Power take-off systems Wave power take-off systems are an exciting new development

  13. The solar electric power outlook

    SciTech Connect (OSTI)

    Kemp, J.W.

    1995-12-31T23:59:59.000Z

    The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

  14. Modeling and Simulation of Power Electronic DRAGAN MAKSIMOVIC , MEMBER, IEEE, ALEKSANDAR M. STANKOVIC , MEMBER, IEEE,

    E-Print Network [OSTI]

    Stankovi, Aleksandar

    composed of semiconductor switches such as thyristors, MOSFETs, and diodes, along with passive elements, Mesquite, TX 75149 USA. G. C. Verghese is with the Massachusetts Institute of Technology, Cam- bridge, MA

  15. Power-Saving Color Transformation of Mobile Graphical User Interfaces on OLED-based Displays

    E-Print Network [OSTI]

    Zhong, Lin

    , Houston, TX 77025 {dongmian, ykc1,lzhong}@rice.edu ABSTRACT Emerging organic light-emitting diode (OLED of the display content or GUI design [1]. In contrast, emerging organic light-emitting diode (OLED

  16. High Power Cryogenic Targets

    SciTech Connect (OSTI)

    Gregory Smith

    2011-08-01T23:59:59.000Z

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  17. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    SciTech Connect (OSTI)

    Cairns, Elton J.; Hietbrink, Earl H.

    1981-01-01T23:59:59.000Z

    This section includes some historical background of the rise and fall and subsequent rebirth of the electric vehicle; and a brief discussion of current transportation needs, and environmental and energy utilization issues that resulted in the renewed interest in applying electrochemical energy conversion technology to electric vehicle applications. Although energy utilization has evolved to be the most significant and important issue, the environmental issue will be discussed first in this section only because of its chronological occurrence. The next part of the chapter is a review of passenger and commercial electric vehicle technology with emphasis on vehicle design and demonstrated performance of vehicles with candidate power sources being developed. This is followed by a discussion of electrochemical power source requirements associated with future electric vehicles that can play a role in meeting modern transportation needs. The last part of the chapter includes first a discussion of how to identify candidate electrochemical systems that might be of interest in meeting electric vehicle power source requirements. This is then followed by a review of the current technological status of these systems and a discussion of the most significant problems that must be resolved before each candidate system can be a viable power source.

  18. Bottle Rock Power Corporation

    E-Print Network [OSTI]

    Power Plant and Steamfield during suspended operations of the geothermal facility in accordance). That Order was extended to DWR and that extension expired on 26 April 2001. On 30 May 2001, the CEC approved for calendar years 2001, 2002, and 2003. The BRPC has also submitted the requisite annual reports for those

  19. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01T23:59:59.000Z

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL , Golden, CO, Rep. NREL CP-520-37358, 2005. Solar Resource Calendar - 1MW AC Output Power December 2011 at 1MW PV site in Tennessee 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

  1. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04T23:59:59.000Z

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  2. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19T23:59:59.000Z

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  3. Wireless Power Transfer

    SciTech Connect (OSTI)

    None

    2013-07-22T23:59:59.000Z

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  4. Distribution Power Flow in IRW Group Meeting

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    in and power out (sum of 3 phases) Power losses Power in & out A, Current in & out A, Power loss A Power in & out B, Current in & out B, Power loss B Power in & out C, Current in & out C, Power loss C Status

  5. A power beaming based infrastructure for space power

    SciTech Connect (OSTI)

    Bamberger, J.A.

    1991-08-01T23:59:59.000Z

    At present all space mission power requirements are met by integral, on-board, self-contained power systems. To provide needed flexibility for space exploration and colonization, an additional approach to on-board, self-contained power systems is needed. Power beaming, an alternative approach to providing power, has the potential to provide increased mission flexibility while reducing total mass launched into space. Laser-power beaming technology provides a viable power and communication infrastructure that can be developed sequentially as it is applied to power satellite constellations in Earth orbit and to orbital transport vehicles transferring satellites and cargos to geosynchronous orbit and beyond. Coupled with nuclear electric propulsion systems for cargo transport, the technology can be used to provide global power to the Lunar surface and to Mars' surface and moons. The technology can be developed sequentially as advances in power system and propulsion system technology occur. This paper presents stepwise development of an infrastructure based on power beaming that can support the space development and exploration goals of the Space Exploration Initiative. Power scenarios based on commonality of power systems hardware with cargo transport vehicles are described. Advantages of this infrastructure are described. 12 refs., 4 figs., 1 tab.

  6. Switching power supply

    DOE Patents [OSTI]

    Mihalka, A.M.

    1984-06-05T23:59:59.000Z

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  7. Spring-powered actuator

    SciTech Connect (OSTI)

    Magill, R. J.; Gaiger, D. J.; Simkins, N.

    1985-07-30T23:59:59.000Z

    A spring-powered actuator especially for operating devices such as fire and/or smoke dampers, doors, hatches, vents, traps, valves and other devices having components which are movable between at least two positions. The spring-powered actuator of the invention comprises a longitudinally-displaceable re-wind screw which is rotatable to recharge the spring of the actuator, and a tilting element on the screw which is mounted for tilting movement with respect to the screw axis to allow longitudinal movement of the re-wind screw so as to permit rapid and reliable release of energy stored in the spring. When used in a combination fire and smoke damper, it thus opens or closes the blades of the latter.

  8. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  9. Pulse power linac

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01T23:59:59.000Z

    A linear acceleration for charged particles is constructed of a plurality of transmission line sections that extend between a power injection region and an accelerating region. Each line section is constructed of spaced plate-like conductors and is coupled to an accelerating gap located at the accelerating region. Each gap is formed between a pair of apertured electrodes, with all of the electrode apertures being aligned along a particle accelerating path. The accelerating gaps are arranged in series, and at the injection region the line sections are connected in parallel. At the injection region a power pulse is applied simultaneously to all line sections. The line sections are graduated in length so that the pulse reaches the gaps in a coordinated sequence whereby pulse energy is applied to particles as they reach each of the gaps along the accelerating path.

  10. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  11. EIS-0131: Initial Northwest Power Act Power Sales Contracts

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration prepared this EIS to analyze the environmental impact of power sales and residential exchange contracts and to explore if there is a need to seek changes to these contracts.

  12. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  13. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  14. Magnetic machines and power electronics for power MEMS applications

    E-Print Network [OSTI]

    Das, Sauparna, 1979-

    2005-01-01T23:59:59.000Z

    This thesis presents the modeling, design, and characterization of microfabricated, surface-wound, permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS applications such as a ...

  15. SaskPower Small Power Producers Program (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from...

  16. Transmission rights and market power on electric power networks

    E-Print Network [OSTI]

    Joskow, Paul L.

    2000-01-01T23:59:59.000Z

    We analyze whether and how the allocation of transmission rights associated with the use of electric power networks affects the behavior of electricity generators and electricity consumers with market power. We consider ...

  17. Village Power `97. Proceedings

    SciTech Connect (OSTI)

    Cardinal, J.; Flowers, L.; Taylor, R.; Weingart, J. [eds.

    1997-09-01T23:59:59.000Z

    It is estimated that two billion people live without electricity and its services. In addition, there is a sizable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-disciplinary, multi-technology, multi-application program composed of six key activities, including village application development, computer model development, systems analysis, pilot project development, technical assistance, and an Internet-based village power project database. The current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets. NREL`s RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. This document contains reports presented at the Proceedings of Village Power, 1997. Individual projects have been processed separately for the United States Department of Energy databases.

  18. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  19. Bulk Power Transmission Study

    E-Print Network [OSTI]

    John, T.

    BULK POWER TRANSMISSION STUDY TOMMY JOH~ P. E. Manager of Resource Recovery Waste Management of North America, Inc. Houston, Texas Texans now have a choice. We can become more efficient and maintain our standard of living, or we can... continue business as usual and watch our standard of living erode from competition from other regions. In the past, except for improving reliability, there was no need for a strong transmission system. When Texas generation was primarily gas fueled...

  20. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22T23:59:59.000Z

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr