National Library of Energy BETA

Sample records for lowest annualized lifecycle

  1. Lifecycle Model

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter describes the lifecycle model used for the Departmental software engineering methodology.

  2. Hanford Lifecycle Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Lifecycle Reports Hanford Lifecycle Reports Hanford Lifecycle Reports Hanford Lifecycle Reports Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size 2016 Hanford Lifecycle Report 2015 Hanford Lifecycle Report 2014 Hanford Lifecycle Report 2013 Hanford Lifecycle Report 2012 Hanford Lifecycle Report 2011 Hanford Lifecycle Report Share on Last Updated 02/22/2016 2:54

  3. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual ...

  4. Performance Measure Unit Lifecycle Total Estimate Pre-2016 Lifecycle...

    Office of Environmental Management (EM)

    Measure Unit Lifecycle Total Estimate Pre-2016 Lifecycle Values 2016 Target 2017 Target Pu packaged for long-term disposition Number of Containers 5,089 5,089 5,089 5,089 eU ...

  5. Lifecycle Analysis Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GREET TM Life-Cycle Analysis Model Advanced Water Splitting Materials Workshop Stanford University, Stanford CA April 14, 2016 Amgad Elgowainy Energy Systems Division Argonne National Laboratory The GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model GREET 1 model: Fuel-cycle (or well-to-wheels, WTW) modeling of vehicle/fuel systems Stochastic Simulation Tool Algae Process Description (APD) Carbon Calculator for Land Use Change from Biofuels (CCLUB) GREET 2

  6. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 | Department of Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual supplements to the NIST Handbook 135 and NBS Special Publication 709. Download the handbook. (564.47 KB) More Documents & Publications Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of

  7. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  8. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  9. Background Information for Independent Review Team. Lifecycle...

    Office of Scientific and Technical Information (OSTI)

    Background Information for Independent Review Team. Lifecycle Plan and FY14 Quarterly ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  10. Roles and Lifecycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roles and Lifecycle Roles and Lifecycle Employee Property Responsibilities by Role Director, Office of Administration The Director, Office of Administration, has the following responsibilities: *Establish a personal property management program for DOE Headquarters, except for the Federal Energy Regulatory Commission (FERC); *Appoint an Organizational Property Management Officer (OPMO) who is responsible for the Headquarters personal property management program; and *Approve, conditionally

  11. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products PDF icon ...

  12. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

    Office of Environmental Management (EM)

    Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy ...

  13. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting van002_wang_2013_o.pdf (1.64 MB) More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015:

  14. Climate Change Update: Baseload Geothermal is One of the Lowest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy Technologies Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy...

  15. Model of the Product Development Lifecycle.

    SciTech Connect (OSTI)

    He, Sunny L.; Roe, Natalie H.; Wood, Evan; Nachtigal, Noel M.; Helms, Jovana

    2015-10-01

    While the increased use of Commercial Off-The-Shelf information technology equipment has presented opportunities for improved cost effectiveness and flexibility, the corresponding loss of control over the product's development creates unique vulnerabilities and security concerns. Of particular interest is the possibility of a supply chain attack. A comprehensive model for the lifecycle of hardware and software products is proposed based on a survey of existing literature from academic, government, and industry sources. Seven major lifecycle stages are identified and defined: (1) Requirements, (2) Design, (3) Manufacturing for hardware and Development for software, (4) Testing, (5) Distribution, (6) Use and Maintenance, and (7) Disposal. The model is then applied to examine the risk of attacks at various stages of the lifecycle.

  16. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  17. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part I: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent, and LED ...

  18. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A ...

  19. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, ...

  20. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne ...

  1. Life-Cycle Analysis of Geothermal Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Analysis of Geothermal Technologies Life-Cycle Analysis of Geothermal Technologies The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects. analysis_wang_lifecycle_analysis.pdf (878.83 KB) More Documents & Publications AAPG Low-Temperature Webinar GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

  2. Life-cycle environmental analysis--A three dimensional view

    SciTech Connect (OSTI)

    Sutherlin, K.L.; Black, R.E. )

    1993-01-01

    Both the US Air Force and the US Army have recently increased their emphasis on life-cycles of weapons systems. Along with that emphasis, there has also been an increase in emphasis in life-cycle National Environmental Policy Act (NEPA) documentation. Conflicts and inefficiencies arise when a weapon system is fielded and prompts the need for a site-specific environmental analysis. In their research and experience, the authors found no real link between life-cycle environmental analysis and site-specific environmental analyses required at various points within the life-cycle of a weapon. This other look at the relation between life-cycle and site-specific environmental analyses has the potential to increase efficiency in NEPA compliance actions and save tax dollars in the process. The authors present a three-dimensional model that relates life-cycle analyses to site-specific analyses.

  3. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    the Life-Cycle Energy Consumption of Incandescent, Compact ... upstream generation of electricity drives themore total ... However, a more detailed understanding of end-of-life ...

  4. Lifecycle of laser-produced air sparks

    SciTech Connect (OSTI)

    Harilal, S. S. Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.

  5. U.S. Energy Information Administration | Electric Power Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual

  6. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    SciTech Connect (OSTI)

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  7. Polarized neutron matter: A lowest order constrained variational approach

    SciTech Connect (OSTI)

    Bordbar, G. H.; Bigdeli, M.

    2007-04-15

    In this paper, we calculate some properties of polarized neutron matter using the lowest order constrained variational method with the AV{sub 18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.

  8. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    useful for evaluating the costs and benefits of energy and water conservation and renewable energy projects. The life-cycle cost (LCC) of two or more alternative designs are...

  9. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Energy Storage | Department of Energy Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy

  10. New Tool Yields Custom Environmental Data for Lifecycle Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tool Yields Custom Environmental Data for Lifecycle Analysis New Tool Yields Custom Environmental Data for Lifecycle Analysis September 10, 2012 - 1:00pm Addthis Washington, DC - A new, free online tool developed by a Department of Energy (DOE) laboratory allows users to customize and analyze the environmental impact of various fuels before they are used to create power. Information from the Excel™-based Upstream Dashboard - developed by the Office of Fossil Energy's

  11. Beyond pollution prevention: Managing life-cycle costs

    SciTech Connect (OSTI)

    Cohan, D.; Gess, D. )

    1993-01-01

    Companies that purchases and use chemicals and materials in their everyday operation are finding that disposing of these products is becoming increasingly expensive. These disposal and liability costs have been the motivating factor behind recent efforts at pollution prevention. This paper suggests an alternative approach: considering the full life-cycle costs of chemicals and materials at the time purchase decisions are made. Life-cycle cost is the sum of all the costs that a product is expected to incur from the time of its purchase, during its use, until the disposal of any wastes or by-products and beyond as long as liabilities may remain. It represents the product's real cost to the company, and as such is a better basis for making cost-effective decisions. By using life-cycle costs to make decisions, companies can prevent uneconomical decisions on potentially hazardous materials and more effectively minimize overall costs. Life-cycle cost management can also help in the formulation of pollution prevention plans by identifying cost-effective waste-reduction alternatives. Although the concepts of life-cycle cost management are straightforward and intuitive, applying these concepts to real decisions may be challenging. This paper presents an overview of life-cycle cost management, discusses some of the challenges companies face applying this approach to real decisions, and provides solutions that meet these challenges.

  12. Life-Cycle Cost Analysis for Utility Combinations (LCCA) (for microcomputers). Software

    SciTech Connect (OSTI)

    Corin, N.

    1989-09-01

    The Life-Cycle Cost Analysis for Utility Combinations (LCCA) system evaluates housing project utility systems. The system determines the cost-effectiveness and aids in the selection of the utility combination with the lowest life-cycle cost. Because of the large number of possible combinations of fuels, purchasing methods, types of installations and utility rates, a systematic analysis of costs must be made. The choice of utilities may substantially influence construction cost. LCCA calculates initial and monthly costs of both individual dwelling units and project totals. Therefore, the LCCA system calculates costs for four combinations of fuel/energy. LCCA analyzes the following four utility combinations: Combination 1--Electricity; Combination 2--Electricity and Gas; Combination 3--Electricity and Oil; and Combination 4--Electricity, Gas and Oil. Software Description: The software is written in the Lotus 1-2-3 programming language for implementation on an IBM PC microcomputer using Lotus 1-2-3. Software requires 160K of disk storage, with a hard disk and one floppy or two floppy disk drives.

  13. Dynamics of momentum entanglement in lowest-order QED

    SciTech Connect (OSTI)

    Lamata, L.; Leon, J.; Solano, E.

    2006-01-15

    We study the dynamics of momentum entanglement generated in the lowest-order QED interaction between two massive spin-(1/2) charged particles, which grows in time as the two fermions exchange virtual photons. We observe that the degree of generated entanglement between interacting particles with initial well-defined momentum can be infinite. We explain this divergence in the context of entanglement theory for continuous variables, and show how to circumvent this apparent paradox. Finally, we discuss two different possibilities of transforming momentum into spin entanglement, through dynamical operations or through Lorentz boosts.

  14. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    SciTech Connect (OSTI)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-09-15

    Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction

  15. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A.

    1996-05-01

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  16. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  17. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of how agencies ...

  18. 2016 Lifecycle Estimate for Los Alamos National Laboratory's Environmental Legacy Cleanup Responsibilities

    Broader source: Energy.gov [DOE]

    At the July 27, 2016 meeting: Doug Hintze, DOE EM-LA, Presented on the Environmental Management Lifecycle Baseline

  19. Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes the clarification of how agencies determine the life-cycle cost for investments required by Executive Order 13123.

  20. Annual Reports - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reports Annual Reports Annual Report 2015 Annual Report 2014 Annual Report 2013 Annual Report 2012 Annual Report 2011 Annual Report 2010 Annual Report 2009 Annual Report 2008...

  1. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  2. Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Report | Department of Energy cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_005_wang.pdf (192.84 KB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010

  3. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect (OSTI)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  4. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  5. Lowest Engine-Out Emissions as the Key to the Future of the Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New Development Rersults Lowest Engine-Out Emissions as the Key to the Future of the ...

  6. U.S. gasoline prices fall to lowest level of the year (long version...

    U.S. Energy Information Administration (EIA) Indexed Site

    14, 2014 U.S. gasoline prices fall to lowest level of the year (long version) The U.S. average retail price for regular gasoline fell to its lowest level of the year at 3.21 a ...

  7. U.S. gasoline prices fall to lowest level since January 2011...

    U.S. Energy Information Administration (EIA) Indexed Site

    20, 2014 U.S. gasoline prices fall to lowest level since January 2011 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since January 2011 ...

  8. U.S. gasoline prices fall to lowest level since January 2011...

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2014 U.S. gasoline prices fall to lowest level since January 2011 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since January 2011 ...

  9. U.S. gasoline prices decrease to lowest level since May 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    decrease to lowest level since May 2009 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since May 2009 to 2.30 a gallon on Monday. ...

  10. U.S. diesel fuel price falls to lowest level since July 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel price falls to lowest level since July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest point since July 2012 at 3.80 a gallon on Monday. ...

  11. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  12. GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Questions | Department of Energy GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions November 23, 2015 - 2:57pm Addthis GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model allows researchers and analysts to fully evaluate the energy and emission

  13. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  14. Hanford Advisory Board Budgets and Contracts Committee Meeting 2011 Hanford Lifecycle Scope, Schedule and Cost Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Lifecycle Scope, Schedule and Cost Report Stephen Korenkiewicz, Project Manager US Department of Energy - Richland Operations Office June 6, 2013 1 2 Tri-Party Project Managers The U.S. Department of Energy (DOE), Richland Operations Office (RL) Project Integration and Control (PIC) organization is responsible for Tri-Party Agreement (TPA) Milestone M-036-01C, 2013 Hanford Lifecycle Scope, Schedule and Cost Report (Lifecycle Report) * Stephen Korenkiewicz is the RL Project Manager * David

  15. An Assessment of Lifecycle Cost in the U.S. over Time

    SciTech Connect (OSTI)

    Previsic, Mirko

    2011-10-06

    Presentation from the 2011 Water Peer Review in which principal investigator discussed project progress to assess Lifecycle cost of Wave, Tidal, River, and Ocean Current Technologies

  16. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  17. GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modules; an update of combustion equipment emission factors; and new data on land management change effects on stover-derived biofuel life-cycle greenhouse gas emissions. ...

  18. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    SciTech Connect (OSTI)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

  19. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  20. U.S. diesel fuel prices falls to lowest level since mid-July...

    U.S. Energy Information Administration (EIA) Indexed Site

    prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest level since mid-July 2012 at 3.73 a gallon on Monday. ...

  1. Fact #926: May 23, 2016 Petroleum Imports Below $200 Billion, Lowest Point

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Over a Decade - Dataset | Department of Energy 6: May 23, 2016 Petroleum Imports Below $200 Billion, Lowest Point in Over a Decade - Dataset Fact #926: May 23, 2016 Petroleum Imports Below $200 Billion, Lowest Point in Over a Decade - Dataset Excel file and dataset for Petroleum Imports Below $200 Billion, Lowest Point in Over a Decade fotw#926_web.xlsx (23.51 KB) More Documents & Publications Fact #897: November 2, 2015 Fuel Wasted in Traffic Congestion - Dataset Project Reports for

  2. Fact #935: July 25, 2016 By Volume, Net Petroleum Imports are at Lowest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Point Since 1985 - Dataset | Department of Energy 5: July 25, 2016 By Volume, Net Petroleum Imports are at Lowest Point Since 1985 - Dataset Fact #935: July 25, 2016 By Volume, Net Petroleum Imports are at Lowest Point Since 1985 - Dataset Excel file and dataset for By Volume, Net Petroleum Imports are at Lowest Point Since 1985 fotw#935_web.xlsx (25.09 KB) More Documents & Publications Fact #838: September 15, 2014 Net Imports of Petroleum were Only 33% of U.S. Consumption in 2013 -

  3. U.S. diesel fuel price falls to lowest level since January 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price falls to lowest level since January 2011 The U.S. average retail price for on-highway diesel fuel fell to its lowest level since January 2011 at $3.42 a gallon on Monday. That's down 11.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Rocky Mountain states at 3.50 a gallon, down 15.1 cents from a week ago. Prices were lowest in the Lower Atlantic states at 3.31 a gallon, down 7.2 cents.

  4. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power 16_life_revision_previsic_update.ppt (2.64 MB) More Documents & Publications 2014 Water Power Program Peer Review

  5. U.S. gasoline prices continues to decrease at lowest level since...

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 U.S. gasoline prices continues to decrease at lowest level since May 2009; 2 states with sub 2 prices (short version) The U.S. average retail price for regular gasoline ...

  6. U.S. gasoline prices fall to lowest level since October 2009...

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 U.S. gasoline prices fall to lowest level since October 2009 (long version) The U.S. average retail price for regular gasoline fell to 2.55 a gallon on Monday. That's down ...

  7. U.S. gasoline prices fall to lowest level since October 2009...

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices fall to lowest level since October 2009 (short version) The U.S. average retail price for regular gasoline fell to 2.55 a gallon on Monday. That's down 12 cents ...

  8. U.S. gasoline prices fall to lowest level since February 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2014 U.S. gasoline prices fall to lowest level since February 2010 (long version) The U.S. average retail price for regular gasoline fell to 2.68 a gallon on Monday. That's ...

  9. U.S. gasoline prices fall to lowest level since February 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices fall to lowest level since February 2010 (short version) The U.S. average retail price for regular gasoline fell to 2.68 a gallon on Monday. That's down 9.9 cents ...

  10. U.S. gasoline prices decrease to lowest level since May 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    May 2009 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since May 2009 to 2.30 a gallon on Monday. That's down 10.4 cents from a ...

  11. U.S. gasoline prices at its lowest since February 2011 (short...

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell 7.1 cents from a week ago to 3.19 a gallon on Monday. That's the lowest national pump price since February ...

  12. U.S. gasoline price falls to lowest point of year so far (long...

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to its lowest point this year to 3.29 a gallon on Monday. That's down 6.6 cents from a week ago, based on the ...

  13. U.S. gasoline prices at its lowest since February 2011 (long...

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell 7.1 cents from a week ago to 3.19 a gallon on Monday. That's the lowest national pump price since February ...

  14. U.S. gasoline price falls to lowest point of year so far (short...

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to its lowest point this year to 3.29 a gallon on Monday. That's down 6.6 cents from a week ago, based on ...

  15. U.S. diesel fuel price continue to decrease; lowest level since...

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continue to decrease; lowest level since March 2010 The U.S. average retail price for on-highway diesel fuel fell to 2.87 a gallon on Monday. That's down 6.7 ...

  16. Climate Change Update: Baseload Geothermal is One of the Lowest Emitting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technologies | Department of Energy Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy Technologies Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy Technologies June 26, 2013 - 11:53am Addthis Geothermal energy - energy derived from the heat of the earth - has the ability to produce electricity consistently around the clock, draws a small environmental footprint, and emits little or no greenhouse gases (GHG). Estimates of

  17. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

  18. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  19. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  20. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Fuels in the Transportation Sector | Department of Energy A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin 2004_deer_abbott.pdf (160.87 KB) More Documents & Publications Shell Gas to Liquids

  1. Fact #926: May 23, 2016 Petroleum Imports Below $200 Billion, Lowest Point

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Over a Decade | Department of Energy 6: May 23, 2016 Petroleum Imports Below $200 Billion, Lowest Point in Over a Decade Fact #926: May 23, 2016 Petroleum Imports Below $200 Billion, Lowest Point in Over a Decade SUBSCRIBE to the Fact of the Week Petroleum exports were rising in 2015 and petroleum imports held fairly steady at just over 9 million barrels per day, but the value of those imports and exports was significantly lower than the previous year. The falling cost of a barrel of oil

  2. Fact #935: July 25, 2016 By Volume, Net Petroleum Imports are at Lowest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Point Since 1985 | Department of Energy 5: July 25, 2016 By Volume, Net Petroleum Imports are at Lowest Point Since 1985 Fact #935: July 25, 2016 By Volume, Net Petroleum Imports are at Lowest Point Since 1985 SUBSCRIBE to the Fact of the Week Until recently, the petroleum imported into the United States (net imports) followed a similar trend to the petroleum consumed. However, from 2013 to 2015 the consumption of petroleum rose each year while petroleum imports declined. Net imports of

  3. Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine: New Development Rersults | Department of Energy Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New Development Rersults Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New Development Rersults 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: AVT LIST Gmbh, Austria 2004_deer_moser.pdf (869.31 KB) More Documents & Publications Variable Charge Motion for 2007-2010 Heavy Duty

  4. U.S. diesel fuel price continue to decrease; lowest level since February 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continue to decrease; lowest level since February 2010 The U.S. average retail price for on-highway diesel fuel fell to $2.83 a gallon on Monday. That's down 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.04 a gallon, down 3.7 cents from a week ago. Prices were lowest at 2.77 a gallon in the Midwest states, down 3.9 cents and in the Gulf Coast region, down

  5. U.S. diesel fuel price falls to lowest level in four years

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price falls to lowest level in four years The U.S. average retail price for on-highway diesel fuel fell to $3.28 a gallon on Monday. That's down 13.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.43 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.18 a gallon, down 15.3 cents. This is Amerine Woodyard, with EIA, in Washington.

  6. U.S. diesel fuel price falls to lowest level since February 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    , 2014 U.S. diesel fuel price falls to lowest level since February 2011 The U.S. average retail price for on-highway diesel fuel fell to $3.62 a gallon on Monday. That's down 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.79 a gallon, down a penny from a week ago. Prices were lowest in the Lower Atlantic and Gulf Coast regions at 3.53 a gallon, down 2.2 cents and down 3.1 cents,

  7. U.S. diesel fuel prices falls to lowest level since mid-July 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2014 U.S. diesel fuel prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to $3.70 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.89 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Lower Atlantic, Midwest, and Gulf Coast regions at 3.64 a gallon. This is Amerine

  8. U.S. gasoline prices at lowest level since November 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2014 U.S. gasoline prices at lowest level since November 2010 (long version) The U.S. average retail price for regular gasoline fell to $2.94 a gallon on Monday. That's down 5.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.17 a gallon, down 6.9 cents from a week ago. Prices were lowest in the Gulf Coast region at 2.72 a gallon, down 4.6 cents

  9. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  10. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  11. Federal Government’s Energy Consumption Lowest in Almost 40 Years

    Broader source: Energy.gov [DOE]

    While the U.S. federal government continues to be one of the largest energy consumers in the world, its consumption has been steadily declining for nearly four decades, and now stands at less than 1 quadrillion British thermal units, the lowest since 1975, when data collection began. Find out how our Federal Energy Management Program helped agencies achieve this milestone.

  12. Temperature dependence of magnetic susceptibility of nuclear matter: Lowest order constrained variational calculations

    SciTech Connect (OSTI)

    Bigdeli, M.; Bordbar, G. H.; Rezaei, Z.

    2009-09-15

    In this paper we study the magnetic susceptibility and other thermodynamic properties of the polarized nuclear matter at finite temperature using the lowest order constrained variational (LOCV) method employing the AV{sub 18} potential. Our results show a monotonic behavior for the magnetic susceptibility which indicates that the spontaneous transition to the ferromagnetic phase does not occur for this system.

  13. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Classes | Department of Energy 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model with the lowest fuel economy gets 10 miles per gallon (MPG) with an estimated annual fuel

  14. OHA 2012 ANNUAL REPORT | Department of Energy

    Energy Savers [EERE]

    2 ANNUAL REPORT OHA 2012 ANNUAL REPORT Report on the FY 2011 operations of the Office of Hearings and Appeals (OHA). Here are highlights for the past year: Personnel security hearings. Under DOE's personnel security program, OHA conducts administrative hearings concerning individuals' eligibility for access to classified information or special nuclear material. By the end of FY 2012, our average time for issuing a decision after the receipt of the hearing transcript stood at 24 days, its lowest

  15. OHA 2013 ANNUAL REPORT | Department of Energy

    Energy Savers [EERE]

    3 ANNUAL REPORT OHA 2013 ANNUAL REPORT Personnel security hearings. Under DOE's personnel security program, OHA conducts administrative hearings concerning individuals' eligibility for access to classified information or special nuclear material. By the end of FY 2013, our average time for issuing a decision after the receipt of the hearing transcript stood at 21days, its lowest level in any of the last ten years, over 27 percent below our average over the last five years, and over 60 percent

  16. Spin polarized asymmetric nuclear matter and neutron star matter within the lowest order constrained variational method

    SciTech Connect (OSTI)

    Bordbar, G. H.; Bigdeli, M.

    2008-01-15

    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.

  17. Lowest order constrained variational calculation of polarized neutron matter at finite temperature

    SciTech Connect (OSTI)

    Bordbar, G. H.; Bigdeli, M.

    2008-11-15

    Some properties of polarized neutron matter at finite temperature have been studied using the lowest order constrained variational (LOCV) method with the Argonne V18 (AV18) potential. Our results indicate that a spontaneous transition to the ferromagnetic phase does not occur. Effective mass, free energy, magnetic susceptibility, entropy, and the equation of state of polarized neutron matter at finite temperature are also calculated. A comparison is also made between our results and those of other many-body techniques.

  18. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Schoenung, Susan M.; Hassenzahl, William V.

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  19. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  20. A diabatic representation of the two lowest electronic states of Li{sub 3}

    SciTech Connect (OSTI)

    Ghassemi, Elham Nour; Larson, Jonas; Institut für Theoretische Physik, Universität zu Köln, Köln De-50937 ; Larson, Åsa

    2014-04-21

    Using the Multi-Reference Configuration Interaction method, the adiabatic potential energy surfaces of Li{sub 3} are computed. The two lowest electronic states are bound and exhibit a conical intersection. By fitting the calculated potential energy surfaces to the cubic E ⊗ ε Jahn-Teller model we extract the effective Jahn-Teller parameters corresponding to Li{sub 3}. These are used to set up the transformation matrix which transforms from the adiabatic to a diabatic representation. This diabatization method gives a Hamiltonian for Li{sub 3} which is free from singular non-adiabatic couplings and should be accurate for large internuclear distances, and it thereby allows for bound dynamics in the vicinity of the conical intersection to be explored.

  1. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect (OSTI)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  2. Product Life-Cycle Management: The future of product and packaging design

    SciTech Connect (OSTI)

    Jung, L.B. )

    1993-01-01

    Product Life-Cycle Management (PLCM) is the control of environmental impacts associated with all the life phases of a product, from design through manufacture, packaging and disposal. PLCM dictates that products be manufactured using less harmful chemicals and fewer resources. Product packaging must be minimal and made of renewable and recyclable resources. Both the product and the package must contain recycled material. Packaging and products must also be collected for recycle at the end of their intended use, requiring infrastructure to collect, transport and process these materials. European legislation now requires the return and recycle of packaging materials by the end of 1993. Requirements are also being imposed on manufacturers of automobile related products; automotive batteries, tires and even automobiles themselves must now be accepted back and recycled. Increasing public concerns and awareness of environmental impacts plus the decreasing availability of natural resources will continue to push product life-cycle legislation forward.

  3. DOE/IG Annual Performance Report FY 2008, Annual Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEIG Annual Performance Report FY 2008, Annual Performance Plan FY 2009 DOEIG Annual Performance Report FY 2008, Annual Performance Plan FY 2009 DOEIG Annual Performance Report ...

  4. Petroleum Marketing Annual Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Petrolem Reports Petroleum Marketing Annual Archives The Petroleum Marketing Annual was discontinued in 2010. Choose the year from the archive Petroleum Marketing Annual you wish...

  5. Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis March 24, 2015 Conversion Ling Tao†, Jeongwoo Han* †National Renewable Energy Laboratory *Argonne National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 2 | Bioenergy Technologies Office Goal Statement * Conduct the techno-economic analysis (TEA) and life-cycle analysis (LCA) of Waste-To-Energy (WTE) pathways to evaluate their economic viability and environmental sustainability - Strategic

  6. Using life-cycle cost management to cut costs and reduce waste

    SciTech Connect (OSTI)

    Gess, D.; Cohan, D.; McLearn, M.

    1995-12-01

    Increasing competition is forcing electric utility companies to reduce costs and improve efficiency. At the same time, increasing costs for waste disposal and emissions control and growing environmental regulatory pressure are providing powerful incentives for firms in virtually every industry to investigate opportunities to reduce or even eliminate the adverse environmental impacts associated with their operations. companies are also striving toward environmental stewardship to realize the potential benefits to the firms`s public image, employees, an shareholders. Motivated by these cost and environmental concerns, the Electric Power Research Institute (EPRI), Decision Focus Inc. (DFI), and a consortium of electric utility companies have developed techniques and tools to help electric utility companies to make purchase and operating decisions based on their full life-cycle costs, which explicitly include environmental, health, and safety costs. The process, called Life-Cycle Cost Management (LCCM), helps utilities to efficiently assemble the appropriate life-cycle information and bring it to bear on their business decisions. To date, several utilities have used LCCM to evaluate a range of product substitution and process improvement decisions and to implement cost-savings actions. This paper summarizes some of these applications.

  7. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    SciTech Connect (OSTI)

    Stadel, Alexander; Gursel, Petek; Masanet, Eric

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  8. Building technologies program. 1995 annual report

    SciTech Connect (OSTI)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  9. Annual Training Plan Template

    Broader source: Energy.gov [DOE]

    The Annual Training Plan Template is used by an organization's training POC to draft their organization's annual training plan.

  10. Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    412 Archive Data (The EIA-412 survey has been terminated.) The EIA-412 "Annual Electric Industry Financial Report" collected information such as income statements, balance sheets, sales and purchases, and transmission line data. Form EIA-412 data Schedules Year 2 Electric Balance Sheet 3 Electric Income Statement 4 Electric Plant 5 Taxes, Tax Equivalents, Contributions, and Services During Year 6 Sales of Electricity for Resale (Account 447) 7 Electric Operation and Maintenance

  11. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel

  12. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Revised) (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  13. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation

    SciTech Connect (OSTI)

    Hines, J. Wesley; Upadhyaya, Belle; Sharp, Michael; Ramuhalli, Pradeep; Jeffries, Brien; Nam, Alan; Strong, Eric; Tong, Matthew; Welz, Zachary; Barbieri, Federico; Langford, Seth; Meinweiser, Gregory; Weeks, Matthew

    2014-11-06

    On-line monitoring and tracking of nuclear plant system and component degradation is being investigated as a method for improving the safety, reliability, and maintainability of aging nuclear power plants. Accurate prediction of the current degradation state of system components and structures is important for accurate estimates of their remaining useful life (RUL). The correct quantification and propagation of both the measurement uncertainty and model uncertainty is necessary for quantifying the uncertainty of the RUL prediction. This research project developed and validated methods to perform RUL estimation throughout the lifecycle of plant components. Prognostic methods should seamlessly operate from beginning of component life (BOL) to end of component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only information available may be past failure times of similar components used in similar conditions, and the predicted failure distribution can be estimated with reliability methods such as Weibull Analysis (Type I Prognostics). As the component operates, it begins to degrade and consume its available life. This life consumption may be a function of system stresses, and the failure distribution should be updated to account for the system operational stress levels (Type II Prognostics). When degradation becomes apparent, this information can be used to again improve the RUL estimate (Type III Prognostics). This research focused on developing prognostics algorithms for the three types of prognostics, developing uncertainty quantification methods for each of the algorithms, and, most importantly, developing a framework using Bayesian methods to transition between prognostic model types and update failure distribution estimates as new information becomes available. The developed methods were then validated on a range of accelerated degradation test beds. The ultimate goal of prognostics is to provide an accurate assessment for

  14. Life-cycle cost and impacts: alternatives for managing KE basin sludge

    SciTech Connect (OSTI)

    Alderman, C.J.

    1997-06-27

    This document presents the results of a life-cycle cost and impacts evaluation of alternatives for managing sludge that will be removed from the K Basins. The two basins are located in the 100-K Area of the Hanford Site. This evaluation was conducted by Fluor Daniel Hanford, Inc. (FDH) and its subcontractors to support decisions regarding the ultimate disposition of the sludge. The long-range plan for the Hanford Site calls for spent nuclear fuel (SNF), sludge, debris, and water to be removed from the K East (KE) and K West (KW) Basins. This activity will be conducted as a removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The scope of the CERCLA action will be limited to removing the SNF, sludge, debris, and water from the basins and transferring them to authorized facilities for interim storage and/or treatment and disposal. The scope includes treating the sludge and water in the 100-K Area prior to the transfer. Alternatives for the removal action are evaluated in a CERCLA engineering evaluation/cost analysis (EE/CA) and include different methods for managing sludge from the KE Basins. The scope of the removal action does not include storing, treating, or disposing of the sludge once it is transferred to the receiving facility and the EE/CA does not evaluate those downstream activities. This life-cycle evaluation goes beyond the EE/CA and considers the full life-cycle costs and impacts of dispositioning sludge.

  15. Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 THROUGH 09/30/2010 The following Annual Freedom of Information Act report covers the Period 10/01/2009, through 09/30/2010, as required by 5 U.S.C. 552. I. BASIC INFORMATION REGARDING REPORT 1. Kevin T. Hagerty, Director Office of Information Resources, MA-90 U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 202-586-5955 Alexander Morris, FOIA Officer Sheila Jeter, FOIA/Privacy Act Specialist FOIA Office, MA-90 Office of Information Resources U.S. Department of Energy

  16. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report

  17. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect (OSTI)

    Liu, Bing

    2003-12-18

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  18. NERSC Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports NERSC Annual Reports Sort by: Default | Name 2015AnnualReportcover NERSC Annual Report 2015 Download Image: 2015AnnualReportcover.png | png | 542 KB Download File: 2015NERSCAnnualReportFinal.pdf | pdf | 4.8 MB 2014cover.jpg NERSC Annual Report 2014 Download Image: 2014cover.jpg | jpg | 202 KB Download File: 2014NERSCAnnualReport.pdf | pdf | 6.1 MB 2013-Annual-Report-cover.png NERSC Annual Report 2013 Download Image: 2013-Annual-Report-cover.png | png | 645 KB Download File:

  19. HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134

    SciTech Connect (OSTI)

    PIERSON KL; MEINERT FL

    2012-01-26

    Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.

  20. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  1. Performance metrics and life-cycle information management for building performance assurance

    SciTech Connect (OSTI)

    Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

    1998-06-01

    Commercial buildings account for over $85 billion per year in energy costs, which is far more energy than technically necessary. One of the primary reasons buildings do not perform as well as intended is that critical information is lost, through ineffective documentation and communication, leading to building systems that are often improperly installed and operated. A life-cycle perspective on the management of building information provides a framework for improving commercial building energy performance. This paper describes a project to develop strategies and techniques to provide decision-makers with information needed to assure the desired building performance across the complete life cycle of a building project. A key element in this effort is the development of explicit performance metrics that quantitatively represent performance objectives of interest to various building stakeholders. The paper begins with a discussion of key problems identified in current building industry practice, and ongoing work to address these problems. The paper then focuses on the concept of performance metrics and their use in improving building performance during design, commissioning, and on-going operations. The design of a Building Life-cycle Information System (BLISS) is presented. BLISS is intended to provide an information infrastructure capable of integrating a variety of building information technologies that support performance assurance. The use of performance metrics in case study building projects is explored to illustrate current best practice. The application of integrated information technology for improving current practice is discussed.

  2. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  3. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  4. Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility

    SciTech Connect (OSTI)

    Umphrey, M.R.

    1995-01-16

    The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

  5. Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Reports Annual Reports Note: Some of the following documents are in PDF and will require Adobe Reader for viewing. Freedom of Information Act Annual Reports Annual Report for 2015 Annual Report for 2014 Annual Report for 2013 Annual Report for 2012 Annual Report for 2011 Annual Report for 2010 Annual Report for 2009 Annual Report for 2008 (pdf) Annual Report for 2007 (pdf) Annual Report for 2006 (pdf) Annual Report for 2005 (pdf) Annual Report for 2004 (pdf) Annual Report for 2003 (pdf)

  6. Lowest order constrained variational calculation of polarized nuclear matter with the modern AV{sub 18} potential

    SciTech Connect (OSTI)

    Bordbar, G. H.; Bigdeli, M.

    2007-09-15

    The lowest order constrained variational method is applied to calculate the polarized symmetrical nuclear matter properties with the modern AV{sub 18} potential performing microscopic calculations. Results based on the consideration of magnetic properties show no sign of phase transition to a ferromagnetic phase.

  7. "Annual Coal Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Coal Report Data Released: January 20, 2015 Data for: 2013 Re-Release Date: April 23, 2015 (CORRECTION) Annual Coal Report 2013 CorrectionUpdate April 23, 2015 The Annual ...

  8. Annual Performance Report

    Office of Legacy Management (LM)

    Department of Energy Annual Performance Report, Shiprock, New Mexico October 2014 Doc. ... 25 Annual Performance Report, Shiprock, New Mexico U.S. Department of Energy Doc. No. ...

  9. Petroleum Marketing Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics ...

  10. Petroleum Marketing Annual

    Gasoline and Diesel Fuel Update (EIA)

    PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . ...

  11. Petroleum Marketing Annual 1997

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PDF 1.2MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . ...

  12. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  13. Petroleum Marketing Annual 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 2009 Released: August 6, 2010 Next Release Date: Discontinued find annual data in Petroleum Marketing Monthly Monthly price and volume statistics on...

  14. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  15. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  16. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    SciTech Connect (OSTI)

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-03-31

    This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

  17. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  18. Integrating a life-cycle assessment with NEPA: Does it make sense?

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03

    The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

  19. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  20. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  1. 2008 Annual Report

    SciTech Connect (OSTI)

    2008-01-01

    This annual report includes: a brief overview of Western; FY 2008 operational highlights; and financial data.

  2. U.S. Recordable Injury and Illness Rates and Lost Workday Rates Lowest Since BLS Began Reporting

    Broader source: Energy.gov [DOE]

    Acting Assistant Secretary for the Occupational Safety and Health Administration (OSHA), Jonathan L. Snare, told a gathering of safety and health professionals at the American Society of Safety Engineers Annual National Conference in New Orleans, LA, that the nation’s recordable injury and illness rates have declined 7.1 percent from 2002 to 2003.

  3. Annual Review | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON-SITE RESEARCH PUBLICATIONS Annual Reviews FY13 Annual Review FY12 Annual Review FY11 Annual Review...

  4. Annual Performance Report FY 2005 Annual Performance Plan FY 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 Annual Performance Plan FY 2006 Annual Performance Report FY 2005 Annual Performance Plan FY 2006 Annual Performance Report FY 2005 Annual Performance Plan FY 2006 Annual Performance Report FY 2005 Annual Performance Plan FY 2006 (2.47 MB) More Documents & Publications Annual Performance Report FY 2005 Annual Performance Plan FY 2006 Vehicle Technologies Office Merit Review 2016: Overview and Progress of the Advanced Battery Materials Research (BMR) Program Auidt

  5. Finite-temperature calculations for spin-polarized asymmetric nuclear matter with the lowest order constrained variational method

    SciTech Connect (OSTI)

    Bigdeli, M.; Bordbar, G. H.; Poostforush, A.

    2010-09-15

    The lowest order constrained variational technique has been used to investigate some of the thermodynamic properties of spin-polarized hot asymmetric nuclear matter, such as the free energy, symmetry energy, susceptibility, and equation of state. We have shown that the symmetry energy of the nuclear matter is substantially sensitive to the value of spin polarization. Our calculations show that the equation of state of the polarized hot asymmetric nuclear matter is stiffer for higher values of the polarization as well as the isospin asymmetry parameter. Our results for the free energy and susceptibility show that spontaneous ferromagnetic phase transition cannot occur for hot asymmetric matter.

  6. NERSC Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Annual Reports NERSC Annual Reports Sort by: Default | Name anrep2000.png NERSC Annual Report 2000 Download Image: anrep2000.png | png | 203 KB Download File: NERSCAnnualReport2000.pdf | pdf | 4.9 MB anrep2001.png NERSC Annual Report 2001 Download Image: anrep2001.png | png | 175 KB Download File: annrep01.pdf | pdf | 7.1 MB anrep2002.png NERSC Annual Report 2002 Download Image: anrep2002.png | png | 55 KB Download File: annrep02.pdf | pdf | 3.4 MB anrep2003.png NERSC Annual Report 2003

  7. Analysis of material recovery facilities for use in life-cycle assessment

    SciTech Connect (OSTI)

    Pressley, Phillip N.; Levis, James W.; Damgaard, Anders; Barlaz, Morton A.; DeCarolis, Joseph F.

    2015-01-15

    Highlights: • Life-cycle assessment of solid waste management relies on accurate process models. • Material recovery facility (MRF) processes were modeled with new primary data. • Single stream, dual stream, pre-sorted, and mixed waste MRFs were considered. • MRF electricity consumption ranges from 4.7 to 7.8 kW h per Mg input. • Total cost ranges from $19.8 to $24.9 per Mg input. - Abstract: Insights derived from life-cycle assessment of solid waste management strategies depend critically on assumptions, data, and modeling at the unit process level. Based on new primary data, a process model was developed to estimate the cost and energy use associated with material recovery facilities (MRFs), which are responsible for sorting recyclables into saleable streams and as such represent a key piece of recycling infrastructure. The model includes four modules, each with a different process flow, for separation of single-stream, dual-stream, pre-sorted recyclables, and mixed-waste. Each MRF type has a distinct combination of equipment and default input waste composition. Model results for total amortized costs from each MRF type ranged from $19.8 to $24.9 per Mg (1 Mg = 1 metric ton) of waste input. Electricity use ranged from 4.7 to 7.8 kW h per Mg of waste input. In a single-stream MRF, equipment required for glass separation consumes 28% of total facility electricity consumption, while all other pieces of material recovery equipment consume less than 10% of total electricity. The dual-stream and mixed-waste MRFs have similar electricity consumption to a single-stream MRF. Glass separation contributes a much larger fraction of electricity consumption in a pre-sorted MRF, due to lower overall facility electricity consumption. Parametric analysis revealed that reducing separation efficiency for each piece of equipment by 25% altered total facility electricity consumption by less than 4% in each case. When model results were compared with actual data for an

  8. Annual Performance Report

    Office of Legacy Management (LM)

    U.S. Department of Energy Annual Performance Report, Shiprock, New Mexico August 2015 Doc. ... 25 Annual Performance Report, Shiprock, New Mexico U.S. Department of Energy Doc. No. ...

  9. Annual Performance Report FY 2012, Annual Performance Plan FY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2, Annual Performance Plan FY 2013 & FY 2014 Annual Performance Report FY 2012, Annual Performance Plan FY 2013 & FY 2014 PDF icon Annual Performance Report and Plan FY12 FY13 FY14 ...

  10. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  11. NASEO 2015 Annual Meeting

    Broader source: Energy.gov [DOE]

    The National Association of State Energy Officials (NASEO) Annual Meeting will be held in San Diego, California.

  12. Annual Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Annual Reports Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size NEW The Groundwater Remediation Project issues an annual report describing its accomplishments and plans. The projects associated with the Groundwater Remediation Project also issue periodic status reports. Those reports can be found in this section. Title Issue Date Rev. Document Information

  13. Annual Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Annual Site Environmental Report Updated July 24, 2015 NETL's Annual Site Environmental Report for 2014 -ii- 2014 Annual Site Environmental Report September 9, 2015 U.S. Department of Energy National Energy Technology Laboratory Albany, Oregon Anchorage, Alaska Morgantown, West Virginia Pittsburgh, Pennsylvania Sugar Land, Texas NETL's Annual Site Environmental Report for 2014 -iii- Disclaimer This report was prepared as an account of work sponsored by an agency of the U.S. Government.

  14. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    SciTech Connect (OSTI)

    Lu, Hongyou; Masanet, Eric; Price, Lynn

    2009-05-29

    The use of life-cycle assessment (LCA) to understand the embodied energy, environmental impacts, and potential energy-savings of manufactured products has become more widespread among researchers in recent years. This paper reviews recent LCA studies in the cement industry in China and in other countries and provides an assessment of the methodology used by the researchers compared to ISO LCA standards (ISO 14040:2006, ISO 14044:2006, and ISO/TR 14048:2002). We evaluate whether the authors provide information on the intended application, targeted audience, functional unit, system boundary, data sources, data quality assessment, data disaggregation and other elements, and draw conclusions regarding the level of adherence to ISO standards for the papers reviewed. We found that China researchers have gained much experience during last decade, but still have room for improvement in establishing boundaries, assessing data quality, identifying data sources, and explaining limitations. The paper concludes with a discussion of directions for future LCA research in China.

  15. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect (OSTI)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  16. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore » for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  17. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  18. Draft 2014 Annual Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft 2014 Annual Plan Draft 2014 Annual Plan Section 999: Draft 2014 Annual Plan Section 999 - Draft 2014 Annual Plan (4.52 MB) More Documents & Publications 2011 Annual Plan 2013 Annual Plan Sec. 999 Annual Plan 2012

  19. 2012 Annual Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Plan 2012 Annual Plan Section 999: 2012 Annual Plan Section 999 - 2012 Annual Plan (3.97 MB) More Documents & Publications 2011 Annual Plan Sec. 999 Annual Plan 2012 2013 Annual Plan

  20. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  1. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect (OSTI)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  2. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  3. Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling

    SciTech Connect (OSTI)

    McCloy, John S.; Vienna, John D.

    2010-05-03

    The component concentration limits that most influence the predicted Hanford life-cycle HLW glass volume by HTWOS were re-evaluated. It was assumed that additional research and development work in glass formulation and melter testing would be performed to improve the understanding of component effects on the processability and product quality of these HLW glasses. Recommendations were made to better estimate the potential component concentration limits that could be applied today while technology development is underway to best estimate the volume of HLW glass that will eventually be produced at Hanford. The limits for concentrations of P2O5, Bi2O3, and SO3 were evaluated along with the constraint used to avoid nepheline formation in glass. Recommended concentration limits were made based on the current HLW glass property models being used by HTWOS (Vienna et al. 2009). These revised limits are: 1) The current ND should be augmented by the OB limit of OB ≤ 0.575 so that either the normalized silica (NSi) is less that the 62% limit or the OB is below the 0.575 limit. 2) The mass fraction of P2O5 limit should be revised to allow for up to 4.5 wt%, depending on CaO concentrations. 3) A Bi2O3 concentration limit of 7 wt% should be used. 4) The salt accumulation limit of 0.5 wt% SO3 may be increased to 0.6 wt%. Again, these revised limits do not obviate the need for further testing, but make it possible to more accurately predict the impact of that testing on ultimate HLW glass volumes.

  4. A life-cycle model approach to multimedia waste reduction measuring performance for environmental cleanup projects

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; George, S.M.

    1993-07-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program`s mission is to minimize waste and prevent pollution in remedial investigations (RIs), feasibility studies, decontamination and decommissioning, and surveillance and maintenance site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. The ER Program waste generation rates are projected to steadily increase through the year 2005 for all waste categories. Standard production units utilized to measure waste minimization apply to production/manufacturing facilities. Since ER inherited contaminated waste from previous production processes, no historical production data can be applied. Therefore, a more accurate measure for pollution prevention was identified as a need for the ER Program. The Energy Systems ER Program adopted a life-cycle model approach and implemented the concept of numerically scoring their waste generators to measure the effectiveness of pollution prevention/waste minimization programs and elected to develop a numerical scoring system (NSS) to accomplish these measurements. The prototype NSS, a computerized, user-friendly information management database system, was designed to be utilized in each phase of the ER Program. The NSS was designed to measure a generator`s success in incorporating pollution prevention in their work plans and reducing investigation-derived waste (IDW) during RIs. Energy Systems is producing a fully developed NSS and actually scoring the generators of IDW at six ER Program sites. Once RI waste generators are scored utilizing the NSS, the numerical scores are distributed into six performance categories: training, self-assessment, field implementation, documentation, technology transfer, and planning.

  5. NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010

    SciTech Connect (OSTI)

    Berkman, Clarissa O.; Fankhauser, Jana G.

    2011-04-01

    In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: It’s all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlight - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies

  6. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Historical Natural Gas Annual . 1996 Published October 1997 1997 Published October 1998 1998 Published October 1999 1999 Published October 2000 2000 Published December 2001

  7. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. Maximum anticipated uranium market requirements of owners and operators of U.S. ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  8. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  9. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  10. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  11. Annual Energy Outlook2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    For further information . . . The Annual Energy Outlook 2014 (AEO2014) was prepared by the U.S. Energy Information Administration (EIA), under the direction of John J. Conti...

  12. 2011 TEPP Annual Report

    Broader source: Energy.gov [DOE]

    This Fiscal Year (FY) 2011 Department of Energy (DOE) TEPP Annual Report highlights events, outreach, partnerships and training where TEPP has proven to be integral in building radiological...

  13. 2012 TEPP Annual Report

    Broader source: Energy.gov [DOE]

    This Fiscal Year (FY) 2012 Department of Energy (DOE) TEPP Annual Report highlights events, outreach, partnerships, and training where TEPP has proven to be integral in building radiological...

  14. 2010 TEPP Annual Report

    Broader source: Energy.gov [DOE]

    This Fiscal Year (FY) 2010 DOE TEPP Annual Report highlights events, outreach, partnerships and training where TEPP has proven to be integral in building radiological response capabilities of...

  15. BPA 2002 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATEMENTS 2002 Annual Report of the Bonneville Power Administration Cover photo BPA fish biologist Andy Thoms (upper right) works with students from H.B. Lee Middle School...

  16. NRECA Annual Meeting

    Broader source: Energy.gov [DOE]

    The National Rural Electric Cooperative Association (NRECA) is hosting its annual conference in Orlando, FL, on Feb. 19-27, 2015.

  17. Required Annual Notices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Required Annual Notices The Women's Health and Cancer Rights Act of 1998 (WHCRA) The medical programs sponsored by LANS will not restrict benefits if you or your dependent...

  18. 2007 Annual Report

    SciTech Connect (OSTI)

    2007-01-01

    This annual report includes: a brief overview of Western; FY 2007 highlights; FY 2007 Integrated Resource Planning, or IRP, survey; and financial data.

  19. FEOSH Annual Safety Training

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) has developed an annual safety training course that is mandatory for all current DOE Federal employees and for each new hire.

  20. SPEER Third Annual Summit

    Broader source: Energy.gov [DOE]

    The South-Central Partnership for Energy Efficiency as a Resource (SPEER) is hosting their 3rd Annual Summit in Dallas, Texas.

  1. Current Annualized Request

    Office of Environmental Management (EM)

    Appropriation FY 2012 FY 2013 FY 2014 Current Annualized Request CR % Energy And Water Development, And Related Agencies Energy Programs Energy Efficiency and Renewable Energy...

  2. OPSI Annual Meeting

    Broader source: Energy.gov [DOE]

    The Organization of PJM States, Inc. (OPSI) is hosting its annual meeting with sessions covering clean power, gas and electric coordination, and more.

  3. OPSI Annual Meeting

    Broader source: Energy.gov [DOE]

    The Organization of PJM States, Inc. (OPSI) is hosting its annual meeting in Chicago, IL, on October 13-14, 2014.

  4. EMSL 2009 Annual Report

    SciTech Connect (OSTI)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.; Wiley, Julie G.; Reed, Jennifer R.

    2010-02-26

    The EMSL 2009 Annual Report describes the science conducted at EMSL during 2009 as well as outreach activities and awards and honors received by users and staff.

  5. LNG Annual Report - 2004 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 LNG Annual Report - 2004 LNG Annual Report - 2004 LNG Annual Report - 2004 (21.97 KB) More Documents & Publications LNG Annual Report - 2005 LNG Annual Report - 2007 LNG Annual Report - 2006

  6. LNG Annual Report - 2005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 LNG Annual Report - 2005 LNG Annual Report - 2005 LNG Annual Report - 2005 (33.42 KB) More Documents & Publications LNG Annual Report - 2004 LNG Annual Report - 2006 LNG Annual Report - 2007

  7. LNG Annual Report - 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 LNG Annual Report - 2006 LNG Annual Report - 2006 LNG Annual Report - 2006 (39.47 KB) More Documents & Publications LNG Annual Report - 2007 LNG Annual Report - 2005 LNG Annual Report - 2008

  8. LNG Annual Report - 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 LNG Annual Report - 2007 LNG Annual Report - 2007 (Revised 10/10/2008) LNG Annual Report - 2007 (48.49 KB) More Documents & Publications LNG Annual Report - 2008 LNG Annual Report - 2006 LNG Annual Report - 2005

  9. LNG Annual Report - 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report - 2014 LNG Annual Report - 2014 LNG Annual Report - 2014 rev LNG 2014 rev2.pdf (166.19 KB) More Documents & Publications LNG Annual Report - 2013 LNG Annual Report - 2015 LNG Annual Report - 2012

  10. 2011 Annual Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Plan 2011 Annual Plan Section 999: 2011 Annual Plan Section 999: 2011 Annual Plan (5.47 MB) More Documents & Publications Recommendations: Draft 2008 Section 999 Annual Plan Sec. 999 Annual Plan 2012 UDAC Meeting - February 2011

  11. LM Annual Post Competition Accountability Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LM Annual Post Competition Accountability Reports LM Annual Post Competition Accountability Reports Third Annual Post Competition Accountability Report Second Annual Post ...

  12. LNG Annual Report - 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 LNG Annual Report - 2009 LNG Annual Report - 2009 LNG Annual Report - 2009 (49.76 KB) More Documents & Publications LNG Annual Report - 2008

  13. Annual Energy Review, 2008

    SciTech Connect (OSTI)

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  14. Annual Performance Report FY 2004 Annual Performance Plan FY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I am pleased to present the Office of Inspector General's (OIG's) combined Fiscal Year 2004 Annual Performance Report and Fiscal Year 2005 Annual Performance Plan. In Fiscal Year ...

  15. Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Note: Some of the following documents are in PDF and will require Adobe Reader for ... Report for 2009 Annual Report for 2008 (pdf) Annual Report for 2007 (pdf) Annual Report ...

  16. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Number of purchasers Quantity with reported price ...

  17. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  18. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Minimum ...

  19. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Origin of ...

  20. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  1. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  2. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  3. Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook 2015 AEO Annual Energy Outlook AEO2015 Annual Energy Outlook 2015 API American Petroleum Institute bbl Barrels bbl/d Barrels per day Brent North Sea Brent Btu British thermal unit(s) CAFE Corporate average fuel economy CAIR Clean Air Interstate Rule CHP Combined heat and power CO2 Carbon dioxide CPI Consumer price index CSAPR Cross-State Air Pollution Rule CTL Coal-to-liquids E85 Motor fuel containing up to 85% ethanol EIA U.S. Energy Information Administration EOR Enhanced

  4. Preliminary evaluation of the lifecycle costs and market barriers of reflective pavements

    SciTech Connect (OSTI)

    Ting, M.; Koomey, J.G.; Pomerantz, M.

    2001-11-21

    , which we call the chipping and aggregate methods, and calculated their potential life cycle costs. By analyzing the potential for increased pavement durability resulting from these conceptual approaches, we then estimated the incremental costs that would allow them to be cost-effective compared to conventional AC. For our example case of Los Angeles, we found that those allowable incremental costs range from less than dollar 1 to more than dollar 11 per square yard (dollar 1 to dollar 13 per square meter) depending on street type and the condition of the original pavement. Finally, we evaluated the main actors in the pavement market and the existing and potential market barriers associated with reflective pavements. Apart from situations where lifecycle costs are high compared to conventional AC, all reflective paving technologies face a cultural barrier based on the belief that black is better. For PCC, high first costs were found to be the most significant economic barrier, particularly where agencies are cons trained by first cost. Lack of developer standards was found to be a significant institutional barrier to PCC since developers are often not held accountable for the long-term maintenance of roads after initial construction, which creates a misplaced incentive to build low first-cost pavements. PCC also faces site-specific barriers such as poorly compacted base soils and proximity to areas of frequent utility cutting.

  5. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Shipments of uranium feed by owners and operators of U.S. civilian nuclear power ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  6. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Contracted purchases of uranium from suppliers by owners and operators of U.S. civilian ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  7. 2009 TEPP Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Fiscal Year 2009 TEPP Annual Report highlights events, scenarios, and training where TEPP has proven to be integral in building radiological response capabilities of States and Tribes that may...

  8. NARUC Annual Meeting

    Broader source: Energy.gov [DOE]

    The National Association of Regulatory Utility Commissioneers (NARUC) is hosting its annual meeting in San Fransisco, CA, from Nov. 16-19, 2014. Registration and housing begins Aug. 27. 

  9. 2010 Annual Report

    SciTech Connect (OSTI)

    2010-01-01

    This annual report includes: an overview of Western; approaches for future hydropower and transmission service; major achievements in FY 2010; FY 2010 customer Integrated Resource Planning, or IRP, survey; and financial data.

  10. Petroleum Marketing Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum...

  11. Petroleum Marketing Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights ....

  12. Petroleum Marketing Annual 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    cents per gallon to dollars per gallon later this year for the 2010 data. Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables...

  13. Petroleum Marketing Annual 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Released: August 27, 2009 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner...

  14. Petroleum Marketing Annual 1997

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Entire . The entire report as a single file. PDF 1.2MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights ....

  15. Petroleum Marketing Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights ....

  16. Petroleum Marketing Annual 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Released: August 29, 2008 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner...

  17. Petroleum Marketing Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum...

  18. NCAI Annual Convention

    Broader source: Energy.gov [DOE]

    The National Congress of American Indians (NCAI) is hosting their annual convention featuring networking events, breakout sessions on resiliency and workforce development, and guest speakers. Pre-registration ends September 18.

  19. ARM - Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For proper viewing, the ARM annual reports should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. FY 2015 | PDF, 8.9MB FY 2014 | ...

  20. 2009 Annual Report

    SciTech Connect (OSTI)

    2009-01-01

    This annual report includes: a brief overview of Western; some of our major achievements in FY 2009; FY 2009 customer Integrated Resource Planning, or IRP, survey; and financial data.

  1. Annual Power Electric

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Annual Update Revision Data for 2014 updated: February 16, 2016 February ... Table 8.11.A. U.S. Transmission Circuit Outages by Type and NERC region Table 8.11.B. ...

  2. Current Annualized Request

    Office of Environmental Management (EM)

    Organization FY 2012 FY 2013 FY 2014 Current Annualized Request CR % National Security Weapons Activities* 7,214,834 7,557,342 7,868,409 +311,067 +4.1% Defense Nuclear...

  3. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  4. Natural gas annual 1994

    SciTech Connect (OSTI)

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  5. NERSC 2013 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Annual Report National Energy Research Scientific Computing Center 2013 Annual Report Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720-8148 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Cover Image Credits: front cover, left to right: Linda Sugiyama, Massachusetts Institute of Technology; IceCube Collaboration; David

  6. Electric Power Annual 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Annual 2014 February 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Electric Power Annual This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. U.S.

  7. LDRD COMPOSITE ANNUAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD Annual Report 2010 From the Laboratory Director I am pleased t o have the opportunity t o introduce the 2010 Laboratory Directed Research a n d Dev elopment ( L DRD) Annual Report . T h i s important program displays both the breadth of SRNL's research efforts and the depth of our commitment to expand the capability and mission impact of this Laboratory. We continue to broaden participation in the LDRD program across the Laboratory while maintaining our record of innovative technical

  8. NREL Annual Environmental Performance Reports (Annual Site Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports) | Department of Energy Annual Environmental Performance Reports (Annual Site Environmental Reports) NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) Every year NREL prepares an Environmental Performance Report meeting the requirements of an Annual Site Environmental Report (ASER) per DOE Order 231.1B. The report is written to inform the public, regulators, and other stakeholders of NREL's environmental performance. The report provides updates on

  9. Annual Performance Report FY 2005 Annual Performance Plan FY 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 05 Annual Performance Plan FY 2006 Annual Performance Report FY 2005 Annual Performance Plan FY 2006 Iam pleased to present the Office of Inspector General's combined Fiscal Year 2005 Annual Performance Report and Fiscal Year 2006 Annual Performance Plan. Our office continues to work vigorously in support of the Department and its mission. During FY 2005, we issued 99 audit and inspection reports containing recommendations for over $619 million in savings; referred 31

  10. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    SciTech Connect (OSTI)

    Auclair, K. D.

    2002-02-25

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  11. Section 999: Annual Plans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 10, 2013 Draft 2014 Annual Plan Section 999: Draft 2014 Annual Plan July 8, 2013 2013 Annual Plan Section 999: 2013 Annual Plan August 3, 2012 2012 Annual Plan Section ...

  12. OHA 2008 ANNUAL REPORT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 ANNUAL REPORT OHA 2008 ANNUAL REPORT OHA 2008 ANNUAL REPORT FINAL (8.64 MB) More Documents & Publications OHA 2007 ANNUAL REPORT OHA 2009 ANNUAL REPORT OHA 2015

  13. LNG Annual Report - 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report - 2015 LNG Annual Report - 2015 LNG Annual Report - 2015 LNG 2015.pdf (386.99 KB) More Documents & Publications LNG Annual Report - 2014 LNG Annual Report - 2013 LNG Monthly 2016

  14. LNG Annual Report - 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 LNG Annual Report - 2010 LNG Annual Report - 2010 LNG Annual Report - 2010 (96.4 KB) More Documents & Publications LNG Annual Report - 2009 LNG Annual Report - 2008

  15. LNG Annual Report - 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 LNG Annual Report - 2011 LNG Annual Report - 2011 (Revised 3/15/2012) LNG Annual Report 2011 (144.27 KB) More Documents & Publications LNG Annual Report - 2012 LNG Annual Report - 2013

  16. Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Reports Annual Reports Annual Reports December 31, 2015 Southeastern Power Administration 2015 Annual Report This report reflects our agency's programs,accomplishments, operational, and financial activities for the 12-month period beginning October 1, 2014, and ending September 30, 2015. December 30, 2014 Southeastern Power Administration 2014 Annual Report This report reflects our agency's programs,accomplishments, operational, and financial activities for the 12-month period beginning

  17. Annual Emergency Preparedness Grant Distributed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC (205.77 KB) More Documents & Publications Medgate, PIA, Bechtel Jacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Oracle Financials PIA, Bechtel Jacobs Company, LLC

    Annual Coal Distribution Report

  18. Life-cycle assessment of municipal solid waste management alternatives with consideration of uncertainty: SIWMS development and application

    SciTech Connect (OSTI)

    El Hanandeh, Ali; El-Zein, Abbas

    2010-05-15

    This paper describes the development and application of the Stochastic Integrated Waste Management Simulator (SIWMS) model. SIWMS provides a detailed view of the environmental impacts and associated costs of municipal solid waste (MSW) management alternatives under conditions of uncertainty. The model follows a life-cycle inventory approach extended with compensatory systems to provide more equitable bases for comparing different alternatives. Economic performance is measured by the net present value. The model is verified against four publicly available models under deterministic conditions and then used to study the impact of uncertainty on Sydney's MSW management 'best practices'. Uncertainty has a significant effect on all impact categories. The greatest effect is observed in the global warming category where a reversal of impact direction is predicted. The reliability of the system is most sensitive to uncertainties in the waste processing and disposal. The results highlight the importance of incorporating uncertainty at all stages to better understand the behaviour of the MSW system.

  19. BioenergizeME Infographic Challenge 2016 Annual Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... such as greenhouse gas emissions, water usage, energy balance, soil productivity, biodiversity, etc. Possible subject headingskey words: life-cycle analysis, bioenergy ...

  20. Natural gas annual 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  1. International energy annual 1996

    SciTech Connect (OSTI)

    1998-02-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  2. Annual Technology Baseline

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis. This primary product of the Annual Technology Baseline (ATB) project component includes detailed cost and performance data (both current and projected) for both renewable and conventional technologies. This data is presented in MS Excel.

  3. Annual Energy Outlook

    Reports and Publications (EIA)

    2015-01-01

    The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2015 (AEO2015) focus on the factors that shape the U.S. energy system over the long term. For the first time, the Annual Energy Outlook (AEO) is presented as a shorter edition under a newly adopted two-year release cycle. With this approach, full editions and shorter editions of the AEO will be produced in alternating years. This approach will allow EIA to focus more resources on rapidly changing energy markets both in the United States and internationally, and to consider how they might evolve over the next few years.

  4. Annual Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Site Environmental Report - 2002 Annual Site Environmental Report - 2002 DOE/NV11718--842 Prepared by Bechtel Nevada Post Office Box 98521 Las Vegas, NV 89193-8521 Prepared by Bechtel Nevada Post Office Box 98521 Las Vegas, NV 89193-8521 Prepared for the U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Contract Number DE-AC08-96NV11718 Prepared for the U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Contract Number

  5. Annual Performance Report FY 2010 Annual Performance Plan FY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I am pleased to submit the Office of Inspector General's combined Fiscal Year 2010 Annual Performance Report and Fiscal Year 2011 Annual Performance Plan. Over the past year, much ...

  6. Annual DOE Occupational Radiation Exposure Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual DOE Occupational Radiation Exposure Reports Annual DOE Occupational Radiation Exposure Reports November 17, 2015 Annual DOE Occupational Radiation Exposure | 2014 Report The...

  7. LNG Annual Report - 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 LNG Annual Report - 2013 LNG Annual Report - 2013 LNG 2013.pdf (192.28 KB) More Documents & Publications LNG Annual Report - 2012

  8. FY2010 EERE Web Site Annual Report

    Broader source: Energy.gov (indexed) [DOE]

    0 WEB SITE ANNUAL REPORT TECHNOLOGY ADVANCEMENT AND OUTREACH | 01 EERE FISCAL YEAR 2010 WEB SITE ANNUAL REPORT FISCAL YEAR 2010 WEB SITE ANNUAL REPORT TECHNOLOGY ADVANCEMENT AND ...

  9. Southeastern Power Administration 2009 Annual Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Annual Report Southeastern Power Administration 2009 Annual Report This past year, ... More Documents & Publications Southeastern Power Administration 2008 Annual Report ...

  10. Annual Planning Summaries: 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Annual Planning Summaries: 2013 March 25, 2013 2013 Annual Planning Summary for the ... March 25, 2013 2013 Annual Planning Summary for the Pacific Northwest Site Office The ...