National Library of Energy BETA

Sample records for low-sulfur low-sulfur high-sulfur

  1. Production of low sulfur binder pitich from high-sulfur Illinois coals. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1995-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. Previously, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content (2%) was still higher than preferred. In this project two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of a moderate-sulfur (1.2%) Illinois coal as mild gasification feedstock, and (2) direct biodesulfurization of the liquids from high-sulfur coal prior to FTC. In Case 1, the liquids are being produced by mild gasification of IBC-109 coal in a bench-scale fluidized-bed reactor, followed by distillation to isolate the crude pitch. In Case 2, biodesulfurization with Rhodococcus Rhodochrous IGTS8 biocatalyst is being performed on crude pitch obtained from Illinois No. 6 coal tests conducted in the IGT MILDGAS PRU in 1990. Following preparation of the crude pitches, pitch upgrading experiments are being conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. This quarter, mild gasification of IBC-109 coal was completed, producing 450 g of coal liquids, which were then distilled to recover 329 g of Case 1 crude pitch. Next month, the pitch will be subjected to FTC treatment and evaluated. Biodesulfurization experiments were performed on Case 2 pitch dispersed in l-undecanol, resulting in sulfur reductions of 15.1 to 21.4%. This was marginally lower than the 24.8% desulfurization obtained in l-dodecanol, but separation of pitch from the dispersant was facilitated by the greater volatility of l-undecanol.

  2. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1996-03-01

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In previous ICCI projects at IGT, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content is still unacceptably high at 2%. In this project, two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to FTC. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous IGTS8 biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches.

  3. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  4. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is

  5. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distillate | Department of Energy Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said

  6. Low-sulfur coal usage alters transportation strategies

    SciTech Connect (OSTI)

    Stein, H.

    1995-07-01

    As electricity production has grown, so has the amount of coal burned by US utilities. In order to comply with the 1990 Clean Air Act Amendments (CAAA), many utilities have changed from high-sulfur coal to lower-sulfur coal to reduce sulfur dioxide emissions. The primary mode of transporting coal to utilities remains the railroad, and coal represents the largest freight tonnage shipped - two out of every five tons. Since coal is so important to the railroads, it is logical that as utilities have changed their coal-buying strategies, the railroads` strategies have also changed. The increased demand for Western coal has caused rail lines some capacity problems which they are attempting to meet head-on by buying new railcars and locomotives and expanding track capacities. The new railcars typically have aluminum bodies to reduce empty weight, enabling them to carry larger loads of coal. Train locomotives are also undergoing upgrade changes. Most new locomotives have as motors to drive the wheels which deliver more motive power (traction) to the wheel trucks. In fact the motors are up to 30% more efficient at getting the traction to the trucks. Trackage is also being expanded to alleviate serious congestion on the tracks when moving Western coal.

  7. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  8. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOE Patents [OSTI]

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  9. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect (OSTI)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate

  10. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  11. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer

  12. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  13. Spray drying for high-sulfur coal

    SciTech Connect (OSTI)

    Rhudy, R.

    1988-09-01

    Recent pilot plant tests indicate that spray drying, now used to control SO/sub 2/ emissions from low-sulfur coal, can also be effective for high-sulfur coal. Spray drying coupled with baghouse particulate removal is the most effective configuration tested to date, removing over 90% of SO/sub 2/ while easily meeting New Source Performance Standards for particulate emissions. 2 figures, 1 table.

  14. Low sulfur diesel production in PEMEX Refinacion refineries

    SciTech Connect (OSTI)

    Celestinos, J.

    1994-12-31

    This report was presented by Jose Celestinos, the Subdirector for Production, Pemex Refining Company in Mexico. The distribution and consumption of diesel fuel in Mexico was discussed as well as other topics involving diesel fuel such as: sulphur content, production of desulpherized diesel, diesel standard emissions and evaluation of emissions, and test specifications for the production of diesel fuel.

  15. Hydroprocessing key issue in low-sulfur' era

    SciTech Connect (OSTI)

    Not Available

    1993-07-26

    Refiners gave heavy attention to hydroprocessing operations at the most recent National Petroleum Refiners Association annual question and answer session on refining and petrochemical technology. Among the topics covered were diesel color, blending to meet diesel sulfur specs, and ammonia injection in hydrocracking units. The panelists also related their experiences with increasing vacuum gas oil conversion in hydrocracking operations. These discussions are reproduced here.

  16. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    DOE Patents [OSTI]

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  17. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    Reports and Publications (EIA)

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  18. Timing of Startups of the Low-Sulfur and RFS Programs

    Reports and Publications (EIA)

    2002-01-01

    This paper focuses on whether supply problems could be reduced during the startup stage phases of these programs through timing changes.

  19. Use of selective oxidation of petroleum residue for production of low-sulfur coke

    SciTech Connect (OSTI)

    Hairudinov, I.R.; Kul`chitskaya, O.V.; Imashev, U.B.

    1995-12-10

    The chemical nature of liquid-phase oxidation of sulfurous petroleum residues by cumene hydroperoxide was studied by a tracer technique. Sulfur compounds are selectively oxidized in the presence of catalytic additives of molybdenum salts. Desulfurization of distillate products and coke during coking of preoxidized raw materials was revealed.

  20. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fueling U.S. Light Duty Diesel Vehicles BiodieselFuelManagementBestPracticesReport.pdf A Life-Cycle Assessment Comparing Select Gas-to-Liquid ...

  1. No. 2 Diesel, Low-Sulfur Prices - Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Atlantic (PADD 1B) - - - - - - 1994-2016 Lower Atlantic (PADD 1C) - - - - - - 1994-2016 Midwest (PADD 2) - - - - - - 1994-2016 Gulf Coast (PADD 3) - - - - - - 1994-2016 Rocky Mountain (PADD 4) - - - - - - 1994-2016 West Coast (PADD 5)

  2. Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel

    Reports and Publications (EIA)

    1993-01-01

    The Clean Air Act Amendments of 1990 established a new, sharply lower standard for the maximum sulfur content of on-highway diesel fuel, to take effect October 1, 1993.

  3. No. 2 Diesel, Low-Sulfur Prices - Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    (PADD 2) 1.915 2.366 - - - - 1994-2014 Gulf Coast (PADD 3) 1.859 2.345 - - - - 1994-2014 Rocky Mountain (PADD 4) 1.765 2.310 - - - - 1994-2014 West Coast (PADD 5) 1.916 2.443...

  4. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refiner No. 2 Diesel Fuel Volumes by PAD District and State (Thousand Gallons per Day) Geographic Area Month No. 2 Diesel Fuel Ultra Low-Sulfur Low-Sulfur High-Sulfur Sales to End ...

  5. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  6. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  7. Distributed Generation System Characteristics and Costs in the Buildings

    Gasoline and Diesel Fuel Update (EIA)

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  8. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect (OSTI)

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  9. Performance and economics of a spray-dryer FGD system used with high-sulfur coal

    SciTech Connect (OSTI)

    Livengood, C.D.; Farber, P.S.

    1986-04-01

    Flue-gas desulfurization (FGD) systems based on spray drying to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. Uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. This paper summarizes 4 years, operating and research experience with that system and describes the current research program, which includes an indepth characterization of an industrial scale dry scrubber with 3.5% sulfur coal.

  10. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect (OSTI)

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  11. Florida CFB demo plant yields low emissions on variety of coals

    SciTech Connect (OSTI)

    2005-07-01

    The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

  12. Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal

    SciTech Connect (OSTI)

    Mohanty, M.K.; Samal, A.R.; Palit, A.

    2008-02-15

    One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mm and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.

  13. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996

    SciTech Connect (OSTI)

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1996-02-29

    The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

  14. untitled

    Gasoline and Diesel Fuel Update (EIA)

    No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon Excluding Taxes) Geographic Area Month Ultra Low-Sulfur Diesel Fuel Low-Sulfur Diesel ...

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Refi ner No. 2 diesel fuel volumes by PAD District and state thousand gallons per day Geographic area month No. 2 diesel fuel Ultra-low sulfur Low-sulfur High-sulfur Sales to end users Sales for resale Sales to end users Sales for resale Sales to end users Sales for resale United States June 2016 12,067.7 135,458.2 W W W W May 2016 12,084.3 133,895.7 W W W W June 2015 12,561.7 152,050.7 64.1 W 453.0 W PAD District 1 June 2016 2,359.9 26,874.3 W W - W May 2016 W 27,146.8 - W - W June 2015 W W

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Prime supplier sales volumes of dis llate fuel oils and kerosene by PAD District and state thousand gallons per day Geographic area month Kerosene No. 1 dis llate No. 2 dis llate Total dis llate and kerosene No. 2 fuel oil No. 2 diesel fuel No. 2 dis llate Ultra-low sulfur Low-sulfur High-sulfur United States June 2016 621.7 199.4 2,794.7 155,803.9 66.5 805.5 159,470.5 160,332.2 May 2016 632.4 284.0 4,728.6 149,163.9 57.0 950.9 154,900.5 155,878.7 June 2015 687.3 341.7 2,882.3 159,620.5 85.1

  17. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  18. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    SciTech Connect (OSTI)

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.; Hardman, R.R.; Baldwin, A.L.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  19. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 1, [September--November 1994

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1994-11-30

    This project is being coordinated with an ongoing project at Western Kentucky University that is being supported by the Southeastern Regional Biomass Energy Program through the Tennessee Valley Authority. Fluidized bed combustion tests will be performed on municipal solid waste blended with high-sulfur and high-chlorine coals in a laboratory scale combustor. The purpose of the tests is to evaluate combustion performance, the extent of the inorganic acid gases (HCl and SO{sub x}) and chlorinated organic compound formation, the effect of chlorine species on SO{sub 2} removal with a sorbent, and the effect of sulfur species on the formation of chlorinated organic compounds from MSW for a range of bed temperatures, excess air levels, MSW/coal ratios, and S/Cl ratios. Flue gas samples will be collected and analyzed at three locations: free board, cyclone inlet, and cyclone outlet. Analytical methods used will include ion chromatography, gas chromatography, and mass spectrometry. Waste stream ash samples will be collected from the cyclone catch and analyzed for unburned carbon, chlorine, chlorinated benzenes, polychlorinated biphenyls, chlorinated phenols, dioxins, furans, and metal content. Major, minor, and trace elements in the ash will be determined by x-ray fluorescence and inductively coupled plasma-atomic emission spectroscopy. Accomplishments for the first quarter are presented.

  20. Secondary economic impact of acid deposition control legislation in six coal producing states: Final report

    SciTech Connect (OSTI)

    Scott, M.J.; Guthrie, S.J.

    1988-12-01

    Among the difficult policy questions on the US environmental agenda is what to do about emissions to the earth's atmosphere of pollutants that may result in ''acid rain''. The Congress has considered several pieces of legislation spelling out potential approaches to the problem and setting goals for emission reduction, mostly emphasizing the control of oxides of sulfur and nitrogen. Significant policy concern is the dollar costs to the nation's economy of achieving the intended effects of the legislation and the potential impacts on economic activity---in particular, losses of both coal mining and secondary service sector employment in states and regions dependent on the mining of high sulfur coal. There are several direct economic effects of regulations such as the acid rain control legislation. One of the more obvious effects was the switching from high sulfur coal to low sulfur coal. This would result in increases in employment and coal business procurements in low sulfur coal mining regions, but also would result in lower employment and lower coal business procurements in high sulfur coal mining areas. The potential negative effects are the immediate policy concern and are the focus of this report. 15 refs., 1 fig., 17 tabs.

  1. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Amrhein, G.T.

    1994-12-23

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  2. Regional versus global? -- Will strategies for reduction of sulfur dioxide emissions from electric utilities increase carbon dioxide emissions?

    SciTech Connect (OSTI)

    Randolph, J.C.; Dolsak, N.

    1996-12-31

    Electric utilities, which are dependent on high-sulfur coal are expected to reduce their SO{sub 2} emissions. The strategies for reduction of SO{sub 2} emissions may result in increased CO{sub 2} emissions. Thereby decrease of regional pollution may cause increase of global pollution. Environmental, political, moral, and economic consequences of the two types of pollution differ significantly. Midwestern electric utilities, USA, which are dependent on high-sulfur coal, are analyzed in the paper. However, the same problem is relevant for some European coal fueled power plants. Strategies for reduction of SO{sub 2} emissions, employed by Midwestern electric utilities to comply with the clean Air Act amendments (CAAA) of 1990 and their possible affects on CO{sub 2} emissions, are presented. The paper focuses on two general strategies for reduction of SO{sub 2} emissions. First is coal-switching or blending with a low-sulfur coal. Second is construction and use of flue-gas desulfurization devices (scrubbers). A combination of both strategies is also a viable option. Switching to low-sulfur coal may result in larger CO{sub 2} emissions because that coal has different characteristics and has to be transported much greater distances. Scrubbers require significant amounts of energy for their operation which requires burning more coal. This increases the level of CO{sub 2} emissions.

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  4. Shell. The Evolution of Movement Continues

    Broader source: Energy.gov [DOE]

    Focus of presentation is on emergence of future diesel fuel technologires and fule properties compare to ultra-low sulfur diesel fuel properties.

  5. Releases from the Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases from the Heating Oil Reserve Releases from the Heating Oil Reserve The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur ...

  6. Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

    2006-03-01

    Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

  7. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  8. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Ultra-Low Sulfur diesel Update & Future Light Duty Diesel BiodieselFuelManagementBestPracticesReport.pdf Future Fuels: Issues and Opportunities

  9. EIS-0226 Final EIS Volume 1

    Office of Environmental Management (EM)

    ... for: the normal and accident scenario release source ... Selective location of laydown areas Use of low sulfur fuels ... area, while others are more tolerant of human activities. ...

  10. Northeast Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Northeast Home Heating Oil Reserve classified as ultra-low sulfur distillate (15 parts per million) Terminal operator Location Thousand Barrels Buckeye Partners LP Port Reading, NJ ...

  11. Y-12_Front Cover_Vol I_Feb2011.ai

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Another conservative assumption was that wet and dry depositions of all radioactive ... low-sulfur coal, and construction on a scrubber to further reduce sulfur dioxide began ...

  12. Acid rain legislation and local areas

    SciTech Connect (OSTI)

    Jones, G.H.B.

    1992-01-01

    This study explores the local economic impacts of the phase I requirements of the 1990 acid rain legislation. This legislation allows electric utilities to adopt least cost ways of reducing sulfur dioxide pollution. The impact on employment, income and size distribution of income due to a switch to low sulfur coal is examined for a selected number of high sulfur coal producing counties in southern Illinois. In order to achieve the above objectives a generalized non-survey input-output model, IMPLAN (Impact Analysis for Planning), is employed to estimate first- and second-order employment and income effects of a switch to low sulfur coal. Two models, I and II, are constructed to provide these estimates. In Model I, income is generated and adjusted to reflect income retained and spent within the four county region. In Model II, no adjustment is made for flows into and out of the region. In addition to adjustments in income, adjustments in direct employment impacts were made in both models to account for retirements. Scenarios reflecting different degrees of coal switching, low and high switching options, were examined under both models. With regards to size distribution impacts, a newly developed operational model compatible with IMPLAN and developed by Rose et al (1988) was employed. This model is a member of a class of models collectively termed extended input-output models. As in the case of employment and income, allowance was made for income generated, retained and spent within the four counties in the assessment of income distribution impacts. The findings indicate that the adverse effects of a switch to low sulfur coal under the 1990 acid rain legislation will primarily hurt the coal mining industry. Coal mining employment and income will be adversely affected. Employment and income declines in other industries in the region will be fairly slight. Second, income distribution becomes slightly more equal for the local area due to acid rain control.

  13. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  14. Calcium spray dryer waste management: Design guidelines: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    Calcium spray drying is a commercially available and applied technology used to control SO/sub 2/ emissions. This process is rapidly gaining utility acceptance. Because physical and chemical properties of wastes generated by calcium spray drying differ from those of conventional coal combustion by-products (fly ash and scrubber sludge) typical waste management practices may need to be altered. This report presents technical guidelines for designing and operating a calcium spray drying waste management system. Waste transfer, storage, pretreatment/conditioning, transport and disposal are addressed. The report briefly describes eighteen existing or planned calcium spray drying waste management systems. Results of waste property tests conducted as part of this study, and test data from other studies are reported and compared. Conceptual designs of both new and retrofit calcium spray drying waste management systems also are presented to demonstrate the economic impact of spray drying on waste management. Parametric cost sensitivity analyses illustrate the impact of significant design parameters on waste management costs. Existing calcium spray drying waste management experiences, as well as spray drying waste property data provided the basis for guideline development. Because existing calcium spray drying facilities burn low sulfur coal, this report is considered applicable only to calcium spray drying wastes produced from low sulfur coal. At this time, calcium spray drying is not expected to be feasible for high sulfur coal applications.

  15. The effect of welding parameters on penetration in GTA welds

    SciTech Connect (OSTI)

    Shirali, A.A. ); Mills, K.C. )

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parameters on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.

  16. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  17. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  18. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  19. Concentrations and Size Distributions of Particulate Matter Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel | Department of Energy Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel 2002 DEER Conference Presentation: West Virginia

  20. Eastern coal spray dryer evaluation. Final report

    SciTech Connect (OSTI)

    Sawyers, L.E.; Smith, P.V.; Caravano, C.; Jankura, B.J.

    1984-11-01

    Development efforts for dry scrubbing technology for flue gas desulfurization (FGD) have been geared toward utility boilers burning low-sulfur western coals rather than eastern high-sulfur coals. This has been due to the low quantity of reagent and lower SO/sub 2/ removal required with the use of western coals and has contributed to the economic attractiveness of the dry scrubber system. To evaluate the use of the dry scrubber for flue gas desulfurization of eastern high-sulfur coals, the US Department of Energy contracted with the Babcock and Wilcox Company to perform a study to determine the technical and economical feasibility of such systems. The program was organized into the following tasks: (1) configuration specification and system preparation; (2) performance evaluation; (3) load-following and reliability evaluation; (4) commercial unit economic evaluation; and (5) report. The general conclusions of the program are: Effective dry scrubber operation for an eastern high-sulfur coal would include a higher stoichiometric ratio, low spray dryer approach temperature, and the optimized use of recycle material. A dry scrubber system designed for an eastern high-sulfur coal using a high-calcium lime reagent would not be economically competitive with a limestone wet scrubber system due to reagent costs. Use of an optimized furnace limestone injection system and recycle material would substantially reduce reagent costs and increase economic attractiveness of dry scrubber systems for eastern high-sulfur coals. This is in comparison to dry scrubber systems with nonlimestone injection. 10 references, 87 figures, 26 tables.

  1. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems

    Broader source: Energy.gov [DOE]

    Results of the NOx adsorber system with catalyst aged to useful life conditions (simulated 120k miles), comparing performance betweem B20 fuel blend and base ultra-low sulfur diesel fuel

  2. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    in spot or futures prices is the move towards ultra-low-sulfur diesel. With the transition from diesel fuel with a sulfur content of up to 500 parts per million (ppm) to...

  3. On-Road and In-Laboratory Testing to Demonstrate Effects of ULSD, B20 and B99 on a Retrofit Urea-SCR Aftertreatment System

    SciTech Connect (OSTI)

    Walkowicz, K.; Na, K.; Robertson, W.; Sahay, K.; Bogdanoff, M.; Weaver, C.; Carlson, R.

    2010-03-01

    Emissions changes for a 2005 International tractor operating on low-sulfur diesel and biodiesel in Santa Monica were measured to demonstrate performance and impacts of selective catalytic reduction.

  4. Weekly Petroleum Status Report

    Gasoline and Diesel Fuel Update (EIA)

    Table 12. Spot Prices of Ultra-Low Sulfur Diesel Fuel, Kerosene-Type Jet Fuel, and Propane... 1.549 1.389 1.395 1.391 1.326 1.082 Propane Mont Belvieu ......

  5. U.S. Aviation Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    Product: Aviation Gasoline Kerosene-Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 2 Diesel Fuel No. 2 Diesel, Ultra Low-Sulfur No. 2 Diesel, ...

  6. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    end-user sales not included in the other end-user categories shown, e.g., sales to agricultural customers or utilities. 3 Includes sales of No. 2 fuel oil and high- and low-sulfur...

  7. This Week In Petroleum Summary Printer-Friendly Version

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    season limits the sulfur content of home heating oil to 15 parts per million (ppm), matching the sulfur content limit for ultra-low sulfur diesel fuel (ULSD). This change...

  8. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Heating Oil Reserve The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies occur. The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies

  9. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in

  10. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe

    2007-05-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing

  11. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  12. Market assessment of PFBC ash use

    SciTech Connect (OSTI)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  13. Dry FGD (flue-gas desulfurization) at Argonne National Laboratory

    SciTech Connect (OSTI)

    Livengood, C.D.

    1990-01-01

    Flue-gas desulfurization (FGD) systems based on spray drying are a relatively recent addition to the spectrum of sulfur dioxide (SO{sub 2}) control options available to utility and industrial boiler operators. Such systems appear to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. These advantages have promoted rapid acceptance of dry scrubbers for applications using western low-sulfur coal, but uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. At Argonne National Laboratory (ANL) we have had more than eight years of operating experience with an industrial-scale dry scrubber used with a boiler firing high-sulfur (3.5%) midwestern coal. This paper describes our operating experience with that system and summarizes several research programs that have utilized it. 7 refs., 15 figs., 6 tabs.

  14. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    SciTech Connect (OSTI)

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  15. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    SciTech Connect (OSTI)

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  16. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    SciTech Connect (OSTI)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  17. EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER

    SciTech Connect (OSTI)

    Dennis L. Laudal

    2002-04-01

    Depending on the size and type of boiler, the 1990 Clean Air Act Amendments required specific reductions in SO{sub 2} emissions from coal-fired electric utilities. To meet these requirements, SO{sub 2} reduction strategies have included installing scrubbing technology, switching to a more expensive low-sulfur coal, or purchasing SO{sub 2} allowances. It is expected that over the next 10 years there will be an increase in the price of low-sulfur coals, but that higher-sulfur coal costs will remain the same. Technologies must be strongly considered that allow the use of high-sulfur fuels while at the same time meeting current and future SO{sub 2} emission limits. One such technology is the ammonia based flue gas desulfurization (FGD) (NH{sub 3}-based FGD) system manufactured by Marsulex Environmental Technologies (MET). The MET scrubber is a patented NH{sub 3}-based FGD process that efficiently converts SO{sub 2} (>95%) into a fertilizer product, ammonium sulfate ([NH{sub 4}]{sub 2}SO{sub 4}). A point of concern for the MET technology, as well as other FGD systems, is the emission of sulfuric acid/SO{sub 3} aerosols that could result in increased opacity at the stack. This is a direct result of firing high-sulfur fuels that naturally generate more SO{sub 3} than do low-sulfur coals. SO{sub 3} is formed during the coal combustion process. SO{sub 3} is converted to gaseous H{sub 2}SO{sub 4} by homogeneous condensation, leading to a submicron acid fume that is very difficult to capture in a dry electrostatic precipitator (ESP). The condensed acid can also combine with the fly ash in the duct and scale the duct wall, potentially resulting in corrosion of both metallic and nonmetallic surfaces. Therefore, SO{sub 3} in flue gas can have a significant impact on the performance of coal-fired utility boilers, air heaters, and ESPs. In addition to corrosion problems, excess SO{sub 3} emissions can result in plume opacity problems. Thus the Energy & Environmental Research

  18. Clean steel technology -- Fundamental to the development of high performance steels

    SciTech Connect (OSTI)

    Wilson, A.D.

    1999-07-01

    The use of clean steel technology (low sulfur with calcium treatment for inclusion shape control) is a fundamental building block in the development of high performance plate steels. A brief review will be presented of the benefits of calcium treatment and its effect on non-metallic inclusions (sulfides and oxides) and reducing sulfur levels. During the past thirty years the requirements for low sulfur levels have been reduced from 0.010% maximum to 0.001% maximum. The effects of clean steel practices on specific properties will be reviewed including tensile ductility, Charpy V-notch and fracture toughness, fatigue crack propagation and hydrogen-induced-cracking resistance. Traditional low sulfur plate steel applications have included pressure vessels. offshore platforms, plastic injection molds and line-pipe skelp. More recent applications will be discussed including bridge steels, high strength structural steels to 130 ksi (897 MPa) minimum yield strength, 9% nickel steels for cryogenic applications, and military armor.

  19. Update of operating experience of B and W IR-CFB coal-fired boilers

    SciTech Connect (OSTI)

    Belin, F.; Kavidass, S.; Maryamchik, M.; Walker, D.J.; Mandal, A.K.; Price, C.E.

    1999-07-01

    This paper updates the operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois, USA, and is designed for 35 MW{sub th} output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries in Renukoot, India, and is designed for 81 MW{sub th} output for captive power requirement, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W Ltd., a joint venture company of B and W and Thermax of India. The choice of CFB technology was based on its fuel flexibility, cost effectiveness and environmental benefits for solid fuels. Based on the broad experience in designing utility and industrial boilers for operation worldwide, B and W has developed a cost effective and compact atmospheric pressure IR-CFB boiler. The B and W IR-CFB boiler design is distinctive in its use of U-beam particle separators. Worldwide, B and W offers IF-CFB boilers up to 175 MW{sub th}, both reheat and non-reheat, and is pursuing units up to 350 MW{sub th}. This paper reviews the general description of each IR-CFB boiler, design and performance aspects, as well as overall operating experiences. The boiler availabilities including maintenance aspects and emissions data will be presented.

  20. Pinon Pine power project nears start-up

    SciTech Connect (OSTI)

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing of the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.

  1. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system SNCR test report. Test period, January 11--April 9, 1993

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2}, Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the fourth phase of the test program, where the performance of the SNCR system, after the low-NO{sub x} combustion system retrofit, was assessed. Previous to this phase of testing, a subsystem was added to the existing SNCR system which allowed on-line conversion of a urea solution to aqueous ammonium compounds. Both convened and unconverted urea were investigated as SNCR chemicals.

  2. A review of existing models and methods to estimate employment effects of pollution control policies

    SciTech Connect (OSTI)

    Darwin, R.F.; Nesse, R.J.

    1988-02-01

    The purpose of this paper is to provide information about existing models and methods used to estimate coal mining employment impacts of pollution control policies. The EPA is currently assessing the consequences of various alternative policies to reduce air pollution. One important potential consequence of these policies is that coal mining employment may decline or shift from low-sulfur to high-sulfur coal producing regions. The EPA requires models that can estimate the magnitude and cost of these employment changes at the local level. This paper contains descriptions and evaluations of three models and methods currently used to estimate the size and cost of coal mining employment changes. The first model reviewed is the Coal and Electric Utilities Model (CEUM), a well established, general purpose model that has been used by the EPA and other groups to simulate air pollution control policies. The second model reviewed is the Advanced Utility Simulation Model (AUSM), which was developed for the EPA specifically to analyze the impacts of air pollution control policies. Finally, the methodology used by Arthur D. Little, Inc. to estimate the costs of alternative air pollution control policies for the Consolidated Coal Company is discussed. These descriptions and evaluations are based on information obtained from published reports and from draft documentation of the models provided by the EPA. 12 refs., 1 fig.

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  4. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation

    SciTech Connect (OSTI)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930[degree] and 1470[degree]F (500[degree]and 800[degree]C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a coal refinery'' system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  5. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation. Final report

    SciTech Connect (OSTI)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930{degree} and 1470{degree}F (500{degree}and 800{degree}C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a ``coal refinery`` system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R&D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  6. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management

  7. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-31

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel, Low-Sulfur Prices - Sales to End Users " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","No. 2 Diesel, Low-Sulfur Prices - Sales to End Users ",9,"Monthly","6/2016","1/15/1994" ,"Release Date:","9/1/2016" ,"Next Release Date:","10/3/2016"

  9. Petroleum Market Model of the National Energy Modeling System. Part 2

    SciTech Connect (OSTI)

    1997-12-18

    This report contains the following: Bibliography; Petroleum Market Model abstract; Data quality; Estimation methodologies (includes refinery investment recovery thresholds, gas plant models, chemical industry demand for methanol, estimation of refinery fixed costs, estimation of distribution costs, estimation of taxes gasoline specifications, estimation of gasoline market shares, estimation of low-sulfur diesel market shares, low-sulfur diesel specifications, estimation of regional conversion coefficients, estimation of SO{sub 2} allowance equations, unfinished oil imports methodology, product pipeline capacities and tariffs, cogeneration methodology, natural gas plant fuel consumption, and Alaskan crude oil exports); Matrix generator documentation; Historical data processing; and Biofuels supply submodule.

  10. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    SciTech Connect (OSTI)

    Busse, M.R.; Keohane, N.O.

    2007-01-01

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  11. Winters fuels report

    SciTech Connect (OSTI)

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  12. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  13. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  14. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  15. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  16. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  17. World Oil Prices in AEO2007 (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Over the long term, the Annual Energy Outlook 2007 (AEO) projection for world oil prices -- defined as the average price of imported low-sulfur, light crude oil to U.S. refiners -- is similar to the AEO2006 projection. In the near term, however, AEO2007 projects prices that are $8 to $10 higher than those in AEO2006.

  18. EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3, Salem, Essex County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  19. Process for converting coal into liquid fuel and metallurgical coke

    DOE Patents [OSTI]

    Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  20. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    SciTech Connect (OSTI)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by

  1. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  2. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  3. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-12-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  4. Integrated Dry NO sub x /SO sub 2 Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  5. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  6. AEC Lowman Station - coal switching and magnesium-enhanced lime scrubbing to lower operating costs

    SciTech Connect (OSTI)

    Inkenhaus, W.; Babu, M.; Smith, K.; Loper, L.

    1997-12-31

    AEC`s Lowman Station is located in Leroy, Alabama. There are three coal-fired boilers at this station. Unit 1 is capable of generating 85 MW without a flue gas desulfurization, FGD, system. Units 2 and 3, with a total of 516 MW output capacity, are equipped with FGD systems. The FGD plant was designed for wet limestone FGD with natural oxidation. Lowman Station burned low sulfur, 1.3 to 1.8% sulfur, coal. In January of 1996 AEC switched Units 2 and 3 from limestone to magnesium-enhanced lime FGD operation. It was determined that the plant could take advantage of the higher SO{sub 2} removal efficiency of the magnesium-enhanced lime system. Major benefits resulting from this conversion were AEC`s ability to switch to a lower cost high sulfur coal while meeting the stringent SO{sub 2} emission requirements. Power cost savings resulted from the lower liquid to gas ratio required by the magnesium-enhanced lime process. Three recirculation pumps per module were reduced to a single operating pump per module, lowering the scrubber pressure drop. Significant cost reduction in the operating costs of the ball mill was realized due to modifications made to slake lime instead of grinding limestone. Prior to switching, personnel from AEC and Dravo Lime Company ran a four week test on magnesium-enhanced lime to obtain scrubber performance data including SO{sub 2} removal efficiencies on the modules while burning a 1.8% sulfur coal. This paper discusses the plant modifications that were needed to make the switch, cost justifications due to coal switching, and AEC`s operating experiences to date. AEC and Dravo Lime Company working together as a team conducted detailed cost studies, followed by extensive field tests and implemented the plant modifications. This plant continues to operate burning higher sulfur coal with the magnesium-enhanced lime FGD system.

  7. Examination of utility Phase 1 compliance choices and state reactions to Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; Elliott, T.J.; Carlson, L.J.; South, D.W.

    1993-11-01

    Title IV (acid rain) of the Clean Air Act Amendments of 1990 is imposing new limitations on the emission of sulfur dioxide (SO{sub 2}) and nitrogen oxides (N{sub x}) from electric power plants. The act requires utilities to develop compliance plans to reduce these emissions, and indications are that these plans will dramatically alter traditional operating procedures. A key provision of the SO{sub 2} control program deaned in Title IV is the creation of a system of emission allowances, with utilities having the option of complying by adjusting system emissions and allowance holdings. A compilation of SO{sub 2} compliance activities by the 110 utility plants affected by Phase I is summarized in this report. These compliance plans are presented in a tabular form, correlated with age, capacity, and power pool data. A large number of the Phase I units (46%) have chosen to blend or switch to lower sulfur coals. This choice primarily is in response to (1) prices of low-sulfur coal and (2) the need to maintain SO{sub 2} control flexibility because of uncertain future environmental regulations (e.g., air toxics, carbon dioxide) and compliance prices. The report also discusses the responses of state legislatures and public utility commissions to the compliance requirements in Title IV. Most states have taken negligible action regarding the regulatory treatment of allowances and compliance activities. To protect mine employment, states producing high-sulfur coal have enacted regulations encouraging continued use of that coal, but for the most part, this response has had little effect on utility compliance choices.

  8. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns

  9. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect (OSTI)

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in

  10. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan; Ma, Xiaoliang; Sprague, Michael J.; Subramani, Velu

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  11. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  12. St. Louis Metro Biodiesel (B20) Transit Bus Evaluation: 12-Month Final Report

    SciTech Connect (OSTI)

    Barnitt, R.; McCormick, R. L.; Lammert, M.

    2008-07-01

    The St. Louis Metro Bodiesel Transit Bus Evaluation project is being conducted under a Cooperative Research and Development Agreement between NREL and the National Biodiesel Board to evaluate the extended in-use performance of buses operating on B20 fuel. The objective of this research project is to compare B20 and ultra-low sulfur diesel buses in terms of fuel economy, veicles maintenance, engine performance, component wear, and lube oil performance.

  13. Role of coal in the world and Asia

    SciTech Connect (OSTI)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

  14. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  15. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management 2004_deer_block.pdf (36.26 KB) More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

  16. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Gasoline and Diesel Fuel Update (EIA)

    Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o

  17. Northeast Home Heating Oil Reserve (NEHHOR) Releases | Department of Energy

    Energy Savers [EERE]

    Releases Northeast Home Heating Oil Reserve (NEHHOR) Releases The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for interruptions in supply during severe winter weather, The first emergency use of NEHHOR was in 2012. Emergency Loans after Hurricane Sandy In late October 2012, Hurricane Sandy made landfall on the northeastern shore of the United States,

  18. Energy & Financial Markets - U.S. Energy Information Administration (EIA) -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) Spot Prices Crude oil is traded in a global market. Prices of the many crude oil streams produced globally tend to move closely together, although there are persistent differentials between light-weight, low-sulfur (light-sweet) grades and heavier, higher-sulfur (heavy-sour) crudes that are lower in quality. Crude oil is processed in refineries to make gasoline, diesel, heating oil, jet fuel, lubricants, petrochemical feedstocks and other

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    8 June 2016 Appendix D Northeast Reserves Reserves inventories are not considered to be in the commercial sector and are excluded from EIA's commercial motor gasoline and distillate fuel oil supply and disposition statistics, such as those reported in the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve classifed as ultra-low sulfur distillate (15 parts per million) Terminal Operator Location Thousand Barrels Buckeye

  20. Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

  1. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reserve | Department of Energy to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due

  2. Cokemaking from coals of Kuzbas and Donbas

    SciTech Connect (OSTI)

    Umansky, R.Z.; Kovalev, E.T.; Drozdnik, I.D.

    1997-12-31

    The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

  3. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system retrofit test report. Test report, August 6--October 29, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1993-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology M demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective NonCatalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the third phase of the test program, where the performance of the retrofit low-NO{sub x} combustion system is compared to that of the original combustion system. This third test phase was comprised of an optimization of the operating conditions and settings for the burners and overfire air ports, followed by an investigation of the performance of the low-NO{sub x} combustion system as a function of various operating parameters. These parameters included boiler load, excess air level, overfire air flow rate and number of mills in service. In addition, emissions under normal load following operation were compared to those collected during the optimization and parametric performance tests under baseloaded conditions. The low-NO{sub x} combustion system retrofit resulted in NO{sub x} reductions of 63 to 69 percent, depending on boiler load. The majority of the NO{sub x} reduction was obtained with the low-NO{sub x} burners, as it was shown that the overfire air system provided little additional NO{sub x} reduction for a fixed excess air level. CO emissions and flyash carbon levels did not increase as a result of the retrofit.

  4. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline SNCR test report, February 4--March 6, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Shiomoto, G.H.; Muzio, L.J.; Hunt, T.

    1993-09-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the second test phase of the program. This second test phase was comprised of the start up of the SNCR system followed by a brief parametric test series. Time constraints due to the retrofit schedule precluded optimizing the SNCR system. Testing investigated both urea and aqueous ammonia as SNCR chemicals. Other parameters investigated included boiler load, the amount of chemical injected, as well as injection parameters (injection location, amount of mixing air, dilution water flow, and injector orifice sizes). NO{sub x} removals of nominally 35 percent could be obtained with both chemicals while maintaining ammonia slip levels less than 10 ppM at full load. At higher chemical injection rates (nominal N/NO molar ratios of 1.5 to 2.0), NO{sub x} reductions in the range of 60 to 70 percent were achieved, but with unacceptable levels of NH{sub 3} slip. For a given level of NO{sub x} reduction, ammonia slip was lower with aqueous ammonia injection than with urea. The test program also confirmed prior observations that (1) the optimum temperature for NO{sub x} reduction with ammonia is lower than with urea, and (2) N{sub 2}O emissions as a by-product of the SNCR process are lower for ammonia compared to urea.

  5. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    SciTech Connect (OSTI)

    Chugh, Y.P.; Beasley, G.A.

    1994-10-01

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect (OSTI)

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  7. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2003-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world

  8. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2004-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world

  9. Emissions credit trading: A new revenue stream for refiners

    SciTech Connect (OSTI)

    Henry, J.; Hirshfeld, D.

    1994-12-31

    This presentation describes several innovations in the fossil fuels and automotive/petroleum industries which have been improved or invented as a result of the necessity to comply with Clean Air Act regulations. Such innovations as boiler modifications, usage of low-sulfur coal, improved combustion, pre-combustion cleaning of coal, reformulated gasolines, and oxygenated fuels have all contributed to reductions in air pollution emissions from fossil fuel-powered plants and automotive emissions. Market alternatives for reducing the impacts of the usage of fossil fuels and automotive emissions on the ozone layer are also described.

  10. Petrographic characterization of economizer fly ash

    SciTech Connect (OSTI)

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  11. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect (OSTI)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  12. Neutron Imaging of Diesel Particulate Filters

    SciTech Connect (OSTI)

    Strzelec, Andrea; Bilheux, Hassina Z; FINNEY, Charles E A; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.; Schillinger, Burkhard; Schulz, Michael

    2009-01-01

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

  13. Energy & Financial Markets - Crudeoil - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) Spot Prices Crude oil is traded in a global market. Prices of the many crude oil streams produced globally tend to move closely together, although there are persistent differentials between light-weight, low-sulfur (light-sweet) grades and heavier, higher-sulfur (heavy-sour) crudes that are lower in quality. Updated: Monthly | Last Updated: 06/30/2016 Many types of crude oil are produced around the world. Variations in quality and location result in price differentials,

  14. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  15. World Oil Prices in AEO2006 (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    World oil prices in the Annual Energy Outlook 2006 (AEO) reference case are substantially higher than those in the AEO2005 reference case. In the AEO2006 reference case, world crude oil prices, in terms of the average price of imported low-sulfur, light crude oil to U.S. refiners, decline from current levels to about $47 per barrel (2004 dollars) in 2014, then rise to $54 per barrel in 2025 and $57 per barrel in 2030. The price in 2025 is approximately $21 per barrel higher than the corresponding price projection in the AEO2005 reference case.

  16. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  17. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  18. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S.

  19. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  20. Production of a pellet fuel from Illinois coal mines. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Berger, R.; Ho, Ken

    1995-12-31

    The goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach.

  1. Further experience for environmental improvement in fossil fuel combustion

    SciTech Connect (OSTI)

    Lazzeri, L.; Santis, R. de

    1998-12-31

    Reburning is a technology which has proven, by plant demonstration, capable of providing compliance with very stringent regulatory emissions requests (less than 90 ppm NO{sub x} firing oil and gas and less than 160--170 ppm firing coal). Designing a Reburn System requires a contemporary control of many parameters like flow rates, local stoichiometries residence times, etc.; it also requires the availability and capability of using complex and sophisticated numerical modeling. Although the system can be adapted to any already installed hardware it should be noted that the availability of reliable LNB`s and of specifically designed OFA`s and Reburn fuel injectors can greatly enhance the system performance. Design of OFA system is a subcase of a Reburn System design, as it implies same concepts of mixing and residence times which are the basis of Reburn System. As shown in the cases previously presented Reburning always provides additional margins to OFA operation specifically when very low emission limits are pursued. Finally it should be noted that the use of Reburning may create problems of unburned specifically when very low local stoichiometries and when very low sulfur oils are used which are often characterized by asphaltene instability especially when STZ oil is the result of blending high and low sulfur oils. A specific know-how has been jointly developed by Ansaldo and ENEL to solve these problems acting on both atomizer type selection and operation.

  2. Flue gas conditioning today

    SciTech Connect (OSTI)

    Southam, B.J.; Coe, E.L. Jr.

    1995-12-01

    Many relatively small electrostatic precipitators (ESP`s) exist which collect fly ash at remarkably high efficiencies and have been tested consistently at correspondingly high migration velocities. But the majority of the world`s coal supplies produce ashes which are collected at much lower migration velocities for a given efficiency and therefore require correspondingly large specific collection areas to achieve acceptable results. Early trials of flue gas conditioning (FGC) showed benefits in maximizing ESP performance and minimizing expense which justified continued experimentation. Trials of several dozen ways of doing it wrong eventually developed a set of reliable rules for doing it right. One result is that the use of sulfur trioxide (SO{sub 3}) for adjustment of the resistivity of fly ash from low sulfur coal has been widely applied and has become an automatically accepted part of the option of burning low sulfur coal for compliance with the Clean Air Act of l990 in the U.S.A. Currently, over 100,000 MW of generating capacity is using FGC, and it is estimated that approximately 45,800 MW will utilize coal-switching with FGC for Clean Air Act emission compliance. Guarantees that this equipment will be available to operate at least 98 percent of the time it is called upon are routinely fulfilled.

  3. Successful development and application of high performance plate steels

    SciTech Connect (OSTI)

    Wilson, A.D.

    1995-12-31

    New high performance plate steels (HPPS) are developed in reaction to customer requirements and the availability of essential steelmaking facilities. In this decade significant improvements to steelmaking equipment has made possible the development and production of a variety of new HPPS. Four case studies are presented reviewing the key metallurgical needs and the innovative steel processing that was required. These applications include: (1) Hydrogen Induced Cracking Resistant A516 C-Mn pressure vessel steel with ultra low sulfur and controlled carbon equivalent levels, (2) Temper Embrittlement Resistant A387 Cr-Mo alloy steels for high temperature pressure vessels with low phosphorus, J Factor and sulfur levels with high toughness, (3) formable, weldable, 400HB abrasion resistant alloy steels, which are produced with extra low sulfur levels, reduced carbon and carbon equivalent levels and rigorous heat treatment controls, and (4) weldable, high strength structural steels with low carbon levels, based on Cu-Ni precipitation hardening and A710. Future opportunities for HPPS will result with the installation of additional new steelmaking facilities.

  4. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect (OSTI)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  5. Co-firing High Sulfur Coal with Refuse Derived Fuels. Technical Progress Report {number_sign}11

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, John T.; Lloyd, William G.

    1997-05-31

    The objective of this quarter of study was to prepare fuel pellets containing PVC, newspaper and plastics to be co-fired with coal in the AFBC combustor. The Western Kentucky University atmospheric fluidized bed combustion system requires the fuel to fall from a bunker into a lock-hopper, and from there into a mixing box where the fuel is auger-fed under pressure into the bottom of the fluidized bed. The fuel must flow freely out of the bunker and through the lock- hopper for proper feeding into the combustor. In order for the fuel to continuously fall through these units and into the mixing box during combustion, the density of the fuel and the size of the particles must meet certain requirements. The particles must be no larger than 3/8 inches in diameter and must have a density approaching that of coal. Loose materials such as sawdust, shredded paper products and most shredded plastics do not feed properly in the WKU AFBC system. Bridging and blockage of feed chutes result, even with constant vibration of parts of the feed mechanism. It is not possible to run the AFBC system powered solely by these loose materials.

  6. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 10, January 1997--March 1997

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1997-02-28

    In previous progress reports, we reported our study on the proposed mechanism for the formation of chlorinated organics during combustion, in which molecular chlorine is thought to be the key starting material. The objective of this quarter of study was to quantitatively test the inhibiting effect of SO{sub 2} on the formation of Cl{sub 2} during the combustion of MSW. The experiments were conducted under conditions close to those employed in the AFBC system. The principle analytical technique used for identification of the products from these experiments was GC/MS system. The results indicate that the production of Cl{sub 2} decreases when the concentration of SO{sub 2} in the gaseous mixture increases.

  7. Co-firing high sulfur coal with refuse derived fuels. Progress report No. 3, [April--June 1995

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-05-31

    The Thermogravimetric Analyzer-Fourier Transform Infrared Spectrometer-Mass Spectrometer (TG-FTIR-MS) system was used to identify molecular chlorine, along with HCl, CO, CO{sub 2}, H{sub 2}O, and various hydrocarbons in the gaseous products of the combustion of PVC resin in air. This is a significant finding that will lead us to examine this combustion step further to look for the formation of chlorinated organic compounds. The combination of TG-FTIR and TG-MS offers complementary techniques for the detection and identification of combustion products from coals PVC, cellulose, shredded newspaper, and various blends of these materials. The pilot atmospheric fluidized bed combustor (AFBC) at Western Kentucky University has been tested. The main purpose of these preliminary AFBC runs were to determine the compatibility of coal and pelletized wood in blends and to explore the effects of flue/air ratio. Our objective is to conduct AFBC burns with 90 percent sulfur capture and more then 96% combustion efficiency.

  8. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1996-08-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  9. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-11-30

    Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

  10. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    SciTech Connect (OSTI)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Feng, Z.; Gan, H,; Joseph, I.; Matlack, K. S.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without the formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.

  11. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    SciTech Connect (OSTI)

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-07-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 {micro}m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO{sub 2} emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue

  12. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  13. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  14. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  15. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  16. Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification

    SciTech Connect (OSTI)

    Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

    2012-06-20

    Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

  17. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

    DOE Patents [OSTI]

    Kydd, Paul H.

    1984-01-01

    The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

  18. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea; Storey, John Morse; Lewis Sr, Samuel Arthur; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.

    2010-01-01

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  19. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect (OSTI)

    Strzelec, Andrea; Toops, Todd J; Daw, C Stuart

    2011-01-01

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  20. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect (OSTI)

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  1. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    SciTech Connect (OSTI)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylinder chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.

  2. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  3. Processing heavy crudes: advances in fluid and flexicoking technology

    SciTech Connect (OSTI)

    Allan, D.E.; Metrailer, W.J.; King, R.C.; Wiechert, S.

    1981-12-01

    The authors are concerned with Exxon's Fluid and Flexicoking processes which allow the refiner to convert the bottom of the crude barrel to clean products. This article primarily discusses enhancement of liquid yields from both processes and reduction of low-Btu gas from Flexicoking. Also discussed are recent advances in coking technology, which could make these processes more attractive. Flexicoking is an integrated coking/gasification process for upgrading heavy feedstocks. The process converts these feeds to a 99% yield of fuel gas, naphtha, middle distillates, heavy gas oil, and a low-sulfur coke gas. The remaining 1% is petroleum coke containing metals and other ash components present in the feed. 6 refs.

  4. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J.

    1988-06-01

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader, now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  5. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  6. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  7. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  8. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  9. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  10. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

  11. An Assessment of Energy and Environmental Issues Related to the Use of Gas-to-Liquid Fuels in Transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO2 emissions produced during the conversion process.

  12. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOE Patents [OSTI]

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  13. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  14. High-performance steels

    SciTech Connect (OSTI)

    Barsom, J.M.

    1996-03-01

    Steel is the material of choice in structures such as storage tanks, gas and oil distribution pipelines, high-rise buildings, and bridges because of its strength, ductility, and fracture toughness, as well as its repairability and recyclability. Furthermore, these properties are continually being improved via advances in steelmaking, casting, rolling, and chemistry. Developments in steelmaking have led to alloys having low sulfur, sulfide shape control, and low hydrogen. They provide reduced chemical segregation, higher fracture toughness, better through-thickness and weld heat-affected zone properties, and lower susceptibility to hydrogen cracking. Processing has moved beyond traditional practices to designed combinations of controlled rolling and cooling known as thermomechanical control processes (TMCP). In fact, chemical composition control and TMCP now enable such precise adjustment of final properties that these alloys are now known as high-performance steels (HPS), engineered materials having properties tailored for specific applications.

  15. DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS

    SciTech Connect (OSTI)

    Mauss, M; Wnuck, W

    2003-08-24

    Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

  16. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  17. Process for coal liquefaction in staged dissolvers

    DOE Patents [OSTI]

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  18. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  19. Trash will fuel new Columbus plant

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Columbus, Ohio is building a refuse- and coal-fired 90-MW municipal electric plant that will burn 3000 tons of refuse a day. The plant will burn 80% trash and 20% low-sulfur coal (with the option of burning either all coal or all trash) because the 80-20 ratio offers the best balance between boiler corrosion and efficiency. A general obligation bond sale rather than federal or state financing is possible because of the city's good bond rating. The plant will include a fine-shredder, waste treatment facility, and a coal storage area. Pollution control will be handled by six oversized electrostatic precipitators, six mechanical dust collectors, and three 275-foot stacks. (DCK)

  20. Fate of SO{sub 2} During Plasma Treatment of Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E.

    1999-10-25

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO{sub 2} to achieve efficient reduction of NO{sub x} and particulates in diesel engine exhaust. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO{sub 2} is also active in converting SO{sub 2} to SO{sub 3}. A non-thermal plasma can be used for the selective partial oxidation of NO to NO{sub 2} in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO{sub 2} without oxidizing SO{sub 2} to SO{sub 3}. It is shown that the presence of hydrocarbons in the plasma is essential for enhancing the selective partial oxidation of NO and suppressing the oxidation of SO{sub 2}.

  1. Production of a pellet fuel from Illinois coal fines. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.

    1995-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. Previously it has been decided that corn starch would be used as binder and a roller-and-die mill would be used for pellet manufacture. A quality starch binder has been identified and tested. To potentially lower binder costs, a starch that costs about 50% of the high quality starch was tested. Results indicate that the lower cost starch will not lower binder cost because more is required to produce a comparable quality pellet. Also, a petroleum in water emulsion was evaluated as a potential binder. The compound seemed to have adhesive properties but was found to be a poor binder. Arrangements have been made to collect a waste slurry from the mine previously described.

  2. Oxy-combustion of pulverized coal : modeling of char-combustion kinetics.

    SciTech Connect (OSTI)

    Shaddix, Christopher R.; Haynes, Brian S.; Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  3. Oxy-combustion of pulverized coal : modeling of char combustion kinetics.

    SciTech Connect (OSTI)

    Shaddix, Christopher R.; Haynes, Brian S.; Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  4. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.

    1998-12-31

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  5. Radionuclides in Western coal. Final report

    SciTech Connect (OSTI)

    Abbott, D.T.; Styron, C.E.; Casella, V.R.

    1983-09-23

    The increase in domestic energy production coupled with the switch from oil and natural gas to coal as a boiler-fuel source have prompted various federal agencies to assess the potential environmental and health risks associated with coal-fired power plants. Because it has been suggested that Western coals contain more uranium than Eastern coals, particular concern has been expressed about radioactive emissions from the increasing number of power plants that burn low-sulfur Western coal. As a result, the radionuclides in coal program was established to analyze low-sulfur coal reserves in Western coal fields for radioactivity. Samples from seams of obvious commercial value were taken from 19 operating mines that represented 65% of Western coal production. Although the present study did not delve deeply into underlying causative factors, the following general conclusions were reached. Commercially exploited Western coals do not show any alarming pattern of radionuclide content and probably have lower radioactivity levels than Eastern coals. The materials that were present appeared to be in secular equilibrium in coal, and a detailed dose assessment failed to show a significant hazard associated with the combustion of Western coal. Flue gas desulfurization technology apparently has no significant impact on radionuclide availability, nor does it pose any significant radiologic health risks. This study has also shown that Western coals are not more radioactive than most soils and that most solid combustion products have emanation powers <1%, which greatly reduce dose estimates from this pathway. In summary, the current use of mined, Western coals in fossil-fueled power plants does not present any significant radiological hazard.

  6. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk Jr; Keith Wisecarver

    2005-10-01

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world

  7. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  8. Modeling Vulnerability and Resilience to Climate Change: A Case Study of India and Indian States

    SciTech Connect (OSTI)

    Brenkert, Antoinette L.; Malone, Elizabeth L.

    2005-09-01

    The vulnerability of India and Indian states to climate change was assessed using the Vulnerability-Resilience Indicator Prototype (VRIP). The model was adapted from the global/country version to account for Indian dietary practices and data availability with regard to freshwater resources. Results (scaled to world values) show nine Indian states to be moderately resilient to climate change, principally because of low sulfur emissions and a relatively large percentage of unmanaged land. Six states are more vulnerable than India as a whole, attributable largely to sensitivity to sea storm surges. Analyses of results at the state level (Orissa, and comparisons between Maharashtra and Kerala, and Andhra Pradesh and Himachal Pradesh) demonstrate the value of VRIP analyses used in conjunction with other socioeconomic information to address initial questions about the sources of vulnerability in particular places. The modeling framework allows analysts and stakeholders to systematically evaluate individual and sets of indicators and to indicate where the likely vulnerabilities are in the area being assessed.

  9. Low Cost Polymer heat Exchangers for Condensing Boilers

    SciTech Connect (OSTI)

    Butcher, Thomas; Trojanowski, Rebecca; Wei, George; Worek, Michael

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  10. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    SciTech Connect (OSTI)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won; Ahn, Jou-Hyeon; Wang, Guoxiu; Ahn, Jae-Pyeung; Ahn, Hyo-Jun

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  11. Pelletization of fine coals. Final report

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  12. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  13. Commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process. Technical progress report No. 3, October 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). A facility producing 260 TPD of methanol will be designed and constructed at a site located at the Eastman Chemical complex in Kingsport, Tennessee. The Partnership will own and operate the facility for the four-year demonstration facility operational period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to ``demonstrate the production of methanol using the LPMEOH{trademark} process in conjunction with an integrated coal gasification facility.`` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low sulfur dioxide, low nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research shows promising results. If implemented, the DME would be produced during the last six months of the operations phase. During the period 1 October 1994 to 31 March 1995, the project team completed essentially all the activities necessary to start detailed design. Major accomplishments in these activities are discussed.

  14. Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

    SciTech Connect (OSTI)

    Williams, A.; Ratcliff, M.; Pedersen, D.; McCormick, R.; Cavataio, G.; Ura, J.

    2010-03-01

    Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300 C. These stored HCs inhibit or block NO{sub x}-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NO{sub x} conversion begins at between 100 and 200 C. When exposure to unburned fuel occurs at higher temperatures (250-400 C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NO{sub x} conversion is inhibited until it is heated to 400 C. However, when masked with biodiesel, NO{sub x} conversion is observed to begin at temperatures as low as 200 C. Engine test results also show low-temperature recovery from HC storage. Engine tests indicate that, overall, the SCR system has a faster recovery from HC masking with biodiesel. This is at least partially due to a reduction in exhaust HCs, and thus total HC exposure with biodiesel.

  15. Role of the Liquids From Coal process in the world energy picture

    SciTech Connect (OSTI)

    Frederick, J.P.; Knottnerus, B.A.

    1997-12-31

    ENCOAL Corporation, a wholly owned indirect subsidiary of Zeigler Coal Holding Company, has essentially completed the demonstration phase of a 1,000 Tons per day (TPD) Liquids From Coal (LFC{trademark}) plant near Gillette, Wyoming. The plant has been in operation for 4{1/2} years and has delivered 15 unit trains of Process Derived Fuel (PDF{trademark}), the low-sulfur, high-Btu solid product to five major utilities. Recent test burns have indicated the PDF{trademark} can offer the following benefits to utility customers: lower sulfur emissions, lower NO{sub x} emissions, lower utilized fuel costs to power plants, and long term stable fuel supply. More than three million gallons of Coal Derived Liquid (CDL{trademark}) have also been delivered to seven industrial fuel users and one steel mill blast furnace. Additionally, laboratory characteristics of CDL{trademark} and process development efforts have indicated that CDL{trademark} can be readily upgraded into higher value chemical feedstocks and transportation fuels. Commercialization of the LFC{trademark} is also progressing. Permit work for a large scale commercial ENCOAL{reg_sign} plant in Wyoming is now underway and domestic and international commercialization activity is in progress by TEK-KOL, a general partnership between SGI International and a Zeigler subsidiary. This paper covers the historical background of the project, describes the LFC{trademark} process and describes the worldwide outlook for commercialization.

  16. Enhanced control of fine particles following Title IV coal switching and NOx control

    SciTech Connect (OSTI)

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.

    1997-12-31

    Electrostatic precipitators (ESPs) serve as the primary particle control devices for a majority of coal-fired power generating units in the United States. ESPs are used to collect particulate matter that range in size from less than one micrometer in diameter to several hundred micrometers. Many of the options that utilities will use to respond to Title IV of the 1990 Clean Air Act Amendments will result in changes to the ash that will be detrimental to the performance of the ESP causing increased emissions of fine particles and higher opacity. For example, a switch to low-sulfur coal significantly increases particle resistivity while low-NO{sub x} burners increase the carbon content of ashes. Both of these changes could result in derating of the boiler to comply with emissions standards. ADA has developed a chemical additive that is designed to improve the operation of ESI`s to bring these systems into compliance operation without the need for expensive capital modifications. The additives provide advantages over competing technologies in terms of low capital cost, easy to handle chemicals, and relatively non-toxic chemicals. In addition, the new additive is insensitive to ash chemistry which will allow the utility complete flexibility to select the most economical coal. Results from full-scale and pilot plant demonstrations are reported.

  17. Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds

    DOE Patents [OSTI]

    Khan, M. Rashid

    1988-01-01

    A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

  18. Commercialization of IGCC technology looks promising

    SciTech Connect (OSTI)

    Smith, D.J.

    1992-02-01

    This paper reports that a major focus of the latest round of the U.S. Department of Energy's Clean Coal Technology Program was three large-scale, high-efficiency electricity generating projects which will rely on coal gasification rather than burning the coal directly. The three projects are: Toms Creek integrated gasification combined-cycle (IGCC) demonstration project. The aim of the project is to demonstrate improved coal-to-power efficiencies in an integrated gasification combined-cycle process. According to the DOE, the Toms Creek project will show that significant reductions in SO{sub 2} and NO{sub x} emissions can be accomplished through the use of IGCC technology. On completion of the project, 107 MW of electric capacity will be added to the grid. Pinon Pine IGCC power project. The project's aim is to demonstrate that IGCC plants can be constructed at significantly lower capital costs, and with higher thermal efficiencies, than conventional power generation technologies. It will also demonstrate the effectiveness of hot gas cleanup for low-sulfur western coals. Wasbash River coal gasification repowering project.

  19. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  20. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    SciTech Connect (OSTI)

    Sheldon, R.W.; Heintz, S.J.

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  1. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect (OSTI)

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  2. The effect of fuel sulfur level on the HC, CO and NOX conversion efficiencies of PD/RH, PT/RH, PD-only and tri-metal catalysts

    SciTech Connect (OSTI)

    DiCircco, D.M.; Adamczyk, A.A.; Patel, K.S.

    1995-12-31

    Due to additional requirements imposed by the 1990 amendments to the Clean Air Act, automotive emissions systems must perform at high efficiencies for 100,000 miles. However, fuels containing sulfur, can reduce the efficiency of many modern catalyst formulations. Additionally, the Northeast Ozone Transport Commission (OTC) has petitioned the US Environmental Protection Agency (EPA) to require region-wide adaptation of the California Low-Emission Vehicle standards without the application of California`s reformulated gasoline program which is necessary to keep the level of fuel sulfur low. As will be seen, this will result in reduced catalyst activity in the OTC, since typical gasolines contain sulfur levels which vary considerably. Gasolines containing 50ppmS and 500ppmS only represent the 10th and 75th percentile of US commercial summer fuels. As will be shown, these high levels of fuel sulfur will lower the performance of high activity catalyst formulations and may make compliance with LEV/ULEV emissions levels extremely difficult if not impossible without the adaptation of low-sulfur fuels.

  3. NO2 oxidation reactivity and burning mode of diesel particulates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzelec, Andrea; Vander Wal, Randy L.; Thompson, Thomas N.; Toops, Todd J.; Daw, C. Stuart

    2016-03-24

    The NO2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activation energy measured,more » specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. Furthermore, this preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison.« less

  4. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect (OSTI)

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  5. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  6. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, Richard D.

    1988-01-01

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.

  7. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE

    SciTech Connect (OSTI)

    John D. Jones

    2004-10-01

    A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

  8. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  9. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  10. The John Deere E diesel Test & Research Project

    SciTech Connect (OSTI)

    Fields, Nathan; Mitchell, William E.

    2008-09-23

    Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

  11. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and mediumhigh (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  12. PEAT: an energy alternative

    SciTech Connect (OSTI)

    Schora, F.C.; Punwani, D.V.

    1980-01-01

    Even though peat is a low-heating value and low-bulk density fossil fuel which in its natural state contains over 80 percent moisture, it can be an economical alternative to coal, and fuel oil, as is the case in Iceland and Finland for direct combustion applications. This is because of the relative ease with which peat can be harvested, and the generally low sulfur and ash content of peat. Recent studies show that peat also has very favorable characteristics for conversion to synthetic fuels. Tests show that on the basis of chemistry and kinetics, peat is a better raw material than coal for production of synthetic fuels. Recent estimates also show that conversion of peat to high-Btu gas (>950 Btu/scf) is competitive with other alternatives of synthetic high-Btu gas. Therefore, peat can be an economical energy alternative depending upon location of peat deposits, region of energy need, scale of operation and cost of other energy alternatives.

  13. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  14. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  15. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1986-07-24

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  16. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1988-10-18

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  17. Regeneration technology helps reduce catalyst costs and waste disposal

    SciTech Connect (OSTI)

    Neuman, D.J.; Roller, W.

    1997-05-01

    Worldwide hydroprocessing capacity and hydroprocessing catalyst usage has been increasing dramatically. Two major factors contributing to the increase are sulfur restrictions in gasoline, diesel and other fuels; and increasing demand for lighter products. The limit of 0.05 wt% sulfur for diesel fuels in US has led to the construction of many {open_quotes}low-sulfur diesel{close_quotes} hydrotreaters. Similarly strict sulfur restrictions have been imposed or considered in countries throughout Europe. These restrictions have also resulted in higher severity operation and shorter cycles in existing hydrotreating units. New catalyst regeneration technology is available for hydroprocessing catalysts of various sizes. These catalysts can be regenerated in a single pass, even at carbon levels above 30%. Regenerated carbon and sulfur levels are typically well below 1%, and nearly 100% recovery of the available surface area and catalyst length are achieved. The use of an inert gas stripper to remove excess hydrocarbons and water has also been successfully demonstrated. Pre-treating the catalyst in the stripper prior to regeneration has eliminated the potential for temperature excursions. Catalysts containing up to 40% volatile matter are now regenerated in a single pass by first pre-treating the catalyst in the stripper.

  18. Status of spray-dryer flue-gas desulfurization. Final report

    SciTech Connect (OSTI)

    Ireland, P.A.

    1982-01-01

    Utility interest and commitment to spray drying for SO/sub 2/ and particulate control has increased dramatically in response to vendor claims (lower costs, dry wastes, lower energy requirements, and simplicity) and newly promulgated federal emission regulations that allow lower SO/sub 2/ removal requirements (70%) for low-sulfur coals. Unfortunately, limited data are available from which to evaluate vendor claims prior to commercial commitment or to improve the cost and reliability of this potentially important flue gas desulfurization (FGD) option. Accordingly, EPRI is conducting a pilot-scale project (RP1870) to provide a systematic evaluation of the technology unconstrained by specific vendor designs, operating philosophy, or commercial limitation. It will result in guidelines for system design and optimization in order to ensure reliable utility operation at minimum cost. This final report (TPS 80-741) contains a review of the design practices for the full-scale systems ordered and a discussion of the important spray-drying FGD process variables. Other EPRI work in this area includes a cost study with the Tennessee Valley Authority (RP1180-7) and a spray-dryer waste solids characterization (RP1870-2). The EPA has published a similar status document, which, in addition to spray drying, also covers dry injection and burning coal-alkali mixtures. However, the EPA document is not as detailed on either the design of full-scale systems or the technical issues.

  19. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  20. Characterization and supply of coal based fuels

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  1. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  2. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  3. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  4. Ethyl 3-ethoxybutyrate, a new component of the transportation renewable fuel portfolio

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bunce, Michael P.; Storey, John M. E.; Edmonds, Jennifer W.; Findlay, Robert H.; Ritchie, Stephen M. C.; Eyers, Laurent; McMurry, Zackery A.; Smoot, James C.

    2015-12-01

    The vast majority of energy that powers our global economy is from combustion of fossil fuels with the unintended consequence of increased deposition of carbon dioxide in the atmosphere and oceans. The scientific and technical challenges for the energy sector are to develop renewable energy sources that are sufficient to meet human energy consumption, are economically viable, and are ecologically sustainable. We investigated ethyl 3-ethoxybutyrate (EEB) as a fuel oxygenate in ultra low sulfur diesel (ULSD) with a bench-scale research engine and determined its economic potential as a renewable fuel with technoeconomic modeling using wastewater treatment plant biosolids as themore » feedstock for poly-3-hydroxyalkanoates (PHB), a bacterial storage polymer from which EEB can be synthesized. EEB blended well with ULSD, and cetane values of 10% and 20% v/v EEB-ULSD blends exceeded 40. A diesel internal combustion engine fueled with 5%, 10%, and 20% EEB-ULSD blends met or exceeded all tested transportation diesel fuel emissions criteria. Inedible organic feedstocks may be used to produce PHB; and thus, EEB might contribute to carbon reductions without compromising performance or air pollutant emissions. However, further research is needed to determine its role in the overall fuel portfolio. (C) 2015 Elsevier Ltd. All rights reserved.« less

  5. Collaborative Lubricating Oil Study on Emissions: November 28, 2006 - March 31, 2011

    SciTech Connect (OSTI)

    Carroll, J. N.; Khalek, I. A.; Smith, L. R.; Fujita, E.; Zielinska, B.

    2011-10-01

    The Collaborative Lubricating Oil Study on Emissions (CLOSE) project was a pilot investigation of how fuels and crankcase lubricants contribute to the formation of particulate matter (PM) and semi-volatile organic compounds (SVOC) in vehicle exhaust. As limited vehicles were tested, results are not representative of the whole on-road fleet. Long-term effects were not investigated. Pairs of vehicles (one normal PM emitting, one high-PM emitting) from four categories were selected: light-duty (LD) gasoline cars, medium-duty (MD) diesel trucks, heavy-duty (HD) natural-gas-fueled buses, and HD diesel buses. HD vehicles procured did not exhibit higher PM emissions, and thus were labeled high mileage (HM). Fuels evaluated were non-ethanol gasoline (E0), 10 percent ethanol (E10), conventional low-sulfur TxLED diesel, 20% biodiesel (B20), and natural gas. Temperature effects (20 degrees F, 72 degrees F) were evaluated on LD and MD vehicles. Lubricating oil vintage effects (fresh and aged) were evaluated on all vehicles. LD and MD vehicles were operated on a dynamometer over the California Unified Driving Cycle, while HD vehicles followed the Heavy Duty Urban Dynamometer Driving Schedule. Regulated and unregulated emissions were measured. Chemical markers from the unregulated emissions measurements and a tracer were utilized to estimate the lubricant contribution to PM.

  6. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect (OSTI)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  7. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect (OSTI)

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  8. ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation

    SciTech Connect (OSTI)

    Sluder, Scott; Storey, John Morse; Youngquist, Adam D

    2009-01-01

    Exhaust gas recirculation (EGR) cooler fouling has emerged as an important issue in diesel engine development. Uncertainty about the level of impact that fuel chemistry may have upon this issue has resulted in a need to investigate the cooler fouling process with emerging non-traditional fuel sources to gage their impact on the process. This study reports experiments using both ultra-low sulfur diesel (ULSD) and 20% biodiesel (B20) at elevated exhaust hydrocarbon conditions to investigate the EGR cooler fouling process. The results show that there is little difference between the degradation in cooler effectiveness for ULSD and B20 at identical conditions. At lower coolant temperatures, B20 exhibits elevated organic fractions in the deposits compared with ULSD, but this does not appear to lead to incremental performance degradation under the conditions studied. Comparisons with a previous study conducted at low HC levels shows that the presence of increased volatiles in the deposit does not impact the degradation in effectiveness significantly. Moreover, the effectiveness loss divided by the deposit mass gain for both low- and high-HC conditions seems to indicate that the HC fraction in the deposit does not significantly alter the overall thermal properties of the deposit layer.

  9. Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure

    SciTech Connect (OSTI)

    Storey, John Morse; Sluder, Scott; Lance, Michael J; Styles, Dan; Simko, Steve

    2013-01-01

    This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, no significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.

  10. Enhanced performance of electrostatic precipitators through chemical modification of particle resistivity and cohesion

    SciTech Connect (OSTI)

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.

    1995-11-01

    Control of fine particles, including particulate air toxics, from utility boilers is required near-term by state and federal air regulations. Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern united States. Cost-effective retrofit technologies for fine particle control, including flue gas conditioning, are needed for the large base of existing ESPs. Flue has conditioning is an attractive option because it requires minimal structural changes and lower capital costs. For flue gas conditioning to be effective for fine particle control, cohesive and particle agglomerating agents are needed to reduce reentrainment losses, since a large percentage of particulate emissions from well-performing ESPs are due to erosion, rapping, and non-rapping reentrainment. A related and somewhat ironic development is that emissions reductions of SO{sub 2} from utility boilers, as required by the Title IV acid rain program of the 1990 Clean Air Act amendments, has the potential to substantially increase particulate air toxics from existing ESPs. The switch to low-sulfur coals as an SO{sub 2} control strategy by many utilities has exacerbated ESP performance problems associated with high resistivity flyash. The use of flue gas conditioning has increased in the past several years to maintain adequate performance in ESPs which were not designed for high resistivity ash. However, commercially available flue gas conditioning systems, including NH{sub 3}/SO{sub 3} dual gas conditioning systems, have problems and inherent drawbacks which create a need for alternative conditioning agents. in particular, NH{sub 3}/SO{sub 3} systems can create odor and ash disposal problems due to ammonia outgassing. In addition, there are concerns over chemical handling safety and the potential for accidental releases.

  11. Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report

    SciTech Connect (OSTI)

    Reese, J.; Folsom, B.; Jones, F.

    1984-03-01

    The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler. The EDS evaluated was a full range solvent oil produced at the Exxon Coal-Liquefaction Pilot Plant in Baytown, Texas. This evaluation involved modifying the boiler equipment and operating procedures for EDS, and then firing 4500 barrels of EDS in the boiler. The resulting boiler performance and emissions with EDS were compared to those with a blended low-sulfur petroleum distillate similar to No. 4 fuel oil and with natural gas. The boiler was operated over a range of load and excess air conditions during the tests. The potential for NO/sub x/ reduction with a burner out of service (BOOS) was also evaluated. Boiler performance, including excess air requirements, maximum load, thermal efficiency and heat rate efficiency was similar to that with oil. The NO/sub x/ emissions with EDS were about 12 percent higher than with oil. NO/sub x/ reduction with BOOS was about 20 percent with both oil and EDS. EDS use did not result in an increase in particulate emissions. Submicron particulate, however, was increased with EDS. Required equipment modifications at Highgrove primarily involved material compatibility with EDS, fuel system capacity, and the burner nozzles. The use of EDS required the implementation of health and safety procedures due to the adverse health effects that could result from prolonged exposure to the fuel. The results of the evaluation demostrated that EDS can be used in a utility boiler designed for oil with only minor modifications.

  12. Fuel oil quality task force

    SciTech Connect (OSTI)

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  13. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  14. Petroleum refining industry of developed capitalist countries in the 1990s

    SciTech Connect (OSTI)

    Prokhorova, A.A.

    1994-07-01

    Crude oil is the principal source of energy today and in the immediate future. The increases in the consumption of crude oil (1.7% per year up to 2005) will be offset mainly by additional supplies from the countries of the Near East. Data on the imports of oil by the developed capitalists countries are presented in Table 2. In the United States, according to a projection made by Conoco, by the year 2000 the volume of imports will be twice the volume of domestic production; according to another prediction, the amount of Near East crude will increase from 34% in 1990 to 42% in 2000. Since the mid-1980s, the energy policy of the USA has been based on importing so-called cheap crude. Laws have been passed to mandate not only energy saving, but also cuts in the oil and gas production on U.S. territory. The volume of U.S. oil production will be 20% lower in 2000 than in 1990. Some 90% of the worldwide demand for oil is met by light and medium-density crudes, but such crudes account for only 25% of the oil resources. Projections indicate that the oil supplied to refiners in the future will be heavier and will have higher sulfur contents. The U.S. production of low-sulfur crude will drop off sharply in the next 10-15 years. The drop in oil production of the CIS [former USSR] and the consequent drop in exports from these countries will have a destabilizing effect on the world market. The average price of the {open_quotes}market basket{close_quotes} of OPEC crudes in 1991 was $149/ton (in 1990 $178/ton), in comparison with a 1992 price of $148/ton. This report presents data on refining process capacities and the ratio of secondary capacity to primary distillation capacity.

  15. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Environmental monitoring report No. 1, 1 April 1997--31 June 1997

    SciTech Connect (OSTI)

    1998-02-13

    The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol was designed, constructed, and has begun operation at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to {open_quotes}demonstrate the production of methanol using the LPMEOH{trademark} Processing conjunction with an integrated coal gasification facility.{close_quotes} The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOH{trademark} process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  16. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-09-30

    The Liquid Phase Methanol (LPMEOHT") demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and is operating at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOWM Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOITM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfdly piloted at a 10 tons-per- day (TPD) rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  17. Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-12-31

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million effort being conducted under a cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day (TPD)) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and began a four-year operational period in April of 1997 at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOH?M Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOJYM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfidly piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This Demonstration Project is the culmination of that extensive cooperative development effort.

  18. Dynamic optimization model of energy related economic planning and development for the Navajo nation

    SciTech Connect (OSTI)

    Beladi, S.A.

    1983-01-01

    The Navajo reservation located in portions of Arizona, New Mexico and Utah is rich in low sulfur coal deposits, ideal for strip mining operation. The Navajo Nation has been leasing the mineral resources to non-Indian enterprises for purposes of extraction. Since the early 1950s the Navajo Nation has entered into extensive coal leases with several large companies and utilities. Contracts have committed huge quantities of Navajo coal for mining. This research was directed to evaluate the shadow prices of Navajo coal and identify optimal coal extraction. An economic model of coal resource extraction over time was structured within an optimal control theory framework. The control problem was formulated as a discrete dynamic optimization problem. A comparison of the shadow prices of coal deposits derived from the dynamic model with the royalty payments the tribe receives on the basis of the present long-term lease contracts indicates that, in most cases, the tribe is paid considerably less than the amount of royalty projected by the model. Part of these discrepancies may be explained in terms of the low coal demand condition at the time of leasing and due to greater uncertainties with respect to the geologic information and other risks associated with mining operations. However, changes in the demand for coal with rigidly fixed terms of royalty rates will lead to non-optimal extraction of coal. A corrective tax scheme is suggested on the basis of the results of this research. The proposed tax per unit of coal shipped from a site is the difference between the shadow price and the present royalty rate. The estimated tax rates over time are derived.

  19. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, October 1995--July 1997

    SciTech Connect (OSTI)

    Bailey, R.T.; Jankura, B.J.; Kudlac, G.A.

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon{reg_sign} covered condensing heat exchanger is adapted to remove certain flue gas constitutents, both particulate and gaseous, while recovering low level heat. Phase 1 includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW{sub t}. The other task studied the durability of the Teflon{reg_sign} covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. The durability of the Teflon{reg_sign} covered heat exchanger tubes was studied on a pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}). Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

  20. Self-Scrubbing Coal -- an integrated approach to clean air

    SciTech Connect (OSTI)

    Harrison, K.E.

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  1. Integrated dry NO{sub x}/SO{sub 2} emissions control systems: Advanced retractable injection lance SNCR test report. NOELL ARIL test period: April 20, 1995--December 21, 1995; DPSC test period: August 16--26, 1996

    SciTech Connect (OSTI)

    Muzio, L.J.; Smith, R.A.; Hunt, T.

    1997-04-01

    The test site is Arapahoe Generating Station Unit 4, a 100 MWe down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emission through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the third phase of SNCR tests, where an additional injection location was installed to increase the low-load NOx removal performance. The new injectors consist of a pair of retractable in-furnace lances which were designed to provide a high degree of load following flexibility through on-line adjustments of the injection angle. With the new lances, NOx removals in excess of 35% are achievable at the same load and HN{sub 3} slip limit. At loads of 43 to 60 MWe, NOx removals with the lances range from 37--52%. At loads greater than 60 MWe, the wall-injection location is more efficient, and at loads of 70 to 100 MWe, NOx removals range from 37--41%. The coal mill-in-service pattern was found to have a large effect on both NOx removal and NH{sub 3} slip for injection at the new lance location. At 60 MWe, the NOx removal at the 10 ppm NH{sub 3} slip limit ranges from 28--52% depending on the mill-in-service pattern. Biasing the coal mills to provide uniform combustion conditions ahead of the injection location was found to be the best option for improving SNCR system performance under these conditions.

  2. New technology concept for two-stage liquefaction of coal. Final summary report, 1 July 1983-30 September 1985

    SciTech Connect (OSTI)

    Comolli, A.G.; Duddy, J.E.; Koziel, M.L.; MacArthur, J.B.; McLean, J.B.; Smith, T.O.

    1986-02-01

    Hydrocarbon Research, Inc. (HRI) has completed a series of studies for the evaluation of a ''New Technology Concept for Two-Stage Liquefaction of Coal''. The time period of studies covered May 26, 1983 to November 25, 1985, a total of thirty months, with the major effort devoted to Illinois No. 6 bituminous coal and the balance devoted to Wyodak sub-bituminous coal. A two-stage coal liquefaction process, based on two close-coupled catalytic ebullated-bed reactors with the first stage operating at low temperature for maximum hydrogenation, has been developed and demonstrated on Illinois No. 6 and Wyodak coals. This final report presents an executive summary of the program and completes the reporting requirements of Contract No. DE-AC22-83PC60017. A summary of the studies and process demonstrations is presented along with references to the Topical Reports on Illinois No. 6 coal, Wyodak coal, Conceptual Commercial Plant Design and Economics and reports by DOE sponsored support contractors. Experimental details are contained in the referenced reports. The accomplishments of this program and recommendations for a follow-on program are presented. By application of this new hydrogenation concept in this study, distillate yields of greater than 65 W % of M.A.F. Coal or 4.2 barrels per ton of M.A.F. coal were demonstrated on both Illinois No. 6 and Wyodak coals. This was accompanied by a ten-fold reduction in bottoms viscosity and the production of low sulfur environmentally clean fuels. As reported by Conoco, Inc. and Battelle Pacific Northwest Laboratories, a higher level of hydrogenation is evident and the liquids produced are more petroleum-like than coal liquids derived from other liquefaction processes. Upgrading studies on the Wyodak products are being performed by Chevron. 7 figs., 14 tabs.

  3. Commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process. Technical progress report No. 4, 1 April--30 June 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P.(the Partnership). A facility producing 260 TPD of methanol will be designed and constructed at a site located at the Eastman Chemical complex in Kingsport, Tennessee. The Partnership will own and operate the facility for the four-year demonstration facility operational period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to ``demonstrate the production of methanol using the LPMEOH{trademark} process in conjunction with an integrated coal gasification facility.`` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low sulfur dioxide, low nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research shows promising results. If implemented, the DME would be produced during the last six months of the operations phase. During this last quarter the project transitioned to the design phase. the project requires review under the National environmental Policy Act to move to the construction phase, which is scheduled to begin in August of 1995. DOE has prepared an Environmental Assessment, and a Finding of No Significant Impact was issued during this quarter. The facility is scheduled to be mechanically complete in November of 1996.

  4. Task 4.0 -- Advanced fuel forms and co-products. Semi-Annual report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Anderson, C.M.; Musich, M.A.; Young, B.C.; Timpe, R.C.; Olson, E.S.; Sharma, R.K.

    1993-07-01

    Summarized below is the work carried out over a six-month period on the subtasks Beneficiation for Advanced Systems, Co-Products, and Low-Rank Coal Liquefaction. Hydrothermal drying (hot-water drying and saturated-steam drying) was determined to be an effective method of causing a permanent reduction in the equilibrium moisture of low-rank coals and removing sodium. The development of improved methods is continuing for assessing the propensity of coals to dust generation. Carbonic acid treatment of lignites and subbituminous coals reduced the sodium contents of these coals by 60 to 70 wt%. Float/sink washability testing of low-sulfur subbituminous coals produced ash reductions of 30 to 40 wt% at +95 wt% moisture and ash-free (maf) coal recovery. Ineffective agglomerants were induced to agglomerate low-rank coals by mixing with a polar oil or polar alcohol. Effective agglomeration promoters were crude phenol, m-cresol, cresylic acid, methanol, ethanol, propanol, and butanol. Three coals, a North Dakota Lignite, a North Dakota Leonardite, and an Alaskan subbituminous coal, were pyrolyzed. Proximate analysis showed that the subbituminous char was typically lower in volatiles than the lignite. Adsorption of sulfur dioxide by the chars were indistinguishable from one another. Coal can be effectively solubilized by treatment with CO reductant in an aqueous solvent (CO steam process). In this report, the catalytic hydrotreatment of the solubilized low-severity products from sodium aluminate-catalyzed and uncatalyzed CO/H{sub 2}O reactions of a Wyodak subbituminous coal are compared. Liquefaction with the Co-Me catalyst gave 68% conversion to heptane solubles for both the sodium aluminate and the uncatalyzed low-severity reaction intermediates.

  5. Processing of heavy oil utilizing the Aurabon process. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This report contains estimates of the product yields and product properties from four separate, commercial-scale Aurabon heavy oil upgrading complexes capable of producing low-sulfur, hydrogen-rich products from various fractions of either a Venezuelan Boscan or a Canadian Lloydminster heavy oil feedstock. These estimates formed the basis for the development of the necessary process engineering work, including the general equipment specifications for the major equipment items included in each processing unit, required to determine cost and utilities estimates, construction labor requirements, and an estimated construction cost schedule for each of the four upgrading complexes. In addition to the above information, estimates of the yields and properties of the products produced during the upgrading of the heavy portion of the Aurabon product by both the hydrocracking and fluidized catalytic cracking processes are also included in this report. Consistent with the provisions of the executed contract for this work, those portions of the engineering work which were considered proprietary to UOP, including the heat and material balances, process flow diagrams, piping and instrument diagrams, and general equipment specifications developed for each process unit contained in the heavy oil upgrading facilities have not been included in this report. This report does, however, contain sufficient non-proprietary information to provide the reader with a general understanding of the Aurabon process and detailed information regarding the performance of the process when upgrading the two heavy oil feedstocks studied. UOP has allowed the consulting firms of Walk, Haydel and Associates of New Orleans, Louisiana and Texas Consultants, Inc. of Houston, Texas to review various portions of the engineering work developed by UOP under this contract. 1 reference, 13 figures, 22 tables.

  6. Breckinridge Project, initial effort

    SciTech Connect (OSTI)

    1982-01-01

    This report presents an overview of the Breckinridge Project and summarizes the results achieved during the development phase of the project performed under a Cooperative Agreement with the United States Department of Energy. The Breckinridge Project provides for the design, construction and operation of a 50,000 barrel per day coal liquefaction facility in Breckinridge County, Kentucky. The development of the basic technology used in the Breckinridge Project dates back to the late 1950's and the invention by Hydrocarbon Research, Inc., (HRI) of the ebullated-bed reactor and the H-OIL process. The H-COAL process is based on the H-OIL technology. This coal liquefaction process produces clean low-sulfur petroleum substitutes suitable for most types of hydrocarbon-based fuel and chemical uses regardless of the sulfur content of the coal. A large H-COAL Pilot Plant in operation at Catlettsburg, Kentucky, is converting 220 tons of coal per day into 600 barrels of distillate products by catalytic hydrogenation. The estimated capital cost of the commercial facility is $3.17 billion, and the associated out-of-pocket operating cost is $18 per barrel, both in January 1981 dollars. Financial analysis shows the project to be an attractive investment under certain leveraged conditions which are possible through the assistance of the Synthetic Fuels Corporation. Ashland Synthetic Fuels, Inc. is currently working with the Synthetic Fuels Corporation and potential partners to develop financing for the commercial venture. Critical permits are being obtained and an Environmental Impact Statement is being prepared pursuant to initiating site preparation in early 1983. Commercial operations are expected to start up in early 1988.

  7. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  8. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{sup trademark}) process. Third quarterly report, 1996

    SciTech Connect (OSTI)

    1997-09-01

    The Liquid Phase Methanol (LPMEOH)(TM) demonstration project at King sport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol is being designed and constructed at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The Partnership will own and operate the facility for the four year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to `demonstrate the production of methanol using the LPMEOH(TM) Process in conjunction with an integrated coal gasification facility.` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four year demonstration period. The LPMEOH(TM) process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  9. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  10. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    SciTech Connect (OSTI)

    Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

  11. The changing structure of the US coal industry: An update, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-29

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  12. Geochemistry, palynology, and regional geology of worldclass Upper Devonian source rocks in the Madre de Dios basin, Bolivia

    SciTech Connect (OSTI)

    Peters, K.E.; Conrad, K.T.; Carpenter, D.G.; Wagner, J.B.

    1996-08-01

    Recent exploration drilling indicates the existence of world-class source rock in the Madre de Dios basin, Bolivia. In the Pando-1 X and -2X wells, over 200 m of poorly bioturbated, organic-rich (TOC = 3-16 wt.%) prodelta to shelf mudstones in the Frasnian-Famennian Tomachi Formation contain oil-prone organic matter (hydrogen index = 400-600 mg HC/g TOC). Our calculated source prolificity indices for this interval in these wells (SPI = 15-18 tons of hydrocarbons per square meter of source rock) exceed that for the Upper Jurassic in Central Saudi Arabia. The Tomachi interval is lithologically equivalent to the Colpacucho Formation in the northern Altiplano, the Iquiri Formation in the Cordillera Oriental, and is coeval with other excellent source rocks in North America, Africa, and Eurasia. All of these rocks were deposited under conditions favorable for accumulation of organic matter, including a global highstand and high productivity. However, the Madre de Dios basin was situated at high latitude during the Late Devonian and some of the deposits are interpreted to be of glacial origin, indicating conditions not generally associated with organic-rich deposition. A biomarker and palynological study of Upper Devonian rocks in the Pando-1X well suggests deposition under conditions similar to certain modern fjords. High productivity resulted in preservation of abundant organic matter in the bottom sediments despite a cold, toxic water column. Low-sulfur crude oil produced from the Pando-1X well is geochemically similar to, but more mature than, extracts from associated organic-rich Tomachi samples, and was generated from deeper equivalents of these rocks.

  13. Clay complexes support HDS catalyst.

    SciTech Connect (OSTI)

    Marshall, C. L.; Carrado, K.; Chemical Engineering

    2000-01-01

    Hydroprocessing represents a crucial component of petroleum refining operations both in terms of environmental and economic considerations. Regulations concerning maximum amount of sulfur content of gasoline and emissions of sulfur-oxide compounds upon combustion are becoming more and more stringent. One 1994-2000 focus of Argonne National Laboratory (ANL) has been the development of catalysts for hydrodesulfurization (HDS). Typical HDS catalysts are comprised of Co-Mo sulfides or Ni-Mo sulfides on an alumina support. Modification of the pore structure of the support has generated great attention among researchers. Most desulfurization test reactions have used dibenzothiophene (DBT) as the model compound to test various configurations of support material with Co-Mo-S and Ni-Mo-S catalysts. In this testing, the desired product would be biphenyl and hydrogen sulfide (H{sub 2}S). A competing reaction creates cyclohexylbenzene by saturating one aromatic ring prior to desulfurization. Ring saturation requires more costly hydrogen and is not desirable. Fortunately, a more effective catalyst for adding hydrogen at the sulfur site with hydrogenating the aromatic rings has been found. However, this has only been tested on DBT. HDS uses various types of catalysts to add hydrogen to reduce unwanted sulfur compounds. Typically this requires expensive, high-pressure, high-temperature equipment to produce the environmentally friendly low-sulfur fuels. ANL scientists identified several new desulfurization catalysts with improved HDS activity and selectivity. From these new catalysts, it may be possible to achieve HDS processing at lower temperature and pressure. The catalysts used for HDS at ANL are various clay complexes. Natural clays have a history of use in the hydroprocessing industry since they are abundant and inexpensive. ANL's approach is to create synthetic organo-clay complexes (SOCC). An advantage of SOCCs is that the pore size and distribution can be controlled by

  14. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  15. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  16. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  17. Use of a polishing scrubber with a fluid bed boiler

    SciTech Connect (OSTI)

    Toher, J.G.

    1996-12-31

    Once viewed as {open_quotes}competitive{close_quotes} technologies, the circulating dry scrubber (CDS){reg_sign} and circulating fluid bed (CFB) boiler are being used together to achieve enhanced performance with lower overall costs. The need to understand the synergy between these two technologies is driven by deregulation of the power industry and the 1990 Clean Air Act Amendments. Deregulation of power production in the US has spurred the growth of Independent Power Producers (IPP) who are responding to Industry`s demand for lower cost fuels, and close attention to annual operating costs. Utilities have to provide {open_quotes}open{close_quotes} access to their transmission lines allowing various IPP`s to connect with the end user. Industrial users can now choose from one of several sources of electricity with prices per kilowatt hour that are much lower than what they are currently being charged. The race is on to reduce power production costs and fuel can be the key in many cases. IPP`s and industry are banding together in very logical ways that can benefit both. Industry`s byproducts with heating value can be sold {open_quotes}over the fence{close_quotes} to an IPP who provides the industry with low cost steam and or electricity in return. However, many alternative lower cost fuels also have a higher emissions potential for criteria pollutants such a SO{sub 2}, NO{sub X}, particulate, or other emissions such as VOC`s and mercury which are more recently receiving attention. Cost effective management of these environmental issues must be an integral part of the project planning process. Three such cases are examined that involve the use of CFB`s with the CDS{reg_sign} as a polishing scrubber for SO{sub 2}. The first two cases involve repowering of existing facilities with petroleum coke as the fuel. The last case involves a new facility powered with low sulfur coal.

  18. The Navajo scrubber project -- Start up and performance testing of the largest FGD system in the USA

    SciTech Connect (OSTI)

    Lusko, J.; Massion, R.; Sekhar, N.

    1998-07-01

    The Navajo Scrubber Project located in Page, Arizona is the largest Flue Gas Desulfurization (FGD) system in the USA. Limestone based FGD system producing disposable grade gypsum is being installed on Units 1,2 and 3 (3 x 750 MWe) at the Navajo Generating Station (NGS) to comply with an EPA ruling mandating SO{sub 2} emission reduction to improve visibility in the Grand Canyon National Park. Compliance will be phased-in by unit in 1997, 1998 and 1999. The NGS burns low-sulfur coal with a sulfur content of approximately 0.5%. The FGD system is designed to treat a total flue gas flow of 11.25 million acfm, at an SO{sub 2} removal efficiency of 92% for an emission of 0.1 lb. per million BTU. Unique features of the FGD system include, a totally closed loop water balance system, 775 ft. chimney with C-276 alloy clad designed to handle both wet and hot dry gas, solid C-276 alloy absorber vessels and the use of existing ID fans, with suitable modification, to overcome the additional pressure drop of the FGD system. The start-up sequence/operation and performance tests of Unit 3 of this unique FGD system is described in this paper. Performance tests include, removal efficiency determination at 0.6 and 0.8% sulfur coal at normal and 60,000 PPM chloride in the slurry, particulate carry over determination under normal as well as upset ESP conditions, and determination of mist eliminator carry-over using Video Droplet Analyzer.

  19. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  20. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65

  1. WSF Biodiesel Demonstration Project Final Report

    SciTech Connect (OSTI)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  2. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    SciTech Connect (OSTI)

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the

  3. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  4. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    SciTech Connect (OSTI)

    Thompson,G.; Gautam, M; Clark, N; Lyons, D; Carder, D; Riddle, W; Barnett, R; Rapp, B; George, S

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM

  5. A summary of SNCR applications to two coal-fired wet bottom boilers

    SciTech Connect (OSTI)

    Himes, R.; Hubbard, D.; West, Z.

    1996-01-01

    In response to NO{sub x} reductions mandated under Title I of the 1990 Clean Air Act Amendments (CAAA), Public Service Electric & Gas and Atlantic Electric of New Jersey evaluated Selective Non-Catalytic Reduction (SNCR) for NO{sub x} control under separate programs at Mercer Station and B.L. England Station, respectively. Mercer Station is comprised of twin 321 MW Foster Wheeler coal-fired wet bottom boilers, with natural gas capability up to 100% load. B.L. England Station has three units, two of which are cyclone boilers of 136 MW and 163 MW. These furnace designs are of particular interest in that nominally 23,000 MW of cyclone boiler capacity and 6,900 MW of wall- or turbo-fired wet bottom boiler capacity will be faced with NO{sub x} reductions to be mandated under Title IV - Phase II for Group II boilers. Both stations evaluated Nalco Fuel Tech`s SNCR system using a portable test skid, with urea as the reducing chemical. The Mercer Unit 2 demonstration was performed with a low sulfur coal (nominally 0.8%), while the B.L. England Unit 1 demonstration utilized a medium sulfur coal (nominally 2.4%), and also re-injects fly ash back into the cyclones for ultimate collection and removal as slag. To address concerns over potential Ljungstrom air heater fouling, due to reactions between ammonia and SO{sub 3} in the air heater, and fly ash salability at Mercer Station, both sites targeted no greater than 5-10 ppmv ammonia emissions at the economizer exit. At Mercer Unit 2, air heater fouling was only experienced during system start-up when the ammonia emissions at the economizer exit were estimated at levels approaching 60 ppmv. B.L. England Unit 1, however, experienced frequent fouling of the air heater. NO{sub x} reductions achieved at both sites ranged between 30%-40% from nominal baseline NO{sub x} levels of 1.1-1.6 lb/MMBtu. Each site is currently undergoing installation of commercial SNCR systems.

  6. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  7. Impacts from a fossil fuel power plant on ozone levels in Memphis, Tennessee

    SciTech Connect (OSTI)

    Mueller, S.F.; Bailey, E.M.

    1998-12-31

    The Tennessee Valley Authority (TVA) Allen power plant is located on the Mississippi River in the southwest corner of Memphis, Tennessee. Allen has three coal-fired cyclone boilers with a rated capacity of 272 MW each. It is a Phase 2 plant under Title IV of the Clean Air Act and is the largest single source of NO{sub x} in the Memphis area. TVA plans to reduce Allen NOx emissions through a combination of burning low-sulfur coal (which has the benefit of reducing NO{sub x} emissions while also reducing SO{sub 2} emissions) and installing gas re-burn technology. A modeling study using the SAI, Inc., UAM-V photochemical model was conducted to examine the potential impacts of NO{sub x} reductions on ozone levels in the Memphis area. A series of four model simulations were made in which different Allen emissions scenarios were examined. The focus period of the photochemical modeling was 11--14 July 1995 when measurements in and near Memphis indicated peak hourly ozone levels of 135--140 ppb. This analysis primarily examined computed impacts within 50 km of Memphis. Allen was computed to contribute as much as 20--30 ppb to ground ozone levels 20-50 km downwind using its NO{sub x} emission rate before Title IV compliance. After compliance it was computed to contribute only about 10--20 ppb. At the same time, maximum daily ozone reductions due to Allen NO{sub x} titration of ozone were between 30 and 60 ppb. These benefits will be reduced by 30--50% after Title IV compliance, and are expected to occur within 30 km of the plant. More model grid cells indicated dis-benefits (net ground-level ozone increases) than benefits on three of the four episode days using the Title IV compliance emission rate. Significant ozone dis-benefits were expected because of the well-documented NO titration of ozone within plumes having a high ratio of NO to volatile organic compounds.

  8. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by

  9. Advanced CIDI Emission Control System Development

    SciTech Connect (OSTI)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  10. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  11. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    SciTech Connect (OSTI)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  12. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect (OSTI)

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments

  13. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured

  14. BASELINE MEMBRANE SELECTION AND CHARACTERIZATION FOR AN SDE

    SciTech Connect (OSTI)

    Colon-Mercado, H; David Hobbs, D

    2007-04-03

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05 and FY06, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small footprint that are crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and have a low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate commercial and experimental membranes for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated poly-etherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity. The use of Nafion{reg_sign} with EW 1100 is recommended for the present SDE testing due to the limited data regarding chemical

  15. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    inventory of heating fuels, including heating oil (high-sulfur distillate fuel) and propane, plunged to near historical low levels at the end of March 2003. Preliminary March...

  16. bectno-selcat | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of NOx Emissions from High-Sulfur Coal-Fired Boilers - Project Brief PDF-247KB ... Environmental Reports Plant Crist Environmental Monitoring Program, Final Report ...

  17. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was

  18. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included

  19. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect (OSTI)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  20. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70

  1. Evaluation of MerCAP for Power Plant Mercury Control

    SciTech Connect (OSTI)

    Carl Richardson

    2008-09-30

    This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray dryer operation on Mer

  2. CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

    SciTech Connect (OSTI)

    Pihl, Josh A; West, Brian H; Toops, Todd J; Adelman, Brad; Derybowski, Edward

    2011-10-01

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments

  3. Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

    SciTech Connect (OSTI)

    He, X.; Williams, A.; Christensen, E.; Burton, J.; McCormick, R.

    2011-12-01

    Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous

  4. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  5. 1972-1997, Twenty-five years of energy and environmental history : lessons learned.

    SciTech Connect (OSTI)

    Drucker, H.

    1997-12-17

    Given the events of the past 25 years concerning energy and environmental issues and our reaction to them, what lessons can we learn? First, the individual American consumer wants and expects energy to be a stable commodity with low prices and easy availability. As evidenced by the heated debate over increasing the federal gasoline tax by $.05 per gallon (which would still leave Americans paying only one-third of what Europeans pay for gasoline), increases in energy prices elicit very strong public and political opposition. As further evidence, it has been argued that the general public support of the Gulf War was due, in part, to a recognition of the need to maintain a stable source of cheap oil from the region. The American public wants to maintain the benefits of cheap and abundant energy and expects its political leaders to make it happen. A second lesson is that if constraints on the energy supply do occur (e.g., the OPEC-imposed oil embargo) ardor environmental impacts from energy use do appear to be significant (e.g., SO{sub 2} and CO{sub 2} emissions), the preference is for a technology fix rather than a behavioral change. This is evidenced by our reliance on moving low-sulfur coal more than 1,000 miles from Wyoming to burn in Illinois power plants rather than reducing the demand for electricity with energy-efficient measures in residential, commercial, and industrial activities. National research programs to produce an automobile that gets 80+ miles per gallon take higher priority over working to get people to use mass transit to reduce their driving mileage. Americans expect that advanced technology can be relied upon to come up with solutions to energy and environmental problems without having to change their lifestyles. The experience with natural gas, in which a regulatory change (deregulation) was combined with technology developments (horizontal drilling and improved gas turbines for electricity generation) to increase available supply and hold

  6. PROCEEDINGS OF THE 2001 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY CONFERENCE HELD AT BROOKHAVEN NATIONAL LABORATORY, UPTON, N.Y., APRIL 30 - MAY 1, 2001.

    SciTech Connect (OSTI)

    MCDONALD, R.J.

    2001-04-30

    during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Europe, including: (1) High-flow Fan Atomization Burner (HFAB) Development and Field Trials; (2) Field Test of the Flame Quality Monitor; (3) NORA/DOE/ BNL Oilheat Five-Year Research Plan; (4) US Department of Energy's Building Cooling Heating and Power for Buildings Program; (5) NORA Education Committee Report; (6) Marketing Oil Heat in Europe: A study in contrasts; (7) Diagnosing Burner Problems with Recorded Data ''The solution to any problem is obvious.. . once it is found''; (8) Variable Firing Rate Oil Burner Using Pulse Fuel Flow Control; (9) Oil-Fired Hydronic Heating Appliances with Reduced Electric Power Consumption and Battery Backup; (10) Peep Into The Nozzle Using Computational Fluid Dynamics; (11) Results of a Parametric Investigation of Spray Characteristics Using a HFAB Type Atomizer; (12) Progression and Improvements in the Design of Blue-flame Oil Burners; (13) Biodiesel as a Heating Oil Blend Stock; (14) Lab Tests of Biodiesel Blends in Residential Heating Equipment; (15) Alternative Fuel Oils and the Effect of Selected Properties in Combustion; (16) New York State Premium Low-Sulfur Heating Fuel Marketplace Demonstration; and (17)The Need for a New Fuel Oil Stability Specification.

  7. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    -bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  8. FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT

    SciTech Connect (OSTI)

    Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D; Amy Ekechukwu, A

    2006-08-03

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium

  9. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    barrels, heating oil (high-sulfur distillate fuel) dropped by 3.4 million barrels, and propane declined by 4.1 million barrels. Of course, with crude oil refinery inputs at their...

  10. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Energy Savers [EERE]

    is to develop a low-cost, high-capacity expendable ... its use possible in a fuel cell CHP unit The high ... sulfur is present as hydrogen sulfide (H2S), biogas ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    iron with the high-sulfur capacity and reactivity is considered as one of the most ... The stagging degree of coal blends mixed with two coals of similar reactivity and stagging ...

  12. EIS-0004: Coal Loan Guarantee Program (P.L. 94-163)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to address the potential impacts of implementing the Coal Loan Guarantee Program to encourage the production of low and high sulfur coal by small underground coal producers.

  13. Sulfur Resistant Electrodes for Zirconia Oxygen Sensors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide (Tb-YSZ) electrode have tested in a high-sulfur-coal fired power plant side by side against Zirconia-based O2 sensors with a standard platinum electrode. ...

  14. bectno-selcat | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selective Catalytic Reduction Technology for the Control of NOx Emissions from High-Sulfur Coal-Fired Boilers - Project Brief [PDF-247KB] Southern Company Services, Pensacola, FL PROGRAM PUBLICATIONS Final Reports Innovative Clean Coal Technologies (ICCT) Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NOx) Emissions from High-Sulfur Coal-Fired Boilers Volume 1, Final Report [PDF-29MB] (Oct 1996) Volume 2, Appendices A-N [PDF-20.2MB] (Oct 1996)

  15. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12

    potential economic risks on obtaining a premium price for the F-T diesel fuel in the marketplace. The F-T diesel fuel superior properties of low sulfur, low aromatics, and high cetane resulted in lower emissions yields if compared to conventional diesel fuels.

  16. Demonstration of An Integrated Approach to Mercury Control at Lee Station

    SciTech Connect (OSTI)

    Vitali Lissianski; Pete Maly

    2007-12-31

    General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercury control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The

  17. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its

  18. EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)

    Broader source: Energy.gov [DOE]

    The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

  19. Ohio Coal Research Consortium fourth year final summary report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    1995-05-01

    As a part of its efforts to improve the use of high-sulfur Ohio coal within environmental limits, the Ohio Coal Development Office, an entity within the Ohio Department of Development (OCDO/ODOD), in late 1988 established a consortium of four Ohio universities. The purpose of the Ohio Coal Research Consortium is to conduct a multi-year fundamental research program focused on (1) the enhancement or development of dry sorption processes for the economical removal of high levels of SO{sub 2} and other pollutants and (2) an increased understanding of methods for reduction in air toxics emissions from combustion gases produced by burning high-sulfur Ohio coal. This report contains summaries of twelve studies in these areas.

  20. Ohio Coal Research Consortium fifth year final reports summary, September 1, 1994--February 29, 1996

    SciTech Connect (OSTI)

    1996-12-01

    As part of its efforts to improve the use of high-sulfur Ohio coal within environmental limits, the Ohio Coal Development Office, an entity within the Ohio Department of Development (OCDO/ODOD), in late 1988 established a consortium of four Ohio universities. The purpose of the Ohio Coal Research Consortium is to conduct a multi-year fundamental research programs focused on: (1) the enhancement or development of dry sorption processes for the economical removal of high levels of SO{sub 2} and other pollutants, and (2) an increased understanding of methods for reduction in air toxics emissions from combustion gases produced by burning high-sulfur Ohio coal. This report contains summaries of eleven studies in these areas.

  1. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  2. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  3. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  4. Retrofitting heavy oil processes

    SciTech Connect (OSTI)

    Hamilton, G.L.; Fitzgerald, M.; D'Amico, V.

    1986-01-01

    Refiners, faced with the need to process the bottom end of the heavy high sulfur crude oil barrel in today's uncertain economic environment, are reluctant to commit large amounts of money to expensive upgrading processes. In order to conserve scarce capital while improving operating margins, additional valuable products can be produced by retrofits such as conversion of an idle crude unit to visbreaking, delayed coking or deasphalting service, or conversion of hydrodesulfurizers to mild hydrocracking.

  5. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  6. Coal combustion by wet oxidation. Wet oxidation of coal for energy production: test plan and partial results. Interim report

    SciTech Connect (OSTI)

    Bettinger, J.A.

    1980-07-10

    A test plan has been developed which will provide the data necessary to carry out design and economic studies of a steam generating facility, employing the wet oxidation of coal as a heat source. It is obvious, from the literature search and preliminary testing, that the higher the reaction temperature, the more complete the combustion of coal. However, operation at elevated temperatures and pressures present difficult design problems, and the necessary equipment is costly. Operation under these conditions can only be justified by the higher economic value of high pressure and temperature steam. With a reduction in temperature from 550/sup 0/F (228/sup 0/C) to 450/sup 0/F (232/sup 0/C), the operating pressure is reduced by more than half, thus holding down the overall cost of the system. For this reason, our plan is to study both the enhancement of low temperature wet oxidation of coal, and the higher operating regions. The coal selected for the first portion of this test is an Eastern Appalachian high-volatile-A Bituminous type, from the Upper Clarion seam in Pennsylvania. This coal was selected as being a typical high sulfur, eastern coal. The wet oxidation of coal to produce low pressure steam is a process suited for a high sulfur, low grade, coal. It is not intended that wet oxidation be used in all applications with all types of coals, as it does not appear to be competitive, economically, with conventional combustion, therefore the testing will focus on using high sulfur, low grade coals. In the later portion of testing all the available coals will be tested. In addition, a sample of Minnesota peat will be tested to determine if it also can be used in the process.

  7. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  8. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  9. HDH{trademark} commercial application

    SciTech Connect (OSTI)

    Marzin, R.; Solari, B.; Duque, J.

    1995-12-31

    Venezuela has approximately 28% of the world reserves of heavy crude oil and natural bitumen. The amount of future recoverable oil reserves is estimated to be 44 GM{sup 3}. The Venezuelan oil industry is now facing the challenge of introducing this cheap source of energy into a fuel market that has grown in environmentally restrictive legislation affecting the refining industry. This challenge calls for the use of the right type of resid upgrading technology, that both will improve its environmental performance and ensure its economic and financial viability. This paper describes two technologies to reduce high sulfur fuel oil production while incorporating more heavy crude into refineries.

  10. Increased cost-effectiveness of low-grade fossil fuels using ammonia FGD

    SciTech Connect (OSTI)

    Ellison, W.

    1998-07-01

    Current worldwide advancements in site-specific application and commercial operation of ammonia-base flue gas desulfurization (FGD), in high-capacity, high-sulfur, electric utility service, economically justified by significant revenues from ammonium sulfate generation and worldwide sale, are detailed. This major new direction in cost-effectiveness in FGD selection/application and in the process design of such flue gas cleaning systems overcomes the problem of FGD waste/byproduct management/utilization and encompasses numerous major performance advancements reviewed herein: (1) Conversion of anions of all captured acid-gas, i.e., SO{sub 2}, HCI, etc., and of all collected residual particulate matter into agriculturally-usable ammonium compounds combined in the single byproduct yield; (2) No discard or long-term, outdoor storage of sulfurous waste byproducts; and (3) No liquid effluent. In the face of a capital-cost penalty in any application of ammonia FGD, an attractive cost effectiveness is nonetheless realized. This favorable process economics, superior to all other available alternatives in high-capacity, high-sulfur electric utility service, is made possible through substantial value added in conversion of ammonia reagent supply to agglomerated sulfur blending stock, i.e., comprised principally of ammonium sulfate, much in demand for increased use in worldwide, large-scale agriculture. The growing, potentially vast size of the international market for ammonium sulfate is quantified herein.

  11. Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III; Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. |||

    1992-12-31

    The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

  12. Control of emissions from cofiring of coal and RDF. Final report

    SciTech Connect (OSTI)

    Raghunathan, K.; Bruce, K.R.

    1997-09-01

    Research has been conducted toward developing technology for co-firing of coal with municipal solid waste (MSW) in order to reduce emissions of chlorinated organic compounds, particularly polychlorinated dibenzo-p-dioxins and furans (PCDDs and PCDFs). Previous bench- and pilot-scale research has shown that presence of SO{sub 2} can inhibit the PCDD and PCDF formation, and suggested co-firing high-sulfur coal with refuse derived fuel (RDF) to reduce the emissions. The objective of this research is to identify the effect of process and co-firing options in reducing PCDD and PCDF yield from waste combustion. Two types of municipal waste based fuels were used: a fluff refuse-derived fuel (simply referred to as RDF) and a densified refuse derived fuel (dRDF). The coal used was high-sulfur Illinois No. 6 coal. Experiments were conducted in US EPA`s recently constructed Multi-Fuel Combustor (MFC), a state-of-the-art facility with fuel handling and combustion release rates representative of large field units. The MFC was fired, at varying rates, with RDF/dRDF and coal, and sampled for PCDD and PCDF. Tests were conducted over a range of process variables such as lime injection, HCl concentration, flue gas temperature, quench, and residence time so that the results are applicable to a wide variety of waste combustors. The data are used for developing a comprehensive statistical model for PCDD and PCDF formation and control.

  13. CFB: technology of the future?

    SciTech Connect (OSTI)

    Blankship, S.

    2008-02-15

    Fuel flexibility and a smaller carbon footprint are behind renewed interest in circulating fluidized bed (CFB) technology. The article explains the technology of CFB and discusses development of CFB units since the late 1990s. China is seeing an explosion in the number of utility-size CFBs. Alstom, Foster Wheeler, Babcock and Wilson and Alex Kvaener are today's major CFB boiler manufacturers. Alstom is testing and developing oxy-firing and post-combustion carbon capture strategies on CFB boilers. One CFB asset is its ability to burn a variety of fuels including waste coal, high sulfur coal and even discarded tires. The article mentions successful CFB projects at the Seward Station using waste coal and at the Gilbert 3 plant in the USA. Lamar is converting its Light and Power Plant from natural gas to burn coal in a 38.5 MW CFB boiler. 1 tab., 3 photos.

  14. In-mine evaluation of catalyzed diesel particulate filters at two underground metal mines. Report of investigations/1995

    SciTech Connect (OSTI)

    Watts, W.F.; Cantrell, B.K.; Bickel, K.L.; Olson, K.S.; Rubow, K.L.

    1995-11-01

    The U.S. Bureau of Mines evaluated the performance of a catalyzed diesel particulate filter (CDPF) and a CDPF combined with a diesel oxidation catalyst (DOC) at two metal mines. This paper describes the results from the two field evaluations. The CDPF/DOC was installed on an Elphinstone load-haul-dump (LHD) powered by a Caterpillar 3306 prechambered, turbocharged engine. The CDPF was installed on a Tamrock diesel-hydraulic roof-bolting jumbo, powered by a Deutz F6L912W engine. The underground evaluation at this mine was more difficult because of frequent movement by the roof-bolting jumbo, variation in the daily workload, tremendous fluctuation in ventilation air flow rate and the use of a high sulfur diesel fuel, which promotes the formation of sulfate particles, decreases filtration efficiency, and hastens the deterioration of the catalyst.

  15. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    SciTech Connect (OSTI)

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.; Pukanic, G.W.; Norwood, V.M.; Burnett, T.A.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  16. Wabash River coal gasification repowering project -- first year operation experience

    SciTech Connect (OSTI)

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  17. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect (OSTI)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  18. The Lakeland McIntosh Unit 4 demonstration project utilizing Foster Wheeler`s pressurized circulating fluidized-bed combustion technology

    SciTech Connect (OSTI)

    McClung, J.D.; Provol, S.J.; Morehead, H.T.; Dodd, A.M.

    1997-12-31

    The City of Lakeland, Florida, Foster Wheeler and the Westinghouse Electric Corporation have embarked on the demonstration of a Clean Coal Technology at the City of Lakeland`s McIntosh Power Station in lakeland, Polk County, Florida. The project will demonstrate the Pressurized Circulating Fluidized Bed Combustion (PCFB) technology developed by Foster Wheeler and Westinghouse. The Lakeland McIntosh Unit 4 Project is a nominal 170 MW power plant designed to burn a range of low- to high-sulfur coals. The combined cycle plant employs a Westinghouse 251B12 gas turbine engine in conjunction with a steam turbine operating in a 2400/1000/1000 steam cycle. The plant will demonstrate both the PCFB and topped PCFB combustion technologies. This paper provides a process description of the Foster Wheeler PCFB and Topped PCFB technologies and their application to the Lakeland McIntosh Unit 4 Project.

  19. Micronized coal-fired retrofit system for SO{sub x} reduction - Krakow Clean Fossil Fuels and Energy Efficiency Program.

    SciTech Connect (OSTI)

    1996-09-30

    the project proposes to install a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex, Krzeszowice, Poland (about 20 miles west of Krakow). PHRO currently utilizes 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers currently burn a high-sulfur content heavy crude oil, called Mazute. The micronized coal fired boiler would (1) provide a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduce sulfur dioxide air pollution emission, while satisfying new Polish air regulations, and (3) provide attractive savings to PHRO, based on the quantity of displaced oil.

  20. Increased cost-effectiveness of low-grade fossil fuels using ammonia FGD

    SciTech Connect (OSTI)

    Ellison, W.

    1998-04-01

    Current worldwide advancements in site-specific application and commercial operation of ammonia-base flue gas desulfurization, (FGD), in high-capacity, high-sulfur, electric utility service, economically justified by significant revenues from ammonium sulfate generation and worldwide sale, are detailed. This major new direction in cost-effectiveness in FGD selection/application and in the process design of such flue gas cleaning systems overcomes the problem of FGD waste/byproduct management/utilization and encompasses numerous major performance advancements reviewed herein: (1) Conversion of anions of all captured acid-gas, i.e. SO2, HCl, etc., and of all collected residual particulate matter into agriculturally-usable ammonium compounds combined in the single byproduct yield, (2) no discard or long-term, outdoor storage of sulfurous waste byproducts, and (3) no liquid effluent. In the face of a capital-cost penalty in any application of ammonia FGD, an attractive cost effectiveness is nonetheless realized.

  1. Study of organic compounds evolved during the co-firing of coal and refuse derived fuel using TG/MS

    SciTech Connect (OSTI)

    Puroshothama, Shobha; Lu, R.; Yang, Xiaodong

    1996-10-01

    The evolution of organic compounds during the combustion of carbonaceous fuel coupled with solid waste disposal and limited landfill space has been a cause for concern. Co-firing high sulfur coal with refuse derived fuel seems an attractive alternative technique to tackle the dual problem of controlling SO{sub x} emissions as well as those of the chlorinated organic toxins. The TG serves to emulate the conditions of the fluidized bed combustor and the MS serves as the detector for evolved gases. This versatile combination is used to study the decomposition pathway as well as predict the conditions at which various compounds are formed and may serve as a means of reducing the formation of these chlorinated organic compounds.

  2. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  3. Method of preparing corrosion resistant composite materials

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  4. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  5. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. Tidd PFBC Demonstration Project. Final report, March 1, 1994--March 30, 1995

    SciTech Connect (OSTI)

    Bauer, D.A.; Hoffman, J.D.; Marrocco, M.; Mudd, M.J.; Reinhart, W.P.; Stogran, H.K.

    1995-08-01

    The Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant was the first utility-scale pressurized fluidized bed combustor to operate in combined-cycle mode in the US. The 45-year old pulverized coal plant was repowered with PFBC components in order to demonstrate that PFBC combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. The three-year demonstration period started on February 28, 1991 and terminated on February 28, 1994. The fourth year of testing started on March 1, 1994 and terminated on March 30, 1995. This report reviews the experience of the 70-MW(e), Tidd PFBC Demonstration Plant during the fourth year of operation.

  7. Pulverized coal firing of aluminum melting furnaces. Final report. [Sulfide capacity of various slags in given temperature range

    SciTech Connect (OSTI)

    Stewart, D.L. Jr.; Dastolfo, L.E. Jr.; DeYoung, D.H.

    1984-04-01

    Significant progress has been achieved in the development of a desulfurizing coal combustion process by the Aluminum Company of America (Alcoa) in a research program funded by the United States Department of Energy. Conceptually, high sulfur coal is burned with additives in a staged cyclone combustor, such that sufficient sulfur to obviate products of combustion (POC) scrubbing is retained in the slag by-product. Bench scale studies conducted during the program have shown that 70% of the sulfur (2.65% sulfur coal) reports to the slag at equilibrium through a 25% addition of iron ore to the coal. Results obtained correlate with published data for similar slag at higher temperatures. In pilot scale combustion tests, equilibrium levels of coal sulfur were retained by the slag (11 to 14%). Equilibrium sulfur capture was limited by low particulate retention and operating temperature higher than optimal. Cost estimates for implementation of the process are included in this report. 28 references, 39 figures, 58 tables.

  8. Pollution control by spray dryer and electron beam treatment

    SciTech Connect (OSTI)

    Bush, J.R.

    1983-02-08

    A combination spray drying and electron beam treatment for effluent gases provides air pollution control for even high sulfur coals. Liquid and a reagent are injected into the effluent gas in the spray dryer, thereby cleansing the effluent gas, decreasing its temperature, and increasing its moisture content. The spray drying decreases the temperature at least to below 100/sup 0/ C and, most preferably, to between 60 and 70/sup 0/ C. The decreased temperature, increased moisture content effluent gas including both reacted compounds and unreacted reagent is conveyed into an irradiation chamber, whereat radiation causes the gaseous sulfur oxides and/or nitrogen oxides to convert into mist and/or solid particles. The unreacted reagent may then react with the acid mist. The effluent gases are then subjected to dry particular collection.

  9. Study investigates eletron beam scrubbing for removal of (SO{sub 2}) and (NO{sub x}) from flue gas

    SciTech Connect (OSTI)

    1996-03-01

    A beam of high-energy electrons can be used to initiate simultaneous oxidation of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) in flue gas from coal-fired power plants. This process, known as electron beam dry scrubbing (EBDS), has been under development since 1970 and shows great promise as it continues towards commercialization. One obstacle, the high cost and low power of conventional electron beam generator, may be overcome through integration of an advanced electron beam generator being developed by Science Applications International Corporation (SAIC - McLean, Virginia). SAIC was funded to (1) design, construct, and test a prototype of its continuously pulsed, high- average-power electron beam generator; and (2) evaluate the performance and economics of EBDS with the advanced electron beam generator as applied to high-sulfur coal-fired power plants. Results of the EBDS evaluation are reported in this paper. 1 ref., 1 fig., 3 tabs.

  10. Gasifier feed: Tailor-made from Illinois coals. Interim final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K.

    1992-12-31

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals. Destec Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technologies, Inc., will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handleability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals.

  11. Sorbent utilization studies using a mini-pilot spray dryer

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.; Wang, J. )

    1992-10-01

    This report stems from a program supported by the Ohio Coal Development Office, that is part of a multi-task, multi-university effort concerned with developing and enhancing the efficiency of dry'' high-sulfur flue gas scrubbing processes using calcium based sorbents. The application of spray-drying flue gas desulfurization (FGD) to sources burning Ohio coal will depend on many factors, two of which are process simplicity and flexibility, and overall cost. The ability of the system to be able to handle variations in volumetric flow SO[sub 2] concentration, and even perhaps, new regulatory requirements imposed in the future are very important In addition, the amount and characteristics of the waste produced will be a major component in the operating costs of these systems. Spray-drying FGD has been shown to have a capital, cost advantage over conventional wet scrubbing, and the method has been proven to be comparatively simple and flexible. The major disadvantage is the inability of these systems to obtain high (> 90%) S0[sub 2] removal efficiencies on flue gas from high sulfur coal sources. This is the result of chemical mass transfer and thermal limitations imposed on these systems using calcium hydroxide in a slurry as the scrubbing agent. The project 1.5 has investigated a number of novel methods to improve the performance of these systems in a mini-pilot plant spray dryer facility. The objectives of project 1.5 were the following: Perform baseline parametric testing, study the effect of additives on reactivity, and perform sorbent recycle tests.

  12. Sorbent utilization studies using a mini-pilot spray dryer. Final report, August 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.; Wang, J.

    1992-10-01

    This report stems from a program supported by the Ohio Coal Development Office, that is part of a multi-task, multi-university effort concerned with developing and enhancing the efficiency of ``dry`` high-sulfur flue gas scrubbing processes using calcium based sorbents. The application of spray-drying flue gas desulfurization (FGD) to sources burning Ohio coal will depend on many factors, two of which are process simplicity and flexibility, and overall cost. The ability of the system to be able to handle variations in volumetric flow SO{sub 2} concentration, and even perhaps, new regulatory requirements imposed in the future are very important In addition, the amount and characteristics of the waste produced will be a major component in the operating costs of these systems. Spray-drying FGD has been shown to have a capital, cost advantage over conventional wet scrubbing, and the method has been proven to be comparatively simple and flexible. The major disadvantage is the inability of these systems to obtain high (> 90%) S0{sub 2} removal efficiencies on flue gas from high sulfur coal sources. This is the result of chemical mass transfer and thermal limitations imposed on these systems using calcium hydroxide in a slurry as the scrubbing agent. The project 1.5 has investigated a number of novel methods to improve the performance of these systems in a mini-pilot plant spray dryer facility. The objectives of project 1.5 were the following: Perform baseline parametric testing, study the effect of additives on reactivity, and perform sorbent recycle tests.

  13. Advanced dry scrubbing on Ohio coals

    SciTech Connect (OSTI)

    Amrhein, G.T.; Kudlac, G.A.; Smith, P.V.

    1994-12-31

    The objective of this project is to demonstrate, at pilot scale, that advanced dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} emissions while burning high-sulfur Ohio coal, and that these technologies are economically competitive with wet scrubber systems. Dry scrubbing involves injecting an atomized mist of sorbent-containing slurry droplets into hot flue gas. The reaction products exit the scrubber as a dry powder that can be filtered from the gas and recycled or disposed. The project consists of testing an advanced dry scrubber system on two high sulfur Ohio coals. All testing will be conducted in the 5 MBtu pilot facility at B and W`s Alliance Research Center. The facility consists of a test furnace, a dry scrubber using a B and W DuraJet{trademark} two fluid atomizer, a pulse-jet baghouse, and an ash slaking system. Tests were conducted with and without recycling the solids collected from the baghouse. During recycle operation the solids were slurried with water and injected into the dry scrubber with the fresh lime slurry. Test results will be presented, including SO{sub 2} removal (70--99%), calcium to sulfur ratios (1.1--1.9), dry scrubber outlet temperatures (10--30 F), and system performance. An advanced feature of the project was the use of the B and W patented Droplet Impingement Device which removes large slurry droplets from the gas stream prior to the baghouse to prevent baghouse deposition. This allows operation at low approach temperatures.

  14. High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report

    SciTech Connect (OSTI)

    Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

    1981-04-01

    An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup

  15. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  16. Technical reference book for the Energy Economic Data Base Program (EEDB)

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    This distribution is the latest in a series published since 1978. The overall program purpose is to provide periodically updated, detailed base construction cost estimates for large nuclear electric operating plants. These data, which are representative of current US powerplant construction cost experience, are a useful contribution to program planning by the Office of the Assistant Secretary for Nuclear Energy. The eighth update incorporates the results of a comprehensive update of the technical and cost information for the pressurized water reactor (PWR), large scale prototype breeder reactor nuclear powerplant (LSPB), and 488 MWe high sulfur, coal-fired powerplant (HS5) data models. During the Phase VIII update, the LSPB, which was first incorporated into the previous update, was brought into full conformance with EEDB ground rules, and the level of detail of the data models was extended to the EEDB fully detailed level. We remind the user that the LSPB must still be considered a second-of-a-kind, pre-commercial unit, and any comparisons of it with other EEDB data models should be carefully made recognizing dissimilarity achievement of design and cost maturity, particularly for the nuclear steam supply system and other equipment.

  17. JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD

    SciTech Connect (OSTI)

    Dennis Laudal

    2008-05-01

    The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

  18. Controlled Nucleation and Growth Process of Li2S2/Li2S in Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Wang, Chong M.; Zuo, Pengjian; Koech, Phillip K.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-09-20

    Lithium-sulfur battery is a promising next-generation energy storage system because of its potentially three to five times higher energy density than that of traditional lithium ion batteries. However, the dissolution and precipitation of soluble polysulfides during cycling initiate a series of key-chain reactions that significantly shorten battery life. Herein, we demonstrate that through a simple but effective strategy, significantly improved cycling performance is achieved for high sulfur loading electrodes through controlling the nucleation and precipitation of polysulfieds on the electrode surface. More than 400 or 760 stable cycling are successfully displayed in the cells with locked discharge capacity of 625 mAh g-1 or 500 mAh g-1, respectively. The nucleation and growth process of dissolved polysulfides has been electrochemically altered to confine the thickness of discharge products passivated on the cathode surface, increasing the utilization rate of sulfur while avoiding severe morphology changes on the electrode. More importantly, the exposure of new lithium metal surface to the S-containing electrolyte is also greatly reduced through this strategy, largely minimizing the anode corrosion caused by polysulfides. This work interlocks the electrode morphologies and its evolution with electrochemical interference to modulate cell performances by using Li-S system as a platform, providing different but critical directions for this community.

  19. Human health benefits of ambient sulfate aerosol reductions under Title IV of the 1990 Clean Air Act amendments

    SciTech Connect (OSTI)

    Chestnut, L.G.; Watkins, A.M.

    1997-12-31

    The Acid Rain Provisions (Title IV) of the Clean Air Act Amendments of 1990 call for about a 10 million ton reduction in annual SO{sub 2} emissions in the United States by the year 2010. Although the provisions apply nationwide, most of the reduction will take place in the eastern half of the United States, where use of high sulfur coal for electricity generation is most common. One potentially large benefit of Title IV is the expected reduction in adverse human health effects associated with exposure to ambient sulfate aerosols, a secondary pollutant formed in the atmosphere when SO{sub 2} is present. Sulfate aerosols are a significant constituent of fine particulate (PM{sub 2.5}). This paper combines available epidemiologic evidence of health effects associated with sulfate aerosols and economic estimates of willingness to pay for reductions in risks or incidence of health effects with available estimates of the difference between expected ambient sulfate concentrations in the eastern United States and southeastern Canada with and without Title IV to estimate the expected health benefits of Title IV. The results suggest a mean annual benefit in the eastern United States of $10.6 billion (in 1994 dollars) in 1997 and $40.0 billion in 2010, with an additional $1 billion benefit each year in Ontario and Quebec provinces.

  20. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect (OSTI)

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  1. Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993

    SciTech Connect (OSTI)

    Crelling, J.C.; Case, E.R.

    1993-05-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

  2. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  3. Clean coal technology III 10 MW demonstration of gas suspension absorption. Final public design report

    SciTech Connect (OSTI)

    1995-06-01

    This report provides the nonproprietary design information for the ``10 MW Demonstration of Gas Suspension Absorption (GSA)`` Demonstration Project at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emission Research (CER). The 10 MW Demonstration of GSA program is designed to demonstrate the performance of the GSA system in treating the flue gas from a boiler burning high sulfur coal. This project involves design, manufacturing, construction and testing of a retrofitted GSA system. This report presents a nonproprietary description of the technology and overall process performance requirements, plant location and plant facilities. The process, mechanical, structural and electrical design of the GSA system as well as project cost information are included. It also includes a description the modification or alterations made during the course of construction and start-up. Plant start-up provisions, environmental considerations and control, monitoring and safety considerations are also addressed for the process. This report, initially drafted in 1993, covers design information available prior to startup of the demonstration project. It does not reflect the results obtained in that project, which is now complete.

  4. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings. Final report

    SciTech Connect (OSTI)

    Van Weele, S.

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  5. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings

    SciTech Connect (OSTI)

    Van Weele, S. )

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  6. A study of parameters influencing metal wastage in fluidized bed combustors

    SciTech Connect (OSTI)

    Podolski, W.F.; Lyczkowski, R. ); Montrone, E. ); Drennen, J. ); Ai, Y.H.; Chao, B.T. )

    1991-01-01

    Fluidized bed combustion (FBC) technology is a means of burning high-sulfur coal and various other feedstocks in an efficient, cost-effective, and environmentally acceptable manner. Unfortunately, the wearing or wastage of metal heat exchanger tubes in bubbling FBCs has been reported in a large number of units in commercial service. Presently, it is not possible to explain why some FBC units, or regions of a specific bed, undergo rapid metal loss and others do not. An eight-member cooperative R D venture was formed in 1985 to investigate metal wastage in FBCs. The objectives of the R D effort are to hydrodynamics and erosion in FBCs, (2) develop guidelines for the design and operation of FBC units with minimum metal wastage rates, and (3) demonstrate the feasibility of a continuous erosion monitor for use in pilot plant and full-scale FBC units. Computational models are being refined and used to predict the rates of metal wastage for specific FBC designs and operating conditions. The design guidelines will emerge from the understanding gained from experimental studies and analytical modeling activities. This paper updates the status of ongoing experimental studies. 8 refs., 10 figs., 3 tabs.

  7. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  8. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  9. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOE Patents [OSTI]

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  10. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-01-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  11. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-11-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  12. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  13. AFBC - operation of small scale demonstration for greenhouse heating

    SciTech Connect (OSTI)

    Ashworth, R.A.; Plessinger, D.A.; Webner, R.L.; Machamer, T.

    1996-12-31

    A 2.2 million Btu/hr unit prototype AFBC system was installed in 1995 at Cedar Lane Farms, a commercial nursery in Ohio. The AFBC is in operation and is heating hot water for greenhouse temperature control. A team consisting of the Energy and Environmental Research Corporation, the Ohio Agricultural Research and Development Center of Ohio State University and the Will-Burt Company developed this technology with funding support from the Ohio Coal Development Office and the U.S. Department of Energy. The system is fully automated with little operator attention being required. Operating experience at Cedar Lane Farms has shown that only 2 hours per day of operation attention is required for the system. The system includes flyash/sorbent reinjection and underbed coal/limestone feed. These features provide for good limestone utilization; a Ca/S (in coal) ratio of 2.5 will maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning high sulfur (3.2%) Ohio coal. A baghouse is used to control particulate emissions. Based on the success of the prototype unit, a design has been recently completed for a commercial size 10 x 10{sup 6} Btu/hr capacity range. Multiple AFBC units can be used to provide larger heat outputs. Potential coal-fired AFBC users include institutions (schools, hospitals, prisons, government), light industry (agricultural, food processing), commercial users (shopping centers), and large residential users (apartment complexes). 6 figs., 1 tab.

  14. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    SciTech Connect (OSTI)

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  15. Simultaneous SO{sub 2}, SO{sub 3} and NOx removal with ammonia and electron beam irradiation by the EBA process

    SciTech Connect (OSTI)

    Hirano, S.; Aoki, S.; Izutsu, M.; Yuki, Y.

    1999-07-01

    Details are presented of design, performance, operational experience and cost-effectiveness of an ammonium sulfate/nitrate yielding, 90 MWe-capacity, Electron Beam system retrofit, an initial commercial installation of the EBA Process in high-sulfur bituminous coal service at the Chengdu Power Station of Sichuan Electric Power Administration in China. 1997/1998 system startup and commissioning activities leading to successful acceptance tests in 1998 are reviewed to indicate the scope of problems addressed and overcome, and the resulting broad applicability for low-grade fuel service, e.g. in Asia and North America, is illustrated. A retrofit installation of 220 MWe capacity at a powerplant of Chubu Electric Power Company, Inc., in Japan, 92+% SO{sub 2} and SO{sub 3} removal w/60+% NOx removal, that will start up in late 1999 is reviewed. Process economics, i.e. cost/ton SO{sub 2} removal are presented for: The Chengdu Station installation, 80+% SO{sub 2} and SO{sub 3} removal w/20% NOx removal; and a commonly referenced, hypothetical application on a new unit in the U.S. of 300 MWe capacity with 2.6% sulfur bituminous coal fueling designed for performance of 90% SO{sub 2} and SO{sub 3} removal w/65% NOx removal.

  16. SYNCHEM feasibility report: Phase 1

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Several Czech and US companies have entered into a development agreement for the purposes of determining the technical and economic feasibility and overall financeability of an integrated gasification combined cycle (IGCC) regional energy facility to be located adjacent to the Chemopetrol refinery in Litvinov, Czech Republic. The Project would use a feedstock comprised of coal supplied by Doly a upravny Komorany s.p. (DUK) coal mining company and mined from the Most/Litvinov area together with high sulfur residual oils from the Chemopetrol refinery. When gasified together with oxygen from an Air Products air separation plant, and based on an average yearly consumption of 2,100K metric tons per year of coal (as delivered) and 630K tonnes per year of oil, approximately 11 million normal cubic meters per day of syngas will be produced. At its current projected design capacity, when combusted in two General Electric advanced technology Frame 9FA gas turbines, the Project will produce approximately 690MW of electric power; 250 metric tons/hour of steam for process; and 135 thermal equivalent MW of district heat. The Feasibility Phase efforts described in this report indicate the real possibility for a successful and profitable IGCC Project for the Czech Republic. It is therefore incumbent upon all the Project Participants to review and evaluate the information contained herein such that a go/no-go decision can be reached by early next year.

  17. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 1

    SciTech Connect (OSTI)

    Smith, K.; Lani, B.; Berisko, D.; Schultz, C.; Carlson, W.; Benson, L.B.

    1992-12-01

    Successful pilot plant tests of simultaneous removal of S0{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The tests, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7, a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for S0{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 NW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 95% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology.

  18. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    SciTech Connect (OSTI)

    1998-05-01

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  19. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes

    SciTech Connect (OSTI)

    Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAhg-1after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca.6 mAhcm-2) with a high sulfur loading of approximately 5 mgcm-2, which is ideal for practical applications of the lithium–sulfur batteries.

  20. Micronized coal-fired retrofit system for SO{sub x} reduction Krakow clean fossil fuels and energy efficiency program. Final report

    SciTech Connect (OSTI)

    1997-04-01

    This report describes results of a technical, financial and environmental assessment study for a project, which would have included a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex; Krzeszowice, Poland. Project site is about 20 miles west of Krakow, Poland. During the project study period, PHRO utilized 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers burn a high-sulfur content heavy crude oil, called mazute, The project study was conducted during a period extended from March 1996 through February 1997. For size orientation, the PHRO Greenhouse complex grows a variety of vegetables and flowers for the Southern Poland marketplace. The greenhouse area under glass is very large and equivalent to approximately 50 football fields, The new micronized coal fired boiler would have: (1) provided a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduced sulfur dioxide air pollution emissions, while satisfying new Polish air regulations, and (3) provided attractive savings to PHRO, based on the quantity of displaced oil.

  1. LIFAC flue gas desulfurization process an alternative SO{sub 2} control strategy

    SciTech Connect (OSTI)

    Patel, J.G.; Vilala, J.

    1995-12-01

    This paper discusses the results from two recently completed LIFAC flue gas desulfurization plants - 300 MW Shand lignite powered station owned by Saskatchewan Power Corporation and 60 MW Whitewater Valley high sulfur coal fired station owned by Richmond Powerand Light. LIFACis a dry FGD process in which limestone is injected into the upper regions of the boiler furnace and an activation reactor is used to humidify the unreacted limestone to achieve additional sulfur capture. The performance in both plants indicates that 70 to 80% sulfur is removed at a Ca/S ratio of 2. Cost performance data from these plants has shown that LI FAC both on construction cost and $/ton SO{sub 2} removed basis is very cost competitive compared to other SO{sub 2} control technologies. The Richmond plant has been realized under the auspices of the U.S. Department of Energy`s Clean Coal Technology program. The Shand plant is the first commercial installation in North America. The paper also discusses highlights of operating and maintenance experience, availability and handling of the solid waste product.

  2. Desulfurization of coal: Enhanced selectivity using phase transfer catalysts. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Palmer, S.R.; Hippo, E.J.

    1997-05-01

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development of viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application of phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst was expected to function as a selectivity moderator by permitting the use of milder reaction conditions than otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidations for selective sulfur oxidation were also studied. If successful this project would have lead to the rapid development of a commercially viable desulfurization process. This would have significantly improved the marketability of Illinois coal. However, the phase transfer catalysts, the cerium and the scrubber sledge did not catalize the sulfur removal significantly.

  3. Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996

    SciTech Connect (OSTI)

    Palmer, S.R.; Hippo, E.J.

    1996-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

  4. High SO{sub 2} removal efficiency testing. Topical report - results of sodium formate additive tests at New York State Electric & Gas Corporation`s Kintigh Station

    SciTech Connect (OSTI)

    Murphy, J.

    1997-02-14

    Tests were conducted at New York State Gas & Electric`s (NYSEG`s) Kintigh Station to evaluate options for achieving high sulfur dioxide (SO{sub 2}) removal efficiency in the wet limestone flue gas desulfurization (FGD) system. This test program was one of six conducted by the U.S. Department of Energy to evaluate low-capital-cost upgrades to existing FGD systems as a means for utilities to comply with the requirements of the 1990 Clean Air Act Amendments. The upgrade option tested at Kintigh was sodium formate additive. Results from the tests were used to calibrate the Electric Power Research Institute`s (EPRI) FGD PRocess Integration and Simulation Model (FGDPRISM) to the Kintigh scrubber configuration. FGDPRISM was then used to predict system performance for evaluating conditions other than those tested. An economic evaluation was then done to determine the cost effectiveness of various high-efficiency upgrade options. These costs can be compared with the estimated market value of SO{sub 2} allowance or the expected costs of allowances generated by other means, such as fuel switching or new scrubbers, to arrive at the most cost-effective strategy for Clean Air Act compliance.

  5. Utilization of CFB fly ash for construction applications

    SciTech Connect (OSTI)

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  6. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  7. A novel process for upgrading heavy oil emulsions

    SciTech Connect (OSTI)

    Ng, F.T.T.; Rintjema, R.T.

    1994-12-31

    Canada has extensive reserves of high sulfur heavy oils. These heavy oils are recovered primarily by steam injection techniques. As a result, the heavy oils are obtained as emulsions at well-heads. The heavy oils, being high in sulfur and metals, and low in hydrogen to carbon atomic ratio, require upgrading such as desulfurization and hydrocracking before it can be used in conventional refineries. Conventional emulsion treatment and desulfurization technology require multistage processing. Thus, alternative technologies for processing heavy oil emulsions would be attractive. The authors have recently developed a novel single stage process for upgrading emulsions via activation of water to provide hydrogen in situ for catalytic desulfurization and hydrocracking. Current work is focused on the desulfurization aspect of upgrading, using benzothiophene as the model sulfur compound and molybdic acid as the catalyst. At 340 C and a CO loading pressure of 600 psi, up to 86% sulfur removal was obtained. As well, in situ generated H{sub 2} was found to be more active than externally supplied molecular H{sub 2}. A likely pathway for desulfurization of benzothiophene was via the initial hydrogenation of benzothiophene to dihydrobenzothiophene followed by hydrogenolysis to give ethylbenzene and H{sub 2}S.

  8. AEC Lowman Station FGD conversion from limestone to magnesium-enhanced lime scrubbing

    SciTech Connect (OSTI)

    Inkenhaus, W.; Babu, M.; Smith, K.; Loper, L.

    1996-12-31

    AEC`s Lowman Station is located in Leroy, Alabama. Units 2 and 3, with a total of 516 MW output capacity, were switched from the limestone FGD operation in January of 1996. Prior to switching, personnel from AEC and Dravo Lime Company conducted a four week test on magnesium-enhanced lime and obtained scrubber performance data including SO{sub 2} removal efficiencies on the modulus while burning higher sulfur coal. It was determined that the plant could take advantage of the higher SO{sub 2} removal efficiency of the magnesium-enhanced lime system. Major benefits resulting from this conversion were AEC`s ability to switch to a lower cost high sulfur coal while meeting the stringent SO{sub 2} emission requirements. Power cost savings resulted from the lower liquid to gas ratio required by the magnesium-enhanced lime process. Three recirculation pumps per module were reduced to a single operating pump per module, lowering the scrubber pressure drop. Significant cost reduction in the operating costs of the ball mill was realized due to modifications made to slake lime instead of grinding limestone. This paper discusses the plant modifications that were needed to make the switch, cost justifications, and AEC`s operating experiences to date. AEC and Dravo Lime Company working together as a team conducted detailed cost studies that followed with extended field tests and implementing plant modifications. This plant continues to operate in the magnesium-enhanced lime FGD mode to date.

  9. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium–Sulfur Battery Cathodes

    SciTech Connect (OSTI)

    Song, Jiangxuan; Gordin, Mikhail; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g-1 after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm-2) with a high sulfur loading of approximately 5 mg cm-2, which is ideal for practical applications of the lithium–sulfur batteries.

  10. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Jain, M.K.

    1991-12-31

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  11. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    SciTech Connect (OSTI)

    Jain, M.K.

    1991-01-01

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  12. Study on removal of organic sulfur compound by modified activated carbon

    SciTech Connect (OSTI)

    Fan Huiling; Li Chunhu; Guo Hanxian [Taiyuan Univ. of Technology (China). Research Inst. for Chemical Engineering of Coal

    1997-12-31

    With the price of coal increasing in China, more and more small and medium scale chemical plants are turning to high sulfur coal as the raw material in order to cut cost. However, the major drawback is that the lifetime of the ammonia synthesis catalyst is then reduced greatly because of the high concentration of the sulfur compounds in the synthesis gas, especially organic sulfur, usually CS{sub 2} and COS. The effects of water vapor and experimental temperature on removal of organic sulfur compounds by using a modified activated carbon were studied in this paper. It was found that water vapor had a negative effect on removal of carbon disulfide by activated carbon impregnated with organic amine. The use of activated carbon impregnated with K{sub 2}CO{sub 3} for removal of carbonyl sulfide was also investigated over the temperature range 30--60, the results show a favorable temperature (40) existing for carbonyl sulfide removal. Fixed-bed breakthrough curves for the adsorbent bed were also offered in this paper.

  13. Development of high energy density fuels from mild gasification of coal

    SciTech Connect (OSTI)

    Greene, Marvin

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  14. Development of high energy density fuels from mild gasification of coal. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  15. Design and evaluation of Cities Service/Rockwell hydrogasification commercial plant

    SciTech Connect (OSTI)

    Agrawal, P.D.; Butt, N.M.; Sarma, K.R.

    1980-08-01

    This report covers a preliminary conceptual design and economic evaluation of a commercial scale plant capable of converting high-sulfur bituminous caking coal to a high-Btu pipeline quality SNG. The plant, which has a rated capacity of 250 Billion Btu per day SNG, is based on Cities Service/Rockwell hydrogasification technology. Two cases of plant design were examined to produce cost estimates accurate to +-25% in 1979 dollars. The base case, designed for moderate production of liquids (5.8% conversion of carbon to liquid product), has a cost of SNG of $4.43/MMBtu using the utility financing method (UFM) and $6.42/MMBtu using the discounted cash flow method (DCFM) of financing. The alternate case, zero liquids production, has gas costs of $5.00 (UFM) and $6.96 (DCFM). Further tests by Rockwell have indicated that 11.4% carbon conversion to liquid products (99% benzene) is possible. If the plant is scaled up to produce the same amoung of SNG with this increased yield of liquid, and if the value of the benzene produced is estimated to be $0.90 per gallon, the costs of gas for this case are $4.38/MMBtu (UFM) and $6,48/MMBtu (DCFM). If the value of benzene is taken as $2.00 per gallon, these costs become $3.14/MMBtu (UFM) and $5.23/MMBtu (DCFM). The economic assumptions involved in these calculations are detailed.

  16. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  17. Enhanced control of mercury emissions through modified speciation

    SciTech Connect (OSTI)

    Livengood, C.D.; Mendelsohn, M.H.

    1997-07-01

    In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. Argonne National Laboratory has supported the DOE Fossil Energy Program for over 15 years with research on advanced environmental control technologies. The emphasis in Argonne`s work has been on integrated systems that combine control of several pollutants. Specific topics have included spray drying for sulfur dioxide and particulate-matter control with high-sulfur coal, combined sulfur dioxide and nitrogen oxides control technologies, and techniques to enhance mercury control in existing FGC systems. The latter area has focused on low-cost dry sorbents for use with fabric filters or electrostatic precipitators and techniques for improving the capture of mercury in wet flue-gas desulfurization (FGD) systems. This paper presents results from recent work that has studied the effects of several oxidizing agents in combination with typical flue-gas species (e.g., nitrogen oxides and sulfur dioxide) on the oxidation of Hg{sup 0}.

  18. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    SciTech Connect (OSTI)

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

  19. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  20. Sorbent utilization studies using a mini-pilot spray dryer

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.; Yang, Q. )

    1992-07-01

    The objectives of project 1.5 were to design, construct and evaluate (by means of parametric testing) a mini-pilot spray dryer facility. To date, the mini-pilot facility has been designed and is currently 100% constructed. The unit was evaluated based on such parameters as air flow rate, uniformity, residence time, Ca(OH)[sub 2] Slurry concentration the nozzle can handle, heater's heating capacity and the baseline SO[sub 2] removal efficiency. The mini-pilot facility will allow research in all aspects of spray drying fluid gas desulfurization. The unit was designed for a nominal gas flow rate of 100 scfm (3 n[sup 3]/min) and will be able be used with either nozzle spray or rotary atomization. In addition, a theoretical modeling of spray drying has been completed. Results of the simulation indicate that counter-current (referring to air flow) spray pattern will benefit in overall SO[sub 2] removal with respect to co-current spray pattern. This result needs to be further tested in the pilot scale spray dryer. Baseline testing has indicated that the mini-pilot plant provides data which is comparable to that from the large scale spray dryer facility at the Electric Power Research Institute's High Sulfur Test Facility. The results of these baseline tests have shown that SO[sub 2] removal efficiency increases with a decrease in the approach to saturation temperature, or an increase in lime stoichiometric ratio (at a constant approach to saturation temperature).

  1. Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 1, summary of central-station technologies

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A major element of the SPS Concept Development and Evaluation Program is the characterization and comparative analysis of future terrestrial-based alternatives to SPS. A significant portion of this effort is the selection and characterization of six terrestrial central station electric generation systems that may be viable alternatives to SPS in the year 2000 and beyond. The objective of this report is to complete and document the physical and cost characterizations of six electric generation technologies of designated capacity. The technologies selected for the detailed characterization were: (1) solar technology: (a) terrestrial photovoltaic (200 MWe); (2) coal technologies: (a) conventional high sulfur coal combustion with advanced flue gas desulfurization (1250 MWe), and (b) open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and (3) nuclear technologies: (a) conventional light water reactor (1250 MWe), (b) liquid metal fast breeder reactor (1250 MWe), and (c) magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given. (WHK)

  2. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect (OSTI)

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  3. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  4. Proof-of-concept tests of the magnetohydrodynamic steam-bottoming system at the DOE Coal-Fired Flow Facility. Final report

    SciTech Connect (OSTI)

    Attig, R.C.

    1996-10-09

    The development of coal-fired magnetohydrodynamic (MHD) power can be viewed as consisting of two parts; the topping cycle and the bottoming cycle. The topping cycle consists of the coal combustor, MHD generator and associated components. The bottoming cycle consists of the heat recovery, steam generation, seed recovery/regeneration, emissions control (gas and particulate), ash handling and deposition, and materials evaluation. The report concentrates on the bottoming cycle, for which much of the technology was developed at the University of Tennessee Space Institute (UTSI). Because of the complexity of the required technology, a number of issues required investigation. Of specific concern regarding the bottoming cycle, was the design of the steam cycle components and emissions control. First, the high combustion temperatures and the use of large quantities of potassium in the MHD combustor results in a difference in the composition of the gases entering the bottoming cycle compared to conventional systems. Secondly, a major goal of the UTSI effort was to use a variety of coals in the MHD system, especially the large reserves of high-sulfur coals available in the United States.

  5. Emissions trading and compliance: Regulatory incentives and barriers

    SciTech Connect (OSTI)

    South, D.W.; Bailey, K.A. ); McDermott, K.A. . Center for Regulatory Studies)

    1992-01-01

    The Title IV of the Clean Air Act Amendments of 1990 (P.L. 101-549) authorizes the use of transferable emission allowances to achieve reductions in the power generating industry's SO{sub 2} emissions at a minimum possible cost. All electricity generators (greater than 25 MW) are required to hold emissions allowances equal to the amount (tons) of SO{sub 2} emitted during a given year, and meet NO{sub x} reduction levels indicated by the Revised New Source Performance Standards (NSPS). This paper will examine the multifaceted goals and problems of states and utilities relative to compliance with Title IV, and in particular as they pertain to the development and functioning of the allowance market together with utility pollution control and power generation technology choice. Section 2 presents possible utility compliance strategies along with possible barriers that utilities may confront regarding the development of a SO{sub 2} allowance market. Section 3 discusses current regulatory barriers and requirements being implemented by state public utility commissions, and Section 4 offers some policy recommendations to achieve the goals of Title IV. Finally, Section 5 presents a summary and conclusions; Appendix A provides programs/mandates developed to data by high sulfur coal states in response to Title IV compliance requirements.

  6. Emissions trading and compliance: Regulatory incentives and barriers

    SciTech Connect (OSTI)

    South, D.W.; Bailey, K.A.; McDermott, K.A.

    1992-04-01

    The Title IV of the Clean Air Act Amendments of 1990 (P.L. 101-549) authorizes the use of transferable emission allowances to achieve reductions in the power generating industry`s SO{sub 2} emissions at a minimum possible cost. All electricity generators (greater than 25 MW) are required to hold emissions allowances equal to the amount (tons) of SO{sub 2} emitted during a given year, and meet NO{sub x} reduction levels indicated by the Revised New Source Performance Standards (NSPS). This paper will examine the multifaceted goals and problems of states and utilities relative to compliance with Title IV, and in particular as they pertain to the development and functioning of the allowance market together with utility pollution control and power generation technology choice. Section 2 presents possible utility compliance strategies along with possible barriers that utilities may confront regarding the development of a SO{sub 2} allowance market. Section 3 discusses current regulatory barriers and requirements being implemented by state public utility commissions, and Section 4 offers some policy recommendations to achieve the goals of Title IV. Finally, Section 5 presents a summary and conclusions; Appendix A provides programs/mandates developed to data by high sulfur coal states in response to Title IV compliance requirements.

  7. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    SciTech Connect (OSTI)

    1998-02-28

    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO{sub 3} {center_dot} 1/2 H{sub 2}O), calcium sulfate (CaSO{sub 4} {center_dot} 2H{sub 2}O), unreacted limestone (CaCO{sub 3}), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column.

  8. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  9. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  10. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect (OSTI)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30

    ) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  11. FutureGen 2.0 Oxy-Coal Combustion Carbon Capture Plant Pre-FEED Design and Cost

    SciTech Connect (OSTI)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya; Lockwood, Frederick; McDonald, Denny; Maclnnis, Jim

    2011-09-30

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (instead of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit

  12. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect (OSTI)

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  13. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  14. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  15. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  16. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect (OSTI)

    Crelling, J.C.

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  17. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C.

    1994-12-31

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  18. Breckinridge Project, initial effort. Report II. Breckinridge Project design basis

    SciTech Connect (OSTI)

    1982-01-01

    The Breckinridge Project is a pioneer endeavor involving the engineering, construction, and operation of a commercial facility that will convert 23,000 tons per day of run-of-mine, high-sulfur coal into 50,000 barrels per day of liquid hydrocarbons equivalent to those produced from crude oil. The Initial Effort, now complete, was executed under Cooperative Agreement No. DE-FC05-80OR20717 between the Department of Energy and the Participants, Ashland Synthetic Fuels, Inc., and Airco Energy Company, Inc. The Initial Effort produced a preliminary design, capital estimate, and economic analysis of the commercial plant, as well as a plan for the design, construction, and operation of that plant. The extensive and rigorous attention given to environmental, socioeconomic, safety, and health considerations is indicative of the high priority these issues will continue to receive throughout the life of the project. The Breckinridge Energy Company, a partnership of several major corporations, is being formed to finance, own, and manage the Breckinridge Project. Report II is intended for the reader who is primarily interested in less detailed discussion of the coal liquefaction process and Breckinridge facility than presented in the eleven volumes of Reports IV and V. The overview section describes the project goals and briefly introduces the coal liquefaction process. The report continues with a discussion of the history of the project and the H-COAL process from its concept to the proposed commercialization technology. The report describes the site, the Breckinridge Facility, and concludes with a summary of the eleven reports that contain the deliverable documentation of the Initial Effort or Development Phase of the project.

  19. Breckinridge Project, initial effort. Report VII, Volume II. Environmental baseline report

    SciTech Connect (OSTI)

    1982-01-01

    Ashland Synthetic Fuels, Inc. (ASFI) and Airco Energy Company, Inc. (AECI) have recently formed the Breckinridge Project and are currently conducting a process and economic feasibility study of a commercial scale facility to produce synthetic liquid fuels from coal. The coal conversion process to be used is the H-COAL process, which is in the pilot plant testing stage under the auspices of the US Department of Energy at the H-COAL Pilot Plant Project near Catlettsburg, Kentucky. The preliminary plans for the commercial plant are for a 18,140 metric ton/day (24,000 ton/day) nominal coal assumption capacity utilizing the abundant high sulfur Western Kentucky coals. The Western Kentucky area offers a source of the coal along with adequate water, power, labor, transportation and other factors critical to the successful siting of a plant. Various studies by federal and state governments, as well as private industry, have reached similar conclusions regarding the suitability of such plant sites in western Kentucky. Of the many individual sites evaluated, a site in Breckinridge County, Kentucky, approximately 4 kilometers (2.5 miles) west of the town of Stephensport, has been identified as the plant location. Actions have been taken to obtain options to insure that this site will be available when needed. This report contains an overview of the regional setting and results of the baseline environmental studies. These studies include collection of data on ambient air and water quality, sound, aquatic and terrestrial biology and geology. This report contains the following chapters; introduction, review of significant findings, ambient air quality monitoring, sound, aquatic ecology, vegetation, wildlife, geology, soils, surface water, and ground water.

  20. Pilot-scale limestone emission control (LEC) process: A development project. Volume 1: Main report and appendices A, B, C, and D. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. The primary goal of the current study is the demonstration of the techno/economic capability of the LEC system as a post-combustion FGD process capable of use in both existing and future coal-fired boiler facilities burning high-sulfur coal. A nominal 5,000 acfm LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. The pilot plant was normally operated on the slipstream of the Ohio Univ. boiler plant flue gas, but also had the capability of operating at higher inlet SO{sub 2} concentrations (typically equivalent to 3-1/2% sulfur coal) than those normally available from the flue gas slipstream. This was accomplished by injecting SO{sub 2} gas into the slipstream inlet. The pilot plant was instrumented to provide around-the-clock operation and was fully outfitted with temperature, SO{sub 2}, gas flow and pressure drop monitors.

  1. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect (OSTI)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  2. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  3. The fuels program for the Nucla AFBC plant

    SciTech Connect (OSTI)

    Fellin, M.A.; Mahr, D.

    1996-12-31

    The Nucla Station originally consisted of three 1959 vintage, 36 (3 x 12) MWe, stoker-fired boilers. The plant was built under the Rural Electrification Administration program to service the scenic, western slope of Colorado. In 1988, the stokers were replaced by a new, dual combustor, 110 MWe AFBC boiler in EPRI`s fluidized bed demonstration program. A new 74 MWe topping steam turbine/generator, with extraction to the existing turbines, was installed at that time. The Nucla Plant was a key project in EPRI`s program to demonstrate the commercialization of AFBC technology. This program has been the subject of numerous reports and papers on fluidized bed combustion. The fuel used by the Nucla Station was a relatively good quality, bituminous coal. Nucla`s coal was trucked more than 100 miles to the plant from a mine in Colorado. In addition, some high sulfur coal was test burned in the plant. This coal was trucked to the plant from a mine located near Kayenta, Arizona. The primary purpose of the demonstration program was to scale-up the size of the combustor and examine parameters that affect fluidization, heat transfer, erosion, and other boiler related issues. Sulfur capture and the ability to utilize lower grade fuels was previously demonstrated in other, smaller scale programs. To utilize project funds efficiently, the 1988 AFBC retrofit was dedicated to adding the 110 MWe combustor and related equipment. The plant was revamped specifically for test purposes. To conserve funds, silo storage of coal for the AFBC unit was limited to an 8-hour supply. Existing plant auxiliaries, that could adequately perform during the demonstration, were not upgraded. These included the coal handling system.

  4. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    SciTech Connect (OSTI)

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  5. Development of a new FGD process that converts sulfur dioxide to salable ammonium phosphate fertilizer

    SciTech Connect (OSTI)

    Ji-lu Chen

    1993-12-31

    Rich mineral resources have enabled Chinese coal output and energy consumption to rank second and third in the world, respectively. In 1992, up to 70 percent of the country`s electric power was generated by the combustion of some 300 million tons of coal. Although the average sulfur content level in Chinese coals is only about 0.8 percent, the share of high- sulfur coals with 2 percent or more sulfur content is as high as 18 percent. As a result, air pollution accompanied by acid rain now occurs over most of the country, especially in southwestern China. Currently, the area comprising Guangdong, Guangxi, the Sichuan Basin, and the greater part of Gueizhou, where the sulfur content in coal is between 2 and 7 percent and the average pH values of rain water are between 4 and 5 per annum, has become one of the three biggest acid rain-affected areas in the world. In 1992, the national installed coal-fired electricity generation capacity exceeded 100,000 MWe. By the year 2000, it is expected to reach as much as 200,000 MWe, according to a new scheduled program. Environmental pollution caused by large-scale coal combustion is a very important issue that needs to be considered in the implementation of the program. To ensure that the effects of coal-fired power generation on the environment can be properly controlled in the near future, TPRI (Thermal Power Research Institute), the sole thermal power engineering research institution within the Ministry of Electric Power Industry (MOEPI), has conducted a long-term research program to develop sulfur emission control technologies suitable to the special conditions prevalent in China since the early 1970s. The details are summarized. The objective of this chapter is to describe the fundamental concept and major pilot test results and present an economic evaluation of a new process combining flue gas desulfurization (FGD) and ammonium phosphate fertilizer production.

  6. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.

    2000-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  7. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.

    2002-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  8. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  9. Enhanced durability for high-temperature desulfurization sorbents for moving-bed applications -- Option 3 program: Development and testing of additional zinc titanate sorbents. Final report, September 1992--May 1996

    SciTech Connect (OSTI)

    Ayala, R.E.; Chuck, T.L.

    1996-12-31

    GE is developing a moving-bed, high-temperature desulfurization system for the integrated gasification combined-cycle (IGCC) power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.`s Polk Power Station. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The objective of this contract is to identify and test sorbent fabrication methods and chemical compositions that enhance the long-term chemical reactivity and mechanical strength of zinc titanate and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. A parametric study on the use of calcium sulfate additives to zinc titanate was conducted for zinc titanates having a 2:1 and 1.5:1 zinc-to-titanium molar ratio, and they showed a beneficial effect on crush strength of fresh 2:1 zinc titanate sorbents. In addition, a test procedure was developed to screen sorbent formulations based on resistance to spalling and pellet breakage induced by zinc sulfate formation in the presence of sulfur dioxide and excess oxygen conditions.

  10. Desulfurization of coal: Enhanced selectivity using phase transfer catalysts. Technical report, September 1--November 30, 1995

    SciTech Connect (OSTI)

    Palmer, S.R.; Hippo, E.J.

    1995-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development of viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigates the application of phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions than otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidations for selective sulfur oxidation are also being studied. If successful this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal. During this quarter aliquots of the IBC-101 coal have been ground to various particle sizes in an attempt to find the optimum physical pretreatment for mineral, especially pyrite, removal. Analysis of these various aliquots shows them to be representative of the original coal. In addition, preliminary desulfurization reactions using fly ash and scrubber sludges have been performed on an unoxidized IBC-101 sample. Results will be available next quarter. Also, SEM-EDAX analysis of the fly ash indicates that it contains oxides that have shown activity in base desulfurization reactions.

  11. Iowa State Mining and Mineral Resources Research Institute

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchance how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.

  12. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S.

    1994-11-30

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  13. Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994

    SciTech Connect (OSTI)

    Weinberg, A.; Coel, B.J.; Butler, R.D.

    1994-10-01

    New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

  14. Recent advances in use of magnesium-enhanced FGD processes include a natural oxidation limestone scrubber conversion and the first commercial ThioClear{reg{underscore}sign} application

    SciTech Connect (OSTI)

    Smith, K.; Babu, M; Inkenhaus, W.

    1998-07-01

    The magnesium-enhanced Thiosorbic FGD process, originally developed by the Dravo Lime Company (DLC) in the early 1970's, is used by over 1,400 MW of power generation in the US primarily by high sulfur coal burning utilities. The excellent SO{sub 2} removal efficiencies, high reliability, and cost effectiveness are the hallmarks of this process. DLC personnel working with Alabama Electric Cooperative's (AEC) personnel converted AEC's Units 2 and 3 at the Lowman Station in Alabama from limestone scrubbing to magnesium-enhanced lime scrubbing process in early 1996. These units totaling 516 MW have been in continuous operation, enabling AEC to save on fuel costs by switching to a lower cost, higher sulfur containing coal, made possible by the higher removal efficiency Thiosorbic process modification. The first part of this paper details the modification that were made and compares the performance differences between the limestone and Thiosorbic FGD processes. ThioClear{reg{underscore}sign} FGD is a forced oxidized magnesium-enhanced lime scrubbing process that produces high quality gypsum and magnesium hydroxide as by-products. The recycle liquor in this process is nearly clear and the capability for SO{sub 2} removal is as high as the Thiosorbic process. DLC working with Applied Energy Systems (AES) of Monaca, Pennsylvania, is currently constructing a 130 Mwe station modification to convert from the natural oxidation Thiosorbic process to the forced oxidation ThioClear{reg{underscore}sign} process. The plant is scheduled to start up by the end of the third quarter of this year. The second part oft his paper details the ThioClear process modifications at AES and describes the by-products and their potential uses.

  15. Recent advances in use of magnesium-enhanced FGD processes include a natural oxidation limestone scrubber conversion and the first commercial ThioClear{reg_sign} application

    SciTech Connect (OSTI)

    Smith, K.; Babu, M.; Inkenhaus, W.

    1998-04-01

    The magnesium-enhanced Thiosorbic FGD process, originally developed by the Dravo Lime Company (DLC) in the early 1970`s, is used by over 1400 MW of power generation in the US primarily by high sulfur coal burning utilities. The excellent SO{sub 2} removal efficiencies, high reliability, and cost effectiveness are the hallmarks of this process. DLC personnel working with Alabama Electric Cooperative`s (AEC) personnel converted AEC`s Units 2 and 3 at the Lowman Station in Alabama from limestone scrubbing to magnesium-enhanced lime scrubbing process in early 1996. These units totaling 516 MW have been in continuous operation, enabling AEC to save on fuel costs by switching to a lower cost, higher sulfur containing coal, made possible by the higher removal efficiency Thiosorbic process modification. The first part of this paper details the modifications that were made and compares the performance differences between the limestone and Thiosorbic FGD processes. ThioClear{reg_sign} FGD is a forced oxidized magnesium-enhanced lime scrubbing process that produces high quality gypsum and magnesium hydroxide as by-products. The recycle liquor in this process is nearly clear and the capability for SO{sub 2} removal is as high as the Thiosorbic process. DLC working with Applied Energy Systems (AES) of Monaca, Pennsylvania, is currently constructing a 130 Mwe station modification to convert from the natural oxidation Thiosorbic process to the forced oxidation ThioClear{reg_sign} process. The plant is scheduled to start up by the end of the third quarter of this year. The second part of this paper details the ThioClear process modifications at AES and describes the by-ducts and their potential uses.

  16. SNOX demonstration project: Volume 2, Project performance and economics. Final report

    SciTech Connect (OSTI)

    1996-07-01

    The SNOX process, developed by Haldor Topsoe A/S and demonstrated and marketed in North America by ABB Environmental Systems (ABBES), is an innovative process which removes both sulfur dioxide and nitrogen oxides from power plant flue gases. Sulfur dioxide is recovered as high purity, concentrated sulfuric acid and nitrogen oxides are converted to nitrogen gas and water vapor; no additional waste streams are produced. As part of the Clean Coal Technology Program, this project was demonstrated under joint sponsorship from the US Department of Energy, Ohio Coal Development Office, ABBES, Snamprogetti, and Ohio Edison. The project objective was to demonstrate the SO{sub 2}/NO{sub x} reduction efficiencies of the SNOX process on an electric power plant firing high-sulfur Ohio Coal. A 35-MWe demonstration has been conducted on a 108-MWe unit, Ohio Edison`s Niles Plant Unit 2, in Trumbull County, Ohio. The $31.4 million project began site preparation in November 1990 and commenced treating flue gas in March of 1992. A parametric test program has been completed. This report presents a description of the technology, results from the 33 month testing and operation phase, and information from a commercial scale economic evaluation. During the demonstration, the process met or exceeded its design goals of 95% SO{sub 2} removal, 90% NO{sub x} removal, and production of commercial grade (>93.2 wt.%) sulfuric acid. The plant was operated for approximately 8000 hours and produced more than 5600 tons of acid, which was purchased and distributed by a local supplier to end users. Projected economics for a 500 MWe commercial SNOX plant indicate a total capital requirement of 305 $/kW, levelized incremental cost of power at 6.1 mills/kWh, 219 $/ton of SO{sub 2} removed, and 198 $/ton of SO{sub 2}+NO{sub x} removed (all at constant dollars).

  17. Durable zinc oxide containing sorbents for moving bed and fluid-bed applications

    SciTech Connect (OSTI)

    Siriwardane, R.V.

    1998-12-31

    A series of novel regenerable desulfurization sorbents operational at a wide range of temperatures (260--600 C) has been developed by the in-house research staff at the US Department of Energy`s Federal Energy Technology Center. The sorbent, identified as METC10, has demonstrated very high attrition resistance as well as very high and stable reactivity conducted under numerous testing regimes under both simulated and actual fuel gas conditions. The METC10 sorbent suitable for moving bed reactor applications is the only sorbent which has exceeded all the criteria required for use in the Tampa Electric Company (TECO) Clean Coal Technology (CCT) demonstration project. The required criteria for the TECO project included, a sulfur loading of 6.7 lb/ft{sup 3} while maintaining the outlet H{sub 2}S level < 20 ppmv, attrition of < 5 wt% after 25 cycle test and regeneration under the very drastic conditions of 10% SO{sub 2} at 510 C under 5--7 atmospheres. In addition, the sorbent was also tested at temperatures ranging from 370 C to 260 C with simulated coal gas. At this low temperature, it was possible to achieve a sulfur loading > 6 lb/ft{sup 3}, indicating that the sorbent is suitable for applications over a wide range of temperatures. It was also possible to prepare METC10 sorbent suitable for fluidized/transport reactor bed applications utilizing spray drying technique. These sorbents had both high attrition resistance (> 95%) and high sulfur capacity (> 14 wt%), and showed stable reactivity during multi-cycle testing.

  18. Sorbent utilization studies using a mini-pilot spray dryer. Final report, June 1, 1990--June 30, 1991

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.; Yang, Q.

    1992-07-01

    The objectives of project 1.5 were to design, construct and evaluate (by means of parametric testing) a mini-pilot spray dryer facility. To date, the mini-pilot facility has been designed and is currently 100% constructed. The unit was evaluated based on such parameters as air flow rate, uniformity, residence time, Ca(OH){sub 2} Slurry concentration the nozzle can handle, heater`s heating capacity and the baseline SO{sub 2} removal efficiency. The mini-pilot facility will allow research in all aspects of spray drying fluid gas desulfurization. The unit was designed for a nominal gas flow rate of 100 scfm (3 n{sup 3}/min) and will be able be used with either nozzle spray or rotary atomization. In addition, a theoretical modeling of spray drying has been completed. Results of the simulation indicate that counter-current (referring to air flow) spray pattern will benefit in overall SO{sub 2} removal with respect to co-current spray pattern. This result needs to be further tested in the pilot scale spray dryer. Baseline testing has indicated that the mini-pilot plant provides data which is comparable to that from the large scale spray dryer facility at the Electric Power Research Institute`s High Sulfur Test Facility. The results of these baseline tests have shown that SO{sub 2} removal efficiency increases with a decrease in the approach to saturation temperature, or an increase in lime stoichiometric ratio (at a constant approach to saturation temperature).

  19. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    SciTech Connect (OSTI)

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  20. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planets remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energys GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  1. The effect of additives on lime dissolution rates. Final report

    SciTech Connect (OSTI)

    Khang, S.J.

    1996-07-31

    Based on the previous years` studies concerning the efficiency of SO{sub 2} removal by spray dryers with high sulfur coal flue gas, the work for year five included investigations of lime dissolution rates at different slaking conditions and with the effect of additives. The prominent additives that have significant effects on lime dissolution rates were tested with the mini pilot spray drying absorber to see their effects on spray drying desulfurization applications. The mechanisms of these additive effects along with the properties of hygroscopic additives have been discussed and incorporated into the spray drying desulfurization model ``SPRAYMOD-M.`` Slaking conditions are very important factors in producing high quality lime slurry in spray drying desulfurization processes. At optimal slaking conditions, the slaked lime particles are very fine (3-5{mu}m) and the slaked lime has high BET surface areas which are beneficial to the desulfurization. The slaked lime dissolution rate experiments in our study are designed to determine how much lime can dissolve in a unit time if the initial lime surface area is kept constant. The purpose of the dissolution rate study for different additives is to find those effective additives that can enhance lime dissolution rates and to investigate the mechanisms of the dissolution rate enhancement properties for these additives. The applications of these additives on spray drying desulfurization are to further verify the theory that dissolution rate is a rate limiting step in the whole spray drying desulfurization process as well as to test the feasibility of these additives on enhancing SO{sub 2} removal in spray dryers.

  2. Evaluation of Ohio fly ash/hydrated lime slurries and Type 1 cement sorbent slurries in the U.C. Pilot spray dryer facility. Final report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.; Meyers, G.R.

    1995-02-01

    The objectives of this year`s work included an evaluation of the performance of fly ash/hydrated lime as well as hydrated cement sorbents for spray drying adsorption (SDA) of SO{sub 2} from a simulated high-sulfur flue gas. These sorbents were evaluated for several different hydration methods, and under different SDA operating conditions. In addition, the physical properties of surface area and porosity of the sorbents was determined. The most reactive fly ash/hydrated lime sorbent studied was prepared at room temperature with milled fly ash. Milling fly ash prior to hydration with lime did have a beneficial effect on calcium utilization. No benefit in utilization was experienced either by hydrating the slurries at a temperature of 90{degrees}C as compared to hydration at room temperature, or by increasing hydration time. While the surface areas varied greatly from sorbent to sorbent, the pore size distributions indicated ``ink bottle`` pores with surface porosity on the order of 0.5 microns. No correlation could be drawn between the surface area of the sorbents and calcium utilization. These results suggest that the composition of the resulting sorbent might be more important than its surface area. The most effective sorbent studied this year was produced by hydrating cement for 3 days at room temperature. This sorbent provided a removal efficiency and a calcium utilization over 25 percent higher than baseline results at an approach to saturation temperature of 30{degrees}F and a stoichiometric ratio of 0.9. A maximum SO{sub 2} removal efficiency of about 90 percent was experienced with this sorbent at an approach to saturation temperature of 20{degrees}F.

  3. Pittsburgh Energy Technology Center quarterly technical progress report for the period ending September 30, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    Encouraging progress was made toward the development of acid rain control technology. PETC competitively selected and awarded contracts totaling over $8 million over the next three years to firms proposing new concepts for reducing the costs of cleaning the flue gas emissions of older, coal-burning power plants. PETC and ANL have undertaken a joint venture in dry flue-gas scrubbing that will ultimately lead to testing of a sorbent for combined SO/sub x/ and NO/sub x/ removal in Argonne's 20-megawatt spray dryer. The overall objective of a high-sulfur coal research program is to conduct a broad spectrum of coal-related research in order to increase and expand the use of coal in an environmentally acceptable manner. In the liquefaction program area, operations with Wyodak subbituminous coal are proceeding smoothly (Run 249) at the Wilsonville Process Development Unit. Understanding the processes involved in catalyst deactivation is important to the development of longer lived catalysts. In the area of process analysis, PETC has acquired a new version of ASPEN (Advanced System for Process Engineeering) software. The new version was recently installed on PETC's VAX/VMS operating system and is the most up-to-date version currently available. Work at PETC has resulted in the development and testing of a highly automated capillary tube viscometer for use with heavy coal-derived liquids. Results of PETC research in Fischer-Tropsch product characterization were also shared with the technical community. A particularly difficult analytical problem in the characterization of Fischer-Tropsch products is quantitative determination of carbon number distributions by compound class. PETC scientists developed a method that uses capillary gas chromatographic techniques to make these determinations. A paper describing the method was the lead article in the July 1985 issue of the Journal of Chromatographic Science and was featured on the cover.

  4. Engine gaseous, aerosol precursor and particulate at simulated flight altitude conditions. Technical memo

    SciTech Connect (OSTI)

    Wey, C.C.

    1998-10-01

    The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt and Whitney F100-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of 0.3% by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO{sub 2}, NO, NOx, O{sub 2}, total unburnt hydrocarbons (THC), and SO{sub 2}. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System.

  5. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  6. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  7. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    O`Brien, W.S.; Gupta, R.P.

    1992-10-01

    New coal gasification processes are now being developed which can generate electricity with high thermal efficiency either in an integrated gasification combined cycle (IGCC) or in a fuel cell (MCFC). Both of these new coal-to-electricity pathways require that the coal-derived fuel gas be at a high temperature and be free of potential pollutants, such as sulfur compounds. Unfortunately, some high-sulfur Illinois coals also contain significant chlorine which converts into hydrogen chloride (HCl) in the coal-gas. This project investigates the effect of HCl, in concentrations typical of a gasifier fed by high-chlorine Illinois coals, on zinc-titanate sorbents that are currently being developed for H{sub 2}S and COS removal from hot coal gas. This study is designed to identify any deleterious changes in the sorbent caused by the HCI, both in absorptive operation and in the regeneration cycle, and will pave the way to modify the sorbent formulation or the process operating procedure to remove HCl along with the H{sub 2}S and COS from hot coal gas. This will negate any harmful consequences of utilizing high-chlorine Illinois coal in these processes. The work activity during the third quarter of this project involved the performance of the second block-set of experiments in the bench-scale fluidized-bed reactor. These experiments were designed to study the effect of HCl in the desulfurization of a low-Btu fuel gas. Nine single-cycle experiments were performed, at operating temperature of 538, 650, and 750{degrees}C, with HCl concentrations of 0, 200, and 800 ppMv. The presence of HCl in the coal gas significantly enhanced the desulfurization efficacy of the sorbent. A 10-cycle sulfidation-regeneration sequence is currently being performed at 650{degrees}C with 800 ppMv HCl in the simulated fuel gas to determine any adverse effects on the sorbent structure or its desulfurization capability.

  8. No corrosion caused by coal chlorine found in AFBC pilot scale tests

    SciTech Connect (OSTI)

    Ho, K.; Pan, W.P.; Riley, J.T.; Liu, K.; Smith, S.

    2000-07-01

    Measurements of deposition and corrosion were made in the freeboard of a 3 m inner diameter pilot scale atmospheric fluidized-bed combustor (AFBC) during seven 1,000-hours tests using coals with chlorine (Cl) contents ranging from 0.026% up to 0.47% and sulfur contents ranging from 0.897{approximately}4.4%. Uncooled coupons of alloys 304, 309, 347 and a cooled tube of A210C medium carbon steel were exposed to the hot flue gases to investigate the effects of different coal compositions on deposition and corrosion behavior, if any. The uncooled coupons were installed at the tope of the freeboard to simulate the superheater tube conditions (1,020--1,100 F surface temperature), while the temperature of the cooled A210C test tube was controlled to match the conditions of the evaporator tubes. Specimens were removed for examination after 250, 500, 750, 1,000 hours of exposure and analyzed for deposit formation and corrosion. No chlorine was found in the corrosion scale or on the metal surfaces after any of the tests. High sulfur contents were found in the outer parts of the deposits, and appeared to be associated with calcium and magnesium suggesting that the fly ash may react further after being deposited on the surface of the metal. It was concluded that the limestone bed in the AFBC not only can capture the sulfur but also can effectively capture chlorine. This effect helps being the Cl in the AFBC flue gas down to a level of <50 ppm which is significantly lower than the 300{approximately}400 ppm expected from combustion of the coal in the absence of limestone. This reduction in chlorine species in the gas phase has possible implications for decreased corrosion problems not only in the freeboard, but also in the cold end of the boiler. No evidence was found in these tests that metal wastage or corrosion was accelerated, either directly or indirectly, by chlorine in the coal.

  9. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    SciTech Connect (OSTI)

    Seggiani, Maurizia; Puccini, Monica; Raggio, Giovanni

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  10. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect (OSTI)

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  11. Role of mag-enhanced lime scrubbing in the FGD industry

    SciTech Connect (OSTI)

    Babu, M.; College, J.; Smith, K.; Stowe, D.H.

    1997-12-31

    The mag-enhanced lime scrubbing process has been in commercial use in the US since the early 1970`s. At present over 14,000 MW of coal-fired utility plants in the US burning high sulfur coal (2.5--4.0% S) utilize this process with an excellent emission compliance and cost performance record to date. Dravo Lime Company (DLC) being the largest supplier of lime to this industry continues to conduct extensive R and D in this area and provides technical support service to these users. The success of the mag-enhanced lime process is largely attributed to the dual alkali effect of the Mg-Ca ions with a very distinct role for the highly soluble Mg ion in the scrubber liquor. It is well known that the high solubility of the magnesium ions provides alkalinities in the scrubbing liquor far in excess of the limestone systems. As a result of this high alkalinity liquor the mag-lime scrubbers need a much lower liquid to gas ratio, have lower scrubber pressure drop, consume lower parasitic load, are able to handle very high inlet SO{sub 2} concentrations, show little scaling tendency, etc. The scrubbers, recirculation pumps, piping, etc., are much smaller and the systems have lower capital and operating costs over comparable limestone systems. This system typically has a high availability and the process is less severe mechanically on the scrubber, pumps, nozzles, piping than comparable limestone processes. DLC`s patented ThioClear{reg_sign} process is an improvement over the conventional Thiosorbic process in use today. The ThioClear process while providing all of the advantages of the Thiosorbic process uses a nearly clear liquor to scrub and can use an innovative Horizontal Scrubber at gas velocities of up to 7.62--9.14 m/s (25--30 FPS). This process produces an excellent quality gypsum for wall board, cement or other applications and can also produce valuable Mg(OH){sub 2} as by-product. This paper discusses the merits of Thiosorbic/ThioClear processes, innovations with

  12. CONTINUED DEVELOPMENT OF THE ROTARY COMBUSTOR FOR REFIRING PULVERIZED COAL BOILERS

    SciTech Connect (OSTI)

    Murray F. Abbott; Jamal B. Mereb; Simon P. Hanson; Michael J. Virr

    2000-11-01

    The Rotary Combustor is a novel concept for burning coal with low SO{sub 2} and NO{sub x} emissions. It burns crushed coal in a fluid bed where the bed is maintained in a rotating drum by centripetal force. Since this force may be varied, the combustor may be very compact, and thus be a direct replacement for a p.c. burner on existing boilers. The primary objective of this project is to demonstrate that a typical industrial boiler can be refired with the modified prototype Rotary Combustor to burn Ohio high-sulfur coal with low emissions of SO{sub 2} and NO{sub x}. The primary problem that must be resolved to demonstrate sustained operations with coal is temperature control in the rotating fluid bed. The prototype Rotary Combustor was assembled and installed on the T-850P CNB boiler at the CONSOL Energy site in South Park, Pennsylvania. Several design improvements were investigated and implemented during the assembly to improve the prototype Rotary Combustor operations compared to prior tests at Detroit Stoker in Monroe, Michigan. An Operating Manual and Safety Review were completed. The shakedown test phase was initiated. Two major problems were initially encountered: binding of the rotating drum at operating temperatures, and reduced fluid-bed pressure drop after short periods of operation. Plating the brush seal rotary land ring with a chrome carbide plasma spray and lubricating the seal prior to each test sufficiently resolved these problems to permit a limited number of operations tests. Unlike previous tests at Detroit Stoker, sustained operation of the prototype Rotary Combustor was accomplished burning a high-Btu fuel, metallurgical coke. The prototype Rotary Combustor was operated with coke in gasifier mode on two occasions. Fluid-bed temperature spiking was minimized with manual control of the feeds (coke, air and steam), and no clinker formation problems were encountered in either test. Emission levels of NO{sub x} were measured at about 270 ppmv which

  13. An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

    SciTech Connect (OSTI)

    Zhang, Ying

    2015-09-11

    The objective of this project was to develop and optimize MCrAlY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process. Prealloyed CrAlY-based powders were codeposited into a metal matrix of Ni, Co or Ni-Co during the electroplating process, and a subsequent post-deposition heat treatment converted it to the MCrAlY coating. Our research efforts focused on: (1) investigation of the effects of electro-codeposition configuration and parameters on the CrAlY particle incorporation in the NiCo-CrAlY composite coatings; (2) development of the post-deposition heat treating procedure; (3) characterization of coating properties and evaluation of coating oxidation performance; (4) exploration of a sulfurfree electroplating solution; (5) cost analysis of the present electrolytic codeposition process. Different electro-codeposition configurations were investigated, and the rotating barrel system demonstrated the capability of depositing NiCo-CrAlY composite coatings uniformly on the entire specimen surface, with the CrAlY particle incorporation in the range 37-42 vol.%. Post-deposition heat treatment at 1000-1200 °C promoted interdiffusion between the CrAlY particles and the Ni-Co metal matrix, resulting in β/γ’/γ or β/γ’ phases in the heat-treated coatings. The results also indicate that the post-deposition heat treatment should be conducted at temperatures ≤1100 °C to minimize Cr evaporation and outward diffusion of Ti. The electro-codeposited NiCrAlY coatings in general showed lower hardness and surface roughness than thermal spray MCrAlY coatings. Coating oxidation performance was evaluated at 1000-1100 °C in dry and wet air environments. The initial electro-codeposited NiCoCrAlY coatings containing relatively high sulfur did not show good oxidation resistance. After modifications of the coating process, the cleaner NiCoCrAlY coating exhibited good oxidation performance at 1000 °C during the 2,000 1-h cyclic

  14. Effect of curing conditions on the geotechnical and geochemical properties of CFBC ashes

    SciTech Connect (OSTI)

    Bland, A.E.

    1999-07-01

    Western Research Institute, in cooperation with the US Department of Energy Federal Energy Technology Center, initiated a multi-year program to examine the relationship between CFBC ash chemistry and geotechnical properties as they relate to ash disposal and utilization. Four CFBC facilities supplied ash from their units for the study representing high-sulfur (4%) and medium-sulfur (1.8%) bituminous coal. Sub-bituminous coal (0.9% sulfur) and petroleum coke (5--6% sulfur) fired ashes were also included in the study. The ashes were composed principally of large quantities of anhydrite (CaSO{sub 4}) and lime (CaO) and minor amounts of calcite (CaCO{sub 3}). The ash curing study addressed the impact of curing conditions (sealed and saturated curing and 23 C and 5 C curing temperature) on the geochemical and geotechnical properties of the ash. The strength development and expansion varied with the type and characteristics of the ashes. The expansion appeared to be inversely related to strength development. As the strength decreased under saturated curing, the expansion increased significantly. The application of 5 C saturated curing resulted in further strength loss and increased expansion. The hydration reaction products appeared to be principally the hydration of lime (CaO) to portlandite (Ca[OH]{sub 2}), the hydration of anhydrite (CaSO{sub 4}) to gypsum (CaSO{sub 4} {center{underscore}dot} 2H{sub 2}O), and the precipitation of ettringite (Ca{sub 6}Al{sub 2}[SO{sub 4}]{sub 3}[OH]{sub 12} {center{underscore}dot} 26H{sub 2}O) from the soluble calcium, sulfates and alumina. No thaumasite was noted in the specimens. The ashes appeared to follow one of several hydration reaction trends: (1) ettringite-only development, (2) ettringite and/or gypsum early followed by later gypsum formation, or (3) gypsum-only formation. Testing confirmed that the hydration reaction chemistry was related to geotechnical properties of the ashes. Strength development and expansion appeared to

  15. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    SciTech Connect (OSTI)

    Chuang, Steven S. C.

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  16. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  17. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  18. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.

  19. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  20. Greenidge Multi-Pollutant Control Project

    SciTech Connect (OSTI)

    Connell, Daniel

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GW of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including

  1. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    SciTech Connect (OSTI)

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of

  2. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E. AYALA; V.S. VENKATARAMANI

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  3. Separation of flue-gas scrubber sludge into marketable products

    SciTech Connect (OSTI)

    Kawatra, S.K.; Eisele, T.C.

    1997-08-31

    A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium

  4. Demontration of Integrated Optimization Software at the Baldwin Energy Complex

    SciTech Connect (OSTI)

    Rob James; John McDermott; Sanjay Patnaik; Steve Piche`

    2009-01-07

    project goals, are: (1) NOx Reduction: The 5% target for NOx reduction was exceeded with average CEMS and SCR Inlet (furnace) NOx reduction of between 12% and 14%. (2) Heat Rate Improvement: The optimization systems delivered an average heat rate improvement of between 0.67% and 0.7%. This falls short of the 1.5% heat rate improvement target largely because Cyclone Stability (availability) and CEMS and SCR Inlet NOx were prioritized over heat rate in the event they needed to be traded-off with one another. A different prioritization of objectives could have driven a different balance, thereby meeting the target of 1.5% improvement. There were also several factors that could have been masking greater heat rate improvements such as the decrease in fuel density over the course of the project and the impact of actions taken as a result of advice provided by the optimizers that are difficult to quantify. (3) Increased Annual Available MWh: Although difficult to measure precisely, the target of increasing available MWh's by 1.5% was met by providing prioritized alerts and knowledge-based diagnostics for a wide array of plant equipment and process anomalies; helping the plant to move from high sulfur, high Btu Illinois coal to PRB and run that fuel at low stoichiometries without derates; and improved management of cyclone flame quality as well as improved vigilance with respect to cyclone conditions which avoided some degree of temporary de-rate due to cyclone slag build up. (4) Commensurate Reductions in Greenhouse Gases, Mercury, and Particulates: Reductions in all three of these indices can be associated directly with the optimization leverage observed in the heat rate and NOx reductions. (5) Commensurate Increases in Profitability from Lower Costs, Improved Reliability, and Greater Commercial Availability: Commensurate improvements in costs, reliability and availability resulted from the previously described benefits. Also playing a role were the sustained operation of the

  5. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring

  6. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  7. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect (OSTI)

    Sharp, William

    2011-12-01

    the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the