Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ultra-Low Sulfur Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Low Sulfur Diesel ULSD LSD Off-Road Ultra-Low Sulfur Highway Diesel Fuel (15 ppm Sulfur Maximum). Required for use in all model year 2007 and later highway diesel vehicles...

2

Ultra-Low Sulfur Diesel Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection Agency requires 80% of the highway diesel fuel refined in or...

3

Retail Prices for Ultra Low Sulfur Diesel  

U.S. Energy Information Administration (EIA)

Beginning July 26, 2010 publication of Ultra Low Sulfur Diesel (ULSD) price became fully represented by the Diesel Average All Types price. As of December 1, ...

4

Ultra-Low Sulfur Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur Diesel Fuel Ultra-Low Sulfur Diesel Fuel August 20, 2013 - 8:53am Addthis Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

5

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

6

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection...

7

South Dakota No 2 Diesel Ultra Low Sulfur Less than 15 ppm Retail ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Diesel Ultra Low Sulfur Less than 15 ppm Retail Sales by Refiners (Thousand Gallons per Day)

8

Illinois No 2 Diesel Ultra Low Sulfur Less than 15 ppm ...  

U.S. Energy Information Administration (EIA)

Illinois No 2 Diesel Ultra Low Sulfur Less than 15 ppm Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 ... Propane, No.1 ...

9

Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.  

DOE Green Energy (OSTI)

The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

2000-01-19T23:59:59.000Z

10

Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels  

DOE Green Energy (OSTI)

While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

2000-01-19T23:59:59.000Z

11

Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel  

Gasoline and Diesel Fuel Update (EIA)

To help ensure that sulfates in engine exhaust do not To help ensure that sulfates in engine exhaust do not prevent manufacturers of heavy-duty diesel engines from meeting new particulate emissions standards for 1994 and later model years, 1 the Clean Air Act Amend- ments of 1990 (CAAA90) require refiners to reduce the sulfur content of on-highway diesel fuel from current average levels of 0.30 percent by weight to no more than 0.05 percent by weight. The new standard, which goes into effect October 1, 1993, also requires that on-highway diesel fuel have a minimum cetane index of 40 or a maximum aromatic content of 35 percent by volume. 2 (See list of terms and definitions on the fol- lowing page.) This provision is designed to prevent any future rises in aromatics levels. 3 Since the direct mea- surement of aromatics is complex, a minimum cetane

12

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

13

Ethanol, Gasoline, and Ultra Low Sulfur Diesel Supply Issues in 2006  

Reports and Publications (EIA)

Presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, discussing the impact of changing product specifications on U.S. gasoline and diesel fuel supply.

Information Center

2006-08-07T23:59:59.000Z

14

Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel  

U.S. Energy Information Administration (EIA)

II — Midwest ..... 3,533,120 460,000 (13.0) 376,500 (10.7) III — Gulf Coast ... 25Differences in the average refiner prices for diesel fuel and heating

15

Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel  

Reports and Publications (EIA)

The Clean Air Act Amendments of 1990 established a new, sharply lower standard for the maximum sulfur content of on-highway diesel fuel, to take effect October 1, 1993.

Tancred Lidderdale

1993-08-01T23:59:59.000Z

16

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)  

DOE Green Energy (OSTI)

Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

2005-08-25T23:59:59.000Z

17

Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)  

Reports and Publications (EIA)

On November 8, 2005, the EPA Administrator signed a direct final rule that will shift the retail compliance date for offering ULSD for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

Information Center

2006-02-01T23:59:59.000Z

18

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

Notes: Conventional area is any area that does not require the sale of reformulated gasoline. ... Publication of Low Sulfur On-Highway Diesel (LSD) ...

19

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the weekly on-highway diesel price survey began collecting diesel prices for low sulfur diesel (LSD) which contains between 15 and 500 parts-per-million sulfur and ULSD separately. Prior to January 2007, EIA collected the price of on-highway fuel without distinguishing the sulfur

20

Retail Prices for Ultra Low Sulfur Diesel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

22

Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report  

DOE Green Energy (OSTI)

Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

2006-03-01T23:59:59.000Z

23

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

DOE Green Energy (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

24

Emergency Diesel Generator Digital Control System Upgrade Requirements  

Science Conference Proceedings (OSTI)

This interim report documents the development of system requirements for a digital control system upgrade to the station emergency diesel generators (EDGs). Operators of nuclear power plants (NPPs) must be able to replace and upgrade equipment in a cost-effective manner while continuing to meet safety and reliability requirements and controlling modification costs. Upgrades to plant equipment—especially instrumentation and control (I&C) systems—typically involve replacement of analog ...

2013-12-18T23:59:59.000Z

25

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast

26

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Convert Northeast Home Heating Oil Reserve to Ultra Low Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast Home Heating Oil Reserve, a total of approximately 2 million barrels, and

27

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

28

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

29

Ultra-Clean Diesel Fuel: U.S. Production and Distribution Capability  

DOE Green Energy (OSTI)

Diesel engines have potential for use in a large number of future vehicles in the US. However, to achieve this potential, proponents of diesel engine technologies must solve diesel's pollution problems, including objectionable levels of emissions of particulates and oxides of nitrogen. To meet emissions reduction goals, diesel fuel quality improvements could enable diesel engines with advanced aftertreatment systems to achieve the necessary emissions performance. The diesel fuel would most likely have to be reformulated to be as clean as low sulfur gasoline. This report examines the small- and large-market extremes for introduction of ultra-clean diesel fuel in the US and concludes that petroleum refinery and distribution systems could produce adequate low sulfur blendstocks to satisfy small markets for low sulfur (30 parts per million) light duty diesel fuel, and deliver that fuel to retail consumers with only modest changes. Initially, there could be poor economic returns on under-utilized infrastructure investments. Subsequent growth in the diesel fuel market could be inconsistent with U.S. refinery configurations and economics. As diesel fuel volumes grow, the manufacturing cost may increase, depending upon how hydrodesulfurization technologies develop, whether significantly greater volumes of the diesel pool have to be desulfurized, to what degree other properties like aromatic levels have to be changed, and whether competitive fuel production technologies become economic. Low sulfur (10 parts per million) and low aromatics (10 volume percent) diesel fuel for the total market could require desulfurization, dearomatization, and hydrogen production investments amounting to a third of current refinery market value. The refinery capital cost component alone would be 3 cents per gallon of diesel fuel. Outside of refineries, the gas-to-liquids (GTL) plant investment cost would be 3 to 6 cents per gallon. With total projected investments of $11.8 billion (6 to 9 cents per gallon) for the U.S. Gulf Coast alone, financing, engineering, and construction and material availability are major issues that must be addressed, for both refinery and GTL investments.

Hadder, G.R.

2001-02-15T23:59:59.000Z

30

Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending  

SciTech Connect

The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

Hadder, G.R.

2003-01-23T23:59:59.000Z

31

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

32

ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP  

DOE Green Energy (OSTI)

Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

Ron Rohrbach; Gary Zulauf; Tim Gavin

2003-04-01T23:59:59.000Z

33

DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS  

DOE Green Energy (OSTI)

Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

Mauss, M; Wnuck, W

2003-08-24T23:59:59.000Z

34

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

35

Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap  

DOE Green Energy (OSTI)

Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

Rohrbach, Ron; Barron, Ann

2008-07-31T23:59:59.000Z

36

The John Deere E diesel Test & Research Project  

DOE Green Energy (OSTI)

Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

Fields, Nathan; Mitchell, William E.

2008-09-23T23:59:59.000Z

37

Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors  

E-Print Network (OSTI)

...................................................................................................................................... 14 Nitrous Oxide Emissions from Nitrogen Fertilizer Applications in Corn Fields........................................................ 34 Appendix B: Nitrous Oxide Emissions from Nitrogen Fertilizer Applications in Corn Fields) LHV lower heating value LPG liquefied petroleum gas LS low-sulfur LSD low-sulfur diesel MTBE methyl

Argonne National Laboratory

38

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies

39

No. 2 Diesel, Low-Sulfur Prices - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Central Atlantic (PADD 1B) - - - - - - 1994-2013 Lower Atlantic (PADD 1C) - - - - - - 1994-2013 Midwest (PADD 2) - - - - - - 1994-2013 Gulf Coast (PADD 3) - - - - - - 1994-2013...

40

No. 2 Diesel, Low-Sulfur Prices - Sales to End Users  

Annual Energy Outlook 2012 (EIA)

17 3.232 1.913 2.381 - - 1994-2012 East Coast (PADD 1) 2.281 3.264 1.951 2.420 - - 1994-2012 New England (PADD 1A) 2.344 3.428 2.113 2.574 - - 1994-2012 Central Atlantic (PADD 1B)...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Rhode Island No. 2 Diesel, Ultra Low-Sulfur Refiner Sales Volumes  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

42

Ethanol, Gasoline, and Ultra Low Sulfur Diesel Supply Issues in 2006  

U.S. Energy Information Administration (EIA)

Presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, discussing the impact of changing product specifications ...

43

Ethanol, Gasoline, and Ultra Low Sulfur Diesel Supply Issues in 2006  

U.S. Energy Information Administration (EIA)

Ethanol, Gasoline, and ULSD Supply Issues in 2006 State Heating Oil and Propane Conference August 2006 John Hackworth Joanne Shore Energy Information Administration

44

Idaho No. 2 Diesel, Ultra Low-Sulfur Refiner Sales Volumes  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

45

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network (OSTI)

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

46

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies that cannot be contacted and for reported prices that are extreme outliers.

47

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

48

Fate of SO{sub 2} During Plasma Treatment of Diesel Engine Exhaust  

DOE Green Energy (OSTI)

Several catalytic aftertreatment technologies rely on the conversion of NO to NO{sub 2} to achieve efficient reduction of NO{sub x} and particulates in diesel engine exhaust. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO{sub 2} is also active in converting SO{sub 2} to SO{sub 3}. A non-thermal plasma can be used for the selective partial oxidation of NO to NO{sub 2} in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO{sub 2} without oxidizing SO{sub 2} to SO{sub 3}. It is shown that the presence of hydrocarbons in the plasma is essential for enhancing the selective partial oxidation of NO and suppressing the oxidation of SO{sub 2}.

Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E.

1999-10-25T23:59:59.000Z

49

Hydrocarbon and Electrical Requirements in the Plasma During Treatment of NOx in Light-Duty Diesel Engine Exhaust  

DOE Green Energy (OSTI)

This paper examines the hydrocarbon (C{sub 1}/NO{sub x} ratio) and electrical energy density (ratio of power to exhaust flow rate) requirements in the plasma during plasma-assisted catalytic reduction of NO{sub x}. The requirements for treatment of NO{sub x} in heavy-duty and light-duty diesel engines are compared. It is shown that, for light-duty applications, the plasma can significantly enhance the catalytic reduction of NO{sub x} with little fuel penalty incurred in the plasma process.

Penetrante, B.; Brusasco,R.M.; Merritt, B.T.; Vogtlin, G.E.

1999-10-28T23:59:59.000Z

50

9th Diesel Engine Emissions Reduction (DEER) Workshop 2003  

DOE Green Energy (OSTI)

The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

2003-08-24T23:59:59.000Z

51

Localization of low-sulfur keratin proteins in the wool follicle using monoclonal antibodies  

E-Print Network (OSTI)

Abstract. Monoclonal antibodies that recognize components of the low-sulfur keratin proteins extracted from Merino wool have been used to locate these components within the wool follicle. Immunoblotting procedures showed that all of the monoclonal antibodies bound more than one of the eight low-sulfur protein components, indicating that these proteins have antigenic determinants in common. Immunofluorescence studies showed that those antibodies specific for the component 7 family of the low-sulfur proteins bound to the developing wool fiber, whereas those antibodies recognizing the component 8 family bound to areas throughout the wool follicle, particularly the inner and outer root sheaths, but also to the fiber, the cuticle, and the epidermis. One of the monoclonal antibodies also bound to intermediate filament networks of cultured human epithelial cells. THE structure of the wool fiber has been the subject of intensive investigation over the past two decades (8,.13. A combination of chemical and structural studies has demonstrated that the fiber is a composite structure of keratinized cells, each containing longitudinally arranged microfibrils embedded in an amorphous matrix. It has also been shown that the microfibrils are composed of a distinct set of proteins, the low-sulfur proteins, and that the matrix is composed of a mixture of proteins designated the high-sulfur and high-tyrosine proteins (13). Cross-linking by disulfide bridges stabilizes the keratin structures and renders the proteins insoluble (14). Although much of the earlier biochemical, chemical, and physical properties of keratin proteins have been defined in keratins extracted from wool fibers (13), almost all of the immunological studies have used either keratin extracted

Peter W French; Dean R Hewish

1986-01-01T23:59:59.000Z

52

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

53

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

54

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

55

Beyond Diesel - Renewable Diesel  

DOE Green Energy (OSTI)

CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

Not Available

2002-07-01T23:59:59.000Z

56

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Annual Energy Outlook 2012 (EIA)

... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

57

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Annual Energy Outlook 2012 (EIA)

58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

58

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

59

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Annual Energy Outlook 2012 (EIA)

... 71.1 77.5 78.8 79.6 75.7 66.7 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

60

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices  

Science Conference Proceedings (OSTI)

A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

62

Engines - Emissions Control - cerium-oxide catalyst, diesel,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Control Heavy duty diesel vehicles product particulate matter emissions. The U.S. Environmental Protection Agency regulations require that heavy-duty diesel vehicles have...

63

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

64

Diesel fuel filtration system  

SciTech Connect

The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel`s hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system.

Schneider, D. [Wisconsin Fuel and Light, Wausau, WI (United States)

1996-03-01T23:59:59.000Z

65

Investigation of deep and low-sulfur coal possibilities in Ohio  

SciTech Connect

Clean-air legislation and the oil embargo of the early 1970s resulted in a reevaluation of fossil fuels and substitutes that could supply the future energy demands of America. Consequently, a need to explore and evaluate the potential of deep and especially low-sulfur coal resources in the Appalachian basin was created. In 1968, the Division of Geological Survey began the first of what has been a series of core-drilling projects to investigate these potential deep-coal resources in Ohio. Over a 10-year period, 1968-1978, three deep-coal drilling projects, consisting of 60 holes and resulting in 55,440 ft of core, were completed by contract drilling companies. Continued interest expressed by the division's constituency combined with a legislative mandate to map and report on the geology and mineral resources of the state prompted the division in 1981, to acquire the drilling equipment needed to perform these tasks. Since 1985, drilling for evaluation of deep-coal resources has been performed in conjunction with bed-rock mapping. As of this writing, the division's drilling rigs have been involved in 13 projects generating over 63,000 ft of core.

Slucher, E.R.; Crowell, D.L. (Ohio Dept. of Natural Resources, Columbus (USA))

1989-08-01T23:59:59.000Z

66

Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC  

DOE Green Energy (OSTI)

In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

Roberts, George W. (Emmaus, PA); Tao, John C. (Perkiomenville, PA)

1985-01-01T23:59:59.000Z

67

Diesel Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Diesel Vehicles and Manufacturers Audi A3 (TDI models) A6 (TDI models) A7 (TDI models) A8 L (TDI model) Q5 (TDI models) Q7 (TDI models) BMW 328d Sedan 328d xDrive Sedan 328d xDrive Sports Wagon 535d Sedan 535d xDrive Sedan Chevrolet Cruze Turbo Diesel Jeep Grand Cherokee EcoDiesel Mercedes-Benz E250 BlueTEC GL350 BlueTEC GLK250 BlueTEC ML350 BlueTEC Porsche Cayenne Diesel Volkswagen Beetle (TDI models) Beetle Convertible (TDI models) Golf (TDI models) Jetta (TDI models) Jetta Sportwagen (TDI models) Passat (TDI models) Touareg (TDI models) Diesel-Related Information

68

Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Digg

69

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application  

DOE Green Energy (OSTI)

Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the direction of future work for the successful implementation of such integrated engine and aftertreatment technology are discussed. SAE Paper SAE-2002-01-2889 {copyright} 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2002-10-01T23:59:59.000Z

70

An Estimate of Diesel High-Efficiency Clean Combustion Impacts on FTP-75 Aftertreatment Requirements (SAE Paper Number 2006-01-3311)  

SciTech Connect

A modified Mercedes 1.7-liter, direct-injection diesel engine was operated in both normal and high-efficiency clean combustion (HECC) combustion modes. Four steady-state engine operating points that were previously identified by the Ad-hoc fuels working group were used as test points to allow estimation of the hot-start FTP-75 emissions levels in both normal and HECC combustion modes. The results indicate that operation in HECC modes generally produce reductions in NOX and PM emissions at the expense of CO, NMHC, and H2CO emissions. The FTP emissions estimates indicate that aftertreatment requirements for NOX are reduced, while those for PM may not be impacted. Cycle-average aftertreatment requirements for CO, NMHC, and H2CO may be challenging, especially at the lowest temperature conditions.

Sluder, Scott [ORNL; Wagner, Robert M [ORNL

2006-01-01T23:59:59.000Z

71

Enlaces Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Enlaces Diesel Enlaces Diesel Los siguientes enlaces no son parte del sitio ahorremosgasolina.gov. Le ofrecemos estos enlaces externos para que a su conveniencia tenga acceso a informaciĂłn adicional que puede serle Ăştil o interesante para usted. VehĂ­culos y Fabricantes Diesel Audi A3 (modelos TDI) Q7 (modelos TDI) Mercedes-Benz Mercedes E350 BlueTEC Mercedes GL350 BlueTEC Mercedes ML350 BlueTEC Mercedes R350 BlueTEC Volkswagen Golf (modelos TDI) Jetta (modelos TDI) Jetta Sportwagen (modelos TDI) Touareg (modelos TDI) InformaciĂłn Sobre el Diesel Biodiesel Abundante informaciĂłn sobre el biodiesel proporcionada por el Centro de Datos de Combustibles Alternativos y VehĂ­culos Avanzados (AFDC) Mezclas de Biodiesel ĂŤcono de Adobe Acrobat Informe sobre el debate de las mezclas de biodiesel desarrollado por el programa de Ciudades Limpias del EERE.

72

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE's peer review process under the supervision of the session organizer. This process requires a minimum of three (3) reviews by industry experts.  

E-Print Network (OSTI)

through the use of engine optimization, aftertreatment system integration, and ultra-low sulfur diesel of Chemical Species from Heavy-Duty Diesel Engines and the Effects of Modern Aftertreatment Technology Z in increased emissions of HC and CO for engines without aftertreatment systems [9]. However, for the 2007

Wu, Mingshen

73

Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming  

DOE Green Energy (OSTI)

In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

Gunther Dieckmann

2006-06-30T23:59:59.000Z

74

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

75

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel  

DOE Green Energy (OSTI)

Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

1999-05-03T23:59:59.000Z

76

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

77

Effect of carbon coating on scuffing performance in diesel fuels  

DOE Green Energy (OSTI)

Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

2000-06-29T23:59:59.000Z

78

[98e]-Catalytic reforming of gasoline and diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

2000-02-29T23:59:59.000Z

79

DIESEL FUEL LUBRICATION  

Science Conference Proceedings (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

80

Development of Diesel Exhaust Aftertreatment System for Tier II Emissions  

Science Conference Proceedings (OSTI)

Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Green Biodiesel and Green Diesel Fuel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

82

Diesel Exhaust Emissions Control for Light-Duty Vehicles  

SciTech Connect

The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

2003-03-01T23:59:59.000Z

83

DUAL-FUELING CONCEPTS: A COMPARISON OF METHANE AND PROPANE AS PRIMARY FUELS WITH BIODIESEL AND ULTRA-LOW SULFUR DIESEL AS SEPERATE PILOT FUELS.  

E-Print Network (OSTI)

?? The goal of this thesis is to examine dual-fueling concepts using two different types of primary fuel, methane and propane; as well as two… (more)

Shoemaker, Nicholas Thane

2011-01-01T23:59:59.000Z

84

Energy Information Administration (EIA) - The Transition to Ultra ...  

U.S. Energy Information Administration (EIA)

... a baseline scenario representing the nominal forecast for petroleum refining and marketing without the new requirement for ultra-low-sulfur diesel fuel ...

85

FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL  

DOE Green Energy (OSTI)

This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

2003-08-24T23:59:59.000Z

86

COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES  

Science Conference Proceedings (OSTI)

Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

2003-08-24T23:59:59.000Z

87

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network (OSTI)

Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant seed oils, waste cooking oils, or animal fats. It has become increasingly popular and is looked at as a diesel replacement. This research characterizes the emissions of the new John Deere PowerTech Plus 4045HF285 in the Advance Engine Research Laboratory at Texas A&M University and compares the emissions of a 100 percent blended feed stock biodiesel to an ultra low sulfur diesel certification fuel. The steady state tests were conducted while holding engine speed constant at three different speeds and three different loads. The gaseous emissions, exhaust gas recirculation, fuel flow rate, and torque were monitored and recorded for 300 points per test. Four tests were performed and the results were averaged per each fuel. Carbon monoxide, carbon dioxide, oxygen, and oxides of nitrogen emissions were analyzed. The biodiesel averaged up to 12% lower torque, 5.4% more fuel, 7.5% less carbon dioxide, 29% more oxygen, and 29% more oxides of nitrogen. Overall the biodiesel produced less torque and carbon dioxide emissions, while emitting more oxygen and oxides of nitrogen.

Tompkins, Brandon T.

2008-12-01T23:59:59.000Z

88

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price...

89

Diesel prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to 3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price...

90

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 4.05 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price...

91

Diesel prices decrease slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease slightly The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 3-tenths of a penny from a week ago,...

92

Diesel prices rise slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices rise slightly The U.S. average retail price for on-highway diesel fuel rose slightly to 4.16 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based...

93

Diesel prices flat  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat The U.S. average retail price for on-highway diesel fuel saw no movement from last week. Prices remained flat at 3.89 a gallon on Monday, based on the weekly...

94

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2013 Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.1 cents from a week ago, based on...

95

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago,...

96

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.88 a gallon on Monday. That's down a penny from a week ago, based on the weekly price...

97

Diesel prices increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the...

98

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.85 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price...

99

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price...

100

Diesel prices flat nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at 3.98 a gallon on Monday, based on the weekly price...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

102

West Virginia Diesel Study, CRADA MC96-034, Final Report  

DOE Green Energy (OSTI)

The global objective of the recently completed Phase 1 of the West Virginia Diesel Study, at West Virginia University, was to evaluate mass emission rates of exhaust emissions from diesel powered equipment specified by the West Virginia Diesel Equipment Commission. The experimental data generated in this study has been utilized by the West Virginia Diesel Equipment Commission to promulgate initial rules, requirements and standards governing the operation of diesel equipment in underground coal mines.

M. Gautam

1998-08-05T23:59:59.000Z

103

Clean Diesel Component Improvement Program  

DOE Green Energy (OSTI)

The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

None

2005-06-30T23:59:59.000Z

104

Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine  

DOE Green Energy (OSTI)

Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

Strzelec, Andrea [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin

2010-01-01T23:59:59.000Z

105

Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate  

DOE Green Energy (OSTI)

We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

106

Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines  

DOE Green Energy (OSTI)

The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

2011-01-01T23:59:59.000Z

107

Engine performance and exhaust emissions from a diesel  

E-Print Network (OSTI)

Non-road diesel engines are significant contributors to air pollution in the United States. Recent regulations put forth by EPA and other environmental agencies have laid out stringent guidelines for engine manufacturers and fuel producers. Recent increases in oil prices and foreign energy dependency has led to a push to produce renewable fuels, which will supplement current reserves. Biodiesel is a clean-burning renewable fuel, that can be blended with petroleum diesel. It is important to understand the effect on engine performance and exhaust emissions when using biodiesel from different feedstocks. The objective of this research was to determine the relationship between engine performance and emissions and cottonseed oil biodiesel used in a diesel engine rated for 14.2 kW. When using cottonseed oil biodiesel blends, CO, hydrocarbon, NOx, and SO2 emissions decreased as compared to petroleum diesel. Carbon dioxide emissions had no definitive trend in relation to cottonseed oil biodiesel blends. Carbon monoxide emissions increased by an average 15% using B5 and by an average of 19% using B100. Hydrocarbon emissions decreased by 14% using B5 and by 26% using B100. Nitrogen oxide emissions decreased by four percent with B5, five percent with B20, and 14% with B100. Sulfur dioxide emissions decreased by an average of 86% using B100, and by 94% using B50 blended with ultra-low sulfur diesel. The difference between peak output power when using biodiesel and diesel was insignificant in blends less that B40. Peak measured power using B100 was about five percent lower than for diesel fuel. Pure cottonseed oil biodiesel achieved and maintained a peak corrected measured power of 13.1 kW at speeds of 2990, 2875, and 2800 rpm at loads of 41.3, 42.7, and 43.8 N-m. Using B5 produced a peak power of 13.6 kW at 2990 rpm and 43.9 N-m and at 2800 rpm and 46.7 N-m, while using B20 produced a peak power of 13.4 kW at 2990 rpm and 43.7 N-m. Brake-specific fuel consumption at peak measured load and torque using B100 was 1238 g/kW-h. Brake-specific fuel consumption at peak measured power and loads using B5 and B20 were 1276 and 1155 g/kW-h.

Powell, Jacob Joseph

2007-12-01T23:59:59.000Z

108

DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH  

DOE Green Energy (OSTI)

The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.

Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

2004-05-01T23:59:59.000Z

109

Argonne TTRDC - Feature - Five Myths About Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Five Myths About Diesel Engines Five Myths About Diesel Engines by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility Diesel engines, long confined to trucks and ships, are garnering more interest for their fuel efficiency and reduced carbon dioxide emissions relative to gasoline engines. Argonne mechanical engineer Steve Ciatti takes a crack at some of the more persistent myths surrounding the technology. Myth #1: Diesel is dirty. "We all have this image of trucks belching out dirty black smoke," Ciatti said. This smoke is particulate matter from diesel exhaust: soot and small amounts of other chemicals produced by the engine. But EPA emissions requirements have significantly tightened, and diesel engines now have to meet the same criteria as gasoline engines. They do

110

Argonne Transportation - Diesel Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti Recent DOE Award winners, (L-R) Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti, stand in front of their fuel spray injection chamber. Using the synchrotron beam at the APS, the team is able to probe the fuel spray and study the process of combustion. A team of Argonne scientists (Jin Wang, Steve Ciatti, Chris Powell, and Yong Yue) recently won the 2002 National Laboratory Combustion and Emissions Control R&D Award for groundbreaking work in diesel fuel sprays. For the first time ever, the team used x-rays to penetrate through gasoline and diesel sprays and made detailed measurements of fuel injection systems for diesel engines. This technology uncovered a previously unknown

111

Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.  

DOE Green Energy (OSTI)

Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

1999-08-10T23:59:59.000Z

112

American Agri diesel LLC | Open Energy Information  

Open Energy Info (EERE)

diesel LLC Jump to: navigation, search Name American Agri-diesel LLC Place Colorado Springs, Colorado Product Biodiesel producer in Colorado. References American Agri-diesel LLC1...

113

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

DOE Green Energy (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

114

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged,… (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

115

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

to 3.88 a gallon on Monday. That's down 0.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in...

116

The diesel approach  

Science Conference Proceedings (OSTI)

Whether for standby or baseload capacity, diesel generator sets are being used in markets worldwide. Companies are taking a variety of approaches to tapping these markets. The markets for diesel generators follow two basic paths. In the US, they are used primarily for standby or peaking applications. Outside the US, the market includes standby applications but is more often for baseload or prime-power applications.

Anderson, J.L.

1993-04-01T23:59:59.000Z

117

Diesel Engine Analysis Guide  

Science Conference Proceedings (OSTI)

This guide provides a thorough background on diesel engine analysis including combustion, vibration, and ultrasonic analysis theory. Interpretation of results is also provided. This guide is intended to enable nuclear utility personnel to make informed decisions regarding the nature and use of diesel engine analysis, including how to set up an effective program, how to establish analysis guidelines, how to make use of the resulting data to plan maintenance, determine the causes of off-design operating co...

1997-10-09T23:59:59.000Z

118

Computer simulation of wind/diesel system operation  

DOE Green Energy (OSTI)

This document reports on a computer code, SOLSTOR W/D, that determines --- for a site's wind energy resources, load requirements, and economic constraints --- the components and sizes for a wind/diesel system that result in the lowest cost of energy. Wind diesel systems are defined here as electricity generation stations in the 50-kW to 1-MW range that (1) are not connected to another electricity network, (2) use wind energy as the first source of supply to meet demand, and (3) contain sufficient energy storage and/or backup diesel electric generators to compensate for lapses in wind energy. The computer code also determines, for the same input load, the requirements and economics that are the best number and size for an isolated diesel(s) system so that comparisons for wind/diesel systems and diesel-only systems can be made. SOLSTOR W/D provides a systematic method to show whether wind-diesel systems can be an attractive means of saving fossil fuel without significantly affecting electricity quality or production cost. 12 refs., 66 figs., 5 tabs.

Not Available

1989-09-01T23:59:59.000Z

119

100 area diesel performance data  

Science Conference Proceedings (OSTI)

Performance data for diesel engine-generator sets was collected to aid an analysis of the electric power system being conducted by an offsite consultant. Diesels in three different services were studied: emergency power (GM) diesels, 903 fan backup diesels and the Caterpillar diesels that power the dc motors for the D/sub 2/O pumps. It was convenient to collect data for the ECS booster pump diesel at the same time, even though it is not part of the electric power system. The results are published here to make them more widely available.

Smith, J.A.; Tudor, A.A.

1984-01-17T23:59:59.000Z

120

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Diesel Program (Saskatchewan, Canada) Saskatchewan Renewable Diesel Program (Saskatchewan, Canada) Eligibility Agricultural Maximum Rebate 40 million litres of renewable...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

122

Operational test report for WESF diesel generator diesel tank installation  

Science Conference Proceedings (OSTI)

The WESF Backup Generator Underground Diesel Tank 101 has been replaced with a new above ground 1000 gallon diesel tank. Following the tank installation, inspections and tests specified in the Operational Test Procedure, WHC-SD-WM-OTP-155, were performed. Inspections performed by a Quality Control person indicated the installation was leak free and the diesel generator/engine ran as desired. There were no test and inspection exceptions, therefore, the diesel tank installation is operable.

Schwehr, B.A.

1994-08-02T23:59:59.000Z

123

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

124

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

125

Just the Basics: Diesel Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's direct-injection diesel Today's direct-injection diesel engines are more rugged, powerful, durable, and reliable than gasoline engines, and use fuel much more efficiently, as well. Diesel Engines Yesterday, Today, and Tomorrow Diesels are workhorse engines. That's why you find them powering heavy- duty trucks, buses, tractors, and trains, not to mention large ships, bulldozers, cranes, and other construction equipment. In the past, diesels fit the stereotype of muscle-bound behe- moths. They were dirty and sluggish, smelly and loud. That image doesn't apply to today's diesel engines, however, and tomorrow's diesels will show even greater improvements. They will be even more fuel efficient, more flexible in the fuels they can use, and also much cleaner in emissions. How Diesel Engines Work

126

Diesel Nuevos y Por Venir  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Nuevos y Por Venir Nuevos Modelos Diesel del 2014 Vehculo Estimados de MPG de la EPA Precios (MSRP) Audi A8 L Automvil Grande Audi A8 L Chart: Ciudad, 24; Carretera, 36;...

127

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down a penny from a week ago, based on the...

128

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.83 a gallon on Monday. That's down 2 cents from a week ago, based on the...

129

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.88 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

130

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

4, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.86 a gallon on Monday. That's down 1.3 cents from a week ago, based...

131

Diesel prices slightly decrease nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.97 a gallon on Monday. That's down 7-tenths of a penny from a week...

132

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.90 a gallon on Monday. That's down 1.3 cents from a week ago, based on the...

133

Diesel prices see slight drop  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices see slight drop The U.S. average retail price for on-highway diesel fuel fell slightly to 3.91 a gallon on Monday. That's down 6-tenths of a penny from a week ago,...

134

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.98 a gallon on Labor Day Monday. That's up 6.8 cents from a week ago, based...

135

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.92 a gallon on Monday. That's down 3 cents from a week ago based on the...

136

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.90 a gallon on Monday. That's up 3.6 cents from a week ago, based on the...

137

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.94 a gallon on Monday. That's down 3 12 cents from a week ago, based...

138

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.98 a gallon on Monday. That's down 1.6 cents from a week ago, based on the...

139

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 1.1 cents from a week ago based on the...

140

Diesel prices remain fairly stable  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices remain fairly stable The U.S. average retail price for on-highway diesel fuel slightly fell to 3.85 a gallon on Monday. That's down 6-tenths of a penny from a week...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 5 12 cents from a week ago, based on the...

142

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 4.01 a gallon on Monday. That's down 4.1 cents from a week ago, based on the...

143

Diesel prices slightly increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly increase nationally The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's up 4-tenths of a penny from a...

144

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.87 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

145

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.92 a gallon on Monday. That's up 1.2 cents from a week ago, based on the...

146

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.89 a gallon on Monday. That's up 2.4 cents from a week ago, based on the...

147

Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel  

Science Conference Proceedings (OSTI)

Coal-derived low-temperature Fischer-Tropsch (LTFT) wax was hydrocracked at pressures of 3.5-7.0 MPa using silica-alumina-supported sulfided NiW/NiMo and an unsulfided noble metal catalyst, modified with MoO{sub 3}. A low-pressure operation at 3.5 MPa produced a highly isomerized diesel, having low cloud points (from -12 to -28{sup o}C) combined with high cetane numbers (69-73). These properties together with the extremely low sulfur ({lt}5 ppm) and aromatic ({lt}0.5%) contents place coal/liquid (CTL) derived distillates as highly valuable blending components to achieve Eurograde diesel specifications. The upgrading of coal-based LTFT waxes through hydrocracking to high-quality diesel fuel blend components in combination with commercial-feasible coal-integrated gasification combined cycle (coal-IGCC) CO{sub 2} capture and storage schemes should make CTL technology more attractive. 28 refs., 7 figs., 8 tabs.

Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-06-15T23:59:59.000Z

148

Assessment of capital requirements for alternative fuels infrastructure under the PNGV program  

DOE Green Energy (OSTI)

This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

Stork, K.; Singh, M.; Wang, M.; Vyas, A.

1998-12-31T23:59:59.000Z

149

Diesel hybridization and emissions.  

DOE Green Energy (OSTI)

The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

Pasquier, M.; Monnet, G.

2004-04-21T23:59:59.000Z

150

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

151

Diesel Engine Alternatives  

DOE Green Energy (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

152

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2004-04-01T23:59:59.000Z

153

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

154

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

2008-01-01T23:59:59.000Z

155

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

2012-06-21T23:59:59.000Z

156

diesel | OpenEI  

Open Energy Info (EERE)

diesel diesel Dataset Summary Description The JodiOil World Database is freely available from the Joint Organisations Data Initiative (JODI) and is updated on or around the 20th of each month. Source JODI Date Released October 01st, 2004 (10 years ago) Date Updated March 21st, 2011 (3 years ago) Keywords crude oil diesel fuel oil gasoline kerosene LPG Data application/zip icon Text file, all JODI Database data: Jan 2002 - Jan 2011 (zip, 14.5 MiB) application/pdf icon Definitions of Abbreviations and Codes (pdf, 698.3 KiB) application/pdf icon Column Headings for Dataset (pdf, 13.4 KiB) Quality Metrics Level of Review Some Review Comment Some of the data has "some review" and some of the data has "no review"; the supplemental documentation provides definitions for the assessment codes for each piece of data in the datasets (essentially, 1 = some review, 2 = use with caution, 3 = not reviewed)

157

Southeast BioDiesel | Open Energy Information  

Open Energy Info (EERE)

BioDiesel Jump to: navigation, search Name Southeast BioDiesel Place Charleston, South Carolina Product Biodiesel producer based in South Carolina References Southeast BioDiesel1...

158

Diesel de Azufre Ultra Bajo  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel de Azufre Ultra Bajo Diesel de Azufre Ultra Bajo ULSD LSD Off-Road Diesel para Carretera de Azufre Ultra Bajo (máximo de 15 ppm de azufre). Se requiere su uso en todos los motores y vehículos diesel de carretera modelos 2007 y posteriores. También se recomienda su uso en todos los vehículos y motores diesel. Diesel para Carretera Bajo en Azufre (máximo de 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores modelos 2007 y posteriores, su uso podría dañarlos. Combustible Diesel que no es para Carretera (puede exceder 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores que no son de carretera, su uso podría dañarlos. Los consumidores con vehículos modelo 2007 ó posteriores deben utilizar solo diesel ultra bajo de azufre (ULSD). El ULSD es un diesel de

159

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2012 (EIA)

FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage)...

160

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

 The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

162

Diesel Idling Reduction | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Diesel Idling Reduction Jump to: navigation, search Tool Summary Name: Diesel Idling Reduction AgencyCompany...

163

Louisiana Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Louisiana Downstream Charge Capacity of Operable ...

164

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Get the RSS feed. Release Schedule. Details... Procedures, Methodology & CV's Gasoline Diesel fuel. ... How do I calculate/find diesel fuel surcharges? ...

165

Available Technologies: Alternative Diesel Fuel from Biosynthetic ...  

Imaging Tools; Lasers; ... Cold weather anticlouding additive for diesel fuels ; Diesel or jet fuel alternative; Platform for advanced biosynthetic fuels development ;

166

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

167

Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure  

Science Conference Proceedings (OSTI)

This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, no significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.

Storey, John Morse [ORNL; Sluder, Scott [ORNL; Lance, Michael J [ORNL; Styles, Dan [Ford Motor Company; Simko, Steve [Ford Motor Company

2013-01-01T23:59:59.000Z

168

Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)  

Reports and Publications (EIA)

On July 11, 2006, the EPA issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with MY 2007 [16], engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

Information Center

2007-02-22T23:59:59.000Z

169

Diesel prices continue to fall  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to fall The U.S. average retail price for on-highway diesel fuel fell to 4.09 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly...

170

Diesel prices continue to rise  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to rise The U.S. average retail price for on-highway diesel fuel rose to 4.16 a gallon on Monday. That's up 5.3 cents from a week ago, based on the weekly...

171

Diesel prices up this week  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices up this week The U.S. average retail price for on-highway diesel fuel rose sharply to 4.10 a gallon on Monday. That's up 8.2 cents from a week ago and 17.7 cents...

172

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

173

Federal Tax Credit for Diesels  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesels Diesels Diesel Vehicle Federal tax credit up to $3,400! Some diesels purchased or placed into service after December 31, 2005 may be eligible for a federal income tax credit of up to $3,400. (No eligible vehicles were manufactured for sale until 2008.) Credit amounts begin to phase out for a given manufacturer once it has sold over 60,000 eligible hybrid and diesel vehicles. Vehicles purchased after December 31, 2010 are not eligible for this credit. The information below is provided for those filing amended tax returns for previous years. Audi BMW Mercedes-Benz Volkswagen All Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Audi Jan. 1, 2006 July 1 - Dec. 31, 2010 Not Applicable Jan. 1, 2011 Audi A3 TDI 2010-11 Audi A3 2.0L TDI $1,300 $650 -- $0

174

Cermet Filters To Reduce Diesel Engine Emissions  

DOE Green Energy (OSTI)

Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon gases that can effectively destroy the NOx in the exhaust. The following sections describe cermet filter technology and properties of the INEEL filter.

Kong, Peter

2001-08-05T23:59:59.000Z

175

Portec Voltage Regulators: for Emergency Diesel Generators  

Science Conference Proceedings (OSTI)

This report contains information to help utilities address emergency diesel generator voltage regulator issues.

2004-12-15T23:59:59.000Z

176

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

177

Effects of diesel particle filter retrofits and accelerated fleet turnover  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of diesel particle filter retrofits and accelerated fleet turnover Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Title Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Publication Type Journal Article Year of Publication 2011 Authors Dallmann, Timothy R., Robert A. Harley, and Thomas W. Kirchstetter Journal Environmental Science & Technology Volume 45 Issue 24 Pagination 10773-10779 Abstract Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NOx) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NOx emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.

178

Coal-fueled diesel locomotive test  

DOE Green Energy (OSTI)

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

179

Microwave-Regenerated Diesel Exhaust Particulate Filter  

Science Conference Proceedings (OSTI)

Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

2001-03-05T23:59:59.000Z

180

Capture of Heat Energy from Diesel Engine Exhaust  

DOE Green Energy (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Materials - Catalysts for Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing denox monolith Argonne's deNOx catalyst can be prepared as a powder or a monolith. chris marshall Principal investigator Chris Marshall shows the monolith form of the Argonne deNOx catalyst with a sensor inserted for testing. doug longman Mechanical engineer Doug Longman inserts the instrumented deNOx catalyst monolith into the aftertreatment chamber of Argonne's heavy-duty Caterpillar diesel test engine. Background Diesel engines, while efficient, produce many undesirable combustion byproducts in their exhaust. While we tend to think of the sooty exhaust products we see as the bad stuff, it is the less-visible exhaust products such as nitrogen oxides (NOx) that create bigger problems.

182

New and Upcoming Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Model Year Diesels Vehicle EPA MPG Estimates Price (MSRP) Audi A6 quattro Midsize Car Audi A6 quattro Chart: City, 24; Highway, 38; Combined, 29 45,200-57,500 Audi A7...

183

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the… (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

184

VehĂ­culos Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehículos Diesel Vehículos Diesel Audi A3 Los vehículos Diesel podrían estar de regreso. Los motores de Diesel son más poderosos y ahorradores de gasolina en comparación con los motores de gasolina del mismo tamaño (un 30-35% aprox. más eficientes en su consumo). Además, los vehículos diesel son mejores que los que se fabricaban en el pasado. Mejor Desempeño Tienen mejores inyectores de combustible y tecnologías electrónicas en sus controles Más poder Aceleración Mejorada Más Eficiencia Los nuevos diseños en los motores, además de las tecnologías de reducción de ruido y vibración, los han hecho silenciosos y suaves en su manejo. El arranque en clima-frío también ha sido mejorado. Más Limpios Mercedes ML320 BlueTEC En la actualidad los diesels deben cumplir con los mismos estándares de

185

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

186

GM sees octane surplus; wants improved diesel fuel in future  

Science Conference Proceedings (OSTI)

Under the subject of fuels, both gasoline and diesel fuel are discussed. A primary gasoline issue is that of the satisfaction of vehicle octane number requirements. Secondary issues are the compatibility of gasolines and vehicular fuel systems, and the plugging of exhaust gas recirculation systems with deposits. The important diesel fuel issues are water in the fuel, low temperature fuel properties, fuel effects on particulate emissions, and fuel specifications. Other matters are those concerning fuel demand in the future, and alternate fuels. Lubricants are also discussed. 9 refs.

Route, W.D.; Amann, C.A.; Gallopoulos, N.E.

1982-01-25T23:59:59.000Z

187

Use of Performance Monitoring to Improve Reliability of Emergency Generators Diesel  

E-Print Network (OSTI)

Emergency diesel generators are one of the most important contributors to the core damage failure rate of nuclear power plants. Current required testing and maintenance procedures are excessively strict and expensive without ...

Dulik, J. D.

188

Safety and Performance Assessment of Ethanol/Diesel Blends (E-Diesel)  

DOE Green Energy (OSTI)

Subcontract report discussing safety concerns of ethanol-diesel blends and pathways to reducing risks.

Waterland, L. R.; Venkatesh, S.; Unnasch, S.

2003-09-01T23:59:59.000Z

189

Compare New and Used Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

City 35 30 25 20 15 10 Combined 45 40 35 30 25 20 15 10 Highway Your Selections Search Diesel Vehicles & Fuels Compare Side by Side About Diesel Vehicles New & Upcoming Ultra-Low...

190

Best practices for underground diesel emissions  

Science Conference Proceedings (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

191

Diesel prices top $4 per gallon  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices top 4 per gallon The U.S. average retail price for on-highway diesel fuel surpassed the four dollar mark for the first time this year. Prices rose to 4.02 a gallon...

192

Diesel prices continue to decrease nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.95 a gallon on Monday. That's down 2 cents from a week ago...

193

Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels  

SciTech Connect

The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high?fidelity models that served as the basis for the reduced order models used for internal state estimation. The high?fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high?fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

2013-04-30T23:59:59.000Z

194

U.S. Aviation Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

2 Diesel, Ultra Low-Sulfur No. 2 Diesel, Low-Sulfur No. 2 Diesel, High-Sulfur No. 2 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

195

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

196

Elastomer Compatibility Testing of Renewable Diesel Fuels  

DOE Green Energy (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

197

Diesel Power: Clean Vehicles for Tomorrow  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Power: Diesel Power: Clean Vehicles for Tomorrow July 2010 VEHICLE TECHNOLOGIES PROGRAM Prepared for the U.S. Department of Energy Vehicle Technologies Program The diesel engine has changed significantly over the last quarter-century, in terms of technology and performance. For this reason, the U.S. Department of Energy (DOE) has created this series of documents about the history of the diesel engine, its current uses in transportation vehicles,

198

Diesel Brewing | Open Energy Information  

Open Energy Info (EERE)

Diesel Brewing Diesel Brewing Jump to: navigation, search Name Diesel Brewing Place Salem, Oregon Zip 97302 Sector Biomass Product Oregon-based company that uses gasification to produce liquid fuels and electricity from non-food-based biomass sources, including wood wastes, agricultural residues, and manure. Coordinates 42.554485°, -88.110549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.554485,"lon":-88.110549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

200

Clean Coal Diesel Demonstration Project  

DOE Green Energy (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines  

SciTech Connect

In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

2008-01-01T23:59:59.000Z

202

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found. This paper is dedicated to the memory of our friend and colleague Jim Franz. Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, and by the Coordinating Research Council (CRC) and the companies that employ the CRC members. The study was conducted under the auspices of CRC. The authors thank U.S. DOE program manager Kevin Stork for supporting the participation of the U.S. national laboratories in this study.

Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce G.; Dettman, Heather; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

2012-07-26T23:59:59.000Z

203

Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines  

Science Conference Proceedings (OSTI)

The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

Kass, M.D.

2008-07-15T23:59:59.000Z

204

Biodiesel and Other Renewable Diesel Fuels  

DOE Green Energy (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

205

Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines  

DOE Green Energy (OSTI)

Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

Johnson, R.N.; Hayden, H.L.

1994-01-01T23:59:59.000Z

206

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

207

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

1997-05-01T23:59:59.000Z

208

Hydrogen supplemented diesel electric locomotive  

SciTech Connect

A system is disclosed for using internally generated electricity as the power to operate an electrolysis cell for the production of hydrogen gas. This hydrogen gas would be stored under pressure and used on demand as a fuel supplement as for hill ascension by a diesel locomotive.

Wilson, J.B.

1983-05-03T23:59:59.000Z

209

Federal Tax Credit for Diesels  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuevos Reembolsos de impuestos en Materia de Energía para Nuevos Reembolsos de impuestos en Materia de Energía para Diesels Vehículo Diesel ¡Reembolso Federal de hasta $3,400! Algúnos diesels comprados o puestos en servicio después del 31 de diciembre del 2005 pueden ser elegibles para un reembolso de impuestos sobre la renta federal de hasta 3,400 dólares. (Ningún vehículo elegible fue fabricado para la venta hasta el 2008.) Las cantidades del reembolso comienzan a disminuir progresivamente para los fabricantes que hayan vendido más de 60,000 vehículos híbridos y diesel elegibles. Los vehículos adquiridos después de Diciembre 31 no son elegibles para este crédito. Audi BMW Mercedes-Benz Volkswagen All Marca y Modelo del Vehículo Reembolso Completo Desfase Sin Reembolso 50% 25% Audi ene. 1, 2006 jul. 1 - dic. 31, 2010 No aplica ene. 1, 2011

210

Field Evaluation of Fumigation Bi-Fuel Systems Installed on Diesel Engine-Generators  

Science Conference Proceedings (OSTI)

Thousands of megawatts of emergency generation provide backup power to industry and businesses in the United States and Canada. Typically, individual size is relatively small, ranging from 100 kW to 2000 kW. Most are diesel-fueled generators. Diesel generators are generally the low-cost option. Their application also allows compliance with regulatory requirements for on-site fuel storage. Use of these generators other than for emergency power is coming under increased scrutiny by environmental regulatory...

2006-01-10T23:59:59.000Z

211

Novel injector techniques for coal-fueled diesel engines  

DOE Green Energy (OSTI)

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

212

OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY  

DOE Green Energy (OSTI)

Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

Fairbanks, John

2001-08-05T23:59:59.000Z

213

High Performance Diesel Fueled Cabin Heater  

DOE Green Energy (OSTI)

Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

Butcher, Tom

2001-08-05T23:59:59.000Z

214

Heavy Truck Clean Diesel Cooperative Research Program  

DOE Green Energy (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

215

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The sample design for the weekly diesel price survey was a two-phase design. The first phase constituted construction of a frame of 2,207 company-State units (CSUs) from the combination of two sample cycles of the EIA-782A and EIA-782B surveys that collected monthly petroleum products' sales at the State level. For sampling purposes, any combination of State and company where diesel was sold through retail outlets as reported on the EIA-782 surveys defined a CSU, the sampling unit. For the second phase, a sub-sample of the 2,207 CSUs from phase 1 was selected using probability proportional to size (PPS). The measure of size for each of the two sample cycles separately was normalized using the annual State sales' volumes from the monthly survey divided by the unit's

216

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops. Due to statistical and operational considerations, outlets in the States of Alaska and Hawaii are excluded from the target population. The primary publication cells of the survey include Petroleum Administration for Defense Districts (PADDs) 2-4, three sub-PADDs within

217

Diesel cars in the United States  

DOE Green Energy (OSTI)

The purpose of this study was to develop a better understanding of the causes of the recent increased interest in diesel cars, thereby providing insight into the related behavior of institutions and individuals. This knowledge may improve the formulation of federal policies for diesel, electric, and other more energy-efficient car systems. The study describes developments in the diesel car field over the past few years, and discusses the present status of diesel cars. Historical data were assembled on diesel car sales and on parameters that might have affected the sales. Information is included on the following items related to diesel cars: buyers preferences and why; fuel economy and availability; energy conservation potential; and exhaust emissions, their control and air pollution effects. (LCL)

Not Available

1978-06-01T23:59:59.000Z

218

Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer  

DOE Green Energy (OSTI)

Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

Dennis Witmer; Thomas Johnson

2008-12-31T23:59:59.000Z

219

Staged direct injection diesel engine  

DOE Patents (OSTI)

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

220

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TransForum v4n2 - Diesel Reformer  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARGONNE SCIENTISTS TEAM UP TO DEVELOP NEW DIESEL REFORMER Liu tests diesel reformer Argonne's Di-Jia Liu conducted extensive testing of the diesel reformer; his experiments are...

222

Emergency Diesel Generator Voltage Regulator Guidelines  

Science Conference Proceedings (OSTI)

This product kit, containing six separate documents, provides information to help utilities address emergency diesel generator voltage regulator issues and maintenance.

2005-12-20T23:59:59.000Z

223

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

224

Trends and Transitions in the Diesel Market  

U.S. Energy Information Administration (EIA)

A presentation at the 2007 NPRA Annual Meeting focusing on trends in the diesel market. The presentation reviews the status of the ULSD program and highlights recent ...

225

Pyrochem Catalysts for Diesel Fuel Reforming - Energy ...  

Summary. Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and ...

226

BPM Diesel Engineering | Open Energy Information  

Open Energy Info (EERE)

Diesel Engineering" Retrieved from "http:en.openei.orgwindex.php?titleBPMDieselEngineering&oldid342997" Categories: Clean Energy Organizations Companies Organizations...

227

Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER)  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Diesel Engine Emissions Reduction (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Digg Find More places to share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on

228

Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and Emissions...

229

TransForum v3n4 - Diesel Particulates  

NLE Websites -- All DOE Office Websites (Extended Search)

ZEROING IN ON DIESEL PARTICULATE EMISSIONS Thick clouds of soot particles no longer billow from new bus and truck exhaust pipes, thanks to today's advanced diesel engines, which...

230

Black Carbon Concentrations and Diesel Vehicle Emission Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003 Title Black Carbon Concentrations and Diesel...

231

Argonne TTRDC - Engines - Compression-Ignition - diesel, fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compression Ignition Engines Clean Diesel Technologies for Greener Performance Mechanical engineer Alan Kastengren examines a diesel injection nozzle used in Argonne's X-ray spray...

232

Cellular Response to Diesel Exhaust Particles Strongly Depends...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellular Response to Diesel Exhaust Particles Strongly Depends on the Exposure Method Title Cellular Response to Diesel Exhaust Particles Strongly Depends on the Exposure Method...

233

Engines - 3-D Animation Shows Complex Geometry of Diesel Particulates  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows Complex Geometry of Diesel Particulates Diesel particulate matter has a very complex geometry Most studies have observed these three-dimensional structures in...

234

Vehicle Technologies Office: 2002 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

a Medium-Duty Diesel Engine Shawn Whitacre National Renewable Energy Lab (PDF 356 KB) Natural Oils -- The Next Generation of Diesel Engine Lubricants? Joe Perez The...

235

Performance evaluation of diesel particulate filters on heavy duty vehicles.  

E-Print Network (OSTI)

??Diesel particulate filters, or DPFs, are exhaust aftertreatment devices used to reduce exhaust emissions from diesel powered vehicles. Typical designs have a wall flow filter… (more)

Rosepiler, Stephen G.

2003-01-01T23:59:59.000Z

236

Midwest (PADD 2) Refinery Catalytic Hydrotreating, Diesel Fuel ...  

U.S. Energy Information Administration (EIA)

Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Midwest (PADD 2) Downstream Charge Capacity of ...

237

U.S. Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; U.S. Downstream Charge Capacity of Operable ...

238

Why has diesel fuel been more expensive than gasoline? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why has diesel fuel been more expensive than gasoline? On-highway diesel fuel prices have been higher than regular gasoline prices almost continuously ...

239

Diesel Fuel - Energy Explained, Your Guide To Understanding ...  

U.S. Energy Information Administration (EIA)

... and electric utilities have diesel generators for backup and emergency power supply. Most remote villages in Alaska use diesel generators for ...

240

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)  

Science Conference Proceedings (OSTI)

Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

Brodt-Giles, D.

2008-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

2010-11-15T23:59:59.000Z

242

Trends and Transitions in the Diesel Market  

Reports and Publications (EIA)

A presentation at the 2007 NPRA Annual Meeting focusing on trends in the diesel market. The presentation reviews the status of the ULSD program and highlights recent changes and trends in the distillate market that point towards continued strength in diesel prices relative to gasoline for some time.

Information Center

2007-03-19T23:59:59.000Z

243

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

SciTech Connect

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

244

Clean Diesel Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Diesel Technologies Inc Diesel Technologies Inc Jump to: navigation, search Name Clean Diesel Technologies Inc Place Stamford, Connecticut Zip 6901 Product Clean Diesel Technologies Inc is a specialty chemical company with patented products that reduce emissions from diesel engines while simultaneously improving fuel economy and power. Coordinates 42.75294°, -73.068531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.75294,"lon":-73.068531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Coal-liquid fuel/diesel engine operating compatibility. Final report  

DOE Green Energy (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

246

Energy Information Administration Special Notice on Discontinuance ...  

U.S. Energy Information Administration (EIA)

The publication of Low Sulfur On-Highway Diesel Prices at the U.S. level was discontinued December 8, 2008. At that time, the Low Sulfur Diesel (LSD) ...

247

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

248

AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM  

E-Print Network (OSTI)

Laboratory and are actively developing what will be the world's largest wind-diesel hybrid electric plant. The pending installation of four 950-kW wind turbines to supplement the 22.8 MW diesel electricity plant diesel fuel usage in the base, while not adversely affecting the power grid or the diesels. The reduced

Massachusetts at Amherst, University of

249

Diesel Reforming for Solid Oxide Fuel Cell Application  

DOE Green Energy (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

250

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

251

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

252

Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions

253

Fuel effects on flame lift-off under diesel conditions  

SciTech Connect

An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

Persson, Helena; Andersson, Oeivind; Egnell, Rolf [Lund University (Sweden). Dept. of Energy Sciences

2011-01-15T23:59:59.000Z

254

Engines - Fuel Injection and Spray Research - Diesel Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Sprays Diesel Sprays Chris Powell and fuel spray xray beamline Christopher Powell, an engine research scientist, fits a specially designed X-ray pressure window to a high-pressure chamber used in diesel spray research. These windows allow Argonne researchers to use X-rays to probe diesel sprays under the high-density conditions found in diesel engines. Diesel sprays Diesel engines are significantly more fuel-efficient than their gasoline counterparts, so wider adoption of diesels in the U.S. would decrease the nationÂ’s petroleum consumption. However, diesels emit much higher levels of pollutants, especially particulate matter and NOx (nitrogen oxides). These emissions have prevented more manufacturers from introducing diesel passenger cars. Researchers are exploring ways to reduce pollution formation in the engine

255

Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Fuel Blend Tax Diesel Fuel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel

256

Worldwide wind/diesel hybrid power system study: Potential applications and technical issues  

DOE Green Energy (OSTI)

The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

1991-04-01T23:59:59.000Z

257

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

258

Compare vehículos diesel nuevos y usados  

NLE Websites -- All DOE Office Websites (Extended Search)

Por Galn Por lo menos... 35 30 25 20 15 10 Ciudad 35 30 25 20 15 10 Combinado 45 40 35 30 25 20 15 10 Carretera Sus Selecciones Bsque Vehculos y Combustible Diesel Compare de...

259

Jet Fuel from Bio-Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jet Fuel from Bio-Diesel Background Due to concerns with limited resources of petroleum-based fuels, the demand for using renewable feedstocks, such as vegetable oils and animal...

260

An improved visualization of diesel particulate filter/  

E-Print Network (OSTI)

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Massachusetts Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

262

San Francisco Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

263

Cleveland Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

264

Chicago Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

265

Washington Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

266

Colorado Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

267

New York Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

268

Minnesota Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

269

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

270

Florida Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

271

Seattle Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

272

Los Angeles Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

273

Denver Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

274

JatroDiesel | Open Energy Information  

Open Energy Info (EERE)

http:www.jatrodiesel.com References JatroDiesel1 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now This article is a stub. You can help OpenEI...

275

Diesel Fuel Price Pass-through  

Reports and Publications (EIA)

Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. This article representsthe extension of this type of analysis and modeling into the diesel fuel markets.

Michael Burdette

2002-07-31T23:59:59.000Z

276

Modeling deposit formation in diesel injector nozzle  

E-Print Network (OSTI)

Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

Sudhiesh Kumar, Chintoo

2009-01-01T23:59:59.000Z

277

Liquid fuel reformer development.  

DOE Green Energy (OSTI)

At Argonne National Laboratory we are developing a process to convert hydrocarbon fuels to a clean hydrogen feed for a fuel cell. The process incorporates a partial oxidation/steam reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. We have tested the catalyst with three diesel-type fuels: hexadecane, low-sulfur diesel fuel, and a regular diesel fuel. We achieved complete conversion of the feed to products. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 800 C. For the two diesel fuels, higher temperatures, >850 C, were required to approach similar levels of hydrogen in the product stream. At 800 C, hydrogen yield of the low sulfur diesel was 32%, while that of the regular diesel was 52%. Residual products in both cases included CO, CO{sub 2}, ethane, ethylene, and methane.

Ahmed, S.; Krumpelt, M.; Pereira, C.; Wilkenhoener, R.

1999-07-30T23:59:59.000Z

278

Nano Catalysts for Diesel Engine Emission Remediation  

DOE Green Energy (OSTI)

The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

2012-06-01T23:59:59.000Z

279

Diesel particulate filter with zoned resistive heater  

Science Conference Proceedings (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

280

Conversion of a diesel engine to a spark ignition natural gas engine  

DOE Green Energy (OSTI)

Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

282

METC research on coal-fired diesels  

DOE Green Energy (OSTI)

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

283

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

284

Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Diesel Fleet Clean Diesel Fleet Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Diesel Fleet Vehicle Grants The Oklahoma Department of Environmental Quality (DEQ) Air Quality Division

285

Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Clean Diesel National Clean Diesel Campaign (NCDC) to someone by E-mail Share Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Facebook Tweet about Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Twitter Bookmark Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Google Bookmark Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Delicious Rank Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Digg Find More places to share Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Clean Diesel Campaign (NCDC) The NCDC was established by the U.S. Environmental Protection Agency to

286

Lubricity of deeply hydrogenated diesel fuels. The Swedish experience  

Science Conference Proceedings (OSTI)

Environmentally adapted diesel fuels defined by the Swedish Government contain extremely low levels of sulphur and have limited aromatics contents. Road trials and pump durability tests of these fuels revealed unacceptable wear in injection pumps due to low lubricity. Additive solutions were identified using bench tests and then proven in field trials. Market experience has substantiated the findings that fuels using the chosen additive give fully satisfactory performance. This paper illustrates how practical solutions to lubricity questions can be found, and is applicable wherever specifications demand fuels requiring a high degree of hydroprocessing. 19 refs., 10 figs., 3 tabs.

Tucker, R.F.; Stradling, R.J.; Wolveridge, P.E.; Rivers, K.J.; Ubbens, A.

1994-10-01T23:59:59.000Z

287

Recent Developments in BMW's Diesel Technology  

DOE Green Energy (OSTI)

The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

Steinparzer, F

2003-08-24T23:59:59.000Z

288

Development of a digital control unit to displace diesel fuel with natural gas  

DOE Green Energy (OSTI)

Full Circle Engineering (FCE), supported by the Colorado School of Mines (CSM), proposed a Small Business CRADA with Allied Signal Federal Manufacturing & Technologies/Kansas City (FM&T/KC) for the development of a fumigation digital control unit (DCU) that would allow the displacement of diesel fuel with natural gas. Nationwide, diesel trucks and buses consumed over 21 billion gallons of fuel in 1992. The development of systems that allow the use of alternative fuels, natural gas in particular, for transportation would significantly reduce emissions and pollutants. It would also help implement DOE`s mandate for energy security (use of domestic fuels) required by the Energy Policy Act (EPACT).

Talbott, A.D. [AlliedSignal FM& T, Kansas City, MO (United States)]|[Full Circle Engineering, Northglenn, CO (United States)

1997-03-01T23:59:59.000Z

289

The Intelligent Study on Diesel-LNG Dual Fuel Marine Diesel Engine  

Science Conference Proceedings (OSTI)

In this article, a diesel engine named "X6170ZC" has been converted into a dual-fuel engine of diesel and liquefied natural gas (LNG). The principle, composition and characteristics of electronic control system for the engine have been introduced. An ... Keywords: engine, dual-fuel, intelligent

Zhang Liang

2012-03-01T23:59:59.000Z

290

THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM  

DOE Green Energy (OSTI)

Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

Fairbanks, John W.

2000-08-20T23:59:59.000Z

291

Distillate Demand Strong in December 1999  

U.S. Energy Information Administration (EIA)

Total distillate demand includes both diesel and heating oil. These are similar products. Physically, diesel can be used in the heating oil market, but low sulfur ...

292

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network (OSTI)

1997), “Emission from CNG and diesel Refuse Haulers Using1997), “Emission from CNG and diesel Refuse Haulers Using

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

293

Assessment of the O2Diesel Operational Safety Program: December 23, 2002 -- June 30, 2007  

DOE Green Energy (OSTI)

This report assesses O2Diesel's operational safety program using its ethanol-diesel blended fuel product.

TIAX LLC

2006-06-01T23:59:59.000Z

294

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network (OSTI)

In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels. The world?s energy demand is commencing its dependency on alternative fuels. Such alternative fuels in use today consist of bio-alcohols (such as ethanol), hydrogen, biomass, and natural oil/fat derived fuels. However, in this study, the focus will be on the alternative fuel derived from natural oils and fats, namely biodiesel. The following study characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes a John Deere 4.5 liter 4 cylinder direct injection engine with exhaust gas recirculation (EGR), common rail fuel injection, and variable turbo-charging with conventional petroleum diesel to set a reference for comparison. The study then proceeds to characterize the differences in engine performance as a result of using biodiesel relative to conventional diesel. The results show that torque decreases with the use of biodiesel by about 10%. The evaluation of engine performance parameters shows that torque is decreased because of the lower heating value of biodiesel compared to conventional diesel. The insignificant difference between the other performance parameters shows that the ECM demands the same performance of the engine regardless of the fuel being combusted by the engine.

Esquivel, Jason

2008-12-01T23:59:59.000Z

295

Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels  

DOE Green Energy (OSTI)

The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

Strzelec, Andrea [ORNL

2009-12-01T23:59:59.000Z

296

FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS  

DOE Green Energy (OSTI)

Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel Dog Soil Test Kit.

Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

2002-09-30T23:59:59.000Z

297

Diesel Fuel Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Diesel Fuel Price Pass-through Diesel Fuel Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Diesel Fuel Price Pass-through Printer-Friendly PDF Diesel Fuel Price Pass-through by Michael Burdette and John Zyren* Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. Beginning with gasoline, we looked at the two ends of the pricing structure in the U.S. market: daily spot prices, which capture sales of large quantities of product between refiners, importers/exporters, and traders; and weekly retail prices, measured at local gasoline outlets nationwide. In the course of this analysis, EIA has found that the relationships between spot and retail prices are consistent and predictable, to the extent that changes in spot prices can be used to forecast subsequent changes in retail prices for the appropriate regions. This article represents the extension of this type of analysis and modeling into the diesel fuel markets.

298

Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Retrofit and Improvement Grants to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

299

Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Diesel Retrofit Clean Diesel Retrofit and Idle Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

300

BioDiesel One Ltd | Open Energy Information  

Open Energy Info (EERE)

One Ltd Jump to: navigation, search Name BioDiesel One, Ltd. Place Southington, Connecticut Zip 6489 Product BioDiesel One plans to develop a biodiesel plant in Southington,...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Vehicle Testing Activity - Diesel Engine Idling Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Idling Test In support of the Department of Energys FreedomCAR and Vehicle Technologies Program goal to minimize diesel engine idling and reduce the consumption of...

302

Diesel prices decrease for the ninth consecutive week  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease for the ninth consecutive week The U.S. average retail price for on-highway diesel fuel fell to 3.85 a gallon on Monday. That's down 3.6 cents from a week...

303

Diesel prices dip below the 4 dollar mark  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices dip below the 4 dollar mark The U.S. average retail price for on-highway diesel fuel dipped below the 4-dollar mark for the first time since late January to 3.99 a...

304

Diesel prices decrease for first time in seven weeks  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease for first time in seven weeks The U.S. average retail price for on-highway diesel fuel fell for the first time in seven weeks to 4.13 a gallon on Monday....

305

Vehicle Technologies Office: Fact #496: November 19, 2007 Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: November 19, 2007 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes to someone by E-mail Share Vehicle Technologies Office: Fact 496: November 19, 2007 Diesel...

306

Vehicle Technologies Office: Fact #650: November 22, 2010 Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: November 22, 2010 Diesel Fuel Prices hit a Two-Year High to someone by E-mail Share Vehicle Technologies Office: Fact 650: November 22, 2010 Diesel Fuel Prices hit a Two-Year...

307

Study of deposit formation inside diesel injectors nozzles  

E-Print Network (OSTI)

Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

Wang, YinChun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

308

Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Green Biodiesel and Green Diesel Definitions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Google Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Delicious Rank Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel and Green Diesel Definitions Biodiesel is defined as a fuel that is comprised of mono-alkyl esters of

309

Alternative Fuels Data Center: Biofuels and Green Diesel Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels and Green Biofuels and Green Diesel Definitions to someone by E-mail Share Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Google Bookmark Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Delicious Rank Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels and Green Diesel Definitions Advanced biofuels are defined as fuels derived from any cellulose,

310

Gasoline and Diesel Fuel Update Data Revision Notice  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

311

Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock  

E-Print Network (OSTI)

Increasing fuel prices, stricter government policies, and technological developments made it possible to seek for renewable alternatives, called biofuels, to petroleum fuel. Biodiesel, a biofuel that is produced from chemically mixing animal fat, vegetable oils, or recycled restaurant grease with alcohol and catalyst, is gaining popularity in recent years as a substitute for petroleum diesel. Ninety percent (90%) of U.S. biodiesel industry makes use of soybean oil as its feedstock. However, soybean oil alone cannot meet such a huge demand on biofuel production. Hence, it is important to identify and get more information about other feedstocks, specifically on its effects on the performance and exhaust emissions of diesel engines. The purpose of this study is to investigate the performance and emissions of two diesel engines operating on different biodiesel fuels (i.e. canola oil, sunflower oil, safflower oil, peanut oil, and chicken fat) and compare them to the performance and emissions when the engine is operated on soybean oil-based biodiesel and petroleum-based diesel. Results indicated that an engine operating on biodiesel generates a little less power and torque at any given speed than one running on diesel. Such power and torque loss were attributed to the biodiesel's lower energy content. The lower heating value (energy content) of biodiesel can be reflected in the specific fuel consumption, i.e., to generate the same power, more biodiesel is needed. The reduction in torque and power of less than 10% indicates that in some cases biodiesel has better combustion than diesel. Unfortunately, the high efficiency of combustion may give rise to increased combustion temperature which may lead to higher exhaust emissions. The gradual decrease in the total hydrocarbon and CO2 emissions, as blends were increased from B20 to B100, was also found to be an indication of better combustion using biodiesel fuels than petroleum diesel. However, NOx emissions were higher, predominantly at low speeds for most biodiesel and blends and therefore may require some additives or engine modifications/or adjustments to equalize the NOx emissions of diesel. Other emissions particularly SO2 were lower than standards require.

Santos, Bjorn Sanchez

2009-12-01T23:59:59.000Z

312

Earthship BioDiesel | Open Energy Information  

Open Energy Info (EERE)

Earthship BioDiesel Earthship BioDiesel Jump to: navigation, search Name Earthship BioDiesel Place Taos, New Mexico Zip 87571 Product Supplier and retailer of biodiesel made from Waste Vegetable Oil. Coordinates 36.4116°, -105.574251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4116,"lon":-105.574251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Clean Diesel Technologies | Open Energy Information  

Open Energy Info (EERE)

Clean Diesel Technologies Clean Diesel Technologies Jump to: navigation, search Name Clean Diesel Technologies Address 10 Middle Street Place Bridgeport, Connecticut Zip 06604 Sector Carbon Product Solutions for emissions and carbon reduction Website http://www.cdti.com/ Coordinates 41.178468°, -73.188243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.178468,"lon":-73.188243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

DOE Green Energy (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

315

Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx  

DOE Green Energy (OSTI)

The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

2003-08-24T23:59:59.000Z

316

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Science Conference Proceedings (OSTI)

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies ( 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

317

Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Delicious Rank Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Digg Find More places to share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol

318

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee to Diamond Green Diesel, LLC., the DOE Loan Program's first conditional commitment for an advanced biofuels plant. The loan guarantee will support the construction of a 137-million gallon per year renewable diesel facility that will produce renewable diesel fuel primarily from animal fats, used cooking oil and other waste grease

319

A Municipal Official's Guide to Diesel Idling Reduction | Open Energy  

Open Energy Info (EERE)

A Municipal Official's Guide to Diesel Idling Reduction A Municipal Official's Guide to Diesel Idling Reduction Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Municipal Official's Guide to Diesel Idling Reduction Agency/Company /Organization: United States Environmental Protection Agency Partner: New York Planning Federation Sector: Climate, Energy Focus Area: Transportation Resource Type: Lessons learned/best practices Website: www.nyserda.org/publications/09-06GuidetoDieselIdlingReduction.pdf Language: English References: A Municipal Official's Guide to Diesel Idling Reduction[1] References ↑ "A Municipal Official's Guide to Diesel Idling Reduction" Retrieved from "http://en.openei.org/w/index.php?title=A_Municipal_Official%27s_Guide_to_Diesel_Idling_Reduction&oldid=390471"

320

Engines - Particulate Studies - Revealing the True Nature of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Thermophoretic sampling device Argonne's test engine with the thermophoretic sampling device attached. Nanostructure of graphitic diesel soot under high engine load A transmission electron microscope reveals the nanostructures of graphitic diesel soot sampled under high engine loads. Morphology of particles collected from diesel combustion with iso-paraffin-enriched fuel. Morphology of particles collected from diesel combution with iso-paraffin-enriched fuel. Amorphous soot particle collected from biodiesel combustion undera low-temperature condition. Amorphous soot particle collected from biodiesel combustion under low temperature conditions. Researchers have many ideas about how to reduce the soot produced by diesel

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

322

Exploring Low Emission Lubricants for Diesel Engines  

DOE Green Energy (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

323

The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines  

DOE Green Energy (OSTI)

This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

Lyon, Richard

2001-08-05T23:59:59.000Z

324

Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results  

DOE Green Energy (OSTI)

Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

2006-05-01T23:59:59.000Z

325

USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS  

DOE Green Energy (OSTI)

Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

Betta, R; Cizeron, J; Sheridan, D; Davis, T

2003-08-24T23:59:59.000Z

326

Novel injector techniques for coal-fueled diesel engines. Final report  

DOE Green Energy (OSTI)

This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

327

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Diesel truck or bus engines may not idle for more than 15 consecutive minutes. Exemptions apply to diesel trucks or buses for which the Nevada

328

Alternative Fuels Data Center: Biodiesel Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Use Biodiesel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Use Requirement All diesel-powered motor vehicles, light trucks, and equipment owned or leased by a state agency must operate using diesel fuel that contains a

329

Engineering for sustainable development for bio-diesel production  

E-Print Network (OSTI)

Engineering for Sustainable Development (ESD) is an integrated systems approach, which aims at developing a balance between the requirements of the current stakeholders without compromising the ability of the future generations to meet their needs. This is a multi-criteria decision-making process that involves the identification of the most optimal sustainable process, which satisfies economic, ecological and social criteria as well as safety and health requirements. Certain difficulties are encountered when ESD is applied, such as ill-defined criteria, scarcity of information, lack of process-specific data, metrics, and the need to satisfy multiple decision makers. To overcome these difficulties, ESD can be broken down into three major steps, starting with the Life Cycle Assessment (LCA) of the process, followed by generation of non-dominating alternatives, and finally selecting the most sustainable process by employing an analytic hierarchical selection process. This methodology starts with the prioritization of the sustainability metrics (health and safety, economic, ecological and social components). The alternatives are then subjected to a pair-wise comparison with respect to each Sustainable Development (SD) indicator and prioritized depending on their performance. The SD indicator priority score and each individual alternative’s performance score together are used to determine the most sustainable alternative. The proposed methodology for ESD is applied for bio-diesel production in this thesis. The results obtained for bio-diesel production using the proposed methodology are similar to the alternatives that are considered to be economically and environmentally favorable by both researchers and commercial manufacturers; hence the proposed methodology can be considered to be accurate. The proposed methodology will also find wide range of application as it is flexible and can be used for the sustainable development of a number of systems similar to the bio-diesel production system; it is also user friendly and can be customized with ease. Due to these benefits, the proposed methodology can be considered to be a useful tool for decision making for sustainable development of chemical processes.

Narayanan, Divya

2007-05-01T23:59:59.000Z

330

Performance of gasoline and diesel fuels produced from COED syncrude  

DOE Green Energy (OSTI)

Fuel consumption and exhaust emissions characteristics were evaluated for gasoline and diesel fuel produced from coal liquid derived syncrude. The engine types used were: (1) current technology spark-ignition, homogeneous charge, (2) stratified-charge, and (3) Stirling. There were no significant changes in fuel consumption or exhaust emissions between syncrude-derived fuels and conventional fuels in stratified-charge and Stirling engines. Because of its low (approximately equal to 70) octane number and volatility, the synthetic gasoline required a reduction in compression ratio to achieve knock-limited, MBT spark timing. This was in comparison to the reference gasoline, in a single-cylinder spark-ignited test engine, at one speed/load point. Exhaust emissions were very similar between the two fuels.

Bechtold, R.L.; Fleming, R.D.

1978-06-01T23:59:59.000Z

331

A Novel Paradigm in Greenhouse Gas Mitigation  

E-Print Network (OSTI)

diesel, low sulfur diesel, dimethyl ether, Fischer-Tropsch diesel, E-diesel, and biodiesel Battery diesel, dimethyl ether, Fischer-Tropsch diesel, E-diesel, and biodiesel Spark-Ignition Direct itchgrass #12;23 FT Diesel Can Be Produced from A Variety of Feedstocks Fischer-Tropsch process

Azad, Abdul-Majeed

332

Implications to Heavy-Duty Diesel Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL/TM-200015 ORNL/TM-200015 MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY A Vector Approach to Regression Analysis and Its Implications to Heavy-Duty Diesel Emissions November 2000 Prepared by H. 1. McAdams AccaMath Services Carrolton, Illinois R. W. Crawford R.W. Crawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee - UT-BATTELLE -. ORNL-27 (4.00) II ORNL/TM-200015 A VECTOR APPROACH TO REGRESSION ANALYSIS AND ITS APPLICATION TO HEAVY-DUTY DIESEL EMISSIONS H. T. McAdams AccaMath Services Carrollton, Illinois R. W. Crawford RWCrawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee November 2000 Prepared for Office of Energy Effkiency and Renewable Energy

333

Nonthermal aftertreatment of diesel engine exhaust  

DOE Green Energy (OSTI)

The ultimate objective of this work has been to develop a nonthermal plasma process to reduce NO{sub x} in diesel exhaust gas. A secondary objective has been to study the possibility of particulate matter (soot) reduction by the same technique. The early work revealed a fundamental difficulty with this NO{sub x} reduction approach in the gas environment of the diesel engine exhaust. These observations necessitated a thorough study of the unfavorable chemistry in the hope that knowledge of the chemical mechanism would offer an opportunity to make the approach useful for NO{sub x} reduction. Whereas fundamental understanding of the mechanism has been obtained, the authors have not found any measure that would make the approach meet its original objective.

Wallman, P.H.; Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.

1995-09-22T23:59:59.000Z

334

Review of Diesel Exhaust Aftertreatment Programs  

DOE Green Energy (OSTI)

The DOE Office of Heavy Vehicle Technologies (OHVT) and its predecessor organizations have maintained aggressive projects in diesel exhaust aftertreatment since 1993. The Energy Policy Act of 1992, Section 2027, specifically authorized DOE to help accelerate the ability of U. S. diesel engine manufacturers to meet emissions regulations while maintaining the compression ignition engines inherently high efficiency. A variety of concepts and devices have been evaluated for NOx and Particulate matter (PM) control. Additionally, supporting technology in diagnostics for catalysis, PM measurement, and catalyst/reductant systems are being developed. This paper provides a summary of technologies that have been investigated and provides recent results from ongoing DOE-sponsored R and D. NOx control has been explored via active NOx catalysis, several plasma-assisted systems, electrochemical cells, and fuel additives. Both catalytic and non-catalytic filter technologies have been investigated for PM control.

Ronald L. Graves

1999-04-26T23:59:59.000Z

335

Diesel Aerosol Sampling in the Atmosphere  

DOE Green Energy (OSTI)

The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

2000-06-19T23:59:59.000Z

336

Affordable, Low-Carbon Diesel Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Affordable, Low-Carbon Diesel Fuel Affordable, Low-Carbon Diesel Fuel from Domestic Coal and Biomass January 14, 2009 DOE/NETL-2009/1349 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

337

DOE Awarded Patent for Reformulated Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awarded Patent for Reformulated Diesel Fuel Awarded Patent for Reformulated Diesel Fuel DOE Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of Energy today announced that it has developed, patented, and made commercially available reformulated diesel fuels which when used can reduce nitrogen oxides up to 10% and particulate matter up to 22% compared to those currently available. The diesel fuel formulations covered under this patent will be commercially available for use without licensing or royalty fees. This reformulated diesel fuel patent resulted from research conducted by the U.S. Department of Energy, Oak Ridge National Laboratory and its subcontractors. "DOE's personnel continue to bring to the forefront technologies and

338

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

339

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

340

Utiization of alternate fuels in diesel engines  

DOE Green Energy (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electrical diesel particulate filter (DPF) regeneration  

SciTech Connect

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

342

Diesel exhaust filter uses steel wool  

SciTech Connect

Researchers are experimenting with a diesel exhaust filter which can use either steel wool or wire mesh as the filter medium. By using alumina coated metal wool as the filter matrix, submicron-sized particulate emissions may be recovered. The particulate trapping efficiency of this kind of filter depends on the amount of alumina applied to it, and its physical dimensions. Surface area, which is a function of all of these, correlates well with trapping efficiency.

Not Available

1982-04-01T23:59:59.000Z

343

Utilization of alternative fuels in diesel engines:  

DOE Green Energy (OSTI)

The thrust of this resarch program has been to determine the effect of various alternative and synthetic fuels on the performance and emissions from Diesel engines. The purpose of research was to investigate the various fuels for extension of existing supplies or as emergency substitutes for Diesel fuels. Thus, the work did not emphasize optimization of the engines for a given fuel;the engines were generally run at manufacturers specifications for conventional fuels. During the various studies, regulated and unregualted emissions were investigated and the biological activity of the soluble organics on the particulate emissions was determined using the Ames test procedure. During the present contract period, three experimental programs were carried out. The first program investigated the utilization of methane and propane in an indirect injection, multicylinder engine. In the other two studies, a single cylinder direct injection Diesel engine was used to investigate the performance and emission characteristics of synthetic fuels derived from tar sands and oil shale and of three fuels derived from coal by the Exxon Donor Solvent (EDS) process. The body of this report consists of three chapters which summarize the experimental equipment, procedures, and major results from the studies of methane and propane fumigation, of synthetic fuels from oil shale and tar sands and of the coal-derived fuels.

Not Available

1987-06-01T23:59:59.000Z

344

PCR+ In Diesel Fuels and Emissions Research  

DOE Green Energy (OSTI)

In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

McAdams, H.T.

2002-04-15T23:59:59.000Z

345

Effects of 2-Ethylhexyl Nitrate on Diesel-Spray Processes  

DOE Green Energy (OSTI)

Diesel fuel ignition-enhancing additives, such as 2-ethylhexyl nitrate, are known to reduce emissions from diesel engines; however, the mechanisms by which the emissions reduction occur are not understood. This report covers the first phase of a research project supported by Ethyl Corporation that is aimed at developing a detailed understanding of how 2-ethylhexyl nitrate alters in-cylinder injection, ignition, and combustion processes to reduce diesel engine emissions.

Higgins, B.; Mueller, C.; Siebers, D.

1998-08-01T23:59:59.000Z

346

X-Ray Absorption Characterization of Diesel Exhaust Particulates  

DOE Green Energy (OSTI)

We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

1999-11-18T23:59:59.000Z

347

Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report  

DOE Green Energy (OSTI)

Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

NONE

1995-10-09T23:59:59.000Z

348

Heating Fuels and Diesel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

349

REQUEST BY DETROIT DIESEL CORPORATION FOR AN ADVANCE WAIVER OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DETROIT DIESEL CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO....

350

EIA: diesel prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

351

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network (OSTI)

Carbonyl compounds present in motor vehicle exhaust, rangingfrom gasoline and diesel motor vehicles. Environ. Sci. Tech.composition and toxicity of motor vehicle emission samples.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

352

Status of Wind-Diesel Applications in Arctic Climates: Preprint  

DOE Green Energy (OSTI)

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

Baring-Gould, I.; Corbus, D.

2007-12-01T23:59:59.000Z

353

Vehicle Technologies Office: 2003 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: Fuels and Lubrication, Part 2 Emissions from Heavy-Duty Diesel Engine with Exhaust Gas Recirculation (EGR) using Oil Sands Derived Fuels Stuart Neill National Research...

354

Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Diesel Fuel Release Date: November 25, 2013 | Next Release Date: December 2, 2013 Reformulated Gasoline. States in each PADD Region. Procedures & Methodology ...

355

Heavy-duty diesel engine oil aging effects on emissions.  

E-Print Network (OSTI)

??Diesel engines are highly reliable, durable and are used for wide range of applications with low fuel usage owing to its higher thermal efficiency compared… (more)

Dam, Mrinmoy.

2010-01-01T23:59:59.000Z

356

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

357

California's efforts to clean up diesel engines have helped reduce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts California's efforts to clean up diesel engines have helped reduce impact of climate change on state, study finds CARB black carbon study shows decrease in emissions...

358

Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery...  

NLE Websites -- All DOE Office Websites (Extended Search)

truck Cummins Westport ISXG high- pressure, direct- injection, lique- fied natural gas (LNG) and diesel Completed in 2004 2 Project Design and Data Collection This report...

359

Diesel DeNOx Catalyst - Energy Innovation Portal  

Because diesel engines are more fuel-efficient than gasoline engines, ... Fossil fuel power plants; Chemical plants; Patents and Patent Applications. ID Number.

360

Price of No. 2 Diesel Fuel Through Retail Outlets  

U.S. Energy Information Administration (EIA)

(Dollars per Gallon Excluding Taxes) Data ... total No. 2 diesel fuel has been eliminated to help ensure that sensitive data reported to EIA by ...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Proceedings of the 1998 diesel engine emissions reduction workshop [DEER  

DOE Green Energy (OSTI)

This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

NONE

1998-12-31T23:59:59.000Z

362

Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, ... 2013 | Next Release Date: November 18, 2013 Diesel Fuel Release Date: November 12, ...

363

Chinese tallow seed oil as a diesel fuel extender  

SciTech Connect

Chinese tallow and stillingia oil are products obtained from the seed of the unmerchantable, but high yielding Chinese tallow tree. Short-term diesel engine performance tests using mixtures 25%:75% and 50%:50% of Chinese tallow tree seed oil and tallow to diesel fuel gave engine power output, brake thermal efficiencies, and fuel consumption rates within 7% of those obtained using pure diesel fuel. Fuel property values of the extended fuels were found to be within limits proposed for diesel engines. 12 references.

Samson, W.D.; Vidrine, C.G.; Robbins, J.W.D.

1985-09-01T23:59:59.000Z

364

Diesel Reforming for Fuel Cell Auxiliary Power Units  

DOE Green Energy (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

365

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2002-07-01T23:59:59.000Z

366

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

SciTech Connect

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

367

Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.  

DOE Green Energy (OSTI)

This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.

Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

2004-12-01T23:59:59.000Z

368

How many gallons of diesel fuel does one barrel of oil ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels ... How many gallons of diesel fuel does one ... and consumed in the ...

369

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

370

TransForum v3n2 - Ethanol Additive for Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

ETHANOL FUEL ADDITIVE MAY HELP SOLVE THE DIESEL EMISSIONS PUZZLE The quest to reduce atmospheric emissions associated with diesel-fueled vehicles has faced a longstanding...

371

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska SUMMARY This EA evaluates the...

372

Investigation Of The Ion Current Signal In Gen-Set Turbocharged Diesel Engine.  

E-Print Network (OSTI)

??Diesel powered generator sets have traditionally been and remain the number-one choice for standby and emergency power systems. As an established engine technology, diesel engines… (more)

Badawy, Tamer Hassan

2010-01-01T23:59:59.000Z

373

Retail prices: diesel outpaces gasoline - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Since mid-2009 the price of retail diesel has been consistently higher than the price of retail regular grade gasoline. Strong diesel demand in emerging economies and ...

374

2011 Brief: U.S. average gasoline and diesel prices over $3 per ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... record U.S. diesel exports and higher diesel fuel demand from truckers transporting more finished goods and raw materials as the ...

375

Investigation of diesel soot mediated oils and additive package on wear.  

E-Print Network (OSTI)

??Contamination of lubricating oil by diesel soot is one of the major causes of increased engine wear. The diesel soot interacts with the engine oil… (more)

Balla, Santhosh Kumar.

2001-01-01T23:59:59.000Z

376

How do I calculate diesel fuel surcharges? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How do I calculate diesel fuel surcharges? The U.S. Energy Information Administration does not calculate, assess, or regulate diesel fuel surcharges.

377

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles? ... the automobile manufacturers probably face the largest diesel-vehicle challenges in the ...

378

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies; Diesel exhaust after-treatment technologies.  

E-Print Network (OSTI)

??Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting… (more)

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

379

Biphase turbine bottoming cycle for a diesel engine  

SciTech Connect

Application of a two-phase turbine system to waste heat recovery was examined. Bottoming cycle efficiencies ranging from 15 to 30% were calculated for a 720/sup 0/F diesel exhaust temperature. A single stage demonstration unit, designed for non-toxic fluids (water and DowTherm A) and for atmospheric seals and bearings, had a cycle efficiency of 23%. The net output power was 276 hp at 8,100 rpm, increasing the total shaft power from 1,800 hp for the diesel alone, to 2,076 hp for the combined system. A four stage organic turbine, for the same application, had a rotational speed of 14,700 rpm while a four stage steam turbine had 26,000 rpm. Fabrication drawings were prepared for the turbine and nozzle. The major improvement leading to higher cycle efficiency and lower turbine rpm was found to be the use of a liquid component with lower sensible heat. A reduction in capital cost was found to result from the use of a contact heat exchanger instead of tube-fin construction. The cost for a contact heat exchanger was only $35-52/kWe compared to $98/kWe for a tube-fin heat exchanger. Design drawings and materials list were prepared. A program resulting in the demonstration of a two-phase bottoming system was planned and the required cost estimated. The program would result in a feasibility test of the nozzle and turbine at the end of the first year, a laboratory performance test of the bottoming system by the end of the second year and a field demonstration test and laboratory endurance test of the bottoming system during the third year. The blowdown test rig for the first year's program and test turbine were designed.

Ahmad, S.; Hays, L.

1977-02-15T23:59:59.000Z

380

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Yong Shang; Fu-shui Liu; Xiang-rong Li

2010-12-01T23:59:59.000Z

382

Biodiesel: The clean, green fuel for diesel engines (fact sheet)  

SciTech Connect

Natural, renewable resources such as vegetable oils and recycled restaurant greases can be chemically transformed into clean-burning biodiesel fuels. As its name implies, biodiesel is like diesel fuel except that it's organically produced. It's also safe for the environment, biodegradable, and produces significantly less air pollution than diesel fuel.

Tyson, K.S.

2000-04-11T23:59:59.000Z

383

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Shang Yong; Liu Fu-shui; Li Xiang-rong

2011-02-01T23:59:59.000Z

384

Comparative Analysis on the Effects of Diesel Particulate Filter and  

E-Print Network (OSTI)

with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF and secondary emissions significantly. Introduction Advances in diesel engine and aftertreatment technologies, samples were first collected from a heavy-duty diesel engine with no aftertreatment system to establish

Wu, Mingshen

385

Diesel prices increase for first time in six weeks  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase for first time in six weeks The U.S. average retail price for on-highway diesel fuel rose to 3.83 a gallon on Monday. That's up 1.1 cents from a week ago,...

386

Trimode Power Converter optimizes PV, diesel and battery energy sources  

SciTech Connect

Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT`s with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

O`Sullivan, G. [Abacus Controls, Inc., Somerville, NJ (United States); Bonn, R.; Bower, W. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

387

Research Approach for Aging and Evaluating Diesel Exhaust catalysts  

DOE Green Energy (OSTI)

To determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses in the 2002-2004 model years. West Virginia University is evaluating: - Diesel Oxidation Catalysts - Lean NOX Catalysts

Wayne, Scott

2000-08-20T23:59:59.000Z

388

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2003-06-01T23:59:59.000Z

389

Demonstrating Ultra-Low Diesel Vehicle Emissions  

DOE Green Energy (OSTI)

Evaluate performance of near-term exhaust emissions control technologies on a modern diesel vehicle over transient drive cycles; Phase 1: Independent (separate) evaluations of engine-out, OEM catalysts, CDPF, and NOx adsorber (Completed March 2000); Phase 2: Combine NOx adsorber and CDPF to evaluate/demonstrate simultaneous reduction of NOx and PM (Underway--interim results available); Establish potential for these technologies to help CIDI engines meet emission reduction targets; and Investigate short-term effects of fuel sulfur on emissions performance

McGill, R.N.

2000-08-20T23:59:59.000Z

390

Vibrational energy transfer in a diesel engine  

Science Conference Proceedings (OSTI)

The paths of vibrational energy transfer in a diesel engine were investigated in order to obtain insight into ways of reducing this transfer to the exterior surfaces and thereby reduce the radiated noise. The engine was tested in a nonrunning condition with simulated internal forces in order to study the different transfer paths separately. Vibration response measurements were made of individual engine components and lumped?parameter models were developed to simulate this response. These models were then used to determine component design changes that would reduce the energy transfer. Two design changes were implemented in the engine and a reduction of the energy transfer was achieved as predicted.

R. G. DeJong; R. H. Lyon

1977-01-01T23:59:59.000Z

391

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

392

Argonne TTRDC - Feature - Combining Gas and Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Gas and Diesel Engines Could Yield the Best of Both Worlds Combining Gas and Diesel Engines Could Yield the Best of Both Worlds by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility It may be hard to believe, but the beloved gasoline engine that powers more than 200 million cars across America every day didn't get its status because it's the most efficient engine. Diesel engines can be more than twice as efficient, but they spew soot and pollutants into the air. Could researchers at the U.S. Department of Energy's Argonne National Laboratory engineer a union between the two-combining the best of both? Steve Ciatti, a mechanical engineer at Argonne, is heading a team to explore the possibilities of a gasoline-diesel engine. The result, so far, is cleaner than a diesel engine and almost twice as efficient as a typical

393

Diesel fuels from shale oil. [Review of selected research  

DOE Green Energy (OSTI)

High-boiling shale oil produced from Rocky Mountain oil shale can be reduced in molecular weight by recycle thermal cracking and by coking. Selected research on the production of diesel fuels from shale oil is reviewed. Diesel fuels of good quality have been made from cracked shale oil by acid and caustic treating. Diesel oil made by this process performed acceptably in an in-service test for powering a railroad engine in a 750-hour test. Better quality diesel fuels were made by hydrogenation of a coker distillate. Even better quality diesel fuels, suitable also for use as high-quality distillate burner fuels, have been made by hydrocracking of a crude shale oil from underground in-situ retorting experiments.

Cottingham, P.L.

1976-01-01T23:59:59.000Z

394

The Biodiesel Handbook, 2nd EditionChapter 3 The Basics of Diesel Engines and Diesel Fuels  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 3 The Basics of Diesel Engines and Diesel Fuels Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters AOCS 14987AFD8C4C7FBFCBA3FD4D98DB9DC5 Press   ...

395

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report  

DOE Green Energy (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

DOE; ORNL; NREL; EMA; MECA

2000-01-15T23:59:59.000Z

396

Infrared optical properties of diesel smoke plumes  

SciTech Connect

Far IR optical properties have been measured for smoke from diesel fires. Concentrations of both gaseous and particulate combustion products have been measured and chemical species contributing to the optical effects identified. To obtain these results, a variety of sampling instruments were lofted into large plumes on a mobile and open structure. The smoke plumes of diesel fires have been found to consist largely of carbonaceous material (in fibrous form) and heavy liquid hydrocarbons infused with the expected gaseous products of the combustion process. Strong attenuation at a wavelength of 10.6 {mu}m is found to be due largely to the carbonaceous aerosol. The absorption coefficient is typically {similar to}500 km{sup {minus}1} at 10 m from the source with a variable but often comparable total scattering coefficient. The extinction coefficient, normalized to the mass density of the aerosol in a unit volume of space, is found to be 1.2 m{sup 2}-g{sup {minus}1} with an estimated variance of 20%. Fluctuational spectra of the attenuation follow a form similar to turbulence spectra.

Bruce, C.W.; Crow, S.B.; Yee, Y.P.; Hinds, B.D. (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico 88002 (US)); Marlin, D. (New Mexico State University, Physical Science Department, University Park, New Mexico 88003); Jelinek, A. (Optimetrics, Inc., 106 E. Idaho, Las Cruces, New Mexico 88001)

1989-10-01T23:59:59.000Z

397

Low heat rejection diesel ceramic coupon tests  

DOE Green Energy (OSTI)

Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia: (1) PSZ-TS and (2) PSZ-MS and silicon nitride (GTE WESGO SNW-1000 and Norton NT-154). Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}S{sup {minus}1}. Room temperature tests showed that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. 6 figs., 1 tab.

Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

1990-01-01T23:59:59.000Z

398

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network (OSTI)

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed intention to install, provides the means for obtaining lower purchased power costs. The functionality of a standby power system and its inherent value in the coming free market purchase of electrical energy are added benefits. Project feasibility, conceptual design, on-site generation facility requirements, interconnection requirements, and operation and maintenance costs will be examined. Installation costs in the range of $350 to $400 per KW and operating costs of approximately $0.06 to $0.07 per kWhr compared to purchased power rates determine the feasibility of an on-site generation system. In some cases avoided demand charges offer an opportunity for savings such that special rates are not needed for a feasible project. Depending on the manufacturer, low capital cost diesel generators are available in 1000 to 2000 KW blocks. Capacity requirements determine the number of engines required. Large capacity installations are somewhat restricted by voltage and current ratings. Some variants for multiple engine generator installations will yield greater reliability or lower costs depending on objectives. Specific requirements for basic building blocks of an on-site generation system will be examined as well as an example of a 5,500 KW installation. IEA provides an alternative to installing and operating an on-site generation system. IEA owns and operates diesel standby generation systems for customers, with responsibility for all maintenance and operation as well as associated costs. This allows customers to focus on core business, not the generation of electrical energy.

Charles, D.

1996-04-01T23:59:59.000Z

399

Examinatal Study on Common Rail Diesel Engine for Multi-injection Strategies  

Science Conference Proceedings (OSTI)

Based on diesel engine equipped with common rail, the multi-injection strategies common rail diesel engine test bed is established with NI test system. In this test bed, the influences of optimized multi-injection strategies to diesel engine performances ... Keywords: common rail, diesel engine, multi-injection, emission

An Shijie; Chang Hanbao; Xu Hongjun

2010-05-01T23:59:59.000Z

400

Getting the Word Out: Diesel Exhaust Fluid (DEF) Locator, Mapping Tools, and Outreach Activities (Presentation)  

DOE Green Energy (OSTI)

Presentation covers diesel exhaust fluid resources on the Alternative Fuels and Advanced Vehicles Data Center.

Brodt-Giles, Debbie

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"U.S. On-Highway Diesel Fuel Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

On-Highway Diesel Fuel Prices" On-Highway Diesel Fuel Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","W Diesel Prices - All Types",11,"Weekly","12/16/2013","3/21/1994" ,"Data 2","M Diesel Prices - All Types",11,"Monthly","11/2013","3/15/1994" ,"Data 3","W Diesel Prices-Low ",1,"Weekly","12/1/2008","2/5/2007" ,"Data 4","M Diesel Prices-Low ",1,"Monthly","12/2008","2/15/2007" ,"Data 5","W Diesel Prices-Ultra-Low",11,"Weekly","12/16/2013","2/5/2007"

402

The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update  

DOE Green Energy (OSTI)

Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

2000-06-19T23:59:59.000Z

403

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines  

Science Conference Proceedings (OSTI)

It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Kass, Michael D [ORNL; Huff, Shean P [ORNL

2008-01-01T23:59:59.000Z

404

Wales, Alaska High Penetration Wind-Diesel Hybrid Power System: Theory of Operation  

Science Conference Proceedings (OSTI)

To reduce the cost of rural power generation and the environmental impact of diesel fuel usage, the Alaska Energy Authority (AEA), Kotzebue Electric Association (KEA, a rural Alaskan utility), and the National Renewable Energy Laboratory (NREL), began a collaboration in late 1995 to implement a high-penetration wind-diesel hybrid power system in a village in northwest Alaska. The project was intended to be both a technology demonstration and a pilot for commercial replication of the system in other Alaskan villages. During the first several years of the project, NREL focused on the design and development of the electronic controls, the system control software, and the ancillary components (power converters, energy storage, electric dump loads, communications links, etc.) that would be required to integrate new wind turbines with the existing diesels in a reliable highly automated system. Meanwhile, AEA and KEA focused on project development activities, including wind resource assessment, site selection and permitting, community relationship building, and logistical planning. Ultimately, the village of Wales, Alaska, was chosen as the project site. Wales is a native Inupiat village of approximately 160 inhabitants, with an average electric load of about 75 kW.

Drouilhet, S.; Shirazi, M.

2002-05-01T23:59:59.000Z

405

Office of Facilities and Grounds Future Power Distribution Grid Requirements for  

E-Print Network (OSTI)

). · This will require the combination of alternate generation (PV, SNG, HFC, etc.), storage, Demand Response switchable circuits ­ Scalable power production (Diesel, SNG, HFC, Batteries) ­ Combine Thermal power

406

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

407

HEALTH EFFECTS OF DIESEL EXHAUST: AN HEI PERSPECTIVE  

DOE Green Energy (OSTI)

Diesel engines have many advantages, including good fuel economy, power, durability, lower emissions of some pollutants (such as carbon monoxide) and of carbon dioxide (a greenhouse gas). However, there are a number of concerns that need to be addressed: (1) emissions of nitrogen oxides (which contribute to ozone formation) and of particulate matter (PM); (2) questions about cancer and other health effects from exposure to diesel PM; and (3) as efforts to decrease emissions progress, a need to understand whether the nature and toxicity of the PM emitted has changed. This paper focuses on (1) carcinogenicity data, (2) noncancer effects, and (3) diesel as part of the complex ambient mixture of PM.

Warren, Jane

2000-08-20T23:59:59.000Z

408

Light-duty diesel engine development status and engine needs  

DOE Green Energy (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

409

Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993  

DOE Green Energy (OSTI)

The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

1993-09-01T23:59:59.000Z

410

PCR+ in Diesel Fuels and Emissions Research  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 PCR+ in Diesel Fuels and Emissions Research MARCH 2002 Prepared by H. T. McAdams AccaMath Services Carrollton, Illinois R. W. Crawford RWCrawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

411

Low heat rejection diesel ceramic coupon tests  

DOE Green Energy (OSTI)

Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia (PSZ-TS and PSZ-MS), silicon nitride (GTE WESGO SNW-1000 and Norton NT-154), and (Hexoloy SA) silicon carbide. Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}s{sup {minus}1}. Room temperature tests indicated that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. Elevated temperature strength comparisons showed no reduction in strength due to previous engine exposure. Hexoloy SA silicon carbide showed no reduction in fracture strength when tested at 700{degree}C. 4 refs., 12 figs., 1 tab.

Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

1991-01-01T23:59:59.000Z

412

STATEMENT OF CONSIDERATIONS PETITION BY DETROIT DIESEL CORPORATION (DDC)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BY DETROIT DIESEL CORPORATION (DDC) BY DETROIT DIESEL CORPORATION (DDC) FOR ADVANCE WAIVER OF U.S. AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER MODIFICATION 17 TO CONTRACT DEN-3-329 [W(A)93-043] The Petitioner is asking for U.S. and foreign patent rights to all subject inventions made under DOE Contract DEN-3-329, Modification 17, entitled "Adiabetic Diesel Engine Component Development". This entire contract is being funded by DOE, but is being administered by the NASA Lewis Research Center. The entire contract has as its object the successful design, fabrication, and demonstration of five stationary and moving structural monolithic ceramic components in an extremely hostile Low Heat Rejection (LHR) environment. DDC was formed in January 1988 to design, manufacture, and sell diesel engines. It is a joint-venture company 80% owned by

413

REQUEST BY DETROIT DIESEL CORPORATION, FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NO. DE-FC05-00OR22805; DOE WAIVER DOCKET W(A)-01-012 ORO-764 Petitioner, Detroit Diesel Corporation, has made a timely request for an advance waiver to worldwide rights in...

414

Wisconsin No 2 Diesel Off-Highway Construction (Thousand Gallons)  

U.S. Energy Information Administration (EIA)

Wisconsin No 2 Diesel Off-Highway Construction (Thousand Gallons) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 16,323: 12,292 ...

415

US BioDiesel Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name US BioDiesel Group Place San Francisco, California Zip 94111 Product San Francisco-based developer of biodiesel production plants in Texas...

416

Retail Prices for Diesel (On-Highway) - All Types  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) 3.911: 3.907: 3.871: 3.850: 3.873: 3 ... EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types ...

417

New England (PADD 1A) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

418

Lower Atlantic (PADD 1C) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

419

Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

420

Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

422

Improving supply chain responsiveness for diesel engine remanufacturing  

E-Print Network (OSTI)

Achieving a significant reduction in order-to-shipment lead-time of remanufactured diesel engines can dramatically decrease the amount of finished goods inventory that Caterpillar needs to carry in order to meet its delivery ...

Méndez de la Luz, Diego A., 1979-

2011-01-01T23:59:59.000Z

423

CONTROL OF DIESEL ENGINE UREA SELECTIVE CATALYTIC REDUCTION SYSTEMS.  

E-Print Network (OSTI)

??A systematic nonlinear control methodology for urea-SCR systems applicable for light-to-heavy-duty Diesel engine platforms in a variety of on-road, off-road, and marine applications is developed… (more)

Hsieh, Ming-Feng

2010-01-01T23:59:59.000Z

424

An Overview of Biodiesel and Petroleum Diesel Life Cycles  

DOE Green Energy (OSTI)

This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated.

Sheehan, J. (NREL); Camobreco, V. (Ecobalance); Duffield, J. (USDA); Shapouri, H. (USDA); Graboski, M. (CIFER); Tyson, K. S. (NREL Project Manager)

2000-04-27T23:59:59.000Z

425

Analysis of parasitic losses in heavy duty diesel engines  

E-Print Network (OSTI)

Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

James, Christopher Joseph

2012-01-01T23:59:59.000Z

426

Characterizing Diesel Smoke and other Aerosols using Polarized...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Diesel Smoke and other Aerosols using Polarized Light Scattering Speaker(s): Arlon Hunt Date: November 17, 1998 - 12:00pm Location: 90-3148 Considerable information...

427

Midwest (PADD 2) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

428

Feature - Air Force Fellows helping work toward smarter diesel engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Force Fellows helping work toward smarter diesel engines Air Force Fellows helping work toward smarter diesel engines Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. (Photo by Wes Agresta) One of the three core values of the Air Force is "excellence in all we do." So it should be no surprise that there are currently two Air Force officers here at Argonne studying ways to improve the efficiency of military vehicles. Lieutenant Colonel Jeff Gillen and Major Clint Abell are the fourth set of Air Force Fellows to spend time at Argonne, but the first to be stationed

429

VARIABLE CHARGE MOTION FOR 2007-2010 DIESEL ENGINES  

DOE Green Energy (OSTI)

The use of direct injection diesel engines in US heavy duty pickup truck applications is becoming increasingly popular with over 250,000 produced in 2002. The high torque density and greatly improved fuel consumption offer distinct advantages to the end user. 2007 and 2010 emissions legislation will present another set of technical and product cost challenges to this type of powertrain. The introduction of efficient aftertreatment systems is mandatory to the success of these engines but optimization of engine-out emissions is also a critical element. Much has been written on the improvements in modern fuel systems which offer great flexibility for the direct introduction of fuel into the cylinder. This paper presents complementary technologies which allow improved air/fuel mixing processes by the additional flexibility of variable in-cylinder charge motion. This approach is particularly applicable to pick-up truck engines, which require high BMEP levels across a wide engine speed range to offer the driveability demanded by the consumer. Design solutions for 2 valve and 4 valve engines are presented along with the potential emissions and fuel consumption benefits.

Maier, J

2003-08-24T23:59:59.000Z

430

Diesel engine lubrication with poor quality residual fuel  

Science Conference Proceedings (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

431

JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.  

DOE Green Energy (OSTI)

The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

2003-06-17T23:59:59.000Z

432

Analysis of a diesel-electric hybrid urban bus system  

DOE Green Energy (OSTI)

A hybrid bus powered by a diesel engine and a battery pack has been analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, have been evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

Marr, W.W.; Sekar, R.R. [Argonne National Lab., IL (United States); Ahlheim, M.C. [Regional Transportation Authority, Chicago, IL (United States)

1993-08-01T23:59:59.000Z

433

Task 4.7 - diesel fuel desulfurization. Semi-annual report, July 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

Reductions in the maximum permissible sulfur content of diesel fuel to less than 0.05 wt% will require deep desulfurization to meet these standards. In some refineries, a new hydrogenation catalyst may be required for diesel fuel production. The work very briefly described in this document is on the use of hydrotalcite-supported molybdenum sulfide in the catalysis of ethanol. The catalyst reaction was highly selective for 1-butanol, providing a very clean reaction. Since the catalysis contains the MoS{sub 2} needed for the dehydrogenation and hydrogenation steps, the reaction can be performed at lower temperatures and higher selectivity. The catalyst was very stable and not destroyed by the water produced in the reaction.

Olson, E.S.

1998-12-31T23:59:59.000Z

434

High-alcohol microemulsion fuel performance in a diesel engine  

DOE Green Energy (OSTI)

Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

West, B.H.; Compere, A.L.; Griffith, W.L.

1990-01-01T23:59:59.000Z

435

Abrasive wear by coal-fueled diesel engine and related particles  

DOE Green Energy (OSTI)

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

436

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and...

437

Midwest (PADD 2) No. 2 Distillate Prices by Sales Type  

U.S. Energy Information Administration (EIA)

Sales to End Users, Average-----1983-2013: Residential-----1983-2013: ... No. 2 Diesel Fuel, Ultra Low-Sulfur : Sales to End Users, Average-----2007-2013:

438

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Solar › Energy in Brief. What's changing in East Coast fuels markets? ... new jersey May 10, 2013 Heating oil futures contract now uses ultra-low sulfur diesel fuel.

439

Williams, Ronald L From: Kelliher. Joseph  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

prod- Very-low-sulfur diesel products have been available ucts comes from the crude oil processed by the refinery commercially in some European countries and in Cali-...

440

www.eia.gov  

U.S. Energy Information Administration (EIA)

Electric Power Use (Electric utility and Nonutility power producers): ... (Check One): Form Approved No. 2 Diesel < 500 ppm Sulfur, Low (include Ultra Low Sulfur)

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Study of using oxygen-enriched combustion air for locomotive diesel engines  

DOE Green Energy (OSTI)

A thermodynamic simulation is used to study effects of O2-enriched intake air on performance and NO emissions of a locomotive diesel engine. Parasitic power of the air separation membrane required to supply the O2-enriched air is also estimated. For a given constraint on peak cylinder pressure, gross and net power output of an engine operating under different levels of O2 enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in 13% increase in net engine power when intake air with 28 vol% O2 is used and fuel injection timing retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can result in only 4% improvement in power. If part of the higher exhaust enthalpies from the O2 enrichment is recovered, the power requirements of the air separator membrane can be met. O2 enrichment with its higher combustion temperatures reduces emissions of particulates and visible smoke but increases NO emissions (by up to 3 times at 26% O2 content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of O2 enrichment for improving the performance of locomotive diesel engines is to be realized.

Poola, R.B.; Sekar, R. [Argonne National Lab., IL (United States); Assanis, D.N. [Michigan Univ., Ann Arbor, MI (United States); Cataldi, G.R. [Association of American Railroads, Washington, DC (United States)

1996-10-01T23:59:59.000Z

442

Low Emissions Aftertreatment and Diesel Emissions Reduction  

Science Conference Proceedings (OSTI)

Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

None

2005-05-27T23:59:59.000Z

443

Oxidation of Low Sulfur Single Crystal Nickel-Base Superalloys  

Science Conference Proceedings (OSTI)

oxidation in air at 1100°C approached a parabolic rate law, after a transient period, ... parabolic rate constants in good agreement with those for growth of a-

444

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

DOE Green Energy (OSTI)

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

445

Recent Progress in the Development of Diesel Surrogate Fuels  

DOE Green Energy (OSTI)

There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

Pitz, W J; Mueller, C J

2009-12-09T23:59:59.000Z

446

Recent Progress in the Development of Diesel Surrogate Fuels  

DOE Green Energy (OSTI)

There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

Pitz, W J

2009-09-04T23:59:59.000Z

447

O2Diesel Corporation formerly Dynamic Ventures | Open Energy Information  

Open Energy Info (EERE)

O2Diesel Corporation formerly Dynamic Ventures O2Diesel Corporation formerly Dynamic Ventures Jump to: navigation, search Name O2Diesel Corporation (formerly Dynamic Ventures) Place Newark, Delaware Zip 19713 Product O2Diesel Corporation has a proprietary additive made from fats and oils, which facilitates the blending of ethanol with diesel. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Coal-fueled diesel engines for locomotive applications  

DOE Green Energy (OSTI)

GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

1993-11-01T23:59:59.000Z

449

A Review on Diesel Soot Emission, its Effect and Control  

E-Print Network (OSTI)

The diesel engines are energy efficient, but their particulate (soot) emissions are responsible of severe environmental and health problems. This review provides a survey on published information regarding diesel soot emission, its adverse effects on the human health, environment, vegetations, climate, etc. The legislations to limit diesel emissions and ways to minimize soot emission are also summarized. Soot particles are suspected to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; impact agriculture productivity, soiling of buildings; reductions in visibility; and global climate change. The review covers important recent developments on technologies for control of particulate matter (PM); diesel particulate filters (DPFs), summarizing new filter and catalyst materials and DPM measurement. DPF technology is in a state of optimization and cost reduction. New DPF regeneration strategies (active, passive and plasma-assisted regenerations) as well as the new learning on the fundamentals of soot/catalyst interaction are described. Recent developments in diesel oxidation catalysts (DOC) are also summarized showing potential issues with advanced combustion strategies, important interactions on NO2 formation, and new formulations for durability. Finally, systematic compilation of the concerned newer literature on catalytic oxidation of soot in a well conceivable tabular form is given. A total of 156 references are cited. © 2010 BCREC UNDIP. All rights reserved.

R. Prasad; Venkateswara Rao Bella

2010-01-01T23:59:59.000Z

450

Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Purchase Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Purchase Requirement Diesel fuel that the New Hampshire Department of Transportation

451

Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows 3-D Animation Shows Complex Geometry of Diesel Particulates to someone by E-mail Share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Facebook Tweet about Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Twitter Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Google Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Delicious Rank Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Digg Find More places to share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on AddThis.com... 3-D Animation Shows Complex Geometry of Diesel Particulates

452

Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Diesel Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on AddThis.com... More in this section... Federal

453

The U.S. average retail price for on-highway diesel fuel rose...  

Gasoline and Diesel Fuel Update (EIA)

The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's...

454

Flame Arrester Evaluation for E-Diesel Fuel Tanks: September 3, 2002 - May 28, 2003  

DOE Green Energy (OSTI)

An evaluation of various flame arresters for use with E-Diesel fuel was conducted on four diesel fuel tanks selected to represent typical fuel tank and fill neck designs. Multiple flame arresters were tested on each fuel tank.

Weyandt, N.; Janssens, M. L.

2003-06-01T23:59:59.000Z

455

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

456

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

Anderson, Byron P.

2011-01-01T23:59:59.000Z

457

Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans  

DOE Green Energy (OSTI)

Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

Lammert, M.

2009-12-01T23:59:59.000Z

458

Evaluating heavy-duty diesel engine aftertreatment devices with a split exhaust configuration.  

E-Print Network (OSTI)

??West Virginia University evaluated diesel oxidation catalysts (DOC) and lean-NOx catalysts as part of the Diesel Emissions Control-Sulfur Effects (DECSE) program. In order to perform… (more)

Corrigan, Eric R.

2001-01-01T23:59:59.000Z

459

Experimental and computational study of soot formation under diesel engine conditions  

E-Print Network (OSTI)

Past research has shown that during diesel combustion, soot is formed in local premixed fuel-rich regions. This project focuses on the fundamentals soot formation under fuel-rich conditions similar to those in diesel engine ...

Kitsopanidis, Ioannis, 1975-

2004-01-01T23:59:59.000Z

460

Combined Catalyzed Soot Filter and SCR Catalyst System for Diesel Engine Emission Reduction  

DOE Green Energy (OSTI)

Substantially reduces particulate emission for diesel vehicles Up to 90% effective against carbonaceous particulate matter Significantly reduces CO and HC Filter regenerates at normal diesel operation temperatures Removable design for easy cleaning and maintenance.

Kakwani, R.M.

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "low-sulfur diesel requirements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell  

E-Print Network (OSTI)

these systems, the wind-diesel industry in Alaska is still fairly new (Drouilhet 2001). 2. PURPOSE In order Laboratory, Report No. TP- 500-31755. 2002. Drouilhet, S. (2001). "Preparing an Existing Diesel Power Plant

Massachusetts at Amherst, University of

462

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

DOE Green Energy (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

463

Durability Evaluation of Urea SCR Catalysts for Heavy Duty Diesel Engines  

DOE Green Energy (OSTI)

Assess the potential long-term durability of various SCR catalyst formulations for mobile heavy duty diesel application.

Koshkarian, Kent

2000-08-20T23:59:59.000Z

464

Emergency Diesel Generator reliability at Department of Energy (DOE) facilities  

Science Conference Proceedings (OSTI)

This report is the culmination of the first phase of a comprehensive effort by the Department of Energy (DOE) Defense Programs (DP) Office of Self-Assessment and Emergency Management (DP-9) to assess the reliability and availability of emergency power supplies (i.e., standby or backup supplies providing electric power to systems or equipment that perform functions important to safety) at DOE management concerns over the recent number of reported failures of emergency and back-up supplies to provide power when required. Augmented Evaluation Team (AET) on-site reviews were conducted during the week of September 30, 1991 at Rocky Flats (RF), and the week of October 7, 1991 at the Richland (RL) and Savannah River (SR) sites to investigate the failures. The AET reviews focused on Emergency Diesel Generator (EDG) failures because they were identified as the dominant contributor to power supply failures (46 of the 77 failures involved EDGs, as opposed to other sources such as batteries, motor-generator sets, etc.). The RF, RL, and SR sites were chosen because they were among the leaders in numbers of EDG failures. The objectives of the AET investigations were to collect, analyze, and document factual information concerning the causes, conditions, and circumstances surrounding EDG failures, to conduct a preliminary assessment of the safety significance of the failures and the site specific and generic safety implications for DOE facilities, and to identify appropriate follow-on actions necessary to complete the overall assessment of the adequacy of emergency and back-up power sources. This report presents the AET findings concerning the reliability of EDGs at the RF, RL, and SR sites, and the safety significance of EDG failures.

Not Available

1992-04-01T23:59:59.000Z

465

Producing Clean, Renewable Diesel from Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy After a rigorous testing process, Energy Department project partners at ThermoChem Recovery International (TRI) have validated a process that converts wood waste and forest residue into clean, renewable fuel. Pilot validation is a key milestone for biofuels companies like TRI. With

466

Wind-Diesel Hybrid Systems for Russia's Northern Territories  

DOE Green Energy (OSTI)

This paper will summarize the DOE/Russian Ministry of Fuel and Energy (MF and E) activities in Russia's Northern Territories in the field of hybrid wind-diesel power systems over the last three years (1997-1999). The National Renewable Energy Laboratory (NREL) supplied technical assistance to the project, including resource assessment, system design, site identification, training and system monitoring. As a result, several wind-diesel systems have been installed and are operating in the Arkhangelsk/Murmansk regions and in Chukotka. NREL designed and provided sets of data acquisition equipment to monitor several of the first pilot wind-diesel systems. NREL's computer simulation models are being used for performance data analysis and optimizing of future system configurations.

Gevorgian, V.; Touryan, K. [National Renewable Energy Laboratory (US); Bezrukikh, P. [Ministry of Fuel and Energy of Russian Federation (RU); Bezrukikh, P. Jr.; Karghiev, V. [Intersolarcenter

1999-10-20T23:59:59.000Z

467

Planar velocity analysis of diesel spray shadow images  

E-Print Network (OSTI)

The focus of this work is to demonstrate how spatially resolved image information from diesel fuel injection events can be obtained using a forward-scatter imaging geometry, and used to calculate the velocities of liquid structures on the periphery of the spray. In order to obtain accurate velocities directly from individual diesel spray structures, those features need to be spatially resolved in the measurement. The distributed structures measured in a direct shadowgraphy arrangement cannot be reliably analyzed for this kind of velocity information. However, by utilizing an intense collimated light source and adding imaging optics which modify the signal collection, spatially resolved optical information can be retrieved from spray edge regions within a chosen object plane. This work discusses a set of measurements where a diesel spray is illuminated in rapid succession by two ultrafast laser pulses generated by a mode-locked Ti-Sapphire oscillator seeding a matched pair of regenerative amplifiers. Light fro...

Sedarsky, David

2012-01-01T23:59:59.000Z

468

Battery control strategy Diesel generator Fuel consumption Hybrid system  

E-Print Network (OSTI)

Standalone diesel generators (DGs) are widely utilized in remote areas in Indonesia. Some areas use microhydro (MH) systems with DGs backup. However, highly diesel fuel price makes such systems become uneconomical. This paper introduces hybrid photovoltaic (PV)/MH/DG/battery systems with a battery control strategy to minimize the diesel fuel consumption. The method is applied to control the state of charge (SOC) level of the battery based on its previous level and the demand load condition to optimize the DG operation. Simulation results show that operations of the hybrid PV/MH/DG/battery with the battery control strategy needs less fuel consumption than PV/MH/DG and MH/DG systems.

Ayong Hiendro; Yohannes M. Simanjuntak

2012-01-01T23:59:59.000Z

469

Particulate measurement issues in diesel exhausts using laser induced incandescence  

DOE Green Energy (OSTI)

A number of studies in the recent past have identified Laser Induced Incandescence (LII) as a versatile technique for in-flame measurement of soot concentrations. Recently, a number of researchers have focused their attention in adapting this technique to measure particulate in diesel exhausts. However the agreement with established physical sampling techniques, such as the EPA recommended filter paper collection method, was found to be less than ideal. This paper reports the efforts to adapt this technique for diesel exhaust characterization. Many of the factors affecting LII signal were identified through computer modeling. Parameters that could not be determined through such a model were determined experimentally following a parametric study. Subsequently, LII measurements were performed in the exhaust of a modified lab burner, with conditions close to that of diesel engine exhausts. Such measurements show excellent agreement with those performed using the standard filter paper collection technique.

Gupta, S. B.; Poola, R. B.; Sekar, R.

2000-07-03T23:59:59.000Z

470

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

471

Eine Methode zur Bestimmung der maximalen Treibsto einsparung in einfachen Wind-Diesel Systemen  

E-Print Network (OSTI)

Eine Methode zur Bestimmung der maximalen Treibsto einsparung in einfachen Wind-Diesel Systemen Wind-Diesel Systemen erreichbaren Treibsto einsparungen zu bestimmen. Der Treibsto verbrauch wird dabei Einleitung Viele der heutigen Wind-Diesel Systeme zur autono- men Versorgung von Verbrauchern in der Groenord

Heinemann, Detlev

472

DIESEL AEROSOL SAMPLING IN THE David Kittelson, Jason Johnson, and Winthrop Watts  

E-Print Network (OSTI)

chemical composition of diesel particulate matter collected in laboratory and in wind tunnel #12;In OrderDIESEL AEROSOL SAMPLING IN THE ATMOSPHERE David Kittelson, Jason Johnson, and Winthrop Watts Center for Diesel Research University of Minnesota 10th CRC ON-ROAD VEHICLE EMISSIONS WORKSHOP San Diego, California

Minnesota, University of

473

[Martin high pressure common rail diesel engine injection system]. Technical progress report, August--October 1995  

DOE Green Energy (OSTI)

We have a contract with Diesel Recerche of Trieste, Italy, and the Fincantier Group in Italy. They are naval ship builders. Our contract is to work with Diesel Recerche to design the `Martin` fuel injection system for their first test engine for a naval ship. Tiby Martin has been working in the design and detailed layout of the application drawings for Diesel Recerche.

NONE

1995-12-01T23:59:59.000Z

474

Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1  

DOE Green Energy (OSTI)

A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

Poola, R.B.; Sekar, R.R.; Assanis, D.N.

1996-09-01T23:59:59.000Z

475

Market Assessment of Retrofit Dual-Fuel Diesel Generators  

Science Conference Proceedings (OSTI)

Reciprocating engines have long played an important role in the distributed resources market and should continue to provide end-use customers and energy companies benefits in both on-site and grid-connected power generation service. This report presents results of collaborative technical and economic market analyses with a major engine manufacturer to examine the prospects for conversion of existing diesel generators in the 500-2000 kW size range to dual-fuel (natural gas and diesel fuel) operation. Thes...

2001-11-30T23:59:59.000Z

476

Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels  

DOE Green Energy (OSTI)

The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 25% by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.

Pitz, W J; Curran, H J; Fisher, E; Glaude, P A; Marinov, N M; Westbrook, C K

1999-10-28T23:59:59.000Z