Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Low-Level Burial Grounds Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage and/or disposal at the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit.

ELLEFSON, M.D.

2000-03-02T23:59:59.000Z

2

Geologic setting of the low-level burial grounds  

SciTech Connect (OSTI)

This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

Lindsey, K.A.; Jaeger, G.K. [CH2M Hill Hanford, Inc., Richland, WA (United States); Slate, J.L. [Associated Western Universities Northwest, Richland, WA (United States); Swett, K.J.; Mercer, R.B. [Westinghouse Hanford Co., Richland, WA (United States)

1994-10-13T23:59:59.000Z

3

Closure Plan for Active Low Level Burial Grounds  

SciTech Connect (OSTI)

This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during and after closure. Environmental monitoring is briefly discussed in this plan. However, a more comprehensive discussion of monitoring issues is provided in a separate performance assessment monitoring plan for LLBGs. Supporting information is provided regarding the geography, climate, hydrogeology, geochemistry and land-use practices of adjacent land areas.

SKELLY, W.A.

2000-11-16T23:59:59.000Z

4

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices  

SciTech Connect (OSTI)

Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

None

1980-06-01T23:59:59.000Z

5

Geologic Descriptions for the Solid-Waste Low Level Burial Grounds  

SciTech Connect (OSTI)

This document provides the stratigraphic framework and six hydrogeologic cross sections and interpretations for the solid-waste Low Level Burial Grounds on the Hanford Site. Four of the new cross sections are located in the 200 West Area while the other two are located within the 200 East Area. The cross sections display sediments of the vadose zone and uppermost unconfined aquifer.

Bjornstad, Bruce N.; Lanigan, David C.

2007-09-23T23:59:59.000Z

6

Hanford facility dangerous waste permit application, low-level burial grounds  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

Engelmann, R.H.

1997-08-12T23:59:59.000Z

7

Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds  

SciTech Connect (OSTI)

The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require regular review and comparison. The annual reports discussed here are the primary sources for these reviews. The pathways of interest are air and groundwater for both operational and post-closure conditions at the LLBG, with groundwater considered to be the most significant long-term exposure pathway. Constituents that contributed at least 0.1% of the total relative hazard were selected as target analytes for monitoring. These are technetium-99, uranium, and iodine-129. Because of its environmental unavailability, carbon 14 was removed from the list of constituents. Given the potential uncertainties in inventories at the 200 Area LLBG and the usefulness of tritium as a contaminant indicator, tritium will be monitored as a constituent of concern at all burial grounds. Preexisting contamination plumes in groundwater beneath low-level waste management areas are attributed to other past-practice liquid waste disposal sites. Groundwater and air will be sampled and analyzed for radiogenic components. Subsidence monitoring will also be performed on a regular basis. The existing near-facility and surveillance air monitoring programs are sufficient to satisfy the performance assessment monitoring. Groundwater monitoring will utilize the existing network of wells at the LLBG, and co-sampling with RCRA groundwater monitoring, to be sampled semiannually. Installation of additional wells is currently underway to replace wells that have gone dry.

None

2006-03-30T23:59:59.000Z

8

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes  

SciTech Connect (OSTI)

This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

9

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text  

SciTech Connect (OSTI)

This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

10

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to widen and operate the unused Trench 33 in the 218-W-5 Low-Level Burial Ground at the U.S. Department of Energy's Richland Operations...

11

Performance Assessment Monitoring Plan for the Hanford Site Low Level Waste Burial Grounds  

SciTech Connect (OSTI)

As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to incorporate and implement conditions specified in the statement. The plan must meet the following criteria. The site-specific performance assessment and composite analysis shall be used to determine the media, locations, radionuclides, and other substances monitored. The environmental monitoring program shall be designed to include measuring and evaluating releases, migration of radionuclides, disposal unit subsidence, and changes in disposal facility and disposal site parameters that may affect long-term performance. The environmental monitoring programs shall be capable of detecting changing trends in performance to allow application of any necessary corrective action before exceeding the performance objectives stated in the order.

SONNICHSEN, J.C.

2000-11-15T23:59:59.000Z

12

EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of...

13

Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds  

SciTech Connect (OSTI)

This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

14

Environmental Assessment and Finding of No Significant Impact: Widening Trench 36 of the 218-E-12B Low-Level Burial Ground, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This environmental assessment was prepared to assess potential environmental impacts associated with the proposed action to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste. Information contained herein will be used by the Manager, U.S. Department of Energy, Richland Operations Office, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No Significant Impact will be issued and the action may proceed. Criteria used to evaluate significance can be found in Title 40, Code of Federal Regulations 1508.27. This environmental assessment was prepared in compliance with the ''National Environmental Policy Act of1969'', as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of ''National Environmental Policy Act'' (Title 40, Code of Federal Regulations 1500-1508), and the U.S. Department of Energy Implementing Procedures for ''National Environmental Polio Act'' (Title 10, Code of Federal Regulations 1021). The following is a description of each section of this environmental assessment. (1) Purpose and Need for Action. This section provides a brief statement concerning the problem or opportunity the U.S, Department of Energy is addressing with the Proposed Action. Background information is provided. (2) Description of the Proposed Action. This section provides a description of the Proposed Action with sufficient detail to identify potential environmental impacts. (3) Alternatives to the Proposed Action. This section describes reasonable,alternative actions to the Proposed Action, which addresses the Purpose and Need. A No Action Alternative, as required by Title 10, Code of Federal Regulations 1021, also is described. (4) Affected Environment. This section provides a brief description of the locale in which the Proposed Action would take place. (5) Environmental Impacts. This section describes the range of environmental impacts, beneficial and adverse, of the Proposed Action. Impacts of alternatives briefly are discussed. (6) Permits and Regulatory Requirements. This section provides a brief description of permits and regulatory requirements for the Proposed Action. (7) Organizations Consulted. This section lists any outside groups, agencies, or individuals contacted as part of the environmental assessment preparation and/or review. (8) References. This section provides a list of documents used to contribute information or data in preparation of this environmental assessment.

N /A

1999-02-11T23:59:59.000Z

15

Fire hazards analysis for solid waste burial grounds  

SciTech Connect (OSTI)

This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

McDonald, K.M.

1995-09-28T23:59:59.000Z

16

Low-level waste shallow burial assessment code  

SciTech Connect (OSTI)

PRESTO (Prediction of Radiation Exposures from Shallow Trench Operationns) is a computer code developed under United States Environmental Protection Agency funding to evaluate possible health effects from radionuclide releases from shallow, radioctive-waste disposal trenches and from areas contaminated with operational spillage. The model is intended to predict radionuclide transport and the ensuing exposure and health impact to a stable, local population for a 1000-year period following closure of the burial grounds. Several classes of submodels are used in PRESTO to represent scheduled events, unit system responses, and risk evaluation processes. The code is modular to permit future expansion and refinement. Near-surface transport mechanisms considered in the PRESTO code are cap failure, cap erosion, farming or reclamation practices, human intrusion, chemical exchange within an active surface soil layer, contamination from trench overflow, and dilution by surface streams. Subsurface processes include infiltration and drainage into the trench, the ensuing solubilization of radionuclides, and chemical exchange between trench water and buried solids. Mechanisms leading to contaminated outflow include trench overflow and downwad vertical percolation. If the latter outflow reaches an aquifer, radiological exposure from irrigation or domestic consumption is considered. Airborne exposure terms are evaluated using the Gaussian plume atmospheric transport formulation as implemented by Fields and Miller (1980).

Fields, D.E.; Little, C.A.; Emerson, C.J.

1981-01-01T23:59:59.000Z

17

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

18

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

19

Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes  

SciTech Connect (OSTI)

A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

Jacobs, D.G.; Epler, J.S.; Rose, R.R.

1980-03-01T23:59:59.000Z

20

Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds  

Broader source: Energy.gov [DOE]

The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SRS Burial Ground Complex: Remediation in Progress  

SciTech Connect (OSTI)

Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

1998-01-21T23:59:59.000Z

22

Cleanup Verification Package for the 618-8 Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

M. J. Appel

2006-08-10T23:59:59.000Z

23

Cleanup Verification Package for the 118-F-1 Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

E. J. Farris and H. M. Sulloway

2008-01-10T23:59:59.000Z

24

Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground  

SciTech Connect (OSTI)

This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

Gaschott, L.J.

1995-06-16T23:59:59.000Z

25

CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS  

SciTech Connect (OSTI)

The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

SWAN, R.J.; LAKES, M.E.

2007-08-06T23:59:59.000Z

26

Vegetation uptake from burial ground alpha waste trenches  

SciTech Connect (OSTI)

This study was conducted as part of an evaluation of the potential radiological consequences of reinhabiting the SRS burial ground. The objective was to determine the uptake of buried, low-level, transuranic waste from unlined earthen trenches by forest vegetation. Two tree plots were established in 1979. One plot was put over a trench containing alpha waste and the other in an area without trenches. When the tree seedlings were sampled during 1979 and 1980, and analysized for {sup 239}Pu and {sup 238}Pu, there was only a small difference in radionuclude concentration between trees planted over the trench and those planted on the control plot because of the limited root intrusion into the trench by the seedlings. However, when trees were sample in 1986, 1987, and 1988 and analyzed for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, and {sup 237}Np activity, the average activity of all of these isotopes was significantly higher over the trenches than in the control plot. These measurements indicate that tree roots will extract transuranic isotopes from buried, low-level waste. The amount of radioisotopes moved from the trenches to the surface is small and the level in the trees is low enough that dose from exposure will be small. The long term effects of transport of radioisotopes from the trenches to the surface soil was evaluated by estimating the accumulation in the surface soil. Transuranic activity in selected food crops was calculated using the soil activity and the literature derived concentration factors. In all cases, the activity of the transuranic isotopes in the edible portion of the plants was quite low. The activity in the leaf tissue was much higher than in the seed. However, it should be noted that in only one case was the activity higher than the naturally occurring activity of {sup 40}K in the pine foliage.

Murphy, C.E. Jr.; Tuckfield, R.C.

1989-01-01T23:59:59.000Z

27

CEMENTITIOUS BARRIERS MODELING FOR PERFORMANCE ASSESSMENTS OF SHALLOW LAND BURIAL OF LOW LEVEL RADIOACTIVE WASTE - 9243  

SciTech Connect (OSTI)

The Cementitious Barriers Partnership (CBP) was created to develop predictive capabilities for the aging of cementitious barriers over long timeframes. The CBP is a multi-agency, multi-national consortium working under a U.S. Department of Energy (DOE) Environmental Management (EM-21) funded Cooperative Research and Development Agreement (CRADA) with the Savannah River National Laboratory (SRNL) as the lead laboratory. Members of the CBP are SRNL, Vanderbilt University, the U.S. Nuclear Regulatory Commission (USNRC), National Institute of Standards and Technology (NIST), SIMCO Technologies, Inc. (Canada), and the Energy Research Centre of the Netherlands (ECN). A first step in developing advanced tools is to determine the current state-of-the-art. A review has been undertaken to assess the treatment of cementitious barriers in Performance Assessments (PA). Representatives of US DOE sites which have PAs for their low level waste disposal facilities were contacted. These sites are the Idaho National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, Nevada Test Site, and Hanford. Several of the more arid sites did not employ cementitious barriers. Of those sites which do employ cementitious barriers, a wide range of treatment of the barriers in a PA was present. Some sites used conservative, simplistic models that even though conservative still showed compliance with disposal limits. Other sites used much more detailed models to demonstrate compliance. These more detailed models tend to be correlation-based rather than mechanistically-based. With the US DOE's Low Level Waste Disposal Federal Review Group (LFRG) moving towards embracing a risk-based, best estimate with an uncertainties type of analysis, the conservative treatment of the cementitious barriers seems to be obviated. The CBP is creating a tool that adheres to the LFRG chairman's paradigm of continuous improvement.

Taylor, G

2009-01-09T23:59:59.000Z

28

118-K-1 Burial Ground - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrincetonOPT Optics MetrologyDepartment118-K-1 Burial

29

Cleanup Verification Package for the 118-F-6 Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

H. M. Sulloway

2008-10-02T23:59:59.000Z

30

Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris.

J. M. Capron

2008-01-21T23:59:59.000Z

31

618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned  

SciTech Connect (OSTI)

A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

Darby, J. W.

2012-06-28T23:59:59.000Z

32

Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

M. J. Appel and J. M. Capron

2007-07-25T23:59:59.000Z

33

Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189  

SciTech Connect (OSTI)

The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

Simpson, A.; Pitts, M. [Pajarito Scientific Corporation, 2976 Rodeo Park Drive East, Santa Fe, NM 87505 (United States)] [Pajarito Scientific Corporation, 2976 Rodeo Park Drive East, Santa Fe, NM 87505 (United States); Ludowise, J.D.; Valentinelli, P. [Washington Closure Hanford, 2620 Fermi Ave., Richland, WA 99354 (United States)] [Washington Closure Hanford, 2620 Fermi Ave., Richland, WA 99354 (United States); Grando, C.J. [ELR Consulting, Inc., 15247 Wilbur Rd., La Conner, WA 98257 (United States)] [ELR Consulting, Inc., 15247 Wilbur Rd., La Conner, WA 98257 (United States); Haggard, D.L. [WorleyParsons Polestar, 601 Williams Blvd., Richland, WA 99354 (United States)] [WorleyParsons Polestar, 601 Williams Blvd., Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

34

area burial ground: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Medicine Campus Yoshida-South Campus (Clock Tower Takada, Shoji 83 AREAS OF GROUND SUBSIDENCE DUE TO GEO-FLUID WITHDRAWAL University of California eScholarship Repository...

35

area burial grounds: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Medicine Campus Yoshida-South Campus (Clock Tower Takada, Shoji 83 AREAS OF GROUND SUBSIDENCE DUE TO GEO-FLUID WITHDRAWAL University of California eScholarship Repository...

36

Transuranic element uptake and cycling in a forest over an old burial ground  

SciTech Connect (OSTI)

The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste.

Murphy, C.E. Jr.; Tuckfield, J.C.

1992-07-01T23:59:59.000Z

37

Transuranic element uptake and cycling in a forest over an old burial ground  

SciTech Connect (OSTI)

The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste.

Murphy, C.E. Jr.; Tuckfield, J.C.

1992-01-01T23:59:59.000Z

38

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect (OSTI)

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

39

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

J. D. Ludowise; K. L. Vialetti

2008-05-12T23:59:59.000Z

40

Interim Action Proposed Plan for the old radioactive waste burial ground (643-E)  

SciTech Connect (OSTI)

This Interim Action Proposed (IAPP) is issued by the U.S. Department of Energy (DOE), which functions as the lead agency for SRS remedial activities, and with concurrence by the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The purpose of this IAPP is to describe the preferred interim remedial action for addressing the Old Radioactive Waste Burial Ground (ORWBG) unit located in the Burial Ground Complex (BGC) at the Savannah River Site (SRS) in Aiken, South Carolina. On December 21, 1989, SRS was included on the National Priorities List (NPL). In accordance with Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), DOE has negotiated a Federal Facility Agreement (FFA, 1993) with EPA and SCDHEC to coordinate remedial activities at SRS. Public participation requirements are listed in Sections 113 and 117 of CERCLA. These requirements include establishment of an Administrative Record File that documents the selection of remedial alternatives and allows for review and comment by the public regarding those alternatives. The SRS Public Involvement Plan (PIP) (DOE, 1994) is designed to facilitate public involvement in the decision-making process for permitting closure, and the selection of remedial alternatives. Section 117(a) of CERCLA, 1980, as amended, requires publication of a notice of any proposed remedial action.

McFalls, S.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

J. D. Ludowise

2006-12-12T23:59:59.000Z

42

Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities  

SciTech Connect (OSTI)

The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

Hladek, K.L.

1997-10-07T23:59:59.000Z

43

A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994  

SciTech Connect (OSTI)

This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

1994-11-01T23:59:59.000Z

44

Geohydrology of the 218-W-5 Burial Ground, 200-West Area, Hanford Site  

SciTech Connect (OSTI)

Construction a disposal facility for solid, mixed low-level radioactive and hazardous wastes at the Hanford Site in southeastern Washington State (Figure 1) is planned. A site-specific performance assessment for each new disposal facility to ensure that wastes will be isolated from the environment is required. To demonstrate the adequacy of the facility for isolating the wastes, computer codes are used to simulate the physical processes that could cause the waste to migrate to underground water supplies or to the land's surface. The purpose of this report is provide a compilation and interpretation of geologic and hydrologic data available use in the performance assessment modeling. A variety of data are needed to model flow and transport from a solid-waste burial trench. These data include soil water content, soil moisture potential, saturated and unsaturated hydraulic conductivity, and phase mineralogy of the soils and sediments within the vadose zone. The hydrologic data that are critical for quantifying the water storage and transport properties for unsaturated soils require a characterization of the heterogeneities of various soil layers and the moisture characteristic curves for these layers. Hydraulic properties and mineralogic data for the saturated sediments are also important for modelling the flow and transport of wastes in the unconfined aquifer. This report begins with a discussion of the procedures and methods used to gather data both in the field and in the laboratory. This is followed by a summary of the geology, including the stratigraphic framework, lithofacies, and mineralogic/geochemical characteristics of the suprabasalt sediments. The hydrology of the region of the site is discussed next. In this discussion, the characteristics of the uppermost aquifer(s), unsaturated zone, and the various hydrogeologic units are presented. 54 refs., 39 figs., 11 tabs.

Bjornstad, B.N.

1990-05-01T23:59:59.000Z

45

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

J.D. Ludowise

2009-06-17T23:59:59.000Z

46

Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington  

SciTech Connect (OSTI)

This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

Dresel, P Evan

2004-10-25T23:59:59.000Z

47

Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water  

SciTech Connect (OSTI)

A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

1997-07-01T23:59:59.000Z

48

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

K. L. Vialetti

2008-05-20T23:59:59.000Z

49

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2007-04-12T23:59:59.000Z

50

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-12-06T23:59:59.000Z

51

Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults  

SciTech Connect (OSTI)

The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs.

Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

1987-12-01T23:59:59.000Z

52

SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS  

SciTech Connect (OSTI)

After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

MCSHANE DS

2010-03-25T23:59:59.000Z

53

Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-03-01T23:59:59.000Z

54

Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

Not Available

1994-06-01T23:59:59.000Z

55

Predynastic Burials  

E-Print Network [OSTI]

prédynastique In ancient Egypt, the primary evidence for thefrom burials. In Upper Egypt, there is a clear trend overIn Aspects of early Egypt, ed. Jeffrey Spencer, pp. 1 - 15.

Stevenson, Alice

2009-01-01T23:59:59.000Z

56

RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details.

Not Available

1993-01-01T23:59:59.000Z

57

Vertical Extraction Process Implemented at the 118-K-1 Burial Ground for Removal of Irradiated Reactor Debris from Silo Structures - 12431  

SciTech Connect (OSTI)

The primary objective of a remediation project is the safe extraction and disposition of diverse waste forms and materials. Remediation of a solid waste burial ground containing reactor hardware and irradiated debris involves handling waste with the potential to expose workers to significantly elevated dose rates. Therefore, a major challenge confronted by any remediation project is developing work processes that facilitate compliant waste management practices while at the same time implementing controls to protect personnel. Traditional burial ground remediation is accomplished using standard excavators to remove materials from trenches and other excavation configurations often times with minimal knowledge of waste that will be encountered at a specific location. In the case of the 118-K-1 burial ground the isotopic activity postulated in historic documents to be contained in vertical cylindrical silos was sufficient to create the potential for a significant radiation hazard to project personnel. Additionally, certain reported waste forms posed an unacceptably high potential to contaminate the surrounding environment and/or workers. Based on process knowledge, waste management requirements, historic document review, and a lack of characterization data it was determined that traditional excavation techniques applied to remediation of vertical silos would expose workers to unacceptable risk. The challenging task for the 118-K-1 burial ground remediation project team then became defining an acceptable replacement technology or modification of an existing technology to complete the silo remediation. Early characterization data provided a good tool for evaluating the location of potential high exposure rate items in the silos. Quantitative characterization was a different case and proved difficult because of the large diameter of the silos and the potential for variable density of attenuating soils and waste forms in the silo. Consequently, the most relevant information supporting job planning and understanding of the conditions was the data obtained from the gross gamma meter that was inserted into each casing to provide a rough estimate of dose rates in the tubes. No added value was realized in attempting to quantify the source term and/or associate the isotopic activity with a particular actual waste form (e.g., sludge). Implementing the WRM system allowed monitoring of worker and boundary exposure rates from a distance, maintaining compliance with ALARA principles. This system also provided the project team early knowledge of items being removed that had high exposure rates associated with them, thus creating an efficient method of acknowledging an issue and arriving at a solution prior to having an upset condition. An electronic dosimeter with telemetry capability replaced the excavator mounted AMP-100 system approximately half way through remediation of the silos. Much higher connectivity efficiency was derived from this configuration. Increasing the data feed efficiency additionally led to less interruption of the remediation effort. Early in system testing process a process handicap on the excavator operator was acknowledged. A loss of depth perception resulted when maneuvering the excavator and bucket using the camera feed to an in-cab monitor. Considerable practice and mock-up testing allowed this handicap to be overcome. The most significant equipment failures involved the cable connection to the camera mounted between the clamshell bucket jaws and the video splitter in the excavator cab. Rotation of the clamshell bucket was identified as the cause of cable connection failures because of the cyclic twisting motion and continuous mechanical jarring of the connection. In-cab vibration was identified as the culprit in causing connection failures of the video splitter. While these failures were repaired, substantial production time was lost. Ultimately, the decision was made to purchase a second cable and higher quality video splitter eliminate the down time. An engineering improvement for future operations would be i

Teachout, Douglas B. [Vista Engineering Technologies, LLC, Richland, Washington, 99352 (United States); Adamson, Clinton J.; Zacharias, Ames [Washington Closure Hanford, LLC, Richland, Washington, 99352 (United States)

2012-07-01T23:59:59.000Z

58

Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices  

SciTech Connect (OSTI)

This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

Conner, K.R.

2000-12-12T23:59:59.000Z

59

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

NONE

1995-01-10T23:59:59.000Z

60

Geophysical investigation of selected sites in burial grounds 218-W-3A, -4B, and -4C  

SciTech Connect (OSTI)

Ground-penetrating radar (GPR) and electro-magnetic induction(EMI) were successfully used to delineate buried wastes in Trenches 218-W-3A, -4B, and -4C and determine the amount of soil cover of the buried wastes.

Kiesler, J.P.

1996-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

62

Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the release of tritium from the southwest plume area to Fourmile Branch between 25 to 35 percent. If this proposed action is undertaken and its effectiveness is demonstrated, it may become a component of the final action in the CAP. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR 1500-1508); and the DOE Regulations for Implementing NEPA (10 CFR 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact (FONSI) or prepare an environmental impact statement (EM).

N /A

1999-12-08T23:59:59.000Z

63

Low-Level Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

1999-07-09T23:59:59.000Z

64

Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site  

SciTech Connect (OSTI)

This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

1998-03-01T23:59:59.000Z

65

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

66

Low level tank waste disposal study  

SciTech Connect (OSTI)

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

67

Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site  

SciTech Connect (OSTI)

A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

2004-07-09T23:59:59.000Z

68

Low Level Radioactive Waste Authority (Michigan)  

Broader source: Energy.gov [DOE]

Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority ...

69

An Integrated Low Level Heat Recovery System  

E-Print Network [OSTI]

A large amount of low level thermal energy is lost to air or water in a typical petroleum refinery. This paper discusses a complex integrated low level heat recovery system that is being engineered for installation in a large petroleum refinery...

Sierra, A. V., Jr.

1981-01-01T23:59:59.000Z

70

Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program  

SciTech Connect (OSTI)

The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

1981-12-01T23:59:59.000Z

71

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This paper provides highlights from the 1992 winter meeting of the Low Level Radioactive Wastes Forum. Topics of discussion included: legal information; state and compact reports; freedom of information requests; and storage.

Sternwheeler, W.D.E.

1992-12-31T23:59:59.000Z

72

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This report provides highlights from the 1992 fall meeting of the Low LEvel Radioactive Waste Forum. Topics included: disposal options after 1992; interregional agreements; management alternatives; policy; and storage.

NONE

1992-12-31T23:59:59.000Z

73

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This paper provides highlights from the spring meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: state and compact reports; New York`s challenge to the constitutionality of the Low-Level Radioactive Waste Amendments Act of 1985; DOE technical assistance for 1993; interregional import/export agreements; Department of Transportation requirements; superfund liability; nonfuel bearing components; NRC residual radioactivity criteria.

NONE

1992-12-31T23:59:59.000Z

74

Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

1996-01-01T23:59:59.000Z

75

Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, Southeast Washington  

SciTech Connect (OSTI)

A composite analysis of low-level radioactive waste disposal and other radioactive sources was recently completed for the Hanford Site in Southeast Washington State. Impacts from source release and environmental transport were estimated for a 1000-year period following Site closure in a multi-step process involving 1) estimation of radiological inventories and release, 2) assessment of contaminant migration through the vadose zone, groundwater, and atmospheric pathways, 3) and estimation of doses. The analysis showed that most of the radionuclide inventory in past-practice liquid discharge sites and pre-1988 solid waste burial grounds on the 200 Area Plateau will be released in the first several hundred years following Hanford Site closure, well before projected releases from active and planned disposals of solid waste. The maximum predicted agricultural dose was less than 6 mrem/y in 2050 and declined thereafter. The maximum doses for the residential, industrial, and recreational scenarios, were 2.2, 0.7, and 0.04 mrem/y, respectively, and also declined after 2050.

Kincaid, Charles T.; Bergeron, Marcel P.; Cole, Charles R.; Freshley, Mark D.; Johnson, Vernon G.; Kaplan, D. I.; Serne, R. Jeffrey; Streile, Gary P.; Strenge, Dennis L.; Thorne, Paul D.; Vail, Lance W.; Whyatt, Greg A.; Wurstner, Signe K.

2000-03-01T23:59:59.000Z

76

Engineered sorbent barriers for low-level waste disposal.  

SciTech Connect (OSTI)

The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

1986-12-01T23:59:59.000Z

77

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This report contains highlights from the 1991 fall meeting of the Low Level Radioactive Waste Forum. Topics included legal updates; US NRC updates; US EPA updates; mixed waste issues; financial assistance for waste disposal facilities; and a legislative and policy report.

NONE

1991-12-31T23:59:59.000Z

78

Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development  

SciTech Connect (OSTI)

This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

79

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

80

Low level waste management: a compilation of models and monitoring techniques. Volume 1  

SciTech Connect (OSTI)

In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques.

Mosier, J.E.; Fowler, J.R.; Barton, C.J. (comps.)

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lid design for low level waste container  

DOE Patents [OSTI]

A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

Holbrook, Richard H. (Clinton, TN); Keener, Wendell E. (Lenior City, TN)

1995-01-01T23:59:59.000Z

82

Lid design for low level waste container  

DOE Patents [OSTI]

A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

Holbrook, R.H.; Keener, W.E.

1995-02-28T23:59:59.000Z

83

Detecting low levels of radionuclides in fluids  

DOE Patents [OSTI]

An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)

2000-01-01T23:59:59.000Z

84

Mixed low-level waste form evaluation  

SciTech Connect (OSTI)

A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

1997-03-01T23:59:59.000Z

85

Solid low-level waste forecasting guide  

SciTech Connect (OSTI)

Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

Templeton, K.J.; Dirks, L.L.

1995-03-01T23:59:59.000Z

86

IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD  

SciTech Connect (OSTI)

The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste container. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements.

UYTIOCO EM

2007-11-14T23:59:59.000Z

87

HEALTH EFFECTS OF LOW-LEVEL IONIZING RADIATION  

E-Print Network [OSTI]

LO~Z-lEVEL IONIZIN(l RADIATION Jacob I . Fabti kant April ··OF LOW~LEVEL IONIZING RADIATION BEFORE THE SUBCOMMITTEE ONwill low~level ionizing radiation. restricted primarily to

Fabrikant, Jacob I.

2012-01-01T23:59:59.000Z

88

Twelfth annual US DOE low-level waste management conference  

SciTech Connect (OSTI)

The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

Not Available

1990-01-01T23:59:59.000Z

89

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

90

US Army facility for the consolidation of low-level radioactive waste  

SciTech Connect (OSTI)

A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables.

Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

1983-12-01T23:59:59.000Z

91

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect (OSTI)

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01T23:59:59.000Z

92

Mixed and Low-Level Treatment Facility Project  

SciTech Connect (OSTI)

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

Not Available

1992-04-01T23:59:59.000Z

93

Hanford low-level tank waste interim performance assessment  

SciTech Connect (OSTI)

The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

Mann, F.M.

1997-09-12T23:59:59.000Z

94

Hanford low-level tank waste interim performance assessment  

SciTech Connect (OSTI)

The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single- and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and its performance as early as possible in the project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

Mann, F.M.

1996-09-16T23:59:59.000Z

95

Burial container subsidence load stress calculations  

SciTech Connect (OSTI)

This document captures the supporting analyses conducted to determine if the LLCE (Long-Length Contaminated Equipment) burial containers are structurally adequate under different trench closure scenarios. The LLCE is equipment that was inside tank farm tanks.

Veith, E.M.

1995-11-01T23:59:59.000Z

96

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

97

Effects of Low Level Laser Therapy on Orthodontic Pain  

E-Print Network [OSTI]

Purpose: To determine the effectiveness of low level laser therapy applied extra orally on the reduction of orthodontic pain. Materials and Methods: Sixty dental students were voluntarily recruited for this randomized, double-blinded, placebo...

Buchwald, Bradley

2014-04-28T23:59:59.000Z

98

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental...

99

Low-Level Radioactive Waste Disposal Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and...

100

Low-level radioactive waste regulation: Science, politics and fear  

SciTech Connect (OSTI)

An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

Burns, M.E. (ed.)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

102

Performance assessment methodology and preliminary results for low-level radioactive waste disposal in Taiwan.  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern the disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.

Arnold, Bill Walter; Chang, Fu-lin (Institute of Nuclear Energy Research, Taiwan); Mattie, Patrick D.; Knowlton, Robert G.; Chuang, W-S (Institute of Nuclear Energy Research, Taiwan); Chi, L-M (Institute of Nuclear Energy Research, Taiwan); Jow, Hong-Nian; Tien, Norman C. (Institute of Nuclear Energy Research, Taiwan); Ho, Clifford Kuofei

2006-02-01T23:59:59.000Z

103

Proceedings of the tenth annual DOE low-level waste management conference: Session 6: Closure and decommissioning  

SciTech Connect (OSTI)

This document contains eight papers on various aspects of low-level radioactive waste management. Topics include: site closure; ground cover; alternate cap designs; performance monitoring of waste trenches; closure options for a mixed waste site; and guidance for environmental monitoring. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

104

Modeling and low-level waste management: an interagency workshop  

SciTech Connect (OSTI)

The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

Little, C.A.; Stratton, L.E. (comps.)

1980-01-01T23:59:59.000Z

105

Immobilized low-level waste disposal options configuration study  

SciTech Connect (OSTI)

This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

Mitchell, D.E.

1995-02-01T23:59:59.000Z

106

Low-level radioactive waste disposal facility closure  

SciTech Connect (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

107

Low-Level Waste Disposal Alternatives Analysis Report  

SciTech Connect (OSTI)

This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

2006-09-01T23:59:59.000Z

108

Proceedings: 2001 EPRI International Low-Level Waste Conference  

SciTech Connect (OSTI)

Nuclear utilities are continually evaluating methods to improve operations and minimize cost. EPRI's tenth annual International Low Level Waste (LLW) Conference--coupled with the 22nd annual ASME/EPRI Radwaste Workshop--offered valuable insights into this effort by presenting papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal, and regulation.

None

2001-12-01T23:59:59.000Z

109

The Application of GPR in Florida for Detecting Forensic Burials  

SciTech Connect (OSTI)

A study was performed at the University of Florida to measure ground penetrating radar(GPR) performance for detecting forensic burials. In controlled scenarios, 24 burials were constructed with pig cadavers. Two soils were utilized to represent two of the most common soil orders in Florida: an Entisol and an Ultisol. Graves were monitored on a monthly basis for time periods up to 21 months with grid data acquired with pulsed and swept-frequency GPR systems incorporating several different frequency antennas. A small subset of the graves was excavated to assess decomposition and relate to the GPR images during the test. The grave anomalies in the GPR depth profiles became less distinctive over time due to body decomposition and settling of the disturbed soil (backfill) as it compacted. Soil type was a major factor. Grave anomalies became more difficult to recognize over time for deep targets that were within clay. Forensic targets that were in sandy soil were recognized for the duration of this study. Time elapsed imagery will be presented to elucidate the changes, or lack thereof, of grave anomalies over the duration of this study. Further analysis was performed using Synthetic Aperture Radar (SAR) reconstruction of images in 2-D and 3-D.

S. K. Koppenjan; J. J. Schultz; S. Ono; H. Lee

2003-01-01T23:59:59.000Z

110

Digging Begins at Hazardous Hanford Burial Ground - River Corridor  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseload Operation |

111

Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314  

SciTech Connect (OSTI)

At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)

Kolberg, Mark [Baird and Associates, 1267 Cornwall Rd., Suite 100, Oakville ON, L6J7T5 (Canada)] [Baird and Associates, 1267 Cornwall Rd., Suite 100, Oakville ON, L6J7T5 (Canada); Case, Glenn [Atomic Energy of Canada Limited, Port Hope, ON (Canada)] [Atomic Energy of Canada Limited, Port Hope, ON (Canada); Ferguson Jones, Andrea [MMM Group Limited, Thornhill, ON (Canada)] [MMM Group Limited, Thornhill, ON (Canada)

2013-07-01T23:59:59.000Z

112

Residential Burial in Global Perspective Ron L. Adams  

E-Print Network [OSTI]

1 Residential Burial in Global Perspective Ron L. Adams Simon Fraser University and Stacie M. King important parts of archaeological anal- yses, rarely has residential burial ­ the practice of burying contexts in which residential burial has occurred and discuss the different ways that archaeologists have

Scheiber, Laura L.

113

National Low-Level Waste Management Program Radionuclide Report Series  

SciTech Connect (OSTI)

This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process.

Rudin, M.J.; Garcia, R.S.

1992-02-01T23:59:59.000Z

114

A model for a national low level waste program  

SciTech Connect (OSTI)

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

115

Mixed and low-level waste treatment facility project  

SciTech Connect (OSTI)

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

116

Management of low-level radioactive wastes around the world  

SciTech Connect (OSTI)

This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

Lakey, L.T.; Harmon, K.M.; Colombo, P.

1985-04-01T23:59:59.000Z

117

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect (OSTI)

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01T23:59:59.000Z

118

Steam reforming of low-level mixed waste  

SciTech Connect (OSTI)

The U.S. department of Energy (DOE) is responsible for the treatment and disposal of an inventory of approximately 160,000 tons of Low-Level Mixed Waste (LLMW). Most of this LLMW is stored in drums, barrels and steel boxes at 20 different sites throughout the DOE complex. The basic objective of low-level mixed waste treatment systems is to completely destroy the hazardous constituents and to simultaneously isolate and capture the radionuclides in a superior final waste form such as glass. The DOE is sponsoring the development of advanced technologies that meet this objective while achieving maximum volume reduction, low-life cycle costs and maximum operational safety. ThermoChem, Inc. is in the final stages of development of a steam-reforming system capable of treating a wide variety of DOE low-level mixed waste that meets these objectives. The design, construction, and testing of a nominal 1 ton/day Process Development Unit is described.

Voelker, G.E.; Steedman, W.G. [Thermochem, Inc., Columbia, MD (United States); Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

1996-12-31T23:59:59.000Z

119

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)  

Broader source: Energy.gov [DOE]

The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

120

State-of-the-art report on low-level radioactive waste treatment  

SciTech Connect (OSTI)

An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

Kibbey, A.H.; Godbee, H.W.

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear reactor with low-level core coolant intake  

DOE Patents [OSTI]

A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

1993-01-01T23:59:59.000Z

122

System for chemically digesting low level radioactive, solid waste material  

DOE Patents [OSTI]

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

123

Proceedings: 2002 EPRI International Low Level Waste Conference  

SciTech Connect (OSTI)

Nuclear utilities are continually evaluating methods to improve operations and minimize cost. EPRI's 11th annual International Low Level Waste (LLW) Conference--coupled with the 25th annual Radwaste Workshop cosponsored by the American Society of Mechanical Engineers (ASME) and EPRI--offered valuable insights into this effort. Industry representatives presented papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal, and regulation. This year, in collaboration with the International Atomic Energy Agency (IAEA), foreign participation increased, with papers from Canada, Korea, Germany, Finland, Ukraine, Belgium, the Slovak Republic, and the United Kingdom expanding the conference scope.

None

2002-09-01T23:59:59.000Z

124

Proceedings: 2003 EPRI International Low Level Waste Conference  

SciTech Connect (OSTI)

Nuclear utilities are continually evaluating methods to improve operations and minimize cost. EPRI's Twelfth Annual International Low Level Waste (LLW) Conference--coupled with the 24th Annual ASME/EPRI Radwaste Workshop--offered valuable insights into this effort by presenting papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal, and regulation. EPRI accomplished the conference planning in collaboration with the International Atomic Energy Agency (IAEA). In addition to the United States, international representatives from the IAEA, Korea, Hungary, Canada, the United Kingdom, Japan, and Germany presented papers.

None

2004-04-01T23:59:59.000Z

125

Alpha low-level stored waste systems design study  

SciTech Connect (OSTI)

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-08-01T23:59:59.000Z

126

Alpha low-level stored waste systems design study  

SciTech Connect (OSTI)

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-08-01T23:59:59.000Z

127

Mobile plant for low-level radioactive waste reprocessing  

SciTech Connect (OSTI)

Along with nuclear power plants, many scientific and industrial enterprises generate radioactive wastes, especially low-level liquid wastes. Some of these facilities generate only small amounts on the order of several dozen cubic meters per year. The Moscow scientific industrial association, Radon, developed a mobile pilot system, EKO, for the processing of LLW with a low salt content. The plant consists of three modules: ultrafiltration module; electrodialysis module; and filtration module. The paper describes the technical parameters and test results from the plant on real LLW.

Sobolev, I.A.; Panteleyev, V.I.; Demkin, V.I. [Government of Moscow (Russian Federation). Dept. of Engineering Supply

1993-12-31T23:59:59.000Z

128

Solid low level waste forms and extended storage  

SciTech Connect (OSTI)

This paper presents regulatory, technical, and economic aspects of selecting solid waste forms for the extended on-site storage of power plant low level wastes (LLW) in the United States. The author explains current uncertainties and disposal site shortages, defines power plant waste types, addresses regulatory requirements for disposal, discusses basic waste form storage considerations, outlines possible strategies for the management of individual waste types, and offers methodological steps for selecting a waste form for extended storage. Broader issues closely associated with waste form selection are also presented.

Kohout, R. [R. Kohout & Associates, Ltd., Toronto, Ontario (Canada)

1995-11-01T23:59:59.000Z

129

Low-Level Waste Overview of the Nevada Test Site  

SciTech Connect (OSTI)

This paper provides an overview and the impacts of new policies, processes, and opportunities at the Nevada Test Site. Operational changes have been implemented, such as larger trench sizes and more efficient soil management as have administrative processes to address U.S. Department of Energy and U.S. Code of Federal Regulation analyses. Some adverse conditions have prompted changes in transportation and mixed low-level waste polices, and a new funding mechanism was developed. This year has seen many changes to the Nevada Test Site disposal family.

J. T. Carilli; M. G. Skougard; S. K. Krenzien; J.K Wrapp; C. Ramirez; V. Yucel; G.J. Shott; S.J. Gordon; K.C. Enockson; L.T. Desotell

2008-02-01T23:59:59.000Z

130

Low-Level Waste Disposal Facility Federal Review Group Manual  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy InvitationLegaltoLizLow- LEVEL WASTE DISPOSAL FACILITY

131

Steam Reforming of Low-Level Mixed Waste  

SciTech Connect (OSTI)

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

132

Lamar Low-Level Jet Program Interim Report  

SciTech Connect (OSTI)

This interim report presents the results to date from the Lamar Low-Level Jet Program (LLLJP) that has been established as joint effort among the U.S. Department of Energy (DOE), the National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory (NREL), and General Electric Wind Energy (GE Wind). The purpose of this project is to develop an understanding of the influence of nocturnal low-level jet streams on the inflow turbulence environment and the documenting of any potential operating impacts on current large wind turbines and the Low Wind Speed Turbine (LWST) designs of the future. A year's record of detailed nocturnal turbulence measurements has been collected from NREL instrumentation installed on the GE Wind 120-m tower in southeastern Colorado and supplemented with mean wind profile data collected using an acoustic wind profiler or SODAR (Sound Detection and Ranging). The analyses of measurements taken as part of a previous program conducted at the NWTC have been used to aid in the interpretation of the results of representative case studies of data collected from the GE Wind tower.

Kelley, N.; Shirazi, M.; Jager, D.; Wilde, S.; Adams, J.; Buhl, M.; Sullivan, P.; Patton, E.

2004-01-01T23:59:59.000Z

133

Treatment options for low-level radiologically contaminated ORNL filtercake  

SciTech Connect (OSTI)

Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

Lee, Hom-Ti [Oak Ridge Associated Universities, Inc., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

1996-04-01T23:59:59.000Z

134

Overview of resuspension model: application to low level waste management  

SciTech Connect (OSTI)

Resuspension is one of the potential pathways to man for radioactive or chemical contaminants that are in the biosphere. In waste management, spills or other surface contamination can serve as a source for resuspension during the operational phase. After the low-level waste disposal area is closed, radioactive materials can be brought to the surface by animals or insects or, in the long term, the surface can be removed by erosion. Any of these methods expose the material to resuspension in the atmosphere. Intrusion into the waste mass can produce resuspension of potential hazard to the intruder. Removal of items from the waste mass by scavengers or archeologists can result in potential resuspension exposure to others handling or working with the object. The ways in which resuspension can occur are wind resuspension, mechanical resuspension and local resuspension. While methods of predicting exposure are not accurate, they include the use of the resuspension factor, the resuspension rate and mass loading of the air.

Healy, J.W.

1980-01-01T23:59:59.000Z

135

WRAP low level waste (LLW) glovebox acceptance test report  

SciTech Connect (OSTI)

In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

Leist, K.J.

1998-02-17T23:59:59.000Z

136

Preliminary low-level waste feed staging plan  

SciTech Connect (OSTI)

A Preliminary Low-Level Waste Feed Staging Plan was prepared. The plan supports the Phase I privatization effort by providing recommendations that may influence the technical content of the final request for proposal, and the interface control documents for the turnover of two double-shell tanks (DST) to the private contractors for use as feed tanks and the transfer of supernate to these tanks. Additionally, the preliminary schedule of feed staging activities will be useful to both RL and the private bidders during the contract negotiation period. A revised feed staging plan will be issued in August 1996 reflecting anticipated changes in the request for proposal, resolution of issues identified in this report, and completion of additional work scope.

Certa, P.J.

1996-02-05T23:59:59.000Z

137

Costs of mixed low-level waste stabilization options  

SciTech Connect (OSTI)

Selection of final waste forms to be used for disposal of DOE`s mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability.

Schwinkendorf, W.E.; Cooley, C.R.

1998-03-01T23:59:59.000Z

138

Catastrophic Animal Mortality Management (Burial Method) Technical Guidance  

E-Print Network [OSTI]

-farm methods include burial, composting, and incineration. Incinerators and composters are excellent options with catastrophic events. Composting and incineration should not be relied on for catastrophic mortality handling

Mukhtar, Saqib

139

Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams  

SciTech Connect (OSTI)

Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)

Blauvelt, Richard [Navarro Engineering Research Inc. (United States); Small, Ken [Doe Nevada (United States); Gelles, Christine [DOE EM HQ (United States); McKenney, Dale [Fluor Hanford (United States); Franz, Bill [LATA Portsmouth (United States); Loveland, Kaylin [Energy Solutions Inc. (United States); Lauer, Mike [Waste Control Specialists (United States)

2006-07-01T23:59:59.000Z

140

Remediation alternatives for low-level herbicide contaminated groundwater  

SciTech Connect (OSTI)

In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

Conger, R.M. [BASF Corp., Geismar, LA (United States)

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Feedback Configuration Tools for LHC Low Level RF  

SciTech Connect (OSTI)

The LHC Low Level RF System (LLRF) is a complex multi-VME crate system which is used to regulate the superconductive cavity gap voltage as well as to lower the impedance as seen by the beam through low latency feedback. This system contains multiple loops with several parameters to be set before the loops can be closed. In this paper, we present a suite of MATLAB based tools developed to perform the preliminary alignment of the RF stations and the beginnings of a closed loop model based alignment routine. We briefly introduce the RF system and in particular the base band (time domain noise based) network analyzer system built into the LHC LLRF. The main focus of this paper is the methodology of the algorithms used by the routines within the context of the overall system. Measured results are presented that validate the technique. Because the RF systems are located in a cavern 120 m underground in a location which is relatively un-accessible without beam and completely un-accessible with beam present or magnets are energized, these remotely operated tools are a necessity for the CERN LLRF team to maintain and tune their LLRF systems in a similar fashion as to what was done very successfully in PEP-II at SLAC.

Van Winkle, D.; Fox, J.; Mastorides, T.; Rivetta, C.; /SLAC; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN

2009-12-16T23:59:59.000Z

142

Selected radionuclides important to low-level radioactive waste management  

SciTech Connect (OSTI)

The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

NONE

1996-11-01T23:59:59.000Z

143

Steam reforming of low-level mixed waste. Final report  

SciTech Connect (OSTI)

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

144

WRAP low level waste (LLW) glovebox operational test report  

SciTech Connect (OSTI)

The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

Kersten, J.K.

1998-02-19T23:59:59.000Z

145

Reproductive toxicity of low-level lead exposure in men  

SciTech Connect (OSTI)

Parameters of semen quality, seminal plasma indicators of secretory function of the prostate and seminal vesicles, sex hormones in serum, and biomarkers of lead, cadmium, copper, zinc, and selenium body burden were measured in 240 Croatian men 19-52 years of age. The subjects had no occupational exposure to metals and no known other reasons suspected of influencing male reproductive function or metal metabolism. After adjusting for age, smoking, alcohol, blood cadmium, and serum copper, zinc, and selenium by multiple regression, significant (P<0.05) associations of blood lead (BPb), {delta}-aminolevulinic acid dehydratase (ALAD), and/or erythrocyte protoporphyrin (EP) with reproductive parameters indicated a lead-related increase in immature sperm concentration, in percentages of pathologic sperm, wide sperm, round sperm, and short sperm, in serum levels of testosterone and estradiol, and a decrease in seminal plasma zinc and in serum prolactin. These reproductive effects were observed at low-level lead exposure (BPb median 49 {mu}g/L, range 11-149 {mu}g/L in the 240 subjects) common for general populations worldwide. The observed significant synergistic effect of BPb and blood cadmium on increasing serum testosterone, and additive effect of a decrease in serum selenium on increasing serum testosterone, may have implications on the initiation and development of prostate cancer because testosterone augments the progress of prostate cancer in its early stages.

Telisman, Spomenka [Institute for Medical Research and Occupational Health, Ksaverska cesta 2, P.O. Box 291, HR-10001 Zagreb (Croatia)], E-mail: telisman@imi.hr; Colak, Bozo [University Clinic for Diabetes, Endocrinology and Metabolic Diseases 'Vuk Vrhovac', Zagreb (Croatia); Pizent, Alica; Jurasovic, Jasna [Institute for Medical Research and Occupational Health, Ksaverska cesta 2, P.O. Box 291, HR-10001 Zagreb (Croatia); Cvitkovic, Petar [University Clinic for Diabetes, Endocrinology and Metabolic Diseases 'Vuk Vrhovac', Zagreb (Croatia)

2007-10-15T23:59:59.000Z

146

Mixed low-level waste minimization at Los Alamos  

SciTech Connect (OSTI)

During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

Starke, T.P.

1998-12-01T23:59:59.000Z

147

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

148

Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas  

SciTech Connect (OSTI)

Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

2002-02-26T23:59:59.000Z

149

Long-length contaminated equipment burial containers fabrication process procedures  

SciTech Connect (OSTI)

These special process procedures cover the detailed step-by-step procedures required by the supplier who will manufacture the Long-Length Contaminated Equipment (LLCE) Burial Container design. Also included are detailed step-by-step procedures required by the disposal process for completion of the LLCE Burial Containers at Hanford.

McCormick, W.A., Fluor Daniel Hanford

1997-03-11T23:59:59.000Z

150

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) ...  

Broader source: Energy.gov (indexed) [DOE]

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the...

151

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina)  

Broader source: Energy.gov [DOE]

The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the...

152

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak...  

Broader source: Energy.gov (indexed) [DOE]

05: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge...

153

Microbial degradation of low-level radioactive waste. Final report  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

1996-06-01T23:59:59.000Z

154

1989 Annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

Not Available

1990-10-01T23:59:59.000Z

155

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect (OSTI)

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01T23:59:59.000Z

156

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect (OSTI)

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

157

Proposed design requirements for high-integrity containers used to store, transport, and dispose of high-specific-activity, low-level radioactive wastes from Three Mile Island Unit II  

SciTech Connect (OSTI)

This report develops proposed design requirements for high integrity containers used to store, transport and/or dispose of high-activity, low-level radioactive wastes from Three Mile Island Unit II. The wastes considered are the dewatered resins produced by the EPICOR II waste treatment system used to clean-up the auxiliary building water. The radioactivity level of some of these EPICOR II liners is 1300 curies per container. These wastes may be disposed of in an intermediate depth burial (10 to 20 meter depth) facility. The proposed container design requirements are directed to ensure isolation of the waste and protection of the public health and safety.

Vigil, M.G.; Allen, G.C.; Pope, R.B.

1981-04-01T23:59:59.000Z

158

Low-level Waste Forum meeting report. Winter meeting, January 26--28, 1994  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1994-12-31T23:59:59.000Z

159

Low-level Waste Forum meeting report. Summer meeting, July 21--23, 1993  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1993-12-31T23:59:59.000Z

160

Low-level Waste Forum meeting report. Quarterly meeting, July 25--26, 1991  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low-level Waste Forum meeting report. Spring meeting, April 28--30, 1993  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1993-12-31T23:59:59.000Z

162

Packaging design criteria modified fuel spacer burial box. Revision 1  

SciTech Connect (OSTI)

Various Hanford facilities must transfer large radioactively contaminated items to burial/storage. Presently, there are eighteen Fuel Spacer Burial Boxes (FSBBs) available on the Hanford Site for transport of such items. Previously, the FSBBS were transported from a rail car to the burial trench via a drag-off operation. To allow for the lifting of the boxes into the burial trench, it will be necessary to improve the packagings lifting attachments and provide structural reinforcement. Additional safety improvements to the packaging system will be provided by the addition of a positive closure system and package ventilation. FSBBs that are modified in such a manner are referred to as Modified Fuel Spacer Burial Boxes (MFSBs). The criteria provided by this PDC will be used to demonstrate that the transfer of the MFSB will provide an equivalent degree of safety as would be provided by a package meeting offsite transportation requirements. This fulfills the onsite transportation safety requirements implemented in WHC-CM-2-14, Hazardous Material Packaging and Shipping. A Safety Analysis Report for Packaging (SARP) will be prepared to evaluate the safety of the transfer operation. Approval of the SARP is required to authorize transfer. Criteria are also established to ensure burial requirements are met.

Stevens, P.F.

1994-09-13T23:59:59.000Z

163

Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms  

SciTech Connect (OSTI)

The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

Holtzscheiter, E.W. [Westinghouse Savannah River Company, AIKEN, SC (United States); Harbour, J.R.

1998-05-01T23:59:59.000Z

164

E-Print Network 3.0 - alternative llw low-level Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

anticyclone over the subtropical... . Low-level anticy- clonic vorticity of the mean flow environment over some parts of the southwestern Source: Collection: Environmental Sciences...

165

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

166

1996 annual report on low-level radioactive waste management progress. Report to Congress  

SciTech Connect (OSTI)

This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal.

NONE

1997-11-01T23:59:59.000Z

167

Multibeam Observations of Mine Scour and Burial near Clearwater, Florida, Including a Test of the VIMS 2D Mine Burial Model  

E-Print Network [OSTI]

of the VIMS 2D Mine Burial Model by Monica L. Wolfson A thesis submitted in partial fulfillment Comparison of A3 Multibeam Observations to the VIMS 2D Burial Model Comparison of F8 Multibeam Observations to the VIMS 2D Burial Model

New Hampshire, University of

168

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

SciTech Connect (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

169

An object-oriented implementation of a Low Level Reader Protocol (LLRP) library  

E-Print Network [OSTI]

This Master of Engineering Thesis describes the design and implementation of an object-oriented Low Level Reader Protocol (LLRP) library. LLRP is a recently released protocol which standardizes the formats and methods of ...

Constantinou, Fivos

2007-01-01T23:59:59.000Z

170

EA-1135: Offsite Thermal Treatment of Low-level Mixed Waste, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to treat contact-handled low-level mixed waste, containing polychlorinated biphenyls and other organics, to meet existing regulatory...

171

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine Gelles*, U.S. Department of Energy ; Edward Regnier, U.S. Department of Energy; Andrew Wallo,...

172

Florida State Briefing Book for low-level radioactive-waste management  

SciTech Connect (OSTI)

The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

none,

1981-06-01T23:59:59.000Z

173

Wyoming State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

Not Available

1981-10-01T23:59:59.000Z

174

North Carolina State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

Not Available

1981-08-01T23:59:59.000Z

175

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)  

Broader source: Energy.gov [DOE]

The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect...

176

Puerto Rico State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

Not Available

1981-10-01T23:59:59.000Z

177

South Carolina State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

Not Available

1981-08-01T23:59:59.000Z

178

Texas State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

Not Available

1981-08-01T23:59:59.000Z

179

Midwest Interstate Compact on Low-Level Radioactive Waste (Multiple States)  

Broader source: Energy.gov [DOE]

The Midwest Interstate Low-Level Radioactive Waste Compact is an agreement between the states of Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin that provides for the cooperative and safe...

180

EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

New Jersey State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

Not Available

1981-04-01T23:59:59.000Z

182

Comparison of cellular responses induced by low level light in different cell types  

E-Print Network [OSTI]

Discoveries are rapidly being made in multiple laboratories that shed "light" on the fundamental molecular and cellular mechanisms underlying the use of low level light therapy (LLLT) in vitro, in animal models and in ...

Hamblin, Michael R.

183

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State...

184

Maine State Briefing Book on low-level radioactive waste management  

SciTech Connect (OSTI)

The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

Not Available

1981-08-01T23:59:59.000Z

185

Massachusetts State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

Not Available

1981-03-12T23:59:59.000Z

186

annual doe low-level: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fitzpatrick, Gerard; McBreen, Sheila; Tierney, Dave 2011-01-01 115 The role of environment in low-level AGN activity: no evidence for cluster enhancement CERN Preprints...

187

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

188

North Dakota State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

none,

1981-10-01T23:59:59.000Z

189

1994 annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

NONE

1995-04-01T23:59:59.000Z

190

Utah State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

Not Available

1981-10-01T23:59:59.000Z

191

A multiple layer numerical model of the formation of the low-level jet  

E-Print Network [OSTI]

low-level wind was noted by Parmenter (1976). The low-level wind maximum appeared, typically, along the western Gulf of Mexico, with its origin in the Bay of Campeche. Using satellite and conventional observations, Parmenter found that oc.... The eddy diffusivity is parameterized by Blackadar's formula (1979). The tendency equation is obtained on the basis of the hydrostatic assumption. A modification has been done in the Richard- son equation for the vertical wind speed. The initial...

Shen, Tsu-Cheng

1980-01-01T23:59:59.000Z

192

Managing low-level radioactive waste in a democratic society: Requirements and accommodations  

SciTech Connect (OSTI)

This paper will focus on public policy needs to ensure the involvement of the general public in effective decision-making related to the handling of low-level radioactive waste. It highlights difficulties experienced in involving the public in siting low-level radioactive waste disposal facilities. It reviews the process recently developed by Illinois to locate a disposal facility and discusses that process`s potential as a general model for siting such facilities and involving citizens in a democratic fashion.

Ortciger, T. [Illinois Dept. of Nuclear Safety, Springfield, IL (United States); Ayers, M. [Sangamon State Univ., Springfield, IL (United States)

1993-12-31T23:59:59.000Z

193

Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513  

SciTech Connect (OSTI)

The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

194

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

195

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01T23:59:59.000Z

196

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-06-01T23:59:59.000Z

197

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-03-01T23:59:59.000Z

198

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-04-01T23:59:59.000Z

199

Evaluation of the fatty acid composition and caloric value of ground beef formulated to contain low levels of fat  

E-Print Network [OSTI]

. 02e . 09 p3d e pgcd 1 gde . 02e . 27d psde 27d . 02e Total fatly acids 4. 57gh 5 45ef 6 opde 6 60d 7 61c 4 42h 4 91lgh 4 84fgh 5 1 sfg 5 61e 5 g8de a Cooked to one level of doneness. b Mean values of two chemical analyses per sample. F...Nic Palmitoleic Stearic . 79c . 33d 5 23c 1 46c 3 26c 10. 20 37h 2 90h . 879k 5. 35' 80c . 43c 5 23c 1 37c 2. 574 9. 254 44g h . 1919 3 30gh . 919 44lgh . 1919 3 20gh . 97'9 2. 00s 9 1. 969 6 69fgh 6 43lgh . 55def 24 sf g 3 80ef...

Campbell, Laura Elaine

2012-06-07T23:59:59.000Z

200

Letter report: Minor component study for low-level radioactive waste glasses  

SciTech Connect (OSTI)

During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

Li, H.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Arc Detection and Interlock Module for the PEP II Low Level RF System  

SciTech Connect (OSTI)

A new arc detection and interlock generating module for the SLAC PEP-II low-level RF VXI-based system has been developed. The system is required to turn off the RF drive and high voltage power supply in the event of arcing in the cavity windows, klystron window, or circulator. Infrared photodiodes receive arc signals through radiation resistant optical fibers. Gain and bandwidth are selectable for each channel to allow tailoring response. The module also responds to interlock requests from other modules in the VXI system and communicates with the programmable logic controller (PLC) responsible for much of the low-level RF system's interlock functionality.

Tighe, R.; /SLAC

2011-08-31T23:59:59.000Z

202

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes  

E-Print Network [OSTI]

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes than 28.5°C) that appears in the Gulf of Mexico, the Caribbean Sea, and the western tropical North the tropical North Atlantic into the Caribbean Sea where the flow intensifies forming the Caribbean Low

Wang, Chunzai

203

The Caribbean Low-Level Jet and Its Relationship with Precipitation in IPCC AR4 Models  

E-Print Network [OSTI]

The Caribbean Low-Level Jet and Its Relationship with Precipitation in IPCC AR4 Models ELINOR R Report (AR4) shows that all models have the ability to simulate the location and height of the Caribbean Caribbean and, hence, an overly strong CLLJ. The ability of the models to simulate the correlation between

Martin, Elinor R.

204

Variability of the Caribbean Low-Level Jet and its relations Chunzai Wang  

E-Print Network [OSTI]

Variability of the Caribbean Low-Level Jet and its relations to climate Chunzai Wang Received: 11 Abstract A maximum of easterly zonal wind at 925 hPa in the Caribbean region is called the Caribbean Low), and a minimum of tropical cyclo- genesis in July in the Caribbean Sea. It is found that both the meridional

Wang, Chunzai

205

National Low-Level Waste Management Program radionuclide report series. Volume 13, Curium-242  

SciTech Connect (OSTI)

This report, Volume 13 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of curium-242 ({sup 242}Cm). This report also includes discussions about waste types and forms in which {sup 242}Cm can be found and {sup 242}Cm behavior in the environment and in the human body.

Adams, J.P.

1995-08-01T23:59:59.000Z

206

Low level jet development during a numerically simulated return flow event  

E-Print Network [OSTI]

of the obstacle. This simulation shows that the structure of the lower tropospheric air flow during a period of return flow is complex. When mid-level westerlies are weak, mesoscale processes govern the development of low level jets. As the westerly winds increase...

Igau, Richard Charles

1994-01-01T23:59:59.000Z

207

A team effort: Reducing the volume of low-level radioactive waste  

SciTech Connect (OSTI)

This article describes the team effort at Entergy Operation`s River Bend Station in Louisiana to reduce the volume of low-level radioactive waste. Topic areas covered include the following: Assessment - waste composition analysis using EPRI guidelines; grassroots effort; release facility - managing the waste; emerging technologies; spreading the success. 4 fig.

Zimmermann, K.

1996-09-01T23:59:59.000Z

208

New low-level rf system for the Fermilab Booster synchrotron  

SciTech Connect (OSTI)

This paper describes the Booster low-level rf system that was constructed to meet these recently added requirements: (1) synthesizer controlled capture frequency at injection, (2) very low-phase noise over the machine cycle, (3) smooth phase-lock of beam to an external reference frequency and (4) ability to accelerate either a full turn or partial turn of beam.

Kerns, C.; Crisp, J.; Kerns, Q.; Miller, H.

1987-03-01T23:59:59.000Z

209

Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program  

SciTech Connect (OSTI)

The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base. (ATT)

Not Available

1983-12-01T23:59:59.000Z

210

Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization  

SciTech Connect (OSTI)

This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete.

Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

1995-07-01T23:59:59.000Z

211

National Low-Level Waste Management Program Radionuclide Report Series, Volume 17: Plutonium-239  

SciTech Connect (OSTI)

This report, Volume 17 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of plutonium-239 (Pu-239). This report also discusses waste types and forms in which Pu-239 can be found, waste and disposal information on Pu-239, and Pu-239 behavior in the environment and in the human body.

J. P. Adams; M. L. Carboneau

1999-03-01T23:59:59.000Z

212

Impact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City  

E-Print Network [OSTI]

the radiation and surface energy balance. As a result, cities are known to affect weather and climateImpact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City XIAO-MING HU/Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado FUQING ZHANG Department of Meteorology

Xue, Ming

213

Closure Plan for the E-Area Low-Level Waste Facility  

SciTech Connect (OSTI)

A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans.

Cook, J.R.

2000-10-30T23:59:59.000Z

214

Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

N /A

1999-05-06T23:59:59.000Z

215

Low-Level Detections of Halogenated Volatile Organic Compounds in Groundwater  

E-Print Network [OSTI]

compounds; Groundwater management; Drinking water. Introduction Approximately one-half of the U and Hitt 2006 , or more complex process-based analyses utilizing groundwater models Eberts et al. 2005Low-Level Detections of Halogenated Volatile Organic Compounds in Groundwater: Use in Vulnerability

216

Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste  

SciTech Connect (OSTI)

This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ``unpackaged`` volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste.

Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

1994-09-01T23:59:59.000Z

217

Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text  

SciTech Connect (OSTI)

This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

Not Available

1988-05-01T23:59:59.000Z

218

E-Print Network 3.0 - age temperature burial Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or phenological differences may... ERDC TN-EMRRP-EI-03 September 2008 Short-Term Sediment Burial Effects on the Seagrass Phyllospadix... outfalls (Littler and Murray 1975) and...

219

E-Print Network 3.0 - ancient human burials Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medicine 78 WORKING WITH THE HISTORIC ENVIRONMENT BPG NOTE 14 Summary: , d) an ancient coppice stool, e) WWII military training trenches, f) former railway line, g) burial... ....

220

Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste  

SciTech Connect (OSTI)

This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

Morrell, D.K.; Fischer, D.K.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA  

SciTech Connect (OSTI)

The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

Winn, W.G.

1999-07-28T23:59:59.000Z

222

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

David Duncan

2011-05-01T23:59:59.000Z

223

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

224

Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices  

SciTech Connect (OSTI)

This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

Mayberry, J.L.; Huebner, T.L. [Science Applications International Corp., Idaho Falls, ID (United States); Ross, W. [Pacific Northwest Lab., Richland, WA (United States); Nakaoka, R. [Los Alamos National Lab., NM (United States); Schumacher, R. [Westinghouse Savannah River Co., Aiken, SC (United States); Cunnane, J.; Singh, D. [Argonne National Lab., IL (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Greenhalgh, W. [Westinghouse Hanford Co., Richland, WA (United States)

1993-08-01T23:59:59.000Z

225

Greater-than-Class C low-level waste characterization technical review process  

SciTech Connect (OSTI)

Existing volume projections of greater-than-Class C low-level waste (GTCC LLW) vary significantly. The Department of Energy (DOE) National Low-Level Waste Management Program (NLLWMP) has undertaken activities to develop a best estimate of GTCC LLW volumes and activities for use as the planning basis. Initial information about the generation of GTCC LLW was obtained through a DOE Energy Information Administration survey. That information, combined with information from other related literature, formed the basis of a computer model, which projects potential GTCC LLW. This paper describes uncertainties in existing GTCC LLW characterization and volume projections data and describes the technical review process that is being used to assist in projections of GTCC LLW expected for storage and disposal. 8 refs., 2 tabs.

Hutchison, D.; Magleby, M.

1990-01-01T23:59:59.000Z

226

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2011-03-01T23:59:59.000Z

227

Criteria for releases and disposal of low level and intermediate level waste in Sweden  

SciTech Connect (OSTI)

In Sweden there exists a complete system for management, including final disposal, of all radioactive wastes which are not classified as long-lived or high-level waste. This paper will present the disposal options and the requirements set on the waste categories as well as Sweden`s four different engineered shallow land disposals. The advantages of having a shallow land disposal together with exemption of waste and a final storage facility for low-level and intermediate-level waste are discussed. Finally, the paper will give a summary of why Sweden has succeeded in establishing a full system for low-level and intermediate-level waste. The discussion is from regulatory point of view.

Lindbom, G. [Swedish Radiation Protection Inst., Stockholm (Sweden). Div. of Waste Management and Environmental Protection

1993-12-31T23:59:59.000Z

228

Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)  

SciTech Connect (OSTI)

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

229

Cyclogenesis and the low-level jet over the southern Great Plains  

E-Print Network [OSTI]

-Level Jet Over the Southern Great Plains. (December 1980) David Scott Ladwig, B. S. , Oklahoma State University Chairman of Advisory Committee: Dr. Dusan Djuric An investigation of the development of the low-level jet as an integral part of winter... the high plains of western Texas, Oklahoma, and Kansas shortly after the polar air mass reached the northern Gulf of Mexico. Ojuric and Oamiani (1 8G) showed that after development over the high plains, the LLJ spread horizontally, eventually reaching...

Ladwig, David Scott

2012-06-07T23:59:59.000Z

230

Effects on chickens of continuous exposure to low level electromagnetic, electric, and magnetic fields  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE December 1972 Major Subjects Nuclear Engineering (Health Physics) EFFECTS ON CHI CKENS OF CONT INUOUS EXPOSURE TO LOW LEVEL ELECTRONAGNETIC, ELECTRIC, AND MAGNETIC 1 IELDS A Thesis by ROBERT SHERWOOD HOWELL Approved... exposure to ionizing radiation. The treated groups appear to have a significantly reduced growth rate and a slightly increased feed conversion ratio. The spleen weight in the 260 MHz {calculated average input power density of 0. 029 mW/cm ) group...

Howell, Robert Sherwood

1972-01-01T23:59:59.000Z

231

Health effects of low-level radiation in shipyard workers. Final report: [Draft  

SciTech Connect (OSTI)

The Nuclear Shipyard Workers Study (NSWS) was designed to determine whether there is an excess risk of leukemia or other cancers associated with exposure to low levels of gamma radiation. The study compares the mortality experience of shipyard workers who qualified to work in radiation areas to the mortality of similar workers who hold the same types of jobs but who are not authorized to work in radiation areas. The population consists of workers from six government and two private shipyards.

Matanoski, G.M.

1991-06-01T23:59:59.000Z

232

Siting of low-level radioactive waste disposal facilities in Texas  

E-Print Network [OSTI]

University property was evaluated for suitability for disposal of low-level radioactive waste. This site was evaluated to demonstrate, briefly, the site characterization process and to determine the ability of the statewide study to accurately predict... these boreholes. Literature review was an additional method employed to characterize the site. The results of this site characterization reveal that a more extensive investigation would be necessary to completely evaluate the site and that the state- wide...

Isenhower, Daniel Bruce

1982-01-01T23:59:59.000Z

233

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect (OSTI)

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

234

Efficacy of Low Level Laser Therapy After Hand Flexor Tendon Repair  

SciTech Connect (OSTI)

Flexor tendon injury is a common problem requiring suturing repair followed by early postoperative mobilization. Muscle atrophy, joint stiffness, osteoarthritis, infection, skin necrosis, ulceration of joint cartilage and tendocutaneous adhesion are familiar complications produced by prolonged immobilization of surgically repaired tendon ruptures. The purpose of this study was to clarify the importance of low level laser therapy after hand flexor tendon repair in zone II. Thirty patients aging between 20 and 40 years were divided into two groups. Patients in group A (n = 15) received a conventional therapeutic exercise program while patients in group B (n = 15) received low level laser therapy combined with the same therapeutic exercise program. The results showed a statistically significant increase in total active motion of the proximal and distal interphalangeal joints as well as maximum hand grip strength at three weeks and three months postoperative, but improvement was more significant in group B. It was concluded that the combination of low level laser therapy and early therapeutic exercises was more effective than therapeutic exercises alone in improving total active motion of proximal and distal interphalangeal joints and hand grip strength after hand flexor tendon repair.

Ayad, K. E.; Abd El Mejeed, S. F. [Faculty of Physical Therapy, Cairo University (Egypt); El Gohary, H. M.; Abd Elrahman, M.; Bekheet, A. B. [Al Sahel Teaching Hospital, Cairo (Egypt)

2009-09-27T23:59:59.000Z

235

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

236

Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

Tyacke, M.

1993-08-01T23:59:59.000Z

237

Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

Tyacke, M.; Schmitt, R.

1993-07-01T23:59:59.000Z

238

618-10 and 618-11 Burial Grounds - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025Steps to Making

239

Dying Green A Film Screening and Panel Discussion about Green Burial  

E-Print Network [OSTI]

Dying Green A Film Screening and Panel Discussion about Green Burial March 20, 2014 6:00pm ­ 8:00pm to rest. The "Green Burial" movement is catching on in the U.S., and green cemetery options are now and panel discussion of the award-winning documentary, Dying Green (2011). Panel participants include Joshua

Virginia Tech

240

Burial of terrestrial organic matter in marine sediments: A re-assessment  

E-Print Network [OSTI]

Burial of terrestrial organic matter in marine sediments: A re-assessment David J. Burdige being buried in marine sediments may be of terrestrial origin, with the majority of this terrestrial organic matter (TOM) burial occurring in muddy, deltaic sediments. These calculations further suggest

Burdige, David

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir  

E-Print Network [OSTI]

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

Wehrli, Bernhard

242

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source  

E-Print Network [OSTI]

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment : deposited OC) in a diverse set of 27 different sediments from 11 lakes, focusing on the potential effects burial efficiency was high (mean 48%), and it was particularly high in sediments receiving high input

Wehrli, Bernhard

243

Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste  

SciTech Connect (OSTI)

Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

1996-03-01T23:59:59.000Z

244

The use of low-level liquid scintillation spectrometry for rapid measurement and decision making  

SciTech Connect (OSTI)

Liquid scintillation spectrometry (LSC) has proved over the last fifteen years to be an excellent tool for low-level counting of beta- and alpha-particle emitters. Using low-level instruments the determination of, for instance {sup 90}Sr, could be considerably simplified in the laboratory, saving time and also money for chemicals and manpower. Furthermore, low-level instruments have been successfully used for measurements when fast analysis was required. The four instruments (Quantulus, Wallac Oy), that the author uses, have not only very low background, which cuts measurement time considerably; but from the pulse- height spectra much information about the nature of the radionuclides present and the absence of specific radionuclides can be extracted. From the absence of high-energy beta-particle activity in the pulse-height spectra of precipitation in the first days after the Chernobyl accident the author could draw the conclusion, that practically no {sup 90}Y was present and therefore only small amounts of {sup 90}Sr, if any, could be expected in precipitation and later in food. This enabled them to make the decision not to waste time with a large number of {sup 90}Sr analyses. Large numbers of drinking water samples could be screened for contamination much more sensitively and faster than by gamma-ray spectrometry. More examples will be presented of cases where rapid information was needed; how contamination and nuclear installations can be easily checked and how LSC helped to cut down the time required, the manpower and the costs for radon measurements and environmental surveillance.

Schoenhofer, F. [Federal Inst. for Food Control and Research (Austria)

1998-12-31T23:59:59.000Z

245

Guidance document for prepermit bioassay testing of low-level radioactive waste  

SciTech Connect (OSTI)

In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

Anderson, S.L.; Harrison, F.L.

1990-11-01T23:59:59.000Z

246

Winter and Summer Structure of the Caribbean Low-Level Jet ERNESTO MUOZ AND ANTONIO J. BUSALACCHI  

E-Print Network [OSTI]

Winter and Summer Structure of the Caribbean Low-Level Jet ERNESTO MUĂ?OZ AND ANTONIO J. BUSALACCHI 2007) ABSTRACT The Caribbean region shows maxima in easterly winds greater than 12 m s 1 at 925 hPa in July and February, herein referred to as the summer and winter Caribbean low-level jet (LLJ

247

Low-level radioactive waste disposal operations at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL`s major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today`s compliance and cost-effective environment.

Stanford, A.R.

1997-02-01T23:59:59.000Z

248

Developing operating procedures for a low-level radioactive waste disposal facility  

SciTech Connect (OSTI)

This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

1993-10-01T23:59:59.000Z

249

Low-Level Waste Overview of the Nevada Test Site Waste Disposal Operations  

SciTech Connect (OSTI)

This paper provides an overview and the impacts of new policies, processes, and opportunities at the Nevada Test Site (NTS). Operational changes have been implemented, such as larger trench sizes and more efficient soil management as have administrative processes to address U.S. Department of Energy and U.S. Code of Federal Regulation analyses. Some adverse conditions have prompted changes in transportation and mixed low-level waste polices, and a new funding mechanism was developed. This year has seen many changes to the NTS disposal family. (authors)

Carilli, J.T.; Skougard, M.G. [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, NV (United States); Krenzien, S.K. [Navarro Research and Engineering, Inc., Las Vegas, NV (United States); Wrapp, J.K.; Ramirez, C.; Yucel, V.; Shott, G.J.; Gordon, S.J.; Enockson, K.C.; Desotell, L.T. [National Security Technologies, LLC, Las Vegas, Nevada (United States)

2008-07-01T23:59:59.000Z

250

Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2010-10-01T23:59:59.000Z

251

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

252

Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste  

SciTech Connect (OSTI)

This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

Salmon, R.; Loghry, S.L.; Hermes, W.H.

1994-11-01T23:59:59.000Z

253

Current Regulations and Guidance - New Approaches for Risk-Informed Low-Level Radioactive Waste Management  

SciTech Connect (OSTI)

This paper presents the historical foundations and future challenges for commercial low-level radioactive waste (LLRW) management in the United States. LLRW has been managed at government facilities since the beginning of the nuclear age and in the commercial sector since the early 1960's. Over the intervening years many technical, management and regulatory changes have occurred. Significant progress has been made in waste form, waste packaging and in recognizing radionuclides important to performance of disposal technologies and disposal facilities. This presentation will examine approaches using existing regulations and risk-informed approaches to improve guidance, licensing and management of LLRW. (authors)

Ryan, M.T. Ph.D.; CHP [Advisory Committee on Nuclear Waste and Materials, U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

2008-07-01T23:59:59.000Z

254

Application of spectral summing to suspect low level debris drums at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The spectral summing technique developed by Pajarito Scientific Corporation (PSC) is a unique modeling technique that is being employed by the Waste Disposition Project - Low Level Waste Disposal (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique is being used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no place to go unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs two High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confirmed TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radionuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have too high a MDA to be classified as LLW enter a radioactive waste characterization limbo that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced gamma spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discernable in the individual spectra become quantifiable in the summed spectrum. The group of waste items can then be properly classified as LLW based on the summed spectrum and valid assay values can be assigned for disposal. This technique is being successfully used to dispose of LLW debris drums from LANL.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORPORATION; Seamans, Jr, James V [PAJARITO SCIENTIFIC CORPORATION; Clapham, Martin J [PAJARITO SCIENTIFIC CORPORATION

2010-01-01T23:59:59.000Z

255

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The spectral summing technique developed by Pajarito Scientific Corporation (PSC) is a unique modeling technique that is being employed by the Waste Disposition Project - Low Level Waste Disposition (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no disposal path unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confirmed TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radionuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have TRU MDAs > 100nCi/g enter a radioactive waste characterization indeterminate state that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced gamma spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discemable in the individual spectra become quantifiable in the summed spectrum and the MDA for the group sum is reduced. The group of waste items can then be properly classified as LLW waste on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other debris drums and sludge drums that were measured on a WIPP certified HENe is planned and good candidate drum sets are being evaluated.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORPORATION; Seamans, Jr, J. V. [PAJARITO SCIENTIFIC CORPATION; Clapham, M. J. [PAJARITO SCIENTIFIC CORPORATION

2011-01-27T23:59:59.000Z

256

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

SciTech Connect (OSTI)

An analytical technique developed by Pajarito Scientific Corporation (PSC), utilizing spectral summing of spectra from groups of drums of similar waste type, is being employed by the Waste Disposition Project - Low Level Waste Disposal (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no place to go unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs two High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confinned TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radio nuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have too high a MDA to be classified as LLW enter a radioactive waste characterization indetenninate status that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced ganuna spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discernable in the individual spectra can become quantifiable in the summed spectrum and the MDA for group sum is reduced. The group of waste items can then be properly classified as LLW based on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100 nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other waste drums that are measured on a WIPP certified HENC system is planned and good candidate drum sets are being evaluated as indeterminate situations develop.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORAPTION; Seamans, Jr., James V [PAJARITO SCIENTIFIC CORPORATION; Clapham, Martin J [PAJARITO SCIENTIFIC CORPORATION

2010-11-09T23:59:59.000Z

257

Vectra GSI, Inc. low-level waste melter testing Phase 1 test report  

SciTech Connect (OSTI)

A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

Stegen, G.E.; Wilson, C.N.

1996-02-21T23:59:59.000Z

258

Low-level Waste Safely Dispositioned Under Runoff Cover at SRS | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy InvitationLegaltoLizLow- LEVEL WASTE DISPOSALof

259

Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2  

SciTech Connect (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-08-01T23:59:59.000Z

260

Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1  

SciTech Connect (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect (OSTI)

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

262

E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT  

SciTech Connect (OSTI)

This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

Wilhite, E

2008-03-31T23:59:59.000Z

263

Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory  

SciTech Connect (OSTI)

Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

Mazer, J.J.; No, Hyo J.

1995-08-01T23:59:59.000Z

264

Iron-phosphate ceramics for solidification of mixed low-level waste  

DOE Patents [OSTI]

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S. (St. Petersburg, RU); Kovarskaya, Elena N. (St. Petersburg, RU); Koltsova, Tatiana I. (St. Petersburg, RU); Macheret, Yevgeny (Idaho Falls, ID); Medvedev, Pavel G. (Ozersk, RU); Todd, Terry (Aberdeen, ID)

2000-01-01T23:59:59.000Z

265

Modeling approaches for concrete barriers used in low-level waste disposal  

SciTech Connect (OSTI)

A series of three NUREGs and several papers addressing different aspects of modeling performance of concrete barriers for low-level radioactive waste disposal have been prepared previously for the Concrete Barriers Research Project. This document integrates the information from the previous documents into a general summary of models and approaches that can be used in performance assessments of concrete barriers. Models for concrete degradation, flow, and transport through cracked concrete barriers are discussed. The models for flow and transport assume that cracks have occurred and thus should only be used for later times in simulations after fully penetrating cracks are formed. Most of the models have been implemented in a computer code. CEMENT, that was developed concurrently with this document. User documentation for CEMENT is provided separate from this report. To avoid duplication, the reader is referred to the three previous NUREGs for detailed discussions of each of the mathematical models. Some additional information that was not presented in the previous documents is also included. Sections discussing lessons learned from applications to actual performance assessments of low-level waste disposal facilities are provided. Sensitive design parameters are emphasized to identify critical areas of performance for concrete barriers, and potential problems in performance assessments are also identified and discussed.

Seitz, R.R.; Walton, J.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-11-01T23:59:59.000Z

266

On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010  

SciTech Connect (OSTI)

This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

2013-07-01T23:59:59.000Z

267

New York State low-level radioactive waste status report for 1998  

SciTech Connect (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

Voelk, H.

1999-06-01T23:59:59.000Z

268

A data base for low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

269

New York State Low-Level Radioactive Waste Status Report for 1992  

SciTech Connect (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

Attridge, T.; Rapaport, S.; Yang, Qian

1993-06-01T23:59:59.000Z

270

National profile on commercially generated low-level radioactive mixed waste  

SciTech Connect (OSTI)

This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

1992-12-01T23:59:59.000Z

271

Greater-Than-Class C low-level radioactive waste treatment technology evaluation  

SciTech Connect (OSTI)

This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria.

Garrison, T W; Fischer, D K

1993-01-01T23:59:59.000Z

272

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect (OSTI)

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

Not Available

1992-04-01T23:59:59.000Z

273

Proceedings of the fourth annual participants' information meeting, DOE Low-Level Waste Management Program  

SciTech Connect (OSTI)

The Fourth Annual Participants' Information Meeting of the Department of Energy Low-Level Waste Management Program was held in Denver, Colorado, August 31 to September 2, 1982. The purpose of the meeting was to report and evaluate technology development funded by the program and to examine mechanisms for technology transfer. The meeting consisted of an introductory plenary session, followed by two concurrent overview sessions and then six concurrent technical sessions. There were two group meetings to review the findings of the technical sessions. The meeting concluded with a plenary summary session in which the major findings of the meeting were addressed. All papers have been abstracted and indexed for the Energy Data Base.

Large, D.E.: Mezga, L.J.; Stratton, L.E.; Rose, R.R. (comps.)

1982-10-01T23:59:59.000Z

274

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2014-06-01T23:59:59.000Z

275

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

DOE /Navarro

2007-02-01T23:59:59.000Z

276

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-04-01T23:59:59.000Z

277

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-01-01T23:59:59.000Z

278

Potential for Subsidence at the Low-level Waste Disposal Area  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, Karen Nina; Seitz, Roger Ray

2002-09-01T23:59:59.000Z

279

Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, K.A.; Seitz, R.R.

2002-09-26T23:59:59.000Z

280

Radioactive Waste Management Complex low-level waste radiological performance assessment  

SciTech Connect (OSTI)

This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations  

SciTech Connect (OSTI)

This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

Tyner, C.J.; Birk, S.M.

1995-09-01T23:59:59.000Z

282

An experimental survey of the factors that affect leaching from low-level radioactive waste forms  

SciTech Connect (OSTI)

This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs.

Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

1988-09-01T23:59:59.000Z

283

New York State low-level radioactive waste status report for 1997  

SciTech Connect (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

NONE

1998-06-01T23:59:59.000Z

284

Phosphate ceramic process for macroencapsulation and stabilization of low-level debris wastes  

SciTech Connect (OSTI)

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks have been accumulated for disposal. Under the US Environmental Protection Agency`s Alternative Treatment Standards, the preferred method of disposal of these wastes is macroencapsulation. Chemically bonded phosphate ceramic (CBPC) is a novel binder that was developed at Argonne National Laboratory to stabilize and solidify various low-level mixed wastes. This binder is extremely strong, dense, and impervious to water. In this investigation, CBPC has been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, lead-lined plastic gloves, and mercury-contaminated crushed glass. This paper describes the fabrication of the waste forms, as well as the results of various characterizations performed on the waste forms. The results show that the simple and low-cost CBPC is an excellent material system for the macroencapsulation of debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y. [Argonne National Lab., IL (United States). Energy Technology Div.] [Argonne National Lab., IL (United States). Energy Technology Div.

1998-12-31T23:59:59.000Z

285

Macroencapsulation of low-level debris waste with the phosphate ceramic process  

SciTech Connect (OSTI)

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy`s Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

1997-03-01T23:59:59.000Z

286

Comparative approaches to siting low-level radioactive waste disposal facilities  

SciTech Connect (OSTI)

This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

Newberry, W.F.

1994-07-01T23:59:59.000Z

287

Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

Porter, C.L.; Widmayer, D.A.

1995-09-01T23:59:59.000Z

288

GTS Duratek, phase I Hanford low-level waste melter tests: Final report  

SciTech Connect (OSTI)

A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029).

Eaton, W.C.

1995-10-26T23:59:59.000Z

289

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

290

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

291

Comparison of costs for alternative mixed low-level waste treatment systems  

SciTech Connect (OSTI)

Total life cycle costs (TLCCs), including disposal costs, of thermal, nonthermal and enhanced nonthermal systems were evaluated to guide future research and development programs for the treatment of mixed low-level waste (MLLW) consisting of RCRA hazardous and low-level radioactive wastes. In these studies, nonthermal systems are defined as those systems that process waste at temperatures less than 350 C. Preconceptual designs and costs were developed for thirty systems with a capacity (2,927 lbs/hr) to treat the DOE MLLW stored inventor y(approximately 236 million pounds) in 20 years in a single, centralized facility. A limited comparison of the studies` results is presented in this paper. Sensitivity of treatment costs with respect to treatment capacity, number of treatment facilities, and system availability were also determined. The major cost element is operations and maintenance (O and M), which is 50 to 60% of the TLCC for both thermal and nonthermal systems. Energy costs constitute a small fraction (< 1%) of the TLCCs. Equipment cost is only 3 to 5% of the treatment cost. Evaluation of subsystem costs demonstrate that receiving and preparation is the highest cost subsystem at about 25 to 30% of the TLCC for both thermal and nonthermal systems. These studies found no cost incentives to use nonthermal or hybrid (combined nonthermal treatment with stabilization by vitrification) systems in place of thermal systems. However, there may be other incentives including fewer air emissions and less local objection to a treatment facility. Building multiple treatment facilities to treat the same total mass of waste as a single facility would increase the total treatment cost significantly, and improved system availability decreases unit treatment costs by 17% to 30%.

Schwinkendorf, W.E.; Harvego, L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cooley, C.R. [Dept. of Energy (United States); Biagi, C. [Morrison Knudsen (United States)

1996-12-31T23:59:59.000Z

292

Pilot-scale grout production test with a simulated low-level waste  

SciTech Connect (OSTI)

Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

1987-05-01T23:59:59.000Z

293

Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites  

SciTech Connect (OSTI)

Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

Knight, M.J.

1983-04-01T23:59:59.000Z

294

ELSEVIER Bioelectrochemistry and Bioenergetics 35 (1994) 99-101 Low level direct current -cell culture fibroblast model  

E-Print Network [OSTI]

ELSEVIER Bioelectrochemistry and Bioenergetics 35 (1994) 99-101 Low level direct current - cell;100 U. Batista et al. / Bioelectrochemistry and Bioenergetics 35 (1994) 99-101 2.2. Direct current

Ljubljana, University of

295

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

Treating Transuranic (TRU)/Alpha Low-Level Waste at the Oak Ridge National Laboratory, Oak Ridge, Tennessee)This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste.

296

E-Print Network 3.0 - acute low-level x-rays Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Publications Collection: Physics 68 Search for X-ray Afterglows from Gamma-Ray Bursts in the RASS Summary: with low-level (below the RASS thresh- old) persistent...

297

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network [OSTI]

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

298

Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States National Institute of Standards and Technology (NIST) has independently verified the accuracy and precision of the AMS detection system for low-level bioassay measurements of plutonium isotopes through participation in an intercomparison exercise whereby performance evaluation samples were prepared in a synthetic urine matrix and submitted to participating laboratories for blind analysis. The results of the analyses were then sent to the NIST to independently evaluate the performance of laboratory participants. At LLNL, the AMS measurements of {sup 239}Pu and {sup 240}Pu met ANSI 13.30 criteria for both precision and accuracy at all sample test levels. Livermore scientists continue to test the performance of the Marshall Islands Plutonium Urinalysis Program by routine blind analysis of externally prepared quality control test samples, and through the rigorous implementation of standardized methods and procedures. Although not addressed directly in the report, AMS measurements show that the urinary excretion of plutonium by selected Marshallese populations fall into a low and reproducible range. Moreover, there appears to be no evidence of small incremental intakes of plutonium associated with resettlement activities - past or present. The improved quality, reliability and detection sensitivity of AMS for low-level plutonium isotope measurements will enable DOE to develop high-quality, baseline urinary excretion data for Marshallese populations, and accurately assess and track potential uptakes of plutonium. associated with resettlement activities and/or from long-term changes in plutonium exposure conditions in the Marshall Islands.

Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

2007-06-18T23:59:59.000Z

299

Steering control of an autonomous ground vehicle with application to the DARPA Urban Challenge  

E-Print Network [OSTI]

Fundamental to the design of an Ackerman steered autonomous ground vehicle is the development of a low-level controller that effectively performs trajectory or path tracking. Though ample literature is available on various ...

Campbell, Stefan F. (Stefan Forrest)

2007-01-01T23:59:59.000Z

300

Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site  

SciTech Connect (OSTI)

In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

Gregory J. Shott; Vefa Yucel

2009-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives  

SciTech Connect (OSTI)

The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

1995-03-01T23:59:59.000Z

302

Technical assessment of processes to enable recycling of low-level contaminated metal waste  

SciTech Connect (OSTI)

Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

Reimann, G.A.

1991-10-01T23:59:59.000Z

303

Integrated process analysis of treatment systems for mixed low level waste  

SciTech Connect (OSTI)

Selection of technologies to be developed for treatment of DOE`s mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements.

Cooley, C.R. [Dept. of Energy, Washington, DC (United States); Schwinkendorf, W.E. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.]|[Sandia National Labs., Albuquerque, NM (United States); Bechtold, T.E. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1997-10-01T23:59:59.000Z

304

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01T23:59:59.000Z

305

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

306

Cost savings associated with landfilling wastes containing very low levels of uranium  

SciTech Connect (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

1996-03-01T23:59:59.000Z

307

Proposed research and development plan for mixed low-level waste forms  

SciTech Connect (OSTI)

The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

O`Holleran, T.O.; Feng, X.; Kalb, P. [and others

1996-12-01T23:59:59.000Z

308

Comparison of low-level waste disposal programs of DOE and selected international countries  

SciTech Connect (OSTI)

The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

1996-06-01T23:59:59.000Z

309

Methods for verifying compliance with low-level radioactive waste acceptance criteria  

SciTech Connect (OSTI)

This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

NONE

1993-09-01T23:59:59.000Z

310

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-05-01T23:59:59.000Z

311

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

312

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

313

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

314

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-10-01T23:59:59.000Z

315

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

316

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2009-10-01T23:59:59.000Z

317

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

318

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

319

Treatment of low-level mixed waste using an expedited demonstration concept  

SciTech Connect (OSTI)

The majority of the Department of Energy`s inventory of low-level mixed waste is Land Disposal Restricted under the Resource Conservation and Recovery Act, and therefore must be treated prior to disposal. Treatment may include removal of a hazardous characteristic, destruction of a hazardous component, immobilization to meet the Universal Treatment Standards or Debris Rule, or treatment by a technology specified by the regulations. As part of a concerted effort to make wastes compliant under the Land Disposal Restrictions, the Department of Energy is supporting the Expedited Technology Demonstration program at the Rocky Flats Environmental Technology Site. The intent of the expedited program is to demonstrate treatment processes on actual hazardous or radioactive mixed waste streams on an accelerated schedule. Six successful treatability studies at Rocky Flats have proven the viability of the expedited concept. The technologies demonstrated include electrochemical chlorination for cyanide and sulfide destruction, ultraviolet oxidation for organic chemical destruction, mercury separation by vacuum retort, thermoplastic and thermosetting polymer macroencapsulation, and silver nitrate destruction by metal recovery and neutralization.

Lucerna, J.J.; Riendeau, M.P. [Kaiser-Hill Company, Golden, CO (United States)

1996-12-31T23:59:59.000Z

320

Developments in Very Low Level Waste/Exempt Waste Assay at AWE - 12000  

SciTech Connect (OSTI)

Portable High Resolution Gamma Spectrometry (HRGS) has been developed, for Very Low Level Waste (VLLW) and Exempt Waste (EW) assay at AWE, in order to meet the latest reduced clearance levels of < 1 Bq/g (or Bq/cm{sup 2}) for uranium (U) contaminated wastes and < 0.15 Bq/g (or Bq/cm{sup 2}) for plutonium (Pu) wastes. Studies have focused on a 10 kg bag of low density soft waste monitored either as a rotating cylinder, contained within a shortened plastic drum liner, or as a contained disk monitored on each broad side. Liquid and surface contaminated metal wastes have also been studied. It was established that monitoring the disk gave the best detection levels, but uncertainties rose more sharply, compared to the cylinder, as detector offset was reduced. Exempt detection levels were readily achieved for all U compositions encountered at AWE and for most Pu compositions (via Am-241 measurement). However, performance will need to be enhanced for those Pu compositions with relatively high Pu/Am-241 activity ratios. Recommendations are made for further developments to enhance the performance of this technique so that exempt clearance can be achieved for all Pu compositions encountered. (author)

Miller, T.J. [AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Siting Study for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

2010-10-01T23:59:59.000Z

322

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

323

Analytical support for a new, low-level radioactive wastewater treatment plant  

SciTech Connect (OSTI)

The Savannah River Site (SRS) located in Aiken, SC, is operated by Westinghouse Savannah River Company under contract with the US Department of Energy. The mission of SRS is to manufacture radioisotopes for use in national defense and space exploration. The F/H Effluent Treatment Facility (ETF) is a wastewater treatment plant supporting SRS for low-level radioactive process waste streams. In order to comply with the Federal Resource Conservation and Recovery Act, the facility had to become operational by November 8, 1988. The F/H ETF employs pH adjustment, microfiltration, organic removal, reverse osmosis, evaporation, and ion exchange to remove contaminants prior to discharge to the environment via a state-permitted outfall. Concentrated contaminants removed by these processes are diverted to other facilities for further processing. The ETF is supported by a 24 hr/day facility laboratory for process control and characterization of influent feed, treated effluent water, and concentrated waste. Permit compliance analyses reported to the state of SC are performed by an offsite certified contract laboratory. The support laboratory is efficiently organized to provide: metal analyses by ICP-AES, alpha/beta/gamma activity counting, process ions by Ion Selective Electrode (ISE), oil and grease analyses by IR technique, mercury via cold vapor AA, conductivity, turbidity, and pH. All instrumentation is contained in hoods for radioactive sample handling.

Jones, V.D.; Marsh, J.H.; Ingram, L.M.; Melton, W.L.; Magonigal, E.J.

1990-01-01T23:59:59.000Z

324

Treatment requirements for decontamination of ORNL low-level liquid waste  

SciTech Connect (OSTI)

Experimental studies have been made to provide data for the development of improved processes for decontaminating low-level liquid wastes (LLLWs) that exist and continue to be generated at Oak Ridge National Laboratory. The concept underlying this work is that there is a net benefit if the major radionuclides ({sup 137}Cs, {sup 134}Cs, {sup 90}Sr, and actinides) can be separated into small volumes, thereby reducing the activity of the bulk of the waste so that it can be disposed of or managed at a lower total cost. Data-base calculations on the LLLW supernate and sludges contained in the active Melton Valley Storage Tanks and evaporator storage and service tanks are essential in order to define and determine the extent of the problem. These calculations indicate to what extent alpha- and beta-gamma-emitting radionuclides must be removed and/or treated before final disposition of the waste can be made. They also show that many of the inorganic constitutents (e.g., regulated metals and nitrate) and minor radionuclides such as {sup 14}C and actinides (in terms of quantity present) must be removed before the LLLW can be disposed of as either liquid to the environment or solidified and disposed of as solid NUS Class L-1 or L-2 LLW. 25 refs., 31 tabs.

Lee, D.D.; Campbell, D.O.

1991-10-01T23:59:59.000Z

325

Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment  

SciTech Connect (OSTI)

The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

G. Becker; M. Connolly; M. McIlwain

1999-02-01T23:59:59.000Z

326

Microbial degradation of low-level radioactive waste. Volume 2, Annual report for FY 1994  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program is to develop modified microbial degradation test procedures that will be more appropriate than the existing procedures for evaluating the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms indigenous to LLW disposal sites are being employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results over the past year on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of the annual report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides has been developed during this study.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

327

National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63  

SciTech Connect (OSTI)

This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

Carboneau, M.L.; Adams, J.P.

1995-02-01T23:59:59.000Z

328

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

329

The low-low-level mixed waste regulatory gap: A disposal and recycle impasse  

SciTech Connect (OSTI)

Small steel mills in the United States receive and melt scrap steel in electric arc furnaces. The off-gas from these furnaces carries dust to the bag house where the dust is trapped and recovered. The EAF (Electric Arc Furnace) dust contains hazardous components lead, cadmium and chromium, causing it to be designated as U.S. EPA hazardous waste K061. The dust also carries about 20% zinc, a valuable byproduct for recovery. The EAF dust is normally either disposed of at a landfill licensed for hazardous wastes, or sent to a High Temperature Metal Recovery (HTMR) facility for recycle processing. During the past few years, there have been a number of incidents in which an industrial gauge source, containing the radioisotope Cs-137, has been inadvertently included in a load of scrap steel charged to an arc furnace. In each incident, the cesium and its encapsulation and holder melted, releasing the cesium into the off-gas system where it became distributed in hundreds of tons of EAF dust in the ducts and in the bag house. The contaminated dust, having both hazardous and radioactive components is a mixed waste. A regulatory gap exists that prevents disposition of this material, through it has only a low-low-level of radioactivity. A risk assessment was conducted for a midwest steel company that experienced a cesium meltdown incident. Most of the stored dust from this incident has an activity level less than the limit for the lowest category of LLW by a factor of 5,800, and some is only slightly above background. The significant pathways calculated include direct exposure to masses of the dust, ingestion of leachate and groundwater at a hazardous waste landfill, and potential releases to air and water during HTMR recycle processing.

Logan, S.E. [S.E. Logan and Associates, Inc., Sante Fe, NM (United States)

1994-12-31T23:59:59.000Z

330

Tritium: a model for low level long-term ionizing radiation exposure  

SciTech Connect (OSTI)

The somatic, cytogenetic and genetic effects of single and chronic tritiated water (HTO) ingestion in mice was investigated. This study serves not only as an evaluation of tritium toxicity (TRITOX) but due to its design involving long-term low concentration ingestion of HTO may serve as a model for low level long-term ionizing radiation exposure in general. Long-term studies involved animals maintained on HTO at concentrations of 0.3 ..mu..Ci/ml, 1.0 ..mu..Ci/ml, 3.0 ..mu..Ci/ml or depth dose equivalent chronic external exposures to /sup 137/Cs gamma rays. Maintenance on 3.0 ..mu..Ci/ml resulted in no effect on growth, life-time shortening or bone marrow cellularity, but did result in a reduction of bone marrow stem cells, an increase in DLM's in second generation animals maintained on this regimen and cytogenetic effects as indicated by increased sister chromatid exchanges (SCE's) in bone marrow cells, increased chromosome aberrations in the regenerating liver and an increase in micronuclei in red blood cells. Biochemical and microdosimetry studies showed that animals placed on the HTO regimen reached tritium equilibrium in the body water in approximately 17 to 21 days with a more gradual increase in bound tritium. When animals maintained for 180 days on 3.0 ..mu..Ci/ml HTO were placed on a tap water regimen, the tritium level in tissue dropped from the equilibrium value of 2.02 ..mu..Ci/ml before withdrawal to 0.001 ..mu..Ci/ml at 28 days. 18 references.

Carsten, A.L.

1984-01-01T23:59:59.000Z

331

Use of engineered soils and other site modifications for low-level radioactive waste disposal  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

Not Available

1994-08-01T23:59:59.000Z

332

Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report  

SciTech Connect (OSTI)

The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch.

Herbst, A.K.

1996-09-01T23:59:59.000Z

333

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site  

SciTech Connect (OSTI)

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford’s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

DOE /Navarro/NSTec

2007-02-01T23:59:59.000Z

334

Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area  

SciTech Connect (OSTI)

Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

2003-03-01T23:59:59.000Z

335

Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste  

SciTech Connect (OSTI)

DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

NONE

1998-09-01T23:59:59.000Z

336

Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment  

Broader source: Energy.gov [DOE]

Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energy’s new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code

337

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect (OSTI)

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

338

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994  

SciTech Connect (OSTI)

This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal of suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.

NONE

1994-06-01T23:59:59.000Z

339

Field demonstration of in situ grouting of radioactive solid waste burial trenches with polyacrylamide. [Polyacrylamide  

SciTech Connect (OSTI)

Demonstrations of in situ grouting with polyacrylamide were carried out on two undisturbed burial trenches and one dynamically compacted burial trench in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The injection of polyacrylamide was achieved quite facilely for the two undisturbed burial trenches which were filled with grout, at typical pumping rates of 95 L/min, in several batches injected over several days. The compacted burial trench, however, failed to accept grout at more than 1.9 L/min even when pressure was applied. Thus, it appears that burial trenches, stabilized by dynamic compaction, have a permeability too low to be considered groutable. The water table beneath the burial trenches did not respond to grout injections indicating a lack of hydrologic connection between fluid grout and the water table which would have been observed if the grout failed to set. Because grout set times were adjusted to less than 60 min, the lack of hydrologic connection was not surprising. Postgrouting penetration testing revealed that the stability of the burial trenches was increased from 26% to 79% that measured in the undisturbed soil surrounding the trenches. In situ permeation tests on the grouted trenches indicated a significant reduction in hydraulic conductivity of the trench contents from a mean of 2.1 {times} 10{sup {minus}3} to 1.85 {times} 10{sup {minus}5} cm/s. Preliminary observations indicated that grouting with polyacrylamide is an excellent method for both improved stability and hydrologic isolation of radioactive waste and its incidental hazardous constituents.

Spalding, B.P.; Fontaine, T.A.

1990-01-01T23:59:59.000Z

340

Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469  

SciTech Connect (OSTI)

The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts  

SciTech Connect (OSTI)

The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

NONE

1993-12-31T23:59:59.000Z

342

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

343

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

344

Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey  

SciTech Connect (OSTI)

Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

2002-02-27T23:59:59.000Z

345

Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil M.I. Ojovan1  

E-Print Network [OSTI]

Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil M.I. Ojovan1 , W to 19 o C. Both ion-exchange and hydrolysis control the corrosion of this glass. Processing of field disposal facilities, which presumes an understanding of the main glass corrosion mechanisms. The corrosion

Sheffield, University of

346

Low-level convergence and its role in convective intensity and frequency over the Houston lightning and rainfall anomaly  

E-Print Network [OSTI]

of the urban heat island (UHI) and the sea-breeze, as a source of low-level convergence leading to enhanced convection over Houston, was examined. Hourly average dual-Doppler wind and convergence maps were created on 1 X 1 km grids for an eleven-week period...

McNear, Veronica Ann

2007-09-17T23:59:59.000Z

347

National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

Peggy Hinman

2010-10-01T23:59:59.000Z

348

EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

349

Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues  

SciTech Connect (OSTI)

This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

350

Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats  

SciTech Connect (OSTI)

Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

1990-09-18T23:59:59.000Z

351

Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)  

SciTech Connect (OSTI)

Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450 deg. C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

Fokapic, S.; Bikit, I.; Mrda, D.; Veskovic, M.; Slivka, J. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21 000 Novi Sad (Serbia); Mihaljev, Z. [Scientific Veterinary Institute, Rumenacki put 20, 21 000 Novi Sad (Serbia); Cupic, Z. [Research Institute for Reproduction, A.I. and Embryo Transfer Temerin, 21235 Temerin, Industrijska zona bb. (Serbia)

2007-04-23T23:59:59.000Z

352

Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor  

SciTech Connect (OSTI)

The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification temperature up to 83 deg. C. Experimental data shows, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas. Significant reduction of viscosity is an important factor, which facilitates the fulfillment all gaps and cavities with the mortar during conditioning of solid radioactive wastes in containers. On the other hand, increase water ratio from 0.45 up to 0.65 decreases mechanical stability of water-cement samples from 23 N/mm{sup 2} to the 12 N/mm{sup 2}. It means that water-cement bulk stability significantly decreases with increasing of water content. Technologically is important to increase the tritiated water content in container with cemented radioactive wastes. It gives a possibility to increase the fulfillment of container with radioactive materials. On the other hand, additional water significantly reduces bulk stability of containers with cemented radioactive wastes, which can result in disintegration of radioactive wastes packages in repository during 300 years. Taking into account the experimental results, it is not recommended to exceed the water/cement ratio more than 0.60. Tritium and Cs{sup 137} leakage tests show, that radionuclides release curves has a complicate structure. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium release in water phase. This is unpleasant factor, which significantly decreases the safety of disposed radioactive wastes. Despite the positive impact on solidification temperature drop, the addition of fly ash to the cement-water mortar is not recommended in case of cementation of radionuclides in concrete containers. In conclusion: The cementation processes of solid radioactive wastes in concrete containers were investigated. The influence of additives on cementation processes was studied. It was shown, that the increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar

Abramenkova, G.; Klavins, M. [Faculty of Geographical and Earth Sciences, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 (Latvia); Abramenkovs, A. [Ministry of Environment, Hazardous Wastes Management State Agency, 31 Miera Street, Salaspils, LV-2169 (Latvia)

2008-01-15T23:59:59.000Z

353

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

354

PRESTO-II: a low-level waste environmental transport and risk assessment code  

SciTech Connect (OSTI)

PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed for the evaluation of possible health effects from shallow-land and, waste-disposal trenches. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach. Data are included for three example sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. A code listing and example input for each of the three sites are included in the appendices to this report.

Fields, D.E.; Emerson, C.J.; Chester, R.O.; Little, C.A.; Hiromoto, G.

1986-04-01T23:59:59.000Z

355

SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY  

SciTech Connect (OSTI)

This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary might be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air-filled pores of cementitious materials. The ARM also combines the individual transport models constructed for each E-Area disposal facility into a single model, and was ultimately used to analyze the LFRG concern regarding the potential for atmospheric plume overlap at the SRS boundary during the IC period. To evaluate the plume overlap issue, a conservative approach was adopted whereby the MEI at the SRS boundary was exposed to the releases from all E-Area disposal facilities simultaneously. This is equivalent to a 100% overlap of all atmospheric plumes emanating from E-Area. Should the dose received from this level of atmospheric plume overlap still fall below the permissible exposure level of 10 mrem/yr, then the LFRG concern would be alleviated. The structuring of the ARM enables this evaluation to be easily performed. During the IC period, the peak of the 'total plume overlap dose' was computed to be 1.9E-05 mrem/yr, which is five orders of magnitude lower than the 10 mrem/yr PA performance objective for the atmospheric release pathway. The main conclusion of this study is that for atmospheric releases from the E-Area disposal facilities, plume overlap does not cause the total dose to the MEI at the SRS boundary during the IC to exceed the Performance Assessment (PA) performance objective. Additionally, the potential for plume overlap was assessed in the post-Institutional Control period. Atmospheric plume overlap is less likely to occur during this period but conceivably could occur if the prevailing wind direction shifted so as to pass directly over all EArea disposal facilities and transport airborne radionuclides to the MEI at the 100 m point of compliance (POC). This concern was also demonstrated of little concern, as the maximum plume overlap dose was found to be 1.45E+00 mrem/yr (or {approx}15% of the performance measure) during this period and under these unlikely conditions.

Hiergesell, R.; Taylor, G.

2011-08-30T23:59:59.000Z

356

CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY  

SciTech Connect (OSTI)

As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

Jordan, J.; Flach, G.

2012-03-29T23:59:59.000Z

357

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect (OSTI)

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

358

MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE  

SciTech Connect (OSTI)

The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

2010-01-27T23:59:59.000Z

359

Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

360

Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site  

SciTech Connect (OSTI)

The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

Kaplan, D.I.; Seme, R.J. [Pacific Northwest Lab., Richland, WA (United States); Piepkho, M.G. [Westinghouse Hanford Co., Richland, WA (United States)

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface  

E-Print Network [OSTI]

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility-Hames, and Thomas P. Quinn Abstract: Bed scour, egg pocket depths, and alteration of stream-bed surfaces by spawning chum salmon (Onchorhynchus keta) were measured in two Pacific Northwest gravel-bedded streams. Close

Montgomery, David R.

362

Oil and Gas CDT Anomalous compaction and lithification during early burial in  

E-Print Network [OSTI]

Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

Henderson, Gideon

363

The dead do not dress: contribution of forensic anthropology experiments to burial practices analysis  

E-Print Network [OSTI]

The dead do not dress: contribution of forensic anthropology experiments to burial practices Forensic Unit Laboratory of Anatomy, Biomechanics and Organogenesis (LABO), Université Libre de Bruxelles of human decomposition, and thus on the final arrangement of bones (in both forensic and archaeological

Paris-Sud XI, Université de

364

A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors  

E-Print Network [OSTI]

A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors

Lawrence, C B

1982-01-01T23:59:59.000Z

365

High-resolution moisture fields retrieved for the first time from both operational and research radars illustrate the low-level moisture variability associated with boundary layer  

E-Print Network [OSTI]

radars illustrate the low-level moisture variability associated with boundary layer processes-Resolution, Low-Level Moisture Fields from Operational NexRad and Research Radars by Rita D. RobeRts, FRĂ©DĂ©Ric Fab vapor measurements extracted from radar using an index of refraction (refractivity) technique developed

Reising, Steven C.

366

Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes  

SciTech Connect (OSTI)

The durability of polyethylene waste forms for treatment of low-level radioactive, hazardous, and mixed wastes is examined. Specific potential failure mechanisms investigated include biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation. These data are supported by results from waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. Polyethylene was found to be extremely resistant to each of these potential failure modes under anticipated storage and disposal conditions. 16 refs., 3 figs., 1 tab.

Kalb, P.D.; Heiser, J.H.; Colombo, P.

1991-01-01T23:59:59.000Z

367

Low-level wind maxima over the western Gulf of Mexico and their role in water vapor advection  

E-Print Network [OSTI]

and radiosonde observations from Brownsville, Texas are being compared 30 6 As in Figure 3 except for the NGM and a composite of observations from Gulf and coastal stations are being compared 31 7 Comparison of wind speeds from the NGM analysis and Gulf... transport than the eastern Gulf. The frequent strong low-level flow over the western Gulf was responsible for the difference. Wind speed and relative humidity from the NGM and special radiosonde observations over and around the Gulf of Mexico were...

Engel, Gregory Thomas

2012-06-07T23:59:59.000Z

368

Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment  

SciTech Connect (OSTI)

This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

Plansky, L.E.; Hoiland, S.A.

1992-02-01T23:59:59.000Z

369

U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report  

SciTech Connect (OSTI)

A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032).

Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States); Oden, L.L.; O`Connor, W.K. [Bureau of Mines, Albany, OR (United States). Albany Research Center

1995-11-01T23:59:59.000Z

370

Burial diagenesis and timing of reservoir development, North Haynesville Field, Louisiana  

E-Print Network [OSTI]

of MASTER OF SCIENCE December 1982 Major Subject: Geology BURIAL DIAGENESIS AND TIMING OF RESERVOIR DEVELOPMENT, NORTH HAYNESVILLE FIELD, LOUISIANA A Thesis by HARRIS BENJAMIN HULL Approved as to style and content by: syne M. Ahr (Chairman...'s encouragement and support also was greatly appreciated. TABLE OF CONTFNTS Page INTRODUCTION Reg'onal Geology Present Status Methods SMACKOVER ROCK PROPERTIES 13 Composition Sedimentary Structures Microfacies 13 28 29 DEPOSITIONAL ENVIRONMENTS 38...

Hull, Harris Benjamin

1982-01-01T23:59:59.000Z

371

Radionuclide contaminant analysis of rodents at a waste burial site, Los Alamos National Laboratory  

SciTech Connect (OSTI)

Small mammals were sampled at two waste burial sites (Sites 1 and 2) at Area G, TA-54, and a control site outside Area G (Site 3) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for americium ({sup 241}Am), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), total uranium (U), and examined by gamma spectroscopy (including cesium [{sup 137}Cs]). Significantly higher (parametric t-test at p = 0.05) levels of total U, {sup 241}Am, {sup 238}Pu, and potassium ({sup 40}K) were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. The results show higher concentrations in pelts compared to carcasses which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had significantly higher (alpha = 0.05, P = 0.0095) total U concentrations in carcasses than Sites 2 and 3. Site 2 had significantly higher (alpha = 0.05, P = 0.0195) {sup 239}Pu concentrations in carcasses than either Site 1 or Site 3.

Biggs, J.R.; Bennett, K.D.; Fresquez, P.R. [Los Alamos National Lab., NM (United States). Environment, Safety, and Health Div.

1996-12-31T23:59:59.000Z

372

Quantifying breakage parameters of fragile archaeological components to determine the feasibility of site burial  

E-Print Network [OSTI]

, 1968) ~ The Cahokia site, located in the broad alluvial plain, east of St. Louis, within the Mississippi River Valley known as the American Bottom, is without a doubt 35 the largest prehistoric site in North America north of central Mexico (Fowler...QUANTIFYING BREAKAGE PARAMETERS OF FRAGILE ARCHAEOLOGICAL COMPONENTS TO DETERMINE THE FEASIBILITY OF SITE BURIAL A Thesis by Forest Paul Rushmore III Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment...

Rushmore, Forest Paul

1988-01-01T23:59:59.000Z

373

The validity of analytical methods for predicting self burial of offshore pipelines  

E-Print Network [OSTI]

penetration of ~. D H drostatic ressure test hase, - Prior to placing a pipeline into service, it is necessary to perform a pressure test to insure that the structural integrity of the pipe was maintained during construction and to check for leaks...THE VALIDITY OF ANALYTICAL METHODS FOR PREDICTING SELF BURIAL OF OFFSHORE PIPELINES A Thesis by THOMAS KENWOOD HAMILTON Submitted to the Graduate College of Texas AEM University in partial fulfillment of the requirement for the degree...

Hamilton, Thomas Kenwood

2012-06-07T23:59:59.000Z

374

UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS  

SciTech Connect (OSTI)

Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: ? New K{sub d} values for iodine, radium and uranium ? Elimination of cellulose degradation product (CDP) factors ? Updated radionuclide data ? Changes in transport behavior of mobile radionuclides ? Potential delay in interim closure beyond 2025 ? Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future ST’s in the West Slit Trench Group based on the Impacted Final SOFs for existing ST’s in that area.

Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

2014-10-06T23:59:59.000Z

375

Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report  

SciTech Connect (OSTI)

Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

Wilson, C.N., Westinghouse Hanford

1996-06-27T23:59:59.000Z

376

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

377

Surveillance and maintenance plan for the inactive liquid low-level waste tanks at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

ORNL has a total of 54 inactive liquid low-level waste (ILLLW) tanks. In the past, these tanks were used to contain radioactive liquid wastes from various research programs, decontamination operations, and reactor operations. The tanks have since been removed from service for various reasons; the majority were retired because of their age, some due to integrity compromises, and others because they did not meet the current standards set by the Federal Facilities Agreement (FFA). Many of the tanks contain residual radioactive liquids and/or sludges. Plans are to remediate all tanks; however, until remediation of each tank, this Surveillance and Maintenance (S&M) Plan will be used to monitor the safety and inventory containment of these tanks.

Not Available

1994-11-01T23:59:59.000Z

378

Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1  

SciTech Connect (OSTI)

A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

NONE

1994-09-01T23:59:59.000Z

379

Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment  

SciTech Connect (OSTI)

Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

1994-09-01T23:59:59.000Z

380

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Recommendations for management of greater-than-Class-C low-level radioactive waste: Report to Congress in response to Public Law 99-240  

SciTech Connect (OSTI)

This report sets forth the Department's findings and recommendations for ensuring the safe management and disposal of low-level radioactive waste (LLW) with concentrations of radionuclides that exceed the limits established by the Nuclear Regulatory Commission for Class C LLW. Chapters are devoted to: Identification of Greater-Than Class-C Low-Level Waste; Regulatory Needs and Legislative Authorities; Proposed Actions to Ensure the Safe Management of Greater-Than-Class-C Low-Level Waste; System Considerations for Waste Disposal; Funding Options; Requirements for Implementation; and Schedule and Cost. Three Appendices are included: Public Law 99-240, Section 3(b); Greater-Than-Class-C Low-Level Waste Types and Quantities; and Descriptions of Systems Considerations for Waste Disposal. (LM)

Not Available

1987-02-01T23:59:59.000Z

382

EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal for off-site volume reduction of low-level radioactive wastes generated at the U.S. Department of Energy's Savannah River Site located...

383

Proceedings of the eighth annual DOE low-level waste management forum: Executive summary, opening plenary session, closing plenary session, attendees  

SciTech Connect (OSTI)

The Eighth Annual DOE (Department of Energy) Low-Level Waste Management Forum was held in September 1986, in Denver, Colorado, to provide a forum for exchange of information on low-level radioactive waste (LLW) management activities, requirements, and plans. The one hundred ninety attendees included representatives from the DOE Nuclear Energy and Defense Low-Level Waste Management Programs, DOE Operations Offices and their contractors; representatives from the US Nuclear Regulatory Commission (NRC), US Environmental Protection Agency (EPA), US Geological Survey, and their contractors; representatives of states and regions responsible for development of new commercial low-level waste disposal facilities; representatives of utilities, private contractors, disposal facility operators, and other parties concerned with low-level waste management issues. Plenary sessions were held at the beginning and conclusion of the meeting, while eight concurrent topical sessions were held during the intervening two days. The meeting was organized by topical areas to allow for information exchange and discussion on current and future low-level radioactive waste management challenges. Session chairmen presented summaries of the discussions and conclusions resulting from their respective sessions. Selected papers in this volume have been processed for inclusion in the Energy Data Base.

Not Available

1987-02-01T23:59:59.000Z

384

Greater-than-Class C low-level radioactive waste characterization. Appendix E-5: Impact of the 1993 NRC draft Branch Technical Position on concentration averaging of greater-than-Class C low-level radioactive waste  

SciTech Connect (OSTI)

This report evaluates the effects of concentration averaging practices on the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) generated by the nuclear utility industry and sealed sources. Using estimates of the number of waste components that individually exceed Class C limits, this report calculates the proportion that would be classified as GTCC LLW after applying concentration averaging; this proportion is called the concentration averaging factor. The report uses the guidance outlined in the 1993 Nuclear Regulatory Commission (NRC) draft Branch Technical Position on concentration averaging, as well as waste disposal experience at nuclear utilities, to calculate the concentration averaging factors for nuclear utility wastes. The report uses the 1993 NRC draft Branch Technical Position and the criteria from the Barnwell, South Carolina, LLW disposal site to calculate concentration averaging factors for sealed sources. The report addresses three waste groups: activated metals from light water reactors, process wastes from light-water reactors, and sealed sources. For each waste group, three concentration averaging cases are considered: high, base, and low. The base case, which is the most likely case to occur, assumes using the specific guidance given in the 1993 NRC draft Branch Technical Position on concentration averaging. To project future GTCC LLW generation, each waste category is assigned a concentration averaging factor for the high, base, and low cases.

Tuite, P.; Tuite, K.; Harris, G. [Waste Management Group, Inc., Peekskill, NY (United States)

1994-09-01T23:59:59.000Z

385

FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS  

SciTech Connect (OSTI)

The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SA baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, 3.3 and 3.4, respectively. Section 4.0 contains the CA annual determination similarly organized. SRS low-level waste management is regulated under DOE Order 435.1 (DOE, 1999a) and is authorized under a DAS as a federal permit. The original DAS was issued by the DOE-Headquarters (DOE-HQ) on September 28, 1999 (DOE, 1999b) for the operation of the ELLWF and the Saltstone Disposal Facility (SDF). The 1999 DAS remains in effect for the regulation of the SDF. Those portions of that DAS applicable to the ELLWF were superseded by revision 1 of the DAS on July 15, 2008 (DOE, 2008b). The 2008 PA and DAS were officially implemented by the facility on October 31, 2008 and are the authorization documents for this FY2010 Annual Review. Department of Energy Headquarters approval of the 2008 DAS was subject to numerous conditions specified in the document. Two of those conditions are to update the ELLWF closure plan and monitoring plan to align with the conceptual model analyzed in the PA. Both of these conditions were met with the issuance of the PA Monitoring Plan (Millings, 2009a) and the Closure Plan (Phifer et al, 2009a). The PA Monitoring Plan was approved by DOE on July 22, 2009 and the Closure Plan was approved by DOE on May 21, 2009. Both will be updated as needed to remain consistent with the PA. The DAS also specifies that the maintenance plan include activities to resolve each of the secondary issues identified in the DOEHQ review of the 2008 PA that were not completely addressed either with supplemental material provided to the review team or in final revisions to the PA. These outstanding issues were originally documented in the 2008 update of the PA/CA Maintenance Plan (WSRC, 2008a) and in subsequent PA/CA Maintenance Plans (most recently SRNS, 2010a) as required and are actively being worked.

Butcher, T.; Swingle, R.; Crapse, K.; Millings, M.; Sink, D.

2011-01-01T23:59:59.000Z

386

An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities  

SciTech Connect (OSTI)

Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000’s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose during the 1) institutional control period (0-100 years), compliance period (0-1000 years) and post-compliance period (>1000 years). Evaluation of the all pathway dose included the dose from ingestion and irrigation of contaminated groundwater extracted from a well 100 meters downgradient, in addition to the dose received from direct contact of radionuclides deposited near the surface resulting from facility overflow. Depending on the disposal facility radionuclide inventory, facility design, cover performance, and the location and environment where the facility is situated, the dose from exposure via direct contact of near surface deposited radionuclides can be much greater than the dose received via transport to the groundwater and subsequent ingestion.

Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

2011-03-01T23:59:59.000Z

387

Impact of the Vertical Mixing Induced by Low-level Jets on Boundary Layer Ozone4 Concentration5  

E-Print Network [OSTI]

to the ground, while the upper24 region of the daytime mixed layer becomes the residual layer (RL). Mixing40 chemical reactions and dry deposition, which resulted in lower O3 peak values on the next day.41 layer (SBL) near45 the surface that is typically quite shallow. Above the SBL is a residual layer (RL

Xue, Ming

388

New line classifications in Ho I based on high-precision hyperfine-structure measurement of low levels  

SciTech Connect (OSTI)

Doppler-free laser-fluorescence and laser-rf double-resonance studies have been made of the hyperfine structure (hfs) of four strong, previously unclassified visible lines in Ho I; all are shown to connect with low levels. The hfs of the 4f/sup 11/6s/sup 2/ /sup 4/I/sub 11/2,9/2/ levels is measured in detail, allowing evaluation of the dipole (a/sup 01/, a/sup 12/, a/sup 10/) and quadrupole (b/sup 02/,b/sup 11/,b/sup 13/) hfs radial integrals. The results are in close agreement with the ab initio values of Lindgren and Rosen (Case Stud. Atom. Phys. 4, 93--292 (1974). The value found for b/sup 02/ in the 4f/sup 11/6s/sup 2/ configuration is in reasonable agreement with that of Wyart and Camus (Physica 93C, 227-236 (1978)), thereby confirming their finding of a substantial dependence of this parameter on the number of 4f electrons in the core.

Childs, W.J.; Cok, D.R.; Goodman, L.S.

1983-02-01T23:59:59.000Z

389

THE Low-level Radio Frequency System for the superconducting cavities of National Synchrotron Light Source II  

SciTech Connect (OSTI)

A digital low-level radio frequency (LLRF) field controller has been developed for the storage ring of The National Synchrotron Light Source-II (NSLS-II). The primary performance goal for the LLRF is to support the required RF operation of the superconducting cavities with a beam current of 500mA and a 0.14 degree or better RF phase stability. The digital field controller is FPGA-based, in a standard format 19-inch/I-U chassis. It has an option of high-level control support with MATLAB running on a local host computer through a USB2.0 port. The field controller has been field tested with the high-power superconducting RF (SRF) at Canadian light Source, and successfully stored a high beam current of 250 mA. The test results show that required specifications for the cavity RF field stability are met. This digital field controller is also currently being used as a development platform for other functional modules in the NSLS-II RF systems.

Ma, H.; Rose, J.; Holub, B.; Cupolo, J.; Oliva, J.; Sikora, R.; Yeddulla, M.

2011-03-28T23:59:59.000Z

390

Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

D. Craig Cooper

2011-11-01T23:59:59.000Z

391

Mortality and cancer morbidity in workers exposed to low levels of vinyl chloride monomer at a polyvinyl chloride processing plant  

SciTech Connect (OSTI)

To study whether exposure to low levels of vinyl chloride monomer (VCM) causes increased risk for cancer morbidity and death from ischemic heart disease, a cohort study was performed among 2,031 male workers at a polyvinyl chloride (PVC) processing plant who had been employed for at least 3 months during the period 1945-1980. An almost significantly increased total mortality (SMR = 116, 95% CI 99-136) was found. Deaths caused by violence or intoxication were significantly increased (SMR = 153, 95% CI 109-213), but not deaths from ischemic heart disease (SMR = 100, 95% CI 73-135). A significant increase in total cancer morbidity was observed (SMR = 128, 95% CI 101-161). Respiratory cancers were significantly increased (SMR = 213, 95% CI 127-346). Furthermore, six brain tumors (vs. 2.6 expected) were observed. This increase, however, was not significant (SMR = 229, 95% CI 84-498). No liver hemangiosarcoma was observed. Applying a latency period of greater than or equal to 10 years from start of employment did not change the risk patterns. There were no significant exposure-response associations between exposure estimates for VCM, asbestos, and plasticizers and cancer morbidity.

Hagmar, L.; Akesson, B.; Nielsen, J.; Andersson, C.; Linden, K.; Attewell, R.; Moeller, T. (University Hospital, Lund (Sweden))

1990-01-01T23:59:59.000Z

392

Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste  

SciTech Connect (OSTI)

Laboratory results of a comprehensive, regulatory performance test program, utilizing an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). Using a 53 millimeter, Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of type three, air blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, containing about 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium and strontium was utilized. Samples tested contained three levels of waste loading: that is, forty, fifty and sixty wt % salt. Performance test results include the ninety day ANS 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP Toxicity test, at all levels of waste loading. Additionally, test results presented also include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy. Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements.

Mattus, A.J.; Kaczmarsky, M.M.

1986-12-15T23:59:59.000Z

393

Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics  

SciTech Connect (OSTI)

Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

Hulse, R.A.

1991-08-01T23:59:59.000Z

394

Low-Level Waste Regulation: Putting Principles Into Practice - 13297 - The Richard S. Hodes, M.D., Honor Lecture Award  

SciTech Connect (OSTI)

In carrying out its mission to ensure the safe use of radioactive materials for beneficial civilian purposes while protecting people and the environment, the U.S. Nuclear Regulatory Commission (NRC) adheres to its Principles of Good Regulation. The Principles-Independence, Openness, Efficiency, Clarity, and Reliability-apply to the agency as a whole in its decision-making and to the individual conduct of NRC employees. This paper describes the application of the Principles in a real-life staff activity, a guidance document used in the NRC's low-level radioactive waste (LLW) program, the Concentration Averaging and Encapsulation Branch Technical Position (CA BTP). The staff's process to revise the document, as well as the final content of the document, were influenced by following the Principles. For example, consistent with the Openness Principle, the staff conducted a number of outreach activities and received many comments on three drafts of the document. Stakeholder comments affected the final staff positions in some cases. The revised CA BTP, once implemented, is expected to improve management and disposal of LLW in the United States. Its positions have an improved nexus to health and safety; are more performance-based than previously, thus providing licensees with options for how they achieve the required outcome of protecting an inadvertent human intruder into a disposal facility; and provide for disposal of more sealed radioactive sources, which are a potential threat to national security. (author)

Kennedy, James E. [Low-Level Waste Branch Division of Waste Management and Environmental Protection, U.S. Nuclear Regulatory Commission, Washington, DC, 20555-0001 (United States)] [Low-Level Waste Branch Division of Waste Management and Environmental Protection, U.S. Nuclear Regulatory Commission, Washington, DC, 20555-0001 (United States)

2013-07-01T23:59:59.000Z

395

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect (OSTI)

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

NONE

1996-02-01T23:59:59.000Z

396

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 4, July 1994  

SciTech Connect (OSTI)

This issue includes the following articles: Federal Facility Compliance Act Task Force forms mixed waste workgroup; Illinois Department of Nuclear Safety considers construction of centralized storage facility; Midwest Commission agrees on capacity limit, advisory committee; EPA responds to California site developer`s queries regarding application of air pollutant standards; county-level disqualification site screening of Pennsylvania complete; Texas Compact legislation introduced in US Senate; Generators ask court to rule in their favor on surcharge rebates lawsuit; Vermont authority and Battelle settle wetlands dispute; Eighth Circuit affirms decision in Nebraska community consent lawsuit; Nebraska court dismisses action filed by Boyd County local monitoring committee; NC authority, Chem-Nuclear, and Stowe exonerated; Senator Johnson introduces legislation to transfer Ward Valley site; Representative Dingell writes to Clinton regarding disposal of low-level radioactive waste; NAS committee on California site convenes; NRC to improve public petition process; NRC releases draft proposed rule on criteria for decontamination and closure of NRC-licensed facilities; and EPA names first environmental justice federal advisory council.

NONE

1994-07-01T23:59:59.000Z

397

Status of corrective measures technology for shallow land burial at arid sites  

SciTech Connect (OSTI)

The field research program involving corrective measure technologies for arid shallow land burial sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Report of field testing of biointrusion barriers continues at a closed-out waste disposal site at Los Alamos. Final results of an experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system are reported, as well as the results of hydrologic modeling activities involving biobarrier systems. 11 refs., 10 figs.

Abeele, W.V.; Nyhan, J.W.; Drennon, B.J.; Lopez, E.A.; Herrera, W.J.; Langhorst, G.J.

1985-01-01T23:59:59.000Z

398

Shallow meteoric alteration and burial diagenesis of massive dolomite in the Castle Reef Formation, northwest Montana  

E-Print Network [OSTI]

), Sawmill Creek (SC), Half Dome Crag (HDC), Morningstar Mountain (MM), Mount Field (MF), Gateway Pass (GP), North Fork of Dupuyer Creek (NFD), South Fork of Dupuyer Creek (SFD), Volcano Reef (VR), North Fork of Teton River (NFT), Teton River (TR), Cave...SHALLOW METEORIC ALTERATION AND BURIAL DIAGENESIS OF MASSIVE DOLOM I TE I N THE CASTLE REEF FORMAT I ON ~ NORTHWEST MONTANA A Thesis by PHILIP MARK WHITSITT Submitted to the Office of Graduate Studies of Texas A&M University in partial...

Whitsitt, Philip Mark

1989-01-01T23:59:59.000Z

399

Predynastic Burials  

E-Print Network [OSTI]

sites in the vicinity of Wadi Hof, Helwan. Archa?ologischecemeteries of Maadi and Wadi Digla. ArchäologischeMaadi and associated cemetery Wadi Digla (Rizkana and Seeher

Stevenson, Alice

2009-01-01T23:59:59.000Z

400

Research Program at Maxey Flats and Consideration of Other Shallow Land Burial Sites  

SciTech Connect (OSTI)

The Maxey Flats research program is a multidisciplinary, multilaboratory program with the objectives to define the radiochemical and chemical composition of leachates in the burial trenches, define the areal distribution of radionuclides on the site and the factors responsible for this distribution, define the concentrations of radionuclides in vegetation both on and offsite and the uptake of radionuclides by representative agricultural crops, define the atmospheric pathways for radionuclide transport and the mechanisms involved, determine the subsurface migration rates of radionuclides and the chemical, physical, biological, and hydrogeological factors which affect this migration. and evaluate the engineering practices which influence the seepage of surface waters into the burial trenches. The program was initiated in 1979 and a research meeting was held at the Nuclear Regulatory Commission Headquarters on July 16, 1980, to report the research findings of each of the participating laboratories and universities. Important observations from the research are included in the Summary and the results reported for each of the research efforts are summarized in the individual reports that are combined to form this document.

,

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1  

SciTech Connect (OSTI)

The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

Not Available

1994-09-01T23:59:59.000Z

402

Characterization of Class A low-level radioactive waste 1986--1990. Volume 2: Main report -- Part A  

SciTech Connect (OSTI)

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the, waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

403

Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement  

SciTech Connect (OSTI)

Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

1995-04-01T23:59:59.000Z

404

Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004  

SciTech Connect (OSTI)

Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup 234}U, {sup 235}U, and {sup 238}U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), {sup 239,240}Pu (60%), {sup 238}Pu (40%), and {sup 241}Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of {sup 137}Cs, {sup 90}Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of {sup 3}H in soils were detected in the southwestern portion of Area G near the {sup 3}H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of {sup 3}H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were {sup 3}H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from {sup 241}Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G.

P.R. Fresquez; E.A. Lopez

2004-11-01T23:59:59.000Z

405

Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet  

SciTech Connect (OSTI)

The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

1996-05-01T23:59:59.000Z

406

Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P  

SciTech Connect (OSTI)

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

407

The south Karelia air pollution study: Effects of low-level expsoure to malodorous sulfur compounds on symptoms  

SciTech Connect (OSTI)

Exposure to very low levels of ambient-air malodorous sulfur compounds and their effect on eye irritation, respiratory-tract symptoms, and central nervous system symptoms in adults were assessed. A cross-sectional self-administered questionnaire (response rate = 77%) was distributed during March and April 1992 to adults (n = 336) who lived in a neighborhood that contained a pulp mill and in a nonpolluted reference community (n = 380). In the exposed community, the measured annual mean concentrations of total reduced sulfur compounds and sulfur dioxide measured in two stations were 2 to 3 {mu}g/m{sup 3} and 1 {mu}g/m{sup 3}, respectively. In the reference community, the annual mean concentration of sulfur dioxide was 1 {mu}g/m{sup 3}. The residents of the community near the pulp mill reported an excess of cough, respiratory infections, and headache during the previous 4 wk, as well as during the preceding 12 mo. The relative risk for headache was increased significantly in the exposed community, compared with the reference area: the adjusted odds ratio (aOR) was 1.83 (95% confidence interval [95% Cl] = 1.06-3.15) during the previous 4 wk and 1.70 (95% Cl = 1.05-2.73) during the preceding 12 mo. The relative risk for cough was also increased during the preceding 12 mo (aOR = 1.64, 95% Cl = 1.01-2.64). These results indicated that adverse health effects of malodorous sulfur compounds occur at lower concentrations than reported previously. 25 refs., 3 tabs.

Partti-Pellinen, K.; Marttila, O. [South Karelia Allergy and Environment Inst., Tiuruniemi (Finland); Vilkka, V. [South Karelia Central Hospital, Lappeenranta (Finland); Jaakkola, J.J. [Univ. of Helsinki (Finland)]|[National Inst. of Public Health, Oslo (Norway)] [and others

1996-07-01T23:59:59.000Z

408

Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

N /A

2000-06-30T23:59:59.000Z

409

Evaluation of ground-based remotely sensed liquid water cloud properties using shortwave radiation measurements  

E-Print Network [OSTI]

properties of low level water clouds. A number of remote sensing retrieval techniques provide either radar-only retrie- vals or combine millimeter-wave radar with microwave radiometer measurements (Frisch et al., 1995 radiation measurements from the ground. The remote sensing observations of radar reflectivity, microwave

Haak, Hein

410

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations  

SciTech Connect (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

Waters, R.D.; Gruebel, M.M. [eds.] [eds.

1996-03-01T23:59:59.000Z

411

Public acceptance activities for the development of new commercial low-level radioactive waste disposal capacity in the United States of America  

SciTech Connect (OSTI)

In the US, the states are responsible for providing disposal capability for commercial low-level radioactive waste generated within their borders. Public acceptance of state activities toward developing this capability is a key factor in the ultimate success of state efforts. The states are using several different approaches to gain public acceptance for the location and development of new low-level radioactive waste disposal facilities. This presentation describes state efforts to gain public acceptance for siting and developing activities and discusses the lessons learned from these state experiences.

Ozaki, C.B.; Scott, R.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-12-31T23:59:59.000Z

412

324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan  

SciTech Connect (OSTI)

The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the closure activities identified in Chapter 6.0, and also adds information on closure activities for the soil directly beneath the unit, regulated material removed during closure, and the schedule for closure. Chapter 8.0 provides Surveillance, monitoring and post-closure information and Chapter 9.0 provides a list of references used throughout the document.

Barnett, J.M.

1998-03-25T23:59:59.000Z

413

Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were received.

N /A

1999-03-22T23:59:59.000Z

414

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste  

Broader source: Energy.gov [DOE]

This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

415

DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site  

Broader source: Energy.gov [DOE]

Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

416

Low-Level Radioactive Waste Management in the United States: What Have We Wrought? The Richard S. Hodes, M.D. Honor Lecture Award - 12222  

SciTech Connect (OSTI)

In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regional and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)

Jacobi, Lawrence R.

2012-07-01T23:59:59.000Z

417

Development of technology for the design of shallow land burial facilities at arid sites  

SciTech Connect (OSTI)

The Los Alamos field research program involving technology development for arid shallow land burial (SLB) sites is described. Field data are presented for an integrated field experiment, which was designed to test individual SLB component experiments related to erosion control, biobarriers, and subsurface capillary and migration barriers. Field tests of biointrusion barriers at waste disposal sites and in experimental plots are reported. The results of a joint DOE/NRC experiment to evaluate leaching and transport of sorbing (Cs, Sr, Li) and nonsorbing (I, Br) solutes in sandy silt backfill are presented for steady-state and unsteady-state flow conditions. A capillary barrier experiment performed in a large caisson (3-m diameter, 6.1 m deep) is described and a year's worth of field data is presented.

Nyhan, J.W.; Abeele, W.V.; Drennon, B.J.; Herrera, W.J.; Lopez, E.A.; Langhorst, G.J.; Stallings, E.A.; Walker, R.D.; Martinez, J.L.

1985-01-01T23:59:59.000Z

418

ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE.  

SciTech Connect (OSTI)

The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data recorded automatically by dataloggers that will be periodically downloaded. Solar panels provide power for the batteries to run both the dataloggers and PICs. Truck drivers have been asked to park their truck within the PIC array for only the time it takes to complete an information log before moving on to one of two Radioactive Waste Management Sites (RWMS) on the NTS. On the log, the truck drivers record their shipment identification number, the time of day, where the waste originated, and information on the route they used to reach the NTS. This data will facilitate comparison of PIC readings with waste manifests and other waste disposal operations data collected at the RWMSs. Gamma radiation measurements collected from the PICs will be analyzed using standard health physics and statistical methods for comparison to DOT standards, but with the added benefit of obtaining an improved understanding of the variability of readings that can occur in the near vicinity of a LLW truck. The data collected will be combined with measurements of street width and other information about transportation routes through towns to develop realistic dose scenarios for citizens in Nevada and Utah towns.

Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

2003-02-27T23:59:59.000Z

419

WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard three source tubes seen in debris PDP drums. Available line sources (Eu-152) were placed in the spiral tubes to further accomplish the desired uniform distribution of radionuclides. The standard PDP drum (PDP matrix drum 005) and PDP sources were used to determine the lower limits of detection (LLD) and TMU. Analysis results for the sludge drum matrix case for two HPGe detectors were tabulated and evaluated. NNSS has accepted the methodology and results of the measurements towards demonstrating equivalence to CBFO certified systems. In conclusion, the WES-WGS and CMR-OPS gamma spectroscopy teams at LANL have defined and performed measurements that serve to establish and demonstrate equivalency with the processes used by CBFO certified NDA systems. The supplemental measurements address four key areas in Appendix A of DOE/WIPP-02-3122: Annual Calibration Confirmation and Performance Check measurements; LLD determination; and TMU definition. For these measurements the containers, matrices and activity loadings are selected to represent items being assayed in real LLW cases. The LLD and the TMU bounding measurements are to be performed one time and will not be required to be repeated in future campaigns. The annual calibration and performance check measurements were performed initially and planned to repeat in annual campaigns in order to maintain NNSS certification. PDP sources and a PDP sludge drum as well as Eu-152 line sources and a spiral sludge drum were used for the measurements. In all cases, the results for accuracy and precision (%R and %RSD, respectively) were within allowable ranges as defined by the WIPP PDP program. LLD (or MDC) results were established for all the ten WIPP reportable radionuclides and U-235, and the MDC for Pu-239 was established in all cases to be well under 100 nCi/g. Useful results for reducing estimated uncertainties were established and an interesting unexpected case of high bias was observed and will be applied toward this end. (authors)

Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

2012-07-01T23:59:59.000Z

420

Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

2012-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "low-level burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Predaceous Ground Beetles  

E-Print Network [OSTI]

Predaceous Ground Beetles Caterpillar Hunters and Bombardier Beetles Rick Minzenmayer, Extension Agent-IPM Chris Sansone, Extension Entomologist Texas Cooperative Extension genus Calosoma, a brightly colored ground beetle. Some species are called...

Sansone, Chris; Minzenmayer, Rick

2003-06-30T23:59:59.000Z

422

Ground Turkey Stroganoff Ingredients  

E-Print Network [OSTI]

Ground Turkey Stroganoff Ingredients: 8 ounces egg noodles, uncooked 1 pound ground turkey 1 onion. Meanwhile, brown ground turkey and onions in non stick skillet until meat is no longer pink and onions cup of egg noodles on plate, top with 1/2 cup of turkey mixture. Equipment: Knife Cutting board

Liskiewicz, Maciej

423

Cooking with Ground Pork  

E-Print Network [OSTI]

to thaw. Even when cooked, pork that has been thawed at room temperature can make you sick. Cooking ground pork safely For dishes that contain ground pork, cook the pork before mixing it with other ingredients. How to store cooked ground pork Leftover... dishes made with ground pork should be stored in a covered dish in the refrigerator right away to prevent spoilage. Use it within 3 days. Reheat foods with ground pork until they are steaming hot, bubbling, or at 165 degrees. Other uses Use cooked...

Anding, Jenna

2008-12-09T23:59:59.000Z

424

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

SciTech Connect (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01T23:59:59.000Z

425

Implementation plan for liquid low-level radioactive waste systems under the FFA for fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document is the fourth annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). In addition, this document lists FFA activities planned for FY 1997. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service.

NONE

1996-06-01T23:59:59.000Z

426

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

Higley, B.A.

1995-03-15T23:59:59.000Z

427

Ground Water Management Act (Virginia)  

Broader source: Energy.gov [DOE]

Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called Ground Water Management Areas (GWMA). Currently,...

428

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 3, is a users manual and an installation and validation manual for the computer program SGSYS (Substation Grounding SYStem Analysis Program). This program analyzes the substation ground field given the total electric current injected into the ground field and the design of the grounding system. Standard outputs of the program are (1) total ground resistance, (2) step voltage, (3) touch voltage, (4) voltages on a grid of points, (5) voltage profile along straight lines, (6) transfer voltages, (7) ground potential rise, (8) body currents, (9) step voltage profile along straight lines, and (10) touch voltage profile along straight lines. This program can be utilized in an interactive or batch mode. In the interactive mode, the user defines the grounding system geometry, soil parameters, and output requests interactively, with the use of a user friendly conversational program. The users manual describes data requirements and data preparation procedures. An appendix provides forms which facilitate data collection procedures. The installation and validation manual describes the computer files which make up the program SGSYS and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

429

Cooking with Ground Beef  

E-Print Network [OSTI]

This fact sheet describes the nutritional value and safe storage of ground beef, a commodity food. It also offers food preparation ideas....

Anding, Jenna

2008-12-09T23:59:59.000Z

430

Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5.

Not Available

1994-09-01T23:59:59.000Z

431

Ground State Quantum Computation  

E-Print Network [OSTI]

We formulate a novel ground state quantum computation approach that requires no unitary evolution of qubits in time: the qubits are fixed in stationary states of the Hamiltonian. This formulation supplies a completely time-independent approach to realizing quantum computers. We give a concrete suggestion for a ground state quantum computer involving linked quantum dots.

Ari Mizel; M. W. Mitchell; Marvin L. Cohen

1999-08-11T23:59:59.000Z

432

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. It can be used to compute transient ground potential rise due to lightning or switching, and the ground impedance (i.e. resistance and reactance) at specified frequencies. This report, Volume 4, is a users manual and an installation and validation manual for the computer program TGRND (Transient GRouNDing System Analysis Program). This program computes transient ground potential rise resulting from lightning, switching, or other transient electric currents injected to a grounding system. The program also computes the impedance (i.e. resistance and reactance) of a grounding system as a function of frequency. This program can be utilized in an interactive or batch mode. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program TGRND and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

433

Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

Gelles, Christine; Joyce, James; Edelman, Arnold [Office of Environmental Management, Office of Disposal Operations-EM-43 (United States)

2012-07-01T23:59:59.000Z

434

Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report  

SciTech Connect (OSTI)

This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

1995-01-10T23:59:59.000Z

435

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect (OSTI)

The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste