National Library of Energy BETA

Sample records for low-level burial grounds

  1. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    SciTech Connect (OSTI)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  2. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    SciTech Connect (OSTI)

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  3. Geologic Descriptions for the Solid-Waste Low Level Burial Grounds

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Lanigan, David C.

    2007-09-23

    This document provides the stratigraphic framework and six hydrogeologic cross sections and interpretations for the solid-waste Low Level Burial Grounds on the Hanford Site. Four of the new cross sections are located in the 200 West Area while the other two are located within the 200 East Area. The cross sections display sediments of the vadose zone and uppermost unconfined aquifer.

  4. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes

    SciTech Connect (OSTI)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

  5. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    SciTech Connect (OSTI)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  6. EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to widen and operate the unused Trench 33 in the 218-W-5 Low-Level Burial Ground at the U.S. Department of Energy's Richland Operations...

  7. EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of...

  8. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  9. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    SciTech Connect (OSTI)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  10. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    SciTech Connect (OSTI)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  11. Case Study of Anomalies Encountered During Remediation of Mixed Low-Level Waste Burial Grounds in the 100 and 300 Areas of the Hanford Site

    SciTech Connect (OSTI)

    Haass, M.J.; Zacharias, P.E.; Zacharias, A.E.

    2007-07-01

    Under the U.S. Department of Energy's River Corridor Closure Project, Washington Closure Hanford has completed remediation of more than 10 mixed low-level waste burial grounds in the 100 and 300 Areas of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses a sample of the anomalous waste found during remediation and provides an overview of the waste excavation activities. The 100 Area burial grounds received plutonium production reactor waste and waste associated with various test programs. Examples of 100 Area anomalies include spent nuclear fuel, elemental mercury, reactor hardware, and the remains of animals used in testing the effects of radionuclides on living organisms. The 300 Area burial grounds received waste from research and development laboratories and fuel manufacturing operations. Of the seven 300 Area burial grounds remediated to date, the most challenging has been the 618-2 Burial Ground. It presented significant challenges because of the potential for airborne alpha contamination and the discovery of plutonium in an isotopically pure form. Anomalies encountered in the 618-2 Burial Ground included a combination safe that contained gram quantities of plutonium, miscellaneous containers of unknown liquids, and numerous types of shielded shipping casks. Information presented in this paper will be an aid to those involved in remediation activities throughout the U.S. Department of Energy complex and at other nuclear waste disposal sites. (authors)

  12. Environmental Assessment and Finding of No Significant Impact: Widening Trench 36 of the 218-E-12B Low-Level Burial Ground, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    1999-02-11

    This environmental assessment was prepared to assess potential environmental impacts associated with the proposed action to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste. Information contained herein will be used by the Manager, U.S. Department of Energy, Richland Operations Office, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No Significant Impact will be issued and the action may proceed. Criteria used to evaluate significance can be found in Title 40, Code of Federal Regulations 1508.27. This environmental assessment was prepared in compliance with the ''National Environmental Policy Act of1969'', as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of ''National Environmental Policy Act'' (Title 40, Code of Federal Regulations 1500-1508), and the U.S. Department of Energy Implementing Procedures for ''National Environmental Polio Act'' (Title 10, Code of Federal Regulations 1021). The following is a description of each section of this environmental assessment. (1) Purpose and Need for Action. This section provides a brief statement concerning the problem or opportunity the U.S, Department of Energy is addressing with the Proposed Action. Background information is provided. (2) Description of the Proposed Action. This section provides a description of the Proposed Action with sufficient detail to identify potential environmental impacts. (3) Alternatives to the Proposed Action. This section describes reasonable,alternative actions to the Proposed Action, which addresses the Purpose and Need. A No Action Alternative, as required by Title 10, Code of Federal Regulations 1021

  13. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  14. 118-K-1 Burial Ground - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  15. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  16. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    SciTech Connect (OSTI)

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

  17. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  18. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-21

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  19. Cleanup Verification Package for the 618-3 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-09-12

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings.

  20. In situ grouting of low-level burial trenches with a cement-based grout at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Francis, C.W.; Spence, R.D.; Tamura, T.; Spalding, B.P.

    1993-01-01

    A technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at ORNL is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in SWSA 6 were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability (characterized by trench penetration tests) and the decreased potential for leachate migration (characterized by hydraulic conductivity tests) following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. For example, construction of impermeable covers to seal the trenches will be ineffectual unless subsequent trench subsidence is permanently suspended. A grout composed of 39% Type 1 Portland cement, 55.5% Class F fly ash, and 5.5% bentonite mixed at 12.5 lb/gal of water was selected. Before the trenches were grouted, the primary characteristics relating to physical stability, hydraulic conductivity, and void volume of the trenches were determined. Their physical stability was evaluated using soil-penetration tests.

  1. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    SciTech Connect (OSTI)

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  2. Hydrologic and geologic aspects of low-level radioactive-waste site management. [Shallow land burial at Oak Ridge

    SciTech Connect (OSTI)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations.

  3. Cleanup Verification Package for the 118-F-6 Burial Ground

    SciTech Connect (OSTI)

    H. M. Sulloway

    2008-10-02

    This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

  4. Hydrology of the Melton Valley radioactive-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    SciTech Connect (OSTI)

    Webster, D.A.; Bradley, M.W.

    1988-12-31

    Burial grounds 4, 5, and 6 were used sequentially from 1951 to the present for the disposal of solid, low-level radioactive waste by burial in shallow trenches and auger holes. Abundant rainfall, a generally thin unsaturated zone, geologic media of inherently low permeability, and the operational practices employed have contributed to partial saturation of the buried waste, leaching of radionuclides, and transport of dissolved matter from the burial areas. Two primary methods of transport from these sites are by dissolution in circulating ground water, and the overflow of fluids in trenches and subsequent flow across land surface. The waste-disposal areas are underlain by the Conasauga Group (Cambrian age), a complex sequence of mudstone, siltstone, and limestone interbeds grading from one lithotype to the other, both laterally and vertically. Compressional forces that caused regional thrust faulting also caused much internal deformation of the beds. Folds, bedding-plane faults, and joints are widespread. Small solution openings have developed in some areas where the structurally-related openings have provided ingress to ground water.

  5. 618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned

    SciTech Connect (OSTI)

    Darby, J. W.

    2012-06-28

    A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

  6. 618-10 and 618-11 Burial Grounds - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  7. Oak Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds

    Broader source: Energy.gov [DOE]

    Department of Energy’s (DOE) Oak Ridge Environmental Management (EM) program recently completed upgrades and soil remediation work at the Bethel Valley Burial Grounds, using approximately $17.5 million in American Recovery and Reinvestment Act funds.

  8. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    Energy Science and Technology Software Center (OSTI)

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines themore » two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simple ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  9. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    SciTech Connect (OSTI)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  10. Cleanup Verification Package for the 118-F-3, Minor Construction Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2007-01-04

    This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs.

  11. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect (OSTI)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  12. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise; K. L. Vialetti

    2008-05-12

    This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

  13. The Root Cause Analysis for Contaminated Vegetation on Low-Level Burial Grounds on the Hanford Site

    SciTech Connect (OSTI)

    MILLIKIN, E.J.

    2002-08-29

    By default this presentation has been approved for public release. Presentation was never presented but, it was published in the conference proceedings. Initial Information Clearance form was lost.

  14. Characterization of the Hanford 300 area burial grounds. Final report: decontamination and decommissioning

    SciTech Connect (OSTI)

    Phillips, S.J.; Ames, L.L.; Fitzner, R.E.; Gee, G.W.; Sandness, G.A.; Simmons, C.S.

    1980-01-01

    Pacific Northwest Laboratory conducted a series of investigations at the Hanford Site to develop technologies for characterizing and monitoring radioactive waste burial facilities that could be used in determining appropriate decommissioning alternatives. Specific objectives were to develop unique functional geophysics, geochemical, soil physics, numerical modeling, and biological methodologies needed to better characterize and monitor buried radioactive waste disposal sites. To meet these objectives the project was divided into four tasks: Task I, Geophysical Evaluation - Geophysical surveys were taken to locate and define the gross composition of waste materials. Task II, Geochemical Analysis - The interaction of disposed radionuclides with geologic media was analyzed through an integrated radiochemical procedure. Task III, Fluid Transport and Modeling - Computer modeling of water migration in partially saturated groundwater systems was verified with actual data collected at a field test facility used to monitor micrometeorological and geohydrological energy and mass transfer factors. Task IV, Biological Transport - Several biological organisms were evaluated for potential radionuclide uptake and transport. Along with the four tasks, the project included a review of pertinent literature and regulatory issues that might affect the alternatives selected. Surveys were taken of the surrounding area and specific sites and operations. The overall results indicated that the 300 Area Burial Grounds have been adequate in containing radioactive waste. Based on the results of the project, the alternatives identified for decommissioning these sites are exhumation and translocation, entombment, perpetual care, and abandonment. Perpetual care (currently used) appears to be the best decommissioning alternative for these burial grounds at this time. However, another alternative may be selected depending on future waste management policies, plans, or activities.

  15. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  16. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  17. Digging Begins at Hazardous Hanford Burial Ground- River Corridor Contractor Spent Two Years Preparing to Remediate 618-10

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, WASH. — After careful preparation and characterization, the Department of Energy’s (DOE) River Corridor contractor, Washington Closure Hanford, has begun remediation of one of the most hazardous burial grounds tackled to date on the Hanford Site’s River Corridor.

  18. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  19. Geophysical investigation at Mustard Gas Burial Ground, Naval Surface Warfare Center, Crane Division, Crane, Indiana. Final report

    SciTech Connect (OSTI)

    Llopis, J.L.; Sjostrom, K.J.; Murphy, W.L.

    1997-06-01

    A geophysical investigation was conducted at the Mustard Gas Burial Ground (MGBG) at the Naval Surface Warfare Center, Crane Division, Crane, IN. The MGBG, an approximately 2-acre area, is a former Solid Waste Management Unit. The objective of the investigation was to detect and delineate anomalies indicating the locations of buried structures, objects, or disturbed zones associated with past hazardous waste burial at the MGBG. The locations of these objects are needed so they can be excavated for removal to a permanent treatment or disposal site. Frequency and time domain electromagnetic (EM) along with magnetic survey methods were used at the MGBG. All the surveys performed at the MGBG indicated an anomalous area approximately 10 ft in diameter centered on Station 255 on Line 130. The estimated depth of the anomaly, based on results of the transient EM surveys, is 1 to 2 ft. The anomaly is presumed to be ferrous in nature since it was detected by the magnetometer. An additional, 2- to 3-ft diameter anomaly, caused by a small metallic object was detected by the transient EM surveys.

  20. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  1. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  2. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  3. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  4. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    SciTech Connect (OSTI)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-03-23

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.

  5. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    SciTech Connect (OSTI)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

  6. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  7. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  8. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

  9. Vertical Extraction Process Implemented at the 118-K-1 Burial Ground for Removal of Irradiated Reactor Debris from Silo Structures - 12431

    SciTech Connect (OSTI)

    Teachout, Douglas B.; Adamson, Clinton J.; Zacharias, Ames

    2012-07-01

    The primary objective of a remediation project is the safe extraction and disposition of diverse waste forms and materials. Remediation of a solid waste burial ground containing reactor hardware and irradiated debris involves handling waste with the potential to expose workers to significantly elevated dose rates. Therefore, a major challenge confronted by any remediation project is developing work processes that facilitate compliant waste management practices while at the same time implementing controls to protect personnel. Traditional burial ground remediation is accomplished using standard excavators to remove materials from trenches and other excavation configurations often times with minimal knowledge of waste that will be encountered at a specific location. In the case of the 118-K-1 burial ground the isotopic activity postulated in historic documents to be contained in vertical cylindrical silos was sufficient to create the potential for a significant radiation hazard to project personnel. Additionally, certain reported waste forms posed an unacceptably high potential to contaminate the surrounding environment and/or workers. Based on process knowledge, waste management requirements, historic document review, and a lack of characterization data it was determined that traditional excavation techniques applied to remediation of vertical silos would expose workers to unacceptable risk. The challenging task for the 118-K-1 burial ground remediation project team then became defining an acceptable replacement technology or modification of an existing technology to complete the silo remediation. Early characterization data provided a good tool for evaluating the location of potential high exposure rate items in the silos. Quantitative characterization was a different case and proved difficult because of the large diameter of the silos and the potential for variable density of attenuating soils and waste forms in the silo. Consequently, the most relevant

  10. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    SciTech Connect (OSTI)

    Conner, K.R.

    2000-12-12

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  11. Russian low-level waste disposal program

    SciTech Connect (OSTI)

    Lehman, L.

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  12. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  13. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches

    SciTech Connect (OSTI)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  14. Application of decontamination and melting of low-level waste

    SciTech Connect (OSTI)

    Clements, D.W.; Hall, M.

    1996-12-31

    This paper describes the range of plant, equipment, and techniques developed by British Nuclear Fuels plc at their Capenhurst site to minimize land burial, environmental impact, and recycling of metals. This large nuclear processing facility in the United Kingdom yielded more than 160000 t of suspect surface contaminated material. By the time the project is finally completed at the end of 1996, {approx}99.5% of the contaminated material will have been safely and cost-effectively treated so that it can be recycled for use in a nonnuclear environment. The remaining material as well as minimal quantities of secondary wastes arising from decontamination activities will have been size reduced and/or encapsulated to maximize the cost-effective use of the U.K. low-level-waste burial facility.

  15. Low-level waste disposal in highly populated areas

    SciTech Connect (OSTI)

    Kowalski, E.; McCombie, C.; Issler, H.

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  16. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  17. Low level tank waste disposal study

    SciTech Connect (OSTI)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  18. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    SciTech Connect (OSTI)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  19. NEUTRONIC REACTOR BURIAL ASSEMBLY

    DOE Patents [OSTI]

    Treshow, M.

    1961-05-01

    A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

  20. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  1. Low-level waste program technical strategy

    SciTech Connect (OSTI)

    Bledsoe, K.W.

    1994-10-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite.

  2. Tank farms compacted low-level waste

    SciTech Connect (OSTI)

    Hetzer, D.C.

    1997-08-01

    This report describes the process of Low-Level Waste (LLW) volume reduction by compaction. Also included is the data used for characterization of LLW destined for compaction. Scaling factors (ratios) are formed based on data contained in this report.

  3. Tank farms compacted low level waste

    SciTech Connect (OSTI)

    Waters, M.S., Westinghouse Hanford

    1996-07-01

    This report describes the process of Low Level Waste (LLW) volume reduction by compaction. Also included is the data used for characterization of LLW destined for compaction. Scaling factors (ratios) are formed based on data contained in this report.

  4. Low-level-waste-form criteria

    SciTech Connect (OSTI)

    Barletta, R.E.; Davis, R.E.

    1982-01-01

    Efforts in five areas are reported: technical considerations for a high-integrity container for resin wastes; permissible radionuclide loadings for organic ion exchange resin wastes; technical factors affecting low-level waste form acceptance requirements of the proposed 10 CFR 61 and draft BTP; modeling of groundwater transport; and analysis of soils from low-level waste disposal sites (Barnwell, Hanford, and Sheffield). (DLC)

  5. Working with SRNL - Our Facilities- Ultra Low-Level Underground Counting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Ultra Low-Level Underground Counting Facility Working with SRNL Our Facilities - Ultra Low-Level Underground Counting Facility The Ultra Low-Level Underground Counting Facility is the only facility of its kind in the country. This facility is located 50 feet below ground level, and has four-inch thick walls of pre-nuclear weapons era steel. This allows highly sensitive measurements of ultra-low amounts of environmental radioactivity, free from interference by background radiatio

  6. Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program

    SciTech Connect (OSTI)

    Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G.

    1981-12-01

    The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

  7. Engineered sorbent barriers for low-level waste disposal.

    SciTech Connect (OSTI)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  8. Radionuclide release from low-level waste in field lysimeters

    SciTech Connect (OSTI)

    Oblath, S B

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species.

  9. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  10. Lid design for low level waste container

    DOE Patents [OSTI]

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  11. Lid design for low level waste container

    DOE Patents [OSTI]

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  12. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

  13. Low-Level Waste Disposal Facility Federal Review Group Manual...

    Office of Environmental Management (EM)

    Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility ...

  14. West Valley Demonstration Project Low-Level Waste Shipment |...

    Office of Environmental Management (EM)

    Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment (406.16 KB) More Documents & ...

  15. PUREX low-level waste radionuclide characterization

    SciTech Connect (OSTI)

    Ellis, M.W.; LeBaron, G.J.

    1995-01-16

    The PUREX low-level waste (LLW) radionuclide characterization document describes the methodology for the characterization of solid LLW and solid low-level mixed waste (MW) with the respect to radiological characteristics. This document only serves as an overview of the PUREX radionuclide characterization methodology and provides specific examples for how the radionuclide distribution is derived. It would be impractical to provide all background information in this document. If further clarification and background information is required, consult the PUREX Regulatory Compliance group files. This document applies to only that waste generated in or is the responsibility of the PUREX facilities. The US Department of Energy (DOE) establishes the requirements for radioactive solid waste in DOE Order 5820.2A Radioactive Waste Management. Chapters 2 and 3 from DOE Order 5820.2A requires that generators of solid wastes in the LLW categories and the radioactive mixed waste subcategories: (1) identify the major radionuclides in each solid waste matrix and (2) determine the radionuclide concentrations and waste classes of their solid wastes. In addition, the Order also requires each generator to carry out a compliance program that ensures the proper certification of the solid waste generated.

  16. Letter on Low-Level Radiation Research | Department of Energy

    Energy Savers [EERE]

    Low-Level Radiation Research Letter on Low-Level Radiation Research The Secretary of Energy Advisory Board (SEAB) transmitted a letter to the Department regarding its perspective ...

  17. LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION...

    Office of Environmental Management (EM)

    LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION PLAN Los Alamos National ... Safety and Security LFRG Low-Level Waste Disposal Facility Federal Review Group LLW ...

  18. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    SciTech Connect (OSTI)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J.

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques.

  19. Draft low level waste technical summary

    SciTech Connect (OSTI)

    Powell, W.J.; Benar, C.J.; Certa, P.J.; Eiholzer, C.R.; Kruger, A.A.; Norman, E.C.; Mitchell, D.E.; Penwell, D.E.; Reidel, S.P.; Shade, J.W.

    1995-09-01

    The purpose of this document is to present an outline of the Hanford Site Low-Level Waste (LLW) disposal program, what it has accomplished, what is being done, and where the program is headed. This document may be used to provide background information to personnel new to the LLW management/disposal field and to those individuals needing more information or background on an area in LLW for which they are not familiar. This document should be appropriate for outside groups that may want to learn about the program without immediately becoming immersed in the details. This document is not a program or systems engineering baseline report, and personnel should refer to more current baseline documentation for critical information.

  20. Detecting low levels of radionuclides in fluids

    DOE Patents [OSTI]

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  1. Low-level waste feed staging plan

    SciTech Connect (OSTI)

    Certa, P.J.; Grams, W.H.; McConville, C.M.; L. W. Shelton, L.W.; Slaathaug, E.J., Westinghouse Hanford

    1996-08-12

    The `Preliminary Low-Level Waste Feed Staging Plan` was updated to reflect the latest requirement in the Tank Waste Remediation Privatization Request for Proposals (RFP) and amendments. The updated plan develops the sequence and transfer schedule for retrieval of DST supernate by the management and integration contractor and delivery of the staged supernate to the private low-activity waste contractors for treatment. Two DSTs are allocated as intermediate staging tanks. A transfer system conflict analysis provides part of the basis for determining transfer system upgrade requirements to support both low-activity and high-level waste feed delivery. The intermediate staging tank architecture and retrieval system equipment are provided as a planning basis until design requirements documents are prepared. The actions needed to successfully implement the plan are identified. These include resolution of safety issues and changes to the feed envelope limits, minimum order quantities, and desired batch sizes.

  2. Disposal of low-level and low-level mixed waste: audit report

    SciTech Connect (OSTI)

    1998-09-03

    The Department of Energy (Department) is faced with the legacy of thousands of contaminated areas and buildings and large volumes of `backlog` waste requiring disposal. Waste management and environmental restoration activities have become central to the Department`s mission. One of the Department`s priorities is to clean up former nuclear weapons sites and find more effective and timely methods for disposing of nuclear waste. This audit focused on determining if the Department was disposing of low-level and low-level mixed waste in the most cost-effective manner.

  3. Properties of slag concrete for low-level waste containment

    SciTech Connect (OSTI)

    Langton, C.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Wong, P.B. (Bechtel National, Inc., Aiken, SC (United States))

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 {times} 100 {times} 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10{sup {minus}7} cm/sec; and effective nitrate, chromium and technetium diffusivities of 10{sup {minus}8}, 10{sup {minus}12} and 10{sup {minus}12} cm{sup 2}/sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr{sup +6} to Cr{sup +3} and Tc{sup +7} to Tc{sup +4} and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site.

  4. Properties of slag concrete for low-level waste containment

    SciTech Connect (OSTI)

    Langton, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Wong, P.B. [Bechtel National, Inc., Aiken, SC (United States)

    1991-12-31

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 {times} 100 {times} 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10{sup {minus}7} cm/sec; and effective nitrate, chromium and technetium diffusivities of 10{sup {minus}8}, 10{sup {minus}12} and 10{sup {minus}12} cm{sup 2}/sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr{sup +6} to Cr{sup +3} and Tc{sup +7} to Tc{sup +4} and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site.

  5. Disposal of low-level radioactive waste at the Savannah River Site

    SciTech Connect (OSTI)

    Sauls, V.W.

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  6. CRAD, Low-Level Radioactive Waste Management - April 30, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) CRAD, Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) April 2015...

  7. Maintenance Guide for DOE Low-Level Waste Disposal Facility ...

    Broader source: Energy.gov (indexed) [DOE]

    Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses Maintenance Guide for DOE Low-Level Waste Disposal ...

  8. Maintenance Guide for DOE Low-Level Waste Disposal Facility

    Office of Environmental Management (EM)

    Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility ... for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments ...

  9. Microsoft Word - HABAdv#243_SWBurialGrounds.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... releases. * The Board advises DOE to provide total volume estimates of plutonium, uranium, cesium, and thorium 232, which were recorded as disposed in the burial grounds. ...

  10. Disposal of low-level and mixed low-level radioactive waste during 1990

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

  11. Twelfth annual US DOE low-level waste management conference

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  12. US Army facility for the consolidation of low-level radioactive waste

    SciTech Connect (OSTI)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables.

  13. Low-level waste certification plan for the WSCF Laboratory Complex

    SciTech Connect (OSTI)

    Morrison, J.A.

    1994-09-19

    The solid, low-level waste certification plan for the Waste Sampling and Characterization Facility (WSCF) describes the organization and methodology for the certification of the solid low-level waste (LLW) that is transferred to the Hanford Site 200 Areas Storage and Disposal Facilities. This plan incorporates the applicable elements of waste reduction, including up-front minimization, and end product treatment to reduce the volume or toxicity of the waste. The plan also includes segregation of different waste types. This low-level waste certification plan applies only to waste generated in, or is the responsibility of the WSCF Laboratory Complex. The WSCF Laboratory Complex supports technical activities performed at the Hanford Site. Wet Chemical and radiochemical analyses are performed to support site operations, including environmental and effluent monitoring, chemical processing, RCRA and CERCLA analysis, and waste management activities. Environmental and effluent samples include liquid effluents, ground and surface waters, soils, animals, vegetation, and air filters.

  14. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  15. Mixed and Low-Level Treatment Facility Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  16. Orex based {open_quotes}point of generation{close_quotes} low-level radioactive waste reduction program

    SciTech Connect (OSTI)

    Haynes, B.

    1995-11-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. A typical 800 megawatt power station will generate between 6,000 to 10,000 cubic feet of DAW annually. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: (1). The number of radioactive waste repositories now accepting new waste is limited. (2). The current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum. (3). The cost of burial is constantly increasing. (4). Onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning. In order to address this issue, the industry must look to the application of {open_quotes}point of generation{close_quotes} technologies.

  17. LOW-LEVEL RADIOACTIVE & MIXED WASTE SHIPMENTS TO THE NEVADA NATIONAL SECURITY SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NV NY NY NV OH TN TN TN, WA, CA TN TN TN TX y ct 2 Plant Perma-Fix LOW-LEVEL RADIOACTIVE & MIXED WASTE SHIPMENTS TO THE NEVADA NATIONAL SECURITY SITE FIRST QUARTER REPORT, FY 2011 (OCTOBER, NOVEMBER, DECEMBER 2010) Livermore National Laboratory ergy Alliance onal Laboratory Mixed Waste Treatment Project gonne National Laboratory ational Laboratory Gaseous Diffusion Plant Proving Ground terra, LLC en National Laboratory y Environmental Services ecurity Technologies, Inc. h Gaseous Diffusion

  18. Mixed Low-Level Radioactive Waste (MLLW) Primer

    SciTech Connect (OSTI)

    W. E. Schwinkendorf

    1999-04-01

    This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

  19. Low level rf system for the Fermilab Tevatron

    SciTech Connect (OSTI)

    Meisner, K.; Edwards, H.; Fitzgerald, J.; Kerns, Q.

    1985-06-01

    This paper discusses the design philosophy, hardware, and operation of the Fermilab Tevatron low level rf system. Plans to extend the system for colliding beams physics are also presented.

  20. Low-level waste vitrification plant environmental permitting plan

    SciTech Connect (OSTI)

    Gretsinger, W.T.; Colby, J.M.

    1994-10-03

    This document presents projected environmental permitting and approval requirements for the treatment and disposal of low-level Hanford tank waste by vitrification. Applicability, current status, and strategy are discussed for each potential environmental permit or approval.

  1. Low-Level Waste Disposal Facility Federal Review Group Manual

    Office of Environmental Management (EM)

    LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page ... 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group ...

  2. Bibliographic Data on Low-Level Radioactive Waste Documents

    Energy Science and Technology Software Center (OSTI)

    1995-11-10

    The purpose of the system is to allow users (researchers, policy makers, etc) to identify existing documents on a range of subjects related to low-level radioactive waste management. The software is menu driven.

  3. New York State`s regulations for low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Youngberg, B.; Merges, P.; Owen, K.

    1994-12-31

    The New York State Department of Environmental Conservation`s (NYSDEC) regulations for low-level radioactive waste (LLRW) disposal facilities set primarily performance-based criteria for LLRW disposal facilities. The regulations (Part 383 of Title 6 of the New York State Codes of Rules and Regulations) set requirements for design, construction, operation, monitoring, site safety planning, financial assurance, closure, post closure monitoring and maintenance, and institutional control. The regulations are unique in their detail and in presenting specific requirements for below ground disposal units, above ground disposal units, and underground mined repositories.

  4. Hanford Progresses in Burial Ground Cleanup | Department of Energy

    Office of Environmental Management (EM)

    Business Forum & Expo | Department of Energy Group14 Engineering, Inc., Wins DOE Protege of the Year Award at the Small Business Forum & Expo Group14 Engineering, Inc., Wins DOE Protege of the Year Award at the Small Business Forum & Expo October 10, 2014 - 10:20am Addthis Sue Reilly, President of Group14 Engineering, Inc., accepted the award for DOE Protege of the Year at the Small Business Forum & Expo from Kevin Knobloch, DOE Chief of Staff (l), and John Hale III, Director

  5. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Area were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.

  6. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  7. Immobilized low-level waste disposal options configuration study

    SciTech Connect (OSTI)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  8. Stability testing of low-level waste forms

    SciTech Connect (OSTI)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    The NRC Technical Position on Waste Form identifies methods for thermal cycle testing and biodegradation testing of low-level waste forms. These tests were carried out on low-level waste forms to establish whether the tests are reasonable and can be achieved. The thermal-cycle test is believed adequate for demonstrating the thermal stability of solidified waste forms. The biodegradation tests are sufficient for distinguishing materials that are susceptible to biodegradation. However, failure of either of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61.

  9. Modeling and low-level waste management: an interagency workshop

    SciTech Connect (OSTI)

    Little, C.A.; Stratton, L.E.

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

  10. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    SciTech Connect (OSTI)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  11. Decontamination & melting of low level waste - a complete environmental restoration solution

    SciTech Connect (OSTI)

    Clements, D.W.

    1996-10-01

    BNFL has almost completed the decommissioning of a major nuclear enrichment facility in the UK - the Capenhurst Diffusion Plant. This massive facility, 1,200m long and 150m wide and housed under a single roof consisted of a cascade of 4,800 {open_quote}stage units{close_quote} of various sizes connected by 1,800 km of process gas pipework. Dismantling the plant yielded over 160,000 tonne of suspect surface-contaminated material. By the time the project is fully completed, around the middle of 1996, over 99.5% of the contaminated material will have been safely and cost-effectively treated such that it can be recycled for unrestricted use in a non-nuclear environment. The remaining material, as well as minimal quantities of secondary wastes arising from decontamination activities, will have been size-reduced and/or encapsulated to maximise the cost-effective use of the UK low-level waste burial facility at Drigg.

  12. Low-level radioactive waste disposal facility closure

    SciTech Connect (OSTI)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. )

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  13. Decontamination and melting of low-level waste

    SciTech Connect (OSTI)

    Clements, D.W.

    1997-03-01

    This article describes the decommissioning project of the Capenhurst Diffusion Plant in Europe. Over 99 percent of the low-level waste was successfully treated and recycled. Topics include the following: decommissioning philosophy; specialized techniques including plant pretreatment, plant dismantling, size reduction, decontamination, melting, and encapsulation of waste; recycled materials and waste stream; project safety; cost drivers and savings. 5 refs., 5 figs.

  14. Low-Level Waste Disposal Alternatives Analysis Report

    SciTech Connect (OSTI)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  15. Low-level waste vitrification contact maintenance viability study

    SciTech Connect (OSTI)

    Leach, C.E., Westinghouse Hanford

    1996-07-12

    This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

  16. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    SciTech Connect (OSTI)

    Robertson, D.E. Myers, D.A.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,

  17. Mixed and low-level waste treatment facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  18. B Plant low level waste system integrity assessment report

    SciTech Connect (OSTI)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03.

  19. Chemical digestion of low level nuclear solid waste material

    DOE Patents [OSTI]

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  20. Low-level radioactive waste technology: a selected, annotated bibliography

    SciTech Connect (OSTI)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  1. Mixed and Low-Level Waste Treatment Facility Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  2. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  3. Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts

    SciTech Connect (OSTI)

    Not Available

    1985-08-01

    The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities.

  4. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    SciTech Connect (OSTI)

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  5. Status of low-level radioactive waste management in Korea

    SciTech Connect (OSTI)

    Lee, K.J.

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  6. Nuclear reactor with low-level core coolant intake

    DOE Patents [OSTI]

    Challberg, Roy C.; Townsend, Harold E.

    1993-01-01

    A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

  7. Alpha low-level stored waste systems design study

    SciTech Connect (OSTI)

    Feizollahi, F.; Teheranian, B.; Quapp, W.J.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  8. Alpha low-level stored waste systems design study

    SciTech Connect (OSTI)

    Feizollahi, F.; Teheranian, B. . Environmental Services Div.); Quapp, W.J. )

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  9. Low-Level Waste Overview of the Nevada Test Site

    SciTech Connect (OSTI)

    J. T. Carilli; M. G. Skougard; S. K. Krenzien; J.K Wrapp; C. Ramirez; V. Yucel; G.J. Shott; S.J. Gordon; K.C. Enockson; L.T. Desotell

    2008-02-01

    This paper provides an overview and the impacts of new policies, processes, and opportunities at the Nevada Test Site. Operational changes have been implemented, such as larger trench sizes and more efficient soil management as have administrative processes to address U.S. Department of Energy and U.S. Code of Federal Regulation analyses. Some adverse conditions have prompted changes in transportation and mixed low-level waste polices, and a new funding mechanism was developed. This year has seen many changes to the Nevada Test Site disposal family.

  10. System for chemically digesting low level radioactive, solid waste material

    DOE Patents [OSTI]

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  11. Disposal of Low-Level Waste at the Nevada National Security Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Low-Level Waste at the Nevada National Security Site Disposal of Low-Level Waste at the Nevada National Security Site Disposal of Low-Level Waste at the Nevada National Security ...

  12. Treatment options for low-level radiologically contaminated ORNL filtercake

    SciTech Connect (OSTI)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

  13. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  14. Secondary Low-Level Waste Treatment Strategy Analysis

    SciTech Connect (OSTI)

    D.M. LaRue

    1999-05-25

    The objective of this analysis is to identify and review potential options for processing and disposing of the secondary low-level waste (LLW) that will be generated through operation of the Monitored Geologic Repository (MGR). An estimate of annual secondary LLW is generated utilizing the mechanism established in ''Secondary Waste Treatment Analysis'' (Reference 8.1) and ''Secondary Low-Level Waste Generation Rate Analysis'' (Reference 8.5). The secondary LLW quantities are based on the spent fuel and high-level waste (HLW) arrival schedule as defined in the ''Controlled Design Assumptions Document'' (CDA) (Reference 8.6). This analysis presents estimates of the quantities of LLW in its various forms. A review of applicable laws, codes, and standards is discussed, and a synopsis of those applicable laws, codes, and standards and their impacts on potential processing and disposal options is presented. The analysis identifies viable processing/disposal options in light of the existing laws, codes, and standards, and then evaluates these options in regard to: (1) Process and equipment requirements; (2) LLW disposal volumes; and (3) Facility requirements.

  15. IGRIS for characterizing low-level radioactive waste

    SciTech Connect (OSTI)

    Peters, C.W.; Swanson, P.J.

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  16. Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...

    Office of Environmental Management (EM)

    Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine ...

  17. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 |...

    Office of Environmental Management (EM)

    Waste Management Waste Disposition 122000 Low-Level Waste Disposal Capacity Report Version 2 122000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this ...

  18. Screening Experiments for Removal of Low-Level Tritiated Water

    SciTech Connect (OSTI)

    Kim, Yun Mi; Baney, Ronald; Powers, Kevin; Koopman, Ben; Tulenko, James

    2005-03-15

    Screening experiments for low levels of tritiated water (HTO) remediation based upon selective adsorption/desorption mechanisms utilizing equilibrium isotope effects have been carried out. Several organic and inorganic high surface area materials were investigated to assess their ability to selectively adsorb low concentrations of HTO. Ion-exchange resins with cation functionalities, chitosan, sodium alginate, and several inorganic media modified with metal cations exhibited promising results. Biomaterials, for example, chitosan and modified alginate, demonstrated positive results. Based on the literature and our preliminary testing, we postulate four possible mechanisms for selected tritium adsorption: hydrogen ion exchange, HTO coordination with surface cation sites, hydrogen bonding to surface basic sites, and secondary hydrogen bonding (structural water) in fine pores.

  19. Low-level radioactive waste form qualification testing

    SciTech Connect (OSTI)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  20. WRAP low level waste (LLW) glovebox acceptance test report

    SciTech Connect (OSTI)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  1. Summertime Low-Level Jets over the Great Plains

    SciTech Connect (OSTI)

    Stensrud, D.J.

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  2. Optimising the Performance of the Low Level Waste Repository - 12144

    SciTech Connect (OSTI)

    Huntington, Amy; Baker, Andrew; Cummings, Richard; Shevelan, John; Sumerling, Trevor

    2012-07-01

    The Low Level Waste Repository (LLWR) is the United Kingdom's principal facility for the disposal of low-level waste (LLW). The LLWR made a major submission to its environmental regulator (the Environment Agency) on 1 May 2011, the LLWR's 2011 Environmental Safety Case (ESC). One of the key regulatory requirements is that all aspects of the construction, operation and closure of the disposal facility should be optimised. An optimised Site Development Plan for the repository was developed and produced as part of the ESC. The Site Development Plan covers all aspects of the construction, operation and closure of the disposal facility. This includes the management of past and future disposals, emplacement strategies, design of the disposal vaults, and the closure engineering for the site. The Site Development Plan also covers the period of active institutional control, when disposals at the site have ceased, but it is still under active management, and plans for the long-term sustainable use of the site. We have a practical approach to optimisation based on recorded judgements and realistic assessments of practicable options framed within the demands of UK policy for LLW management and the characteristics the LLWR site and existing elements of the facility. The final performance assessments undertaken for the ESC were based on the Site Development Plan. The ESC will be used as a tool to inform future decision-making concerning the repository design, operation and the acceptance of wastes, as set out in the evolving Site Development Plan. Maintaining the ESC is thus essential to ensure that the Site Development Plan takes account of an up-to-date understanding and analysis of environmental performance, and that the Plan continues to be optimised. (authors)

  3. Environmental radiation monitoring of low-level wastes by the State of Washington

    SciTech Connect (OSTI)

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1989-11-01

    The Washington State Department of Health, as the state`s regulatory agency for radiation, monitors several forms of low-level radioactive wastes. The monitoring is done to assess the potential impact on the environment and on public health. The emphasis of the monitoring program is placed on the solid and liquid wastes from defense activities on the Hanford Reservation, commercial wastes at the site located on leased land at Hanford and uranium mill tailings in Northeastern Washington. Although not classified as low-level waste, monitoring is also periodically conducted at selected landfills and sewage treatment facilities and other licensees, where radioactive wastes are known or suspected to be present. Environmental pathways associated with waste disposal are monitored independently, and/or in conjunction with the waste site operators to verify their results and evaluate their programs. The Department also participates in many site investigations conducted by site operators and other agencies, and conducts it`s own special investigations when deemed necessary. Past investigations and special projects have included allegations of adverse environmental impact of I-129, uranium in ground water, impacts of wastes on the agricultural industry, radioactivity in seeps into the Columbia River from waste sites, identifying lost waste sites at Hanford, differentiating groundwater contamination from defense versus commercial sources, and radioactivity in municipal landfills and sewers. The state`s environmental radiation monitoring program has identified and verified a number of environmental problems associated with radioactive waste disposal, but has, to date, identified no adverse offsite impacts to public health.

  4. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    SciTech Connect (OSTI)

    Alexander, J.A.

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  5. Honeybees as monitors of low levels of radioactivity

    SciTech Connect (OSTI)

    Simmons, M.A. ); Bromenshenk, J.J.; Gudatis, J.L. . Dept. of Zoology)

    1990-07-01

    Large-scale environmental monitoring programs rely on sampling many media -- air, water, food, et cetera -- from a large network of sampling stations. For describing the total region possibly impacted by contaminants, the most efficient sampler would be one that covered a large region and simultaneously sampled many different media, such as water, air, soil, and vegetation. Honeybees have been shown to be useful monitors of the environment in this context for detecting both radionuclides and heavy metals. This study sought to determine the effectiveness of honeybees as monitors of low levels of radioactivity in the form of tritium and gamma-emitting radionuclides. For the study, approximately 50 honeybee colonies were placed on the Hanford Site and along the Columbia River in areas downwind of the site. The mini-hive colonies were sampled after 1 month and tested for tritium and for gamma-emitting radionuclides. From this and other studies, it is known that honeybees can be used to detect radionuclides present in the environment. Their mobility and their ability to integrate all exposure pathways could expand and add another level of confidence to the present monitoring program. 6 refs., 1 fig., 2 tabs.

  6. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect (OSTI)

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  7. Reproductive toxicity of low-level lead exposure in men

    SciTech Connect (OSTI)

    Telisman, Spomenka Colak, Bozo; Pizent, Alica; Jurasovic, Jasna; Cvitkovic, Petar

    2007-10-15

    Parameters of semen quality, seminal plasma indicators of secretory function of the prostate and seminal vesicles, sex hormones in serum, and biomarkers of lead, cadmium, copper, zinc, and selenium body burden were measured in 240 Croatian men 19-52 years of age. The subjects had no occupational exposure to metals and no known other reasons suspected of influencing male reproductive function or metal metabolism. After adjusting for age, smoking, alcohol, blood cadmium, and serum copper, zinc, and selenium by multiple regression, significant (P<0.05) associations of blood lead (BPb), {delta}-aminolevulinic acid dehydratase (ALAD), and/or erythrocyte protoporphyrin (EP) with reproductive parameters indicated a lead-related increase in immature sperm concentration, in percentages of pathologic sperm, wide sperm, round sperm, and short sperm, in serum levels of testosterone and estradiol, and a decrease in seminal plasma zinc and in serum prolactin. These reproductive effects were observed at low-level lead exposure (BPb median 49 {mu}g/L, range 11-149 {mu}g/L in the 240 subjects) common for general populations worldwide. The observed significant synergistic effect of BPb and blood cadmium on increasing serum testosterone, and additive effect of a decrease in serum selenium on increasing serum testosterone, may have implications on the initiation and development of prostate cancer because testosterone augments the progress of prostate cancer in its early stages.

  8. Soil characterization methods for unsaturated low-level waste sites

    SciTech Connect (OSTI)

    Wierenga, P.J.; Young, M.H. . Dept. of Soil and Water Science); Gee, G.W.; Kincaid, C.T. ); Hills, R.G. . Dept. of Mechanical Engineering); Nicholson, T.J.; Cady, R.E. )

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies.

  9. Hanford low-level waste process chemistry testing data package

    SciTech Connect (OSTI)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  10. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  11. Low-level waste minimization at the Y-12 Plant

    SciTech Connect (OSTI)

    Koger, J.

    1993-03-01

    The Y-12 Development Waste Minimization Program is used as a basis for defining new technologies and processes that produce minimum low-level wastes (hazardous, mixed, radioactive, and industrial) for the Y-12 Plant in the future and for Complex-21 and that aid in decontamination and decommissioning (D and D) efforts throughout the complex. In the past, the strategy at the Y-12 Plant was to treat the residues from the production processes using chemical treatment, incineration, compaction, and other technologies, which often generated copious quantities of additional wastes and, with the exception of highly valuable materials such as enriched uranium, incorporated very little recycle in the process. Recycle, in this context, is defined as material that is put back into the process before it enters a waste stream. Additionally, there are several new technology drivers that have recently emerged with the changing climate in the Nuclear Weapons Complex such as Complex 21 and D and D technologies and an increasing number of disassemblies. The hierarchies of concern in the waste minimization effort are source reduction, recycle capability, treatment simplicity, and final disposal difficulty with regard to Complex 21, disassembly efforts, D and D, and, to a lesser extent, weapons production. Source reduction can be achieved through substitution of hazardous substances for nonhazardous materials, and process changes that result in less generated waste.

  12. Technical issues in licensing low-level radioactive waste facilities

    SciTech Connect (OSTI)

    Junkert, R.

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  13. Application of EPA regulations to low-level radioactive waste

    SciTech Connect (OSTI)

    Bowerman, B.S.; Piciulo, P.L.

    1985-01-01

    The survey reported here was conducted with the intent of identifying categories of low-level radioactive wastes which would be classified under EPA regulations 40 CFR Part 261 as hazardous due to the chemical properties of the waste. Three waste types are identified under these criteria as potential radioactive mixed wastes: wastes containing organic liquids; wastes containing lead metal; and wastes containing chromium. The survey also indicated that certain wastes, specific to particular generators, may also be radioactive mixed wastes. Ultimately, the responsibility for determining whether a facility's wastes are mixed wastes rest with the generator. However, the uncertainties as to which regulations are applicable, and the fact that no legal definition of mixed wastes exists, make such a determination difficult. In addition to identifying mixed wastes, appropriate methods for the management of mixed wastes must be defined. In an ongoing study, BNL is evaluating options for the management of mixed wastes. These options will include segregation, substitution, and treatments to reduce or eliminate chemical hazards associated with the wastes listed above. The impacts of the EPA regulations governing hazardous wastes on radioactive mixed waste cannot be assessed in detail until the applicability of these regulations is agreed upon. This issue is still being discussed by EPA and NRC and should be resolved in the near future. Areas of waste management which may affect generators of mixed wastes include: monitoring/tracking of wastes before shipment; chemical testing of wastes; permits for treatment of storage of wastes; and additional packaging requirements. 3 refs., 1 fig., 2 tabs.

  14. Microbial degradation of low-level radioactive waste. Final report

    SciTech Connect (OSTI)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

  15. Low-Level & Mixed Low-Level Radioactive Waste Shipments to NNSS, FY2010 2nd QTR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM NY NY NV OH TN TN TN, WA, CA TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Energx Argonne National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Ground Sandia National Laboratories Brookhaven National Laboratory West Valley Environmental Services National Security Technologies, Inc. Portsmouth Gaseous Diffusion Plant Duratek/Energy

  16. Field testing an OREX{reg_sign} based {open_quotes}point of generation{close_quotes} low-level radioactive waste reduction program at FP&L`s St. Lucie Plant

    SciTech Connect (OSTI)

    Payne, K.; Haynes, B.

    1996-10-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: the number of radioactive waste repositories now accepting new waste is limited; the current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum; the cost of burial is constantly increasing; onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning.

  17. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  18. Format and Content Guide for DOE Low-Level Waste Disposal Facility...

    Office of Environmental Management (EM)

    Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility ... for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS ...

  19. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and ...

  20. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transuranic (TRU)Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge National ...

  1. Format and Content Guide for DOE Low-Level Waste Disposal Facility

    Office of Environmental Management (EM)

    Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility ... for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments ...

  2. DOE to Weigh Alternatives for Greater Than Class C Low-Level...

    Office of Environmental Management (EM)

    Alternatives for Greater Than Class C Low-Level Waste Disposal DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal July 20, 2007 - 2:55pm Addthis ...

  3. Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) ...

    Office of Environmental Management (EM)

    Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the ...

  4. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    SciTech Connect (OSTI)

    Toran, L.E.; Hopper, C.M.; Naney, M.T.

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team`s approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to {sup 235}U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

  5. Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans

    Broader source: Energy.gov [DOE]

    Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

  6. 1989 Annual report on low-level radioactive waste management progress

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

  7. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect (OSTI)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  8. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known cultural resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.

  9. Scoping analysis of toxic metal performance in DOE low-level waste disposal facilities

    SciTech Connect (OSTI)

    Waters, R.D; Bougai, D.A.; Pohl, P.I.

    1996-03-01

    This study provides a scoping safety assessment for disposal of toxic metals contained in Department of Energy (DOE) mixed low-level waste (MLLW) at six DOE sites that currently have low-level waste (LLW) disposal facilities--Savannah River Site, Oak Ridge Reservation, Los Alamos National Laboratory, Hanford Reservation, Nevada Test Site, and Idaho National Engineering Laboratory. The study has focused on the groundwater contaminant pathway, which is considered to be the dominant human exposure pathway from shallow land MLLW disposal. A simple and conservative transport analysis has been performed using site hydrological data to calculate site-specific ``permissible`` concentrations of toxic metals in grout-immobilized waste. These concentrations are calculated such that, when toxic metals are leached from the disposal facility by infiltrating water and attenuated in local ground-water system the toxic metal concentrations in groundwater below the disposal facility do not exceed the Maximum Contaminant Levels as stated in the National Primary Drinking Water Regulation. The analysis shows that and sites allow about I00 times higher toxic metal concentrations in stabilized waste leachate than humid sites. From the limited available data on toxic metal concentrations in DOE MLLW, a margin of protection appears to exist in most cases when stabilized wastes containing toxic metals are disposed of at the DOE sites under analysis. Possible exceptions to this conclusion are arsenic, chromium selenium, and mercury when disposed of at some humid sites such as the Oak Ridge Reservation. This analysis also demonstrates that the US Environmental Protection Agency`s prescriptive regulatory approach that defines rigid waste treatment standards does not inherently account for the variety of disposal environments encountered nationwide and may result in either underprotection of groundwater resources (at humid sites) or an excessive margin of protection (at and sites).

  10. NMHPD Application for Permit to Excavate Human Burials | Open...

    Open Energy Info (EERE)

    NMHPD Application for Permit to Excavate Human Burials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMHPD Application for Permit...

  11. DOE - Office of Legacy Management -- Commercial (Burial) Disposal Site

    Office of Legacy Management (LM)

    Maxey Flats Disposal Site - KY 02 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 FUSRAP Considered Sites Site: Commercial (Burial) Disposal Site, Maxey Flats Disposal Site (KY.02) Remediated by EPA; a portion of the records are managed by DOE LM. More information at http://www.lm.doe.gov/maxey_flats/Sites.aspx Designated Name: Not Designated under FUSRAP Alternate Name: Maxey Flats, KY, Disposal Site Location: Fleming County, Kentucky Evaluation Year: Not considered for

  12. Electrokinetics for removal of low-level radioactivity from soil

    SciTech Connect (OSTI)

    Pamukcu, S.; Wittle, J.K.

    1993-03-01

    The electrokinetic process is an emerging technology for in situ soil decontamination in which chemical species, both ionic and nonionic, are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. The work presented here describes part of the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentrations of a selected heavy-metal salt solution. These metals included surrogate radionuclides such as Sr, Cs and U, and an anionic species of Cr. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. Removals of some metal species up to 99% were achieved at the anode or cathode end of the soil upon 24 to 48 hours of treatment or a maximum of 1 pore volume of water displacement toward the cathode compartment. Transient pH change through the soil had an effect on the metal movement, as evidenced by accumulation of the metals at the discharge ends of the soil specimens. This accumulation was attributed to the precipitation of the metal and increased cation retention capacity of the clay in high pH environment at the cathode end. In general, the reduced mobility and dissociation of the ionic species as they encounter areas of higher ionic concentration in their path of migration resulted in the accumulation of the metals at the discharge ends of the soil specimens.

  13. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect (OSTI)

    Rosten, R.; Malkumus, D.; Sonntag, T.; Sundquist, J.

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  14. Low-level Waste Forum meeting report. Spring meeting, April 28--30, 1993

    SciTech Connect (OSTI)

    1993-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  15. Low-level Waste Forum meeting report. Fall meeting, October 20--22, 1993

    SciTech Connect (OSTI)

    1993-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  16. Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Program Management » Compliance » Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Low-Level Waste Disposal Facility Federal Review Group (LFRG) is an independent group within the Office of Environmental Management (EM) that ensures, through review, that Department of Energy (DOE) (including the National Nuclear Security Administration) radioactive waste disposal facilities are protective of the public

  17. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    SciTech Connect (OSTI)

    Holtzscheiter, E.W. [Westinghouse Savannah River Company, AIKEN, SC (United States); Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

  18. 1996 annual report on low-level radioactive waste management progress. Report to Congress

    SciTech Connect (OSTI)

    1997-11-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal.

  19. Report to Congress: 1995 Annual report on low-level radioactive waste management progress

    SciTech Connect (OSTI)

    1996-06-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal.

  20. Format and Content Guide for DOE Low-Level Waste Disposal Facility

    Broader source: Energy.gov [DOE]

    Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

  1. SEAB Letter on Low-Level Radiation Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Secretary of Energy Advisory Board (SEAB) transmitted a letter to the Department regarding its perspective on how DOE should pursue research on low-level radiation. SEAB recommends...

  2. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  3. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  4. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    SciTech Connect (OSTI)

    1997-05-20

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

  5. Chemical characterization, leach, and adsorption studies of solidified low-level wastes

    SciTech Connect (OSTI)

    Walter, M.B.; Serne, R.J.; Jones, T.L.; McLaurine, S.B.

    1986-12-01

    Laboratory and field leaching experiments are beig conducted by Pacific Northwest Laboratory (PNL) to investigate the performance of solidified low-level nuclear waste in a typical, arid, near-surface disposal site. Under PNL's Special Waste Form Lysimeters-Arid Program, a field test facility was constructed to monitor the leaching of commercial solidified waste. Laboratory experiments were conducted to investigate the leaching and adsorption characteristics of the waste forms in contact with soil. Liquid radioactive wastes solidified in cement, vinyl ester-styrene, and bitumen were obtained from commercial boiling water and pressurized water reactors, and buried in a field leaching facility on the Hanford site in southeastern Washington State. Batch leaching, soil column adsorption, and soil/waste form column experiments were conducted in the laboratory, using small-scale cement waste forms and Hanford site ground water. The purpose of these experiments is to evaluate the ability of laboratory leaching tests to predict leaching under actual field conditions and to determine which mechanisms (i.e., diffusion, solubility, adsorption) actually control the concentration of radionuclides in the soil surrounding the waste form. Chemical and radionuclide analyses performed on samples collected from the field and laboratory experiments indicate strong adsorption of /sup 134,137/Cs and /sup 85/Sr onto the Hanford site sediment. Small amounts of /sup 60/Co are leached from the waste forms as very mobile species. Some /sup 60/Co migrated through the soil at the same rate as water. Chemical constituents present in the reactor waste streams also found at elevated levels in the field and laboratory leachates include sodium, sulfate, magnesium, and nitrate. Plausible solid phases that could be controlling some of the chemical and radionuclide concentrations in the leachate were identified using the MINTEQ geochemical computer code.

  6. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  7. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    SciTech Connect (OSTI)

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  8. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    SciTech Connect (OSTI)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  9. Tennessee State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee.

  10. Vermont State Briefing Book on low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

  11. Oregon State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  12. EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State...

  13. EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

  14. DOE/SC-ARM/TR-119 Investigations of Possible Low-Level

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARMTR-119 Investigations of Possible Low-Level Temperature and Moisture Anomalies ... CN Long and DJ Holdridge, November 2012, DOESC-ARMTR-119 ii Summary This document ...

  15. Low-level detection and quantification of Plutonium(III, IV,...

    Office of Scientific and Technical Information (OSTI)

    using a liquid core waveguide Citation Details In-Document Search Title: Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide ...

  16. 1994 annual report on low-level radioactive waste management progress

    SciTech Connect (OSTI)

    1995-04-01

    This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

  17. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  18. Mississippi State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  19. Ohio State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  20. Texas State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  1. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental ...

  2. Massachusetts State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  3. Kentucky State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

  4. North Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  5. Puerto Rico State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  6. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  7. Connecticut State Briefing Book for low-level radioactive-waste management

    SciTech Connect (OSTI)

    1981-06-01

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut.

  8. North Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  9. Rhode Island State Briefing Book on low-level radioactive-waste management

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  10. Florida State Briefing Book for low-level radioactive-waste management

    SciTech Connect (OSTI)

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  11. Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW)

    Broader source: Energy.gov [DOE]

    In February 2016, DOE publicly issued the Final Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375)(Final...

  12. South Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  13. Pennsylvania State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  14. EA-1135: Offsite Thermal Treatment of Low-level Mixed Waste, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to treat contact-handled low-level mixed waste, containing polychlorinated biphenyls and other organics, to meet existing regulatory...

  15. New Jersey State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  16. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  17. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T.

    2013-07-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  18. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  19. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect (OSTI)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  20. Low-level waste management program and interim waste operations technologies

    SciTech Connect (OSTI)

    Mezga, L.J.

    1983-01-01

    The Department of Energy currently supports an integrated technology development and transfer program aimed at ensuring that the technology necessary for the safe management and disposal of LLW by the commercial and defense sectors is available. The program focuses on five technical areas: (1) corrective measures technology, (2) improved shallow land burial technology, (3) greater confinement disposal technology, (4) model development and validation, and (5) treatment methods for problem wastes. The results of activities in these areas are reported in the open literature and the Proceedings of the LLWMP Annual Participants Information Meeting.

  1. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  2. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2009-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  3. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  4. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  5. Hanford low-level vitrification melter testing -- Master list of data submittals

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1995-03-15

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes.

  6. EA-1405: Final Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transuranic Waste Retrieval from the 218-W-4B and 218-W-4C Low-Level Burial Grounds, Hanford Site, Richland, Washington

  7. Improvement to low-level radioactive-waste vitrification processes. Master's thesis

    SciTech Connect (OSTI)

    Horton, W.S.

    1986-05-01

    Low-level radioactive waste vitrification (LLWV) is a technically feasible and cost-competitive alternative to the traditional immobilization options, i.e., cementation or bituminization. This thesis analyzes cementation, bituminization and vitrification, reviews the impact of the low-level Waste-stream composition on the vitrification process, then proposes and discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV). The techniques that control the volatile radionuclides include chemical precipitation, electrodialysis, and ion exchange. Ion exchange is preferred. A comparison of the technical specifications, of the regulatory compliance, and of the cost considerations shows the PILLWV to be the superior LLW immobilization option.

  8. DOE - NNSA/NFO -- EM Low-Level Waste Grant Assistance Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grant Assistance Program NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Click to subscribe to NNSS News Low-Level Waste Grant Assistance Program An Emergency Management grant program was instituted in fiscal year 2000 to provide funding for enhancing county emergency response capabilities in communities near the Nevada National Security Site. To fund this grant, approved waste generators are charged an additional $.50 per cubic foot of low-level and mixed-level waste disposed. The

  9. Letter report: Minor component study for low-level radioactive waste glasses

    SciTech Connect (OSTI)

    Li, H.

    1996-03-01

    During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

  10. Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements | Department of Energy Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine Gelles*, U.S. Department of Energy ; Edward Regnier, U.S. Department of Energy; Andrew Wallo, U.S. Department of Energy Abstract: The Atomic Energy Act gives the U.S. Department of Energy (US DOE), the authority to regulate the management of radioactive waste generated by US DOE. This

  11. The consequences of disposal of low-level radioactive waste from the Fernald Environmental Management Project: Report of the DOE/Nevada Independent Panel

    SciTech Connect (OSTI)

    Crowe, B.; Hansen, W.; Waters, R.; Sully, M.; Levitt, D.

    1998-04-01

    The Department of Energy (DOE) convened a panel of independent scientists to assess the performance impact of shallow burial of low-level radioactive waste from the Fernald Environmental Management Project, in light of a transportation incident in December 1997 involving this waste stream. The Fernald waste has been transported to the Nevada Test Site and disposed in the Area 5 Radioactive Waste Management Site (RWMS) since 1993. A separate DOE investigation of the incident established that the waste has been buried in stress-fractured metal boxes, and some of the waste contained excess moisture (high-volumetric water contents). The Independent Panel was charged with determining whether disposition of this waste in the Area 5 RWMS has impacted the conclusions of a previously completed performance assessment in which the site was judged to meet required performance objectives. To assess the performance impact on Area 5, the panel members developed a series of questions. The three areas addressed in these questions were (1) reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) excess moisture in the waste. The panel has concluded that there is no performance impact from reduced container integrity--no performance is allocated to the container in the conservative assumptions used in performance assessment. Similarly, the process controlling post-closure subsidence results primarily from void space within and between containers, and the container is assumed to degrade and collapse within 100 years.

  12. Quality assurance program plan for low-level waste at the WSCF Laboratory

    SciTech Connect (OSTI)

    Morrison, J.A.

    1994-11-01

    The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME).

  13. Low-level radioactive-waste compacts. Status report as of July 1982

    SciTech Connect (OSTI)

    Not Available

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this.

  14. Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base. (ATT)

  15. Simulation of the Low-Level-Jet by general circulation models

    SciTech Connect (OSTI)

    Ghan, S.J.

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  16. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    SciTech Connect (OSTI)

    Devgun, J.S. [Argonne National Lab., IL (United States); Larson, G.S. [Midwest Low-Level Radioactive Waste Commission, St. Paul, MN (United States)

    1995-12-31

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change.

  17. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    N /A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  18. An update of a national database of low-level radioactive waste in Canada

    SciTech Connect (OSTI)

    De, P.L.; Barker, R.C.

    1993-03-01

    This paper gives an overview and update of a national database of low-level radioactive waste in Canada. To provide a relevant perspective, Canadian data are compared with US data on annual waste arisings and with disposal initiatives of the US compacts and states. Presented also is an assessment of the data and its implications for disposal solutions in Canada.

  19. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    SciTech Connect (OSTI)

    Gerstein, J.S.

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  20. 12/2000 Low-Level Waste Disposal Capacity Report Version 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current and Planned Low-Level Waste Disposal Capacity Report Revision 2 December 2000 U.S. Department of Energy Office of Environmental Management i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ES-1 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Summary of Report Sections . . . . . . . . . . . . . . . . . . . . . .

  1. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ``unpackaged`` volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste.

  2. H.A.R. 13-300 - Rules of Practice and Procedure Relating to Burial...

    Open Energy Info (EERE)

    300 - Rules of Practice and Procedure Relating to Burial Sites and Human Remains Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  3. Compliance matrix for the mixed waste disposal facilities, Trenches 31 & 34, burial ground 218-W-5

    SciTech Connect (OSTI)

    Carlyle, D.W.

    1994-10-31

    The purpose of the Trench 31 & 34 Mixed Waste Disposal Facility Compliance Matrix is to provide objective evidence of implementation of all regulatory and procedural-institutional requirements for the disposal facilities. This matrix provides a listing of the individual regulatory and procedural-institutional requirements that were addressed. Subject matter experts reviewed pertinent documents that had direct or indirect impact on the facility. Those found to be applicable were so noted and listed in Appendix A. Subject matter experts then extracted individual requirements from the documents deemed applicable and listed them in the matrix tables. The results of this effort are documented in Appendix B.

  4. EM Contractor 'Finishes Strong' at Hanford Site's 618-10 Burial Ground

    Energy Savers [EERE]

    Department of Energy Assistant Secretary Highlights Cleanup Workers at Annual Conference EM Assistant Secretary Highlights Cleanup Workers at Annual Conference March 31, 2016 - 1:20pm Addthis EM Assistant Secretary Dr. Monica Regalbuto speaks during the Waste Management Conference plenary session earlier this month. EM Assistant Secretary Dr. Monica Regalbuto speaks during the Waste Management Conference plenary session earlier this month. PHOENIX - EM Assistant Secretary Dr. Monica

  5. Microsoft PowerPoint - 20101005_HAB_Burial_Ground_ Advice_Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    San Jose-San Francisco-Oakland, CA Locality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Engineering and Scientific (NN) Band 01 $36,309 - $64,755 Band 02 $55,015 - $86,525 Band 03 $79,781 - $123,335 Band 04 $112,108 - $153,200 Professional, Technical and Technical, and Administrative (NQ) Band 01 Band 02 Band 03 $94,871 - $145,747 Band 04 Band 01 $36,309 - $64,755 Band 02 $55,015 - $103,710 04 $131.873 to $153,200 Technical and Administrative Support Support (NU) Band 01 $23 565 $42 187 Band 02 $36 309

  6. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    SciTech Connect (OSTI)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-12-31

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites.

  7. Jeff Grounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Grounds Jeff Grounds jeffgrounds-sm.jpg Jeff Grounds Facilities Manager JTGrounds@lbl.gov Phone: (510) 486-7197 Mobile: (510) 207-2273 Last edited: 2016-04-29 11:34:57

  8. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  9. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    SciTech Connect (OSTI)

    Dyer, R.S.; Penzin, R.; Duffey, R.B.; Sorlie, A.

    1996-12-31

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

  10. Preliminary design requirements document for Project W-378, low-level waste vitrification plant

    SciTech Connect (OSTI)

    Swanson, L.M.

    1995-03-31

    The scope of this preliminary Design Requirements Document (DRD) is to identify and define the functions, with associated requirements, which must be performed to accomplish vitrification and disposal of the pretreated low-level waste (LLW) fraction of the Hanford Site tank waste. This document sets forth function requirements, performance requirements and design constraints necessary to begin conceptual design for the Low-Level Waste Vitrification Plant (LLWVP). System and physical interfaces between the LLWVP Project and the Tank Waste Remediation System (TWRS) are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design data to be documented by the project.